The SELinux Notebook

The SELInux
Notebook

(4" Edition)

&

PPPPP

The SELinux Notebook

0. Notebook Information

0.1 Copyright Information
Copyright © 2014 Richard Haines.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts,
and no Back-Cover Texts.

A copy of the license is included in the section entitled "GNUFree Documentation
License".

The scripts and source code in this Notebook are covered by the GNU General Public
License. The scripts and code are free source: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or any later version.

These are distributed in the hope that they will be useful in researching SELinux, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with
scripts and source code. If not, see <http://www.gnu.org/licenses/>.

0.2 Revision History

Edition Date Changes
1.0 | 20™Nov '09 First released.
2.0 |8"May'l0 Second release.

3.0 | 2™ September '12 Third release.
4.0 | 30™ September '14 Fourth release.

0.3 Acknowledgements
Logo designed by Mairin Duffy

0.4 Abbreviations

AV Access Vector

AVC Access Vector Cache

BLP Bell-La Padula

CC Common Criteria

CIL Common Intermediate Language
CMW Compartmented Mode Workstation
DAC Discretionary Access Control

Page 2

mailto:richard_c_haines@btinternet.com
http://www.commoncriteriaportal.org/
http://pookstar.deviantart.com/
http://www.gnu.org/licenses/

The SELinux Notebook

F-20 Fedora 20

FLASK | Flux Advanced Security Kernel

Fluke Flux p-kernel Environment

Flux The Flux Research Group (http://www.cs.utah.edu/flux/)
ID Identification

LSM Linux Security Module

LAPP Linux, Apache, PostgreSQL, PHP / Perl / Python

LSPP Labeled Security Protection Profile

MAC Mandatory Access Control

MCS Multi-Category Security

MLS Multi-Level Security

NSA National Security Agency

OM Object Manager

OTA over the air

PAM Pluggable Authentication Module

RBAC Role-based Access Control

rpm Red Hat Package Manager

SELinux | Security Enhanced Linux

SID Security Identifier

SMACK | Simplified Mandatory Access Control Kernel

SUID Super-user Identifier

TE Type Enforcement

UID User Identifier

XACE X (windows) Access Control Extension

0.5 Terminology

These give a brief introduction to the major components that form the core SELinux

infrastructure.

Term

Description

Access Vector

A bit map representing a set of permissions (such as open,

(AV) read, write).
Access Vector A component that stores access decisions made by the
Cache (AVC) SELinux Security Server for subsequent use by Object

Managers. This allows previous decisions to be retrieved
without the overhead of re-computation.

Within the core SELinux services there are two Access Vector
Caches:

1. A kernel AVC that caches decisions by the Security
Server on behalf of kernel based object managers.

Page 3

http://www.schaufler-ca.com/
http://www.cs.utah.edu/flux/

The SELinux Notebook

Term

Description

2. A userspace AVC built into 1ibselinux that caches
decisions when SELinux-aware applications use
avc_open (3) with avc_has perm(3) or
avc_has perm noaudit (3) function calls. This
will save kernel calls after the first decision has been
made.

Domain

For SELinux this consists of one or more processes associated
to the type component of a Security Context. Type
Enforcement rules declared in Policy describe how the
domain will interact with objects (see Object Class).

Linux Security
Module (LSM)

A framework that provides hooks into kernel components
(such as disk and network services) that can be utilised by
security modules (e.g. SELinux and SMACK) to perform
access control checks.

Currently only one LSM module can be loaded, however work
is in progress to stack multiple modules).

Mandatory
Access Control

An access control mechanisim enforced by the system. This
can be achieved by 'hard-wiring' the operating system and
applications (the bad old days - well good for some) or via a
policy that conforms to a Policy. Examples of policy based
MAC are SELinux and SMACK.

Multi-Level
Security (MLS)

Based on the Bell-La & Padula model (BLP) for
confidentiality in that (for example) a process running at a
'Confidential' level can read / write at their current level but
only read down levels or write up levels. While still used in
this way, it is more commonly used for application separation
utilising the Multi-Category Security variant.

Object Class

Describes a resource such as files, sockets or services.

Each 'class' has relevant permissions associated to it such as
read, write or export. This allows access to be enforced on the
instantiated object by their Object Manager.

Object Manager

Userspace and kernel components that are responsible for the
labeling, management (e.g. creation, access, destruction) and
enforcement of the objects under their control. Object
Managers call the Security Server for an access decision
based on a source and target Security Context (or SID), an
Object Class and a set of permissions (or AVs). The Security
Server will base its decision on whether the currently loaded
Policy will allow or deny access.

An Object Manager may also call the Security Server to
compute a new Security Context or SID for an object.

Policy

A set of rules determining access rights. In SELinux these
rules are generally written in a kernel policy language using
either m4 (1) macro support (e.g. Reference Policy) or the
new CIL language. The Policy is then compiled into a binary

Page 4

The SELinux Notebook

Access Control

Term Description
format for loading into the Security Server.
Role Based SELinux users are associated to one or more roles, each role

may then be associated to one or more Domain types.

Security Server

A sub-system in the Linux kernel that makes access decisions
and computes security contexts based on Policy on behalf of
SELinux-aware applications and Object Managers.

The Security Server does not enforce a decision, it merely
states whether the operation is allowed or not according to the
Policy. It is the SELinux-aware application or Object
Manager responsibility to enforce the decision.

Security Context

An SELinux Security Context is a variable length string that
consists of the following mandatory components
user:role:type and an optional [: range] component.

Generally abbreviated to 'context', and sometimes called a
'label'.

Security SIDs are unique opaque integer values mapped by the kernel
Identifier (SID) Security Server and userspace AVC that represent a Security
Context.
The SIDs generated by the kernel Security Server are u32
values that are passed via the Linux Security Module hooks
to/from the kernel Object Managers.
Type SELinux makes use of a specific style of type enforcement
Enforcement (TE) to enforce Mandatory Access Control. This is where all
subjects and objects have a type identifier associated to them
that can then be used to enforce rules laid down by Policy.
0.6 Index
0. NOTEBOOK INFORMATION....cccccceueeeeeueeeacesaensecssesasssassacesasssessssssasssssasssssssanes 2
0.1 COPYRIGHT INFORMATION . .eeuuttieaiiieiiiteiite ittt ettt 2
0.2 REVISION HISTORY . .uuttitiiiiiiieiiiiiieeiiiiieiiiieeeieiieeeeiieeeeieeeeiiiieeeeeeeeeeeeenanaees 2
0.3 ACKNOWLEDGEMENTS . .tetiuttttiittetaittetsitetatt ettt ettt et e st e st e ateesteeaeeasee s 2
0.4 ABBREVIATIONS. ¢eeauetteeteiutttetenatteeeeanetteeeentteeeeaateeeeeatteeeeantteeeeanteeeeeasteeeeanneeeeeeeeas 2
0.5 TERMINOLOGY uttetitteiitteete ettt ettt ae et e s 3
0.6 INDEX.teeuieiieeeitieeeee ettt ettt ettt ettt eee et ee et eei ettt et e et eeeaaaanees 5
1. THE SELINUX NOTEBOOK....cccccoceuteeascanccnssssssassssssssssssnssssssnssssssssssssssssssssass 15
L] INTRODUCTION . .tteteiutttettieteteeest et es ettt et eat et eaeeeeeeteeeeaneeeeeneeeeeaaneeeees 15
1.2 NOTEBOOK OVERVIEW. ..eeiautteiittieiiieeiite ittt sttt ettt et etaaieee e 15
1.2.1 Notebook Source OVervieW..............ccooeeeeveieeeiiiieeiiiiieiiiiiiiiiiiiiiiiiieeenn. 16
2. SELINUX OVERVIEW....ccccceeessceasssascascsassssssssssssssssssasssssssssssssssssssssassssassssassssas 17
2.1 INTRODUCTION. ..tttteeesutttttteetteetas ettt eae et ettt eaatt e e eaaiee et eeteeeeenieeeeaneeeeeennees 17
2. 1.1 1S SELINUX USEFUL ..o 17
2.2 CORE SELINUX (COMPONENTS. ..ttteeueteeteaseteeeeneteeeeanteeeeenneteeeennsieeeennineeeeeaneeeeeeanee 19
2.3 MANDATORY ACCESS CONTROL (MAQC)...uueiiiiiiiiiiiiiiiiiiiiiiieiieeeee 22

Page 5

The SELinux Notebook

2.4 SELINUX USERS. .ttt eeeeeeeieeeeeeeeeeeiiannnen 24
2.5 RoLE-BASED AccESS CONTROL (RBAQ).uuuuiiiiiiiiiiiiiiiiieieieeeecieeeeeeee e 24
2.6 TYPE ENFORCEMENT (TE)..uuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeieeeeeeee e 25
2.6.1 CONSIQINES..oooooeeiiieiiieieeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 26
2.6.2 BOURAS. ..o 26
2.7 SECURITY CONTEXTuuttuttiiieiieiiitieteeieeeeeiieiitteeeeeeeeeeeeiiitseeeeeeeeeeieniitsseeeeeseeeeseseeeeeeeeees 27
2.8 SUBIECTS . eiiiiiiiiiiiiiiiiiieeieeeeeeeeee ettt ee e e et e e et et e e e e e eeeeeeeee e e e e e e e e e e e e e eeeeeeeeeeees 29
2.9 OBIECTS ittt ettt ettt e e e et eeet et e e e et eee ittt eeeeeeeeeenttraeereeraeees 29
2.9.1 Object Classes and PermiSSTiONS.coooveeeeeiiiiiieiiiiiiiiiiieiieeeeeeeeeeieeenn.. 29
2.9.2 Allowing a Process Access 10 ReSOUFCES........uveveeeeeieiiieeeeeeaaeeeeeeeaeaannn.. 30
2.9.3 Labeling ObjeCtS........ooouuoiiieiieeeiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeeeeeee 31
2.9.3.1 Labeling Extended Attribute FileSyStems.........cooeuveveeieeuvvvvveeeeeeeaennn.. 32
2.9.3.1.1 Copying and Moving Files..........cceeevueiiiiiiiiiiiiiiiiiiiiiiiiieieeieennnn, 32

2.9.3.2 Labeling SubJECtS.....ccoeueeiiiiiiiiiiiiiiiieeeeieeeeee e 33
2.9.4 ObJeCt ROUSC. ..o 34
2.10 COMPUTING SECURITY CONTEXTS 1uvveeeeeiieiiuusseeeeeeeeeiisiiusseeeseeeeeesiiisseseeeseeseeeeeeeeeeeees 34
2.10.1 Security Context Computation for Kernel Objects...........ccccooovveeveeiiin..... 34
2.10.1.1 PrOCESS.coiiiiutieeeiiiiieeeeeeieeeee ettt 35
2.10.1.2 Fl@S.uuuiiiiiiiiiiiiiiiiiiiieiiie et 35
2.10.1.3 File DeSCIIPLOIS. couvviiiueiiiieeiieeiiiieeeiieieiieeeiiee e eeeiieeeeeenee 36
2.10.1.4 FileSYStEIMS. uuuuuiiiiiiiiiiiiiiiiiiiieeieiiiiiiieeeeeeeeiiiiiieeeeeeeieiiiiiieainannn, 36
2.10.1.5 Network File System (NfSV4)......ccovuveeiiiieeiiiiiiiiiiiiiiiiiveieeieeeeenn. 37
2.10.1.6 INET SOCKETS. ..oeeoueiiiiiiieiiiiiiiiiiiiiiiiieeeiiieeeeeieeeeeeeiiiieeeeeeeeenn 37

200 0.7 TPC oottt 37
2.10.1.8 MeSSAZE QUEUES. ..uueiiiiiiiiniieiiiiieiieiiiiiiiiiieeeeeeeeiiiiieeeeeeeeinnn, 37
2.10.1.9 SCMAPNOLES. ..uvvveeiiiieiiiieiiiiieiiieee e eeeeeeeeeeee e, 38
2.10.1.10 Shared MemOIY....coooeuuuiiiieeiiiiiiiiiiiieeeeeeeiieieeee et 38
2.10. 0111 K@VS..uuttiiiiiuiiiiiiiiiei ittt ettt 38
2.10.2 Using libselinux FUNCIIONSoooiiiiiiiieiiiiiiiiiiiiecieiieeeeeeeeeeeeen 38
2.10.2.1 ave_compute create and security_compute_create..............coe.e....... 38
2.10.2.2 ave _compute member and security _compute _member.................... 40
2.10.2.3 security_compute_relabelooeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiein 41

2.11 COMPUTING ACCESS DIECISIONS . ..t 42
2.12 DOMAIN AND OBJECT TRANSITIONS. 1.vvveiiiiiiiiiiiisieeiiieeeiiiiiitiieeeeeeeeeeiiiiiiieeeeeeeeeiiiinnns 43
2.12.1 DOMAIN TVANSTEION. c..vvveeeeeeeeeeeeeeeeeeieeeeeeeeeenn. 43
2.12.1.1 Type Enforcement RUIES........coouveiiieiueeiiiiiiiiiiiiiiiieiieeieieeeeieane 45
2.12.2 Object TranSition....o.oooooeeeveviiiiiiiiiiiiiiiiiiiiiiieieiiiieeeeeieeeeeeeeeeeeeeeee 47
2.13 MuLti-LEVEL SECURITY AND MULTI-CATEGORY SECURITY ..uuuiieeieiiiiiiiiieieieieneese. 48
2.13.1 Security LeVelS......cooooooiooiooeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieeeeeeeeeeeeeeeeeeeeee 49
2.13.1.1 MLS /MCS Range FOrmat..........cooveeeieeuveeeiiieeiiiiiiiiiveeeeeeeeeennnn. 50
2.13.1.2 Translating LeVelS...oooeeuuuuueieiiiiiiiiiiiiiiieiieiieiiieieeeee e, 51
2.13.2 Managing Security Levels via Dominance Rules............ccccovveveeeeenn..... 51
2.13.3 MLS Labeled Network and Database Support........oococooeoeeveeeiiiieiennnn.... 53
2.13.4 Common Criteria CertifiCQtion............coouuweeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeenenane... 53
2.14 TYPES OF SELINUX POLICY 1t 54
2.14. 1 EXAmple POLICY.....oooooooveieiiiiiiieieiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeea 54
2.14.2 Reference POLICY. ..o 54
2.14.3 Policy Functionality Based on Name or TVpe.....ouuooeeeeceeeeeeeeeeaaaaaann.... 55
2.14.4 Custon POLICY. ..o 55
2.14.5 Monolithic POLICY........ooooooieeieiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeaae 55

Page 6

The SELinux Notebook

2.14.6 Loadable Module POLICY..........ccccoovviiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeei 56
2.14.6.1 Optional POLCY...couuveiiieiiiiiiieieiiieeeeieeeeiee e 56
2.14.7 Conditional POLICY........ooooooeiiiiiiiiiiiiiiiiiiiiiiiieiiiiioeeeeieeeeeeeeeeeeeeee 56
2.14.8 Binary POLICY.....oooocueeeeiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeea 57
2.14.9 POliCY VerSIONS. .oooooooooiiiiiiiiiiiiiiiiiiiiiiieeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 57
2.15 SELINUX PERMISSIVE AND ENFORCING MODES. ...ciiiiiiiiiiieieiiieeiiiiiiieiieeeieeeeeeeeveens 59
2.16 AUDITING SELINUX EVENTS. 1uuuuttttttteiseeeeisesteseieiiieeeeeiieieeiiiiiiiiiiieeeeeeeiiineeeeeseeeeenn. 59
2.16.1 AVC AUt EVERES...cooooveeieoiiiiieieiieiiiiieeeeeeeeeeeeeeeeieeeeeeeeeeeeee 60
2.16.2 General SELinux Audit EVERES........ccoooovveiiiiiiiiiiiiiiiiiiiiiiiciiiiiiieeeeenenn 63
2.17 POLYINSTANTIATION SUPPORT....ceiuuttveeieiieeeiiiiiitieeeeeeeeeeiiiiieeeeeeeeeeiaiiiieeeeseeeeeeiannns 65
2.17.1 Polyinstantiated ODbJeCtSccouuiiiiiiiiioiiiiiiiiiiiiiiiiiiiiieeieeieeeeeeeiie 65
2.17.2 Polyinstantiation support in PAM...........cooooveeeieeeeeieieeeiiiieeeeeeaaann... 65
2.17.2.1 namespace.conf Configuration Fil€......ccocoooiiiiiiiiuveeiieiiiiiiiiiveneenn. 66
2.17.2.2 Example ConfigurationsS........c..eeeeeueeeiiiiueeeiieiieeeieeiiiiieeiiieeeeeneeen 67
2.17.3 Polyvinstantiation sSupport in X-WinaoWs........cccoeeveueiiieeieeeeeeeeeiiiiiaann... 68
2.17.4 Polyinstantiation support in the Reference POliCY............cooovvvvvveeeeeeenn... 68

2. 18 PAM LOGIN PROCESS. .., 68
2.19 LiINUX SECURITY MODULE AND SELINUX.uuuvviiiiiiiiiiiiiiiieiiiieeeeeeiieieeeeeeeeeeeeeeeeeen 70
2191 The LSM MOAQUIL.........oooooooeiiiiiiiiiiiiiiieeiiiieeiiieeeeeeeeeeeeeeeeeea 71
2.19.2 The SELinux Module............ccccoovveveiiiiiiieeeeieiiiiiiiiiiieieeeeeeeeeiiivveaaaan 73
2.19.2.1 Fork System Call Walk-thorough............ccooevveiiiiiiiiiiiiiiiiiiieeeenn. 74
2.19.2.2 Process Transition Walk-thorough...........coceeeevviiieiiiieiiiiiiiiiiiieeennn, 76
2.19.2.3 SELIiNUX FileSYSteM . ccciuuuuuiiiiiiiiiiiiiiiiiiiiiiiieiieiiiiieeeeeeieviiiiinn, 81

2.20 LIBSELINUX LIBRARY .uvvveiiiiiiiieiitiiieiiiieeeeieeiiiieieeeeeeeeiiiiieieeeeeeeeeeiiiiieeeeeseeeeeeeeeenens 86
2.21 SELINUX NETWORKING SUPPORT...00uuuusessssesesesisssssissssisiesiinisesisisisniiiiieeeeeeeeennnen. 88
2211 SECMARK ..o 89
2.21.2 NetLabel - Fallback Peer Labeling...........ccooocoooovuveiiiiiiiiiiicieiiiiiiiiannnn 91
2.21.3 NetLabel - CIPSO.....oooooooeoiiioiiiiieiiieeeeeeeeeeeeeeeeeeeeen 92
2.21.4 Labeled IPSeC..........ccccoooveeiiiiiiiiiiiiiiiiiiiiiiieciiiiioeiieeeeeeeeeeeeeeeeeee 92
2.21.4.1 Configuration EXamples.......cccuvveieeuveiiiiieiiiiiiiiiiieeiiiiieiiiieeeeenenn 94
2.22 SELINUX VIRTUAL MACHINE SUPPORT . .evvvviiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeinnnne, 96
2.22.1 KVM / QEMU SUDDOTL ..o 96
2.22.2 [ibVIFt SUDDOFE oo 97
2.22.3 VM Image Labeling.........ccccoooouieieeeeueeeeeiiiiiiiiiieeieieiieeeiieeeeeeeeeinn 97
2.22.3.1 Dynamic Labeling.....ccoouuuviieiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeinnn, 98
2.22.3.2 Shared IMage......uvveiieueeiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeee e 98
2.22.3.3 Static Labeling....uuueieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeieeeee et 101
2.22.4 XOH SUDDOT Lot 103
2.23 SANDBOX SERVICES..eiiiiiiiiiiiiiiiiiiiiiiieeieeeiannn, 104
2.24 X-WINDOWS SELINUX SUPPORT....eeviiiiiiiiiiieiieiieeieiiiiiiiieiiieieieeeeeeeeieeeeeeeeeeeeeennns 106
2.24.1 Infrastructure OVerVieW.........cccouueuiooeeieeieeiiiiiiiieiiiiieieiiieeeeeeeiieeiiveennns 106
2.24.1.1 PolyinStantiation.......ce.ueeeeeeueeeeieiiiiieeiiiieeeeiieeeeeeeeeeeieeeeeeiiieeee 108
2.24.2 Configuration INfOrmatiON.ccoooveeeeeieeeeiiieeieiieeeieieeeeeiieeeennnn 109
2.24.2.1 Enable/Disable the OM from Policy DecisionS..........cccceevvvveeee..... 109
2.24.2.2 Determine OM X-extension Opcode......coeveeeeeeiveeeieiiiiiiiiiieeeennnn.. 109
2.24.2.3 Configure OM Enforcement Mode........ccoovvvvivieeeeeieieieiiiiiiiennnnnn. 109
2.24.2.4 The x_contexts File.......ccuoueiiiiiiiiiiiiiiiiiiiiiiieiiceeiees, 110
2.24.3 SELinux Extension FURCHONS.ccooeveeeeiiiiieiiiiiieeieeeeeeeeeeeeeeeeeeaeee 112
2.25 SE-POSTGRESQL ..iiiiiiuuiiiiiiiiiiiiiiiiiiiiiieee oo eeeeeeeeeeeeeeeeiieeeeeeeieeees 114
2.25.1 SePISQL OVEFVICW..oovvoiiieeoeiiieeiieiee 114

Page 7

The SELinux Notebook

2.25.2 Installing SE-PoSt@reSQL......coooooooooeeiiiiiiiiiiiiiiiiiiiiiieeieiiceiiiiiiiivennns 115
2.25.3 SECURITY LABEL SQOL Command...........cccoeveeeeeeiiiiiiiiieeeeeeeeeaeeeannn. 116
2.25.4 Additional SOL FUNCIIONS......ooooooioioiiiiiiiiiiiiiiiiiieiieeeeieeiieieeeeeennn 116
2.25.5 Additional postgresql.conf ENries........oocoeeeieeeeeeeeeeieeeeeiieeeeeeeeneeannn 117
2.25.6 Logging Security EVents.......cooooooooovoveeeiiiiiiiiiiiiiiiiiiiiiiiiieeeeeiiiieenn 118
2.25.7 Internal Tables.........ccoooueveeeeeeiiiiiiiiieiiiiiiiieieiiiieeeeeeeeeeeeeeveiviian 118
2.26 APACHE SEILINUX SUPPORT . uuuuusiieeeeeeeeeeeieeeeeeeeannn, 119
2.26.1 mod _Selinux OVerVIeW............cceeeeiieiiiiiiiiiiiiiiiieiiiieiiiiiiiieeiiieeeen, 119
2.26.2 BOUNAS OVEOFVICW...oooooioooiiiiiiiiiiiiieiiiiiieeeeeeeeiiieeeeeeeeeeeeeeeeeeeeeeeee 120
2.26.2.1 Notebook EXampPles.....cuueiiieeeeeiiiiiiiieeieiiiiiiiiiieeeeeeeeeeeeeeen 121

3. SELINUX CONFIGURATION FILES.....cccooseeeeeesssueeccsssasssesssssssssssssssscsssssssssses 122
3.1 INTRODUCTION. . eeititetttttteiieee et eettteeeee e e et eeetteee e e et eeeeietaeeeeeeeeeeeeiteseeeeeeeeeeennnsseees 122
3.1.1 Policy Store Migration......oooooccoeeeeeeiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeieeiveaenns 122
3.1.1.1 The priority OpPtioN....oceeeeeueeieeeiiiieiiiiiiiiiiiieeiieeiieeeiieeeeiieeieeene 123
3.1.1.2 Converting policy packages t0 CIl.......coovveiieiuiieiiiiiieiiiiiiieeennnnne. 124

3.2 GLOBAL CONFIGURATION FILES..iiiiuuvviiiiiiiiiiiiiiiiiiiiiiieeeieieiiieeeeeeeeeeiieeeeevveeeiaes 124
3.2.1 Jetc/selinux/COnfig File.......cooouooeoeeiiiioeiiiiiieiiiiieiiiieieiieeeeeiieeeeean 125
3.2.2 Jetc/selinux/semanage.conf File........oooooooeeeiiieeeeiiiiieeiiiiieeeeiieeenn.. 126
3.2.3 Jete/selinux/restorecond.conf and restorecond-user.conf Files................ 131
3.2.4 /etc/selinux/newrole pam.CONf.........ccoueveeeeeeeeeieeeieeieeiieiiceeeieeeeennn. 131
3.2.5 Jetc/sestatuS.CONf File......ooooooeeiiiioeiiiiiiiiiiiieeeiiiieieiieeeeeieeeeieeeeene 132
3.2.6 /etc/security/sepermit.CONf File.......oooooovooeeeeeiieieeiiiiieieiieeeeeeeeena. 132
3.3 PoLicY STORE CONFIGURATION FILES. . uvvvviieiiiiiieiiiiiiiiiiiiiiiiiiiiiiiiieieiiiiieeeeeieviiannn, 133
3.3.1 mOAULES) FTLOS. ..o 134
3.3.2 modules/active/base.pp File..........ccooooooooeeeviiiiiiiiiiiiiiiiiiiiiiiiiiicienaan, 134
3.3.3 modules/active/base.linked File...............cccoooovveeeeiiieieeeeieieeeeeeieneenn... 134
3.3.4 modules/active/commit_ num File..............cocoovoeeeiieviiaiiieaiiaiiann.. 134
3.3.5 modules/active/file_contexts.template File................ccocoovereverevenn....... 134
3.3.6 modules/active/file_contexts File..............cccoooeveveoveioiioinioineennnnen.. 138
3.3.7 modules/active/homedir_template File.................ccccooovevevevvareaeeannn.... 139
3.3.8 modules/active/file_contexts.homedirs File.................cccocoooevvevveenen.... 139
3.3.9 modules/active/netfilter _contexts & netfilter.local File........................... 140
3.3.10 modules/active/policv.kern File..........ccccoooiooiieoiveoeiiiiiiiiiiiiieeieieeaaaan 140
3.3.11 modules/active/seusers.final and seusers Files...........c...ccooovveeeee....... 141
3.3.12 modules/active/users_extra, users_extra.local and users.local Files..... 143
3.3.13 modules/active/booleans.local File..............c.ccoouveveeeeeeieeiceeeeeiineeann... 145
3.3.14 modules/active/file_contexts.local File.................c.cccocoooeoveevevnenenne.... 145
3.3.15 modules/active/interfaces.local File..........oooooooveiieeieeeiieeiiieeeeeeeaan..... 146
3.3.16 modules/active/nodes.local File........occccooovuiiiiiiiiiiiiiiiiiiiiiiiiieeenaann... 146
3.3.17 modules/active/ports.local File...........ccooooooveeeeeieeeeiieeeeeiieeeieeeneen... 146
3.3.18 modules/active/preserve_tunables File..................c.ccocooeeveveevnevnennene... 146
3.3.19 modules/active/disable_dontaudit File......................coooovvvvevvveaevnne..... 146
3.3.20 modules/active/modules Directory CONtents...................ccccovvvvvveeee....... 146
3.4 PoLICY CONFIGURATION FILES..uuuiveiiiiiiiiiiiiiiiiiiiieeeeeeeieeeeeeee e 147
341 SEUSCES FUle oo 148
3.4.2 booleans and booleans.local File..........oooooooveeeeeeeiiiiiieiiiiiieieieaaaeeannn.... 148
3.4.3 booleans.subs_dist File............ccooooouuiiioeieiiiiiiiiiiiiiiiiiieiian 149
3.4.45etrans.CONfFile......oooooouoiiioeeoiiiiieeiiiiiiiiiiieeiieeiieeeeeeeeeeeeeeeenn 150
3.4.5 5eCOlOr.CONLFTl. oo 152

Page 8

The SELinux Notebook

3.4.6 policy/policy.<ver> File........ccocououoivoaiiiiiiiiiiiiiiiiaiiiia 153
3.4.7 contexts/customizable types File...........cccccovovvvivcvesevisiiisiaiaanenn 154
3.4.8 contexts/default contexts Filecccooooeevveviioinvioiiiiiiiiinennnnnn.. 154
3.4.9 contexts/dbus_contexts File.............cooooviveviiieviiviiiiiiiiiieiiiiiiiiiiiieennn.. 156
3.4.10 contexts/default type File..............coccoooviiiiiiiininiiiiiiiiiaiannnne 156
3.4.11 contexts/failsafe _context File..........ccococoevvaviscesiaiiiasiaisaennn., 157
3.4.12 contexts/initrc_context File............coooovevoevaiviiiiiiiiiiiiieiiaiena. 158
3.4.13 contexts/Ixc_contexts File............o.cooooovvvieviiiiiieiiiiiiiiiiiiiiiiiiiiieeenenn 158
3.4.14 contexts/netfilter cOntexts File...........ccccooooevveioiiiiniioiiiieienieinnnene., 159
3.4.15 contexts/removable _context File..................coooovevvveioevveeiieeviiieeeenn.... 159
3.4.16 contexts/securetty types File...........cccooooeveeiiieioiioiiiiiiiiiiniinnienenee. 160
3.4.17 contexts/sepgsql_contexts File..........ccocououevvaviscisiiiisiisiaiiiaene 160
3.4.18 contexts/systemd _cONtexts Filecccoooeevevoiioiniiioiiienoniiinennne., 161
3.4.19 contexts/userhelper cOntext Fileccoooevevevisceseaseiaieiaeenn.. 162
3.4.20 contexts/virtual domain _context File..............cccoooovevevasveveeaenannnn.... 162
3.4.21 contexts/virtual_image context File................ccocooovveveeviiveiieiiievvenn.... 163
3.4.22 contexts/x contexts Filecoocoovoveviiiiiiiiiiiiiiiiiiciiiiieiien 163
3.4.23 contexts/files/file_contexts File...........ccooouvvvvisoaseaiisiasiaiiseanenn. 165
3.4.24 contexts/files/file_contexts.local File.................cccooooeviviniiennennnne.. 165
3.4.25 contexts/files/file_contexts.homedirs File...............cocoooovvevivevvaen...... 166
3.4.26 contexts/files/file_contexts.subs and file contexts.subs_dist File........... 166
3.4.27 contexts/files/media Fileccooovovosivviiisiiiiiiasiiiiiiiiann 167
3.4.28 contexts/users/[seuser id] File.............cccoooevvvoiiiioiioinininnienninnn.. 167
3.4.29 logins/<linuxuser _id> File..............ccoocoovovevviiiiiiiiiiiiiiiiiiiiiiieennnn.. 168
3.4.30 users/local.users File............ccoooueveiisiiiiiiiiaiiiiiieiiiiieiiiean 169

4. SELINUX POLICY LANGUAGES......ccceceeeueeueceaeesecsaecsacenecsaecsseesscesasessasesnsaee 170
4.1 INTRODUCTION. ..eeutteeittetitte ittt 170
411 CIL OVOFrVIOW...eeceeiiiiiiiiiiiseaiese s 170
4.2 KERNEL POLICY LANGUAGE....cciuiiiiiiiiiiiiiiiiiiiieesiieseeeseee e 172
4.2.1 Policy Source Files...........ococoouesouiiseisiiiiiiiiiiiiiiiiiiiieiiieeaie 172
4.2.2 Conditional, Optional and Require Statement Rules................................ 175
4.2.3 MLS Statements and Optional MLS COmponents................................... 175
4.2.4 General Statement INfOrmMAtiON.cooooueeveieieiiiiiiiiiiieiiane 175
4.2.5 Section CONENLS......cc.eevueeiiiiiiiiiiieiiiieseiieiees e 178
4.3 PoLICY CONFIGURATION STATEMENTS. ¢uueteeaiteeiietieniieeniteiaiiteeaiteeniieeeeeaniiiiieeeans 179
4.3 L POLICYCAD ..o 179
4.4 DEFAULT OBJECT RULES...cciiutiiiiiiiiiiiiiiiiiiiiiieeeeseeseeseeee e 180
4.4.1 defQult USErcocoueeeiaiiiiiiiiiisiieie e 180
4.4.2 defQult 7Olecocoveeeeiiiiiiiiiiiiiiiii 181
4.4.3 defQUlt 1VDE oo 182
4.4.4 default FANGEc..ccvooeeeiiiiiiiiiiiiiiiiiii 183
4.5 USER STATEMENTS. 1uttiutiitttitteatt et sttt sttt sttt sttt st tait e st eaieeeaas 184
B 5.0 USOF oo 184
4.0 ROLE STATEMENTS . .eeuttittiiittitteiteste sttt se sttt ae e e s 186
G601 FOLE oo 186
4.6.2 attribute 1roleocooovveeeviiieiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee 187
4.60.3 rOleQttriDULE ..o 188
464 QUOW .o 189
4.6.5 rOle tranSItiONc.occueeaeieiiiiiiiiiieiiiieieiieieeee 189

Page 9

The SELinux Notebook

4.6.6 AOMUINAICE oo 191
4.7 TYPE STATEMENTS . .0eiieiiiiiituieeeiieeeeeieiiititeeeeeeeeeeieiitteeeeeeeeeieiiitseeeeeeeeeeieninseseeeeeeeens 192
BT d BVDC oo 192
4.7 2 QUFTDULC oot 194

4.7 .3 6VDCALITDULE oo 194

4.7 4 EVDCALIAS oo 195
4.7.5 DOITESSTVE oo, 196
4.7.6 1YDE_IrANSIHION .o 197
4.7.7 VP _CRANGE ..o 200
4.7.8 1YDe_MEMDOY ..o 201
4.8 BOUNDS RULES. ..vvviiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeieeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeiieeeeeeees 201
4.8 1 tVDCDOUNAS .o 202
4.9 ACCESS VECTOR RULES. ..vvvviiiiiiieiiieeiiiieieieeiiiiiieieeiiiieieieieeeieiiieieeeieiieeeeeeeiiinnnns, 203
490 QUOW oo 204
492 AdONEAUATE oo 205
4.9.3 QUATIAIIOW oo 205
4.9 4 REVEFAIIOW (oo 205
4.10 OBIECT CLASS AND PERMISSION STATEMENTS..00iiiiiiiuiieeeiiieeiiiiiiiiireeeeeeeeresssissiennnns 206
FIO CLASS oo 206
4.10.2 Associating Permissions t0 @ CIASS........ccccoveeeeeiiieeieiiiiiiiiieeeeeannn... 207
410.3 COMPUON oo 207

G IO CLASS oo 207
4.11 CONDITIONAL POLICY STATEMENTS.ceiiiiiiiiiiiiiiieiiiee 209
GAL T DOOL oo 209
B2 G oo 210
4.12 CONSTRAINT STATEMENTS . .euuutreeeieeeeiiiiitseeeeeeeeeeiisiisseeeeeeeeeeeeeeeeeeesssseseeeeeeeeeeees 212
421 CONSEPAIN oo 212
4122 ValidQItrAnS «ooovevveeoooeoooeiiiiiiiiieeeeiieieeeeeeeenn 215
423 MISCONSTIAIN oo 216
4.12.4 mIsvalidatetransoocoooueeeeeoiiiieiieeiiiiiiiiiiiiiiiiieeeeeeiieeeeeeeeee 217
4.13 MLS STATEMENTS. 12uuuuuuuunsssssssssssssssssssssesssssssssssssssssssesssssssssssssssssnsssssnsnnnneeeeeeees 219
431 SCHSIEIVIEY oottt 220
4132 AOMURANCE oo 221

4 I3.3 CALCIOTY oot 222
GA3ALOVOL oo 222
4.13.5 range tranSitioNccecvueeieieiiiiiiiiiiiiiiiieie 223
4.13.5.1 MLS range Definition......coueeeeeeeiiiiiiiiiieiiiiiieiieiiiieiieeeeeeeeeeeeeeen 224
4136 MISCONSTVAIN oot 225
4.13.7 mIsvalidatetransccooouiiiiiiiiiiieiiiiiiiiiiiiiiiiiiieeeeiiiieeeeeee 225
4.14 SECURITY ID (SID) STATEMENT...eeiiiieittteeieiieeeieieiiiieeeieeeeeieeiiiieeeeeeeeeiieiiisaeeeenn, 225
GBI AT SUA oo 225
4142 SIAd COMLOXT oot 226
4.15 F1LE SYSTEM LLABELING STATEMENTS..vvvvesvessseeeseseseseeeeeeeeeeeeeeeeeeeeeeeeeeeeesereeereeeeenns 227
A5 1 fS US€ XAUF ooeosiieiiiiieiseseeseee s 227
415215 USE LASK oo 228
4. 15.3 IS USE BFAMNS wooeoviseeiieieieeseaeseeeseas e 228
G154 GONLSCOM oo 229
4.16 NETWORK [LABELING STATEMENTS...eeiiiuutveeiieieiiiiiiiiiiieiieeeeieiiiiieeeeeeeeeeiiiiininnn, 230
4.16.1 IP Address FOrMALS........ooooooooueeeiiiiiiiiiiiiiiiiiiiiieeeeeeeieeeeeeeenn 231
4.16.1.1 IPv4 Address FOrmat......oouueeeeeeeeeiieiiiieeeeiieieiiieiieeeeeeeeeeeeieeee 231

Page 10

The SELinux Notebook

4.16.1.2 IPv6 Address FOIrmatsS.......uuuiiiiiieuueeeeiiiiiiiiiiiiiiiiiieeeeeieiiieeeeeeeeeeee 231

4. 16.2 NOLIfCOM oo 231
416.3 NOACCON oo 232

4 IO 4 POTECON oot 234
4.17 MODULAR POLICY SUPPORT STATEMENTS...vvvvesseeseeeeeseeeeeeeeeeeeeeseeeeeeeeeseeeeeenneeeeeees 235
G A7 L MOAULC oo 235
GAT72FCQUITC oo 235
4173 ODHONAL oo 237
418 XEN STATEMENTS eeiiiiiiiiiiiiiiiiiiieieieeeeeee ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 238
4 A8 L GOMOIICON oo 238
4182 IODOVLCON oo 239
4.18.3 PCIACVICOCON oot 240

4 A8EA DIFGCON oo 240

. THE REFERENCE POLICY ...cccccereeeeeecssneeccsssnsecccssassscccssasseccssansssssssssssssssssasans 242
T B £ 1361010 P 242
5.2 REFERENCE POLICY OVERVIEW. ..uvveiiiiiiiiiiiiiiiieeiiieeeeieiiiiieiieeeeeeesiiiieeeeeeeeeeeisisneeees 242
5.2.1 Distributing POLICI@S.cccooovevoiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeee 244
5.2.2 Policy FUnCtion@lity........ooooeueeeeiiiiiiiiiiieeiiiiiiiiieieiiiieeeeeeeeeeaeaaa 245
5.2.3 Reference Policy Module Files............cooouooeeeeeiiieeeiiiiieiiieeieeeeveenann.. 245
5.2.4 Reference Policy DOCUMENtAtiON.ooooeeeeeeeeeeeeeeieeeeeeaeeeeenn.. 248
5.3 REFERENCE POLICY SOURCE...iiiiiiiiiiiiiiiiieiiiiieieieieeeeeeeeeeeeeeeee e 249
5.3.1 S0Urce LAVOUL.....ooooooeeeeiiiieiieeiiiiieeeeeeeeeeeeeeeeeeeeeeeeenn 249
5.3.2 Reference Policy Files and Directories.........oooooeeeeeeeiiiieiieieeeeeeeaanannn.. 249
5.3.3 Source Configuration Files............oooccoooeeeeeeeeeeeeeeeeieiieeeeeieeeeeeeieenan... 252
5.3.3.1 Reference Policy Build Options - build.conf.......ccceevvvevieiiiiiievennnnnnns 252
5.3.3.2 Reference Policy Build Options - policy/modules.conf..................... 253
5.3.3.2.1 Building the modules.conf File......cccooevuvvviiiiiiiiiiiiiiiieieieeen 256

5.3.4 Source Installation and Build Make Options........cccccooooveeveeeeeveeeeeeaann..... 256
5.3.5 Booleans, Global Booleans and Tunable Booleans.................c.ccc......... 258
5.3.6 Modular Policy Build Structure........ccceeeeeeeiieeeeecneeieiaaieeeiiveeeeaaaannn... 259
5.3.7 Creating Additional LAVerS.............ccooooooooieeiiiioioiiiiiiiieiiiiiiiiieeeeeinenn, 261
5.4 INSTALLING AND BUILDING THE REFERENCE POLICY SOURCE...ceiiiiiiiiiiiiiiiiieiiieeeeeeeenes 261
5.4.1 Building Standard Reference POlICY..........ccoooooeeeeeiieeeeiiieciiieiieena.. 261
5.4.2 Building the Fedord POLiCY..........cooooeveeeeiiiiiiiieiieiiiiiiiieieeiieaeeeeaa 263
5.5 REFERENCE POLICY HEADERS..ooiiiiiiiiiiiiieee 266
5.5.1 Building and Installing the Header FileS........cccoouvvevveiiiiiiceeeeeeeaaeannn.. 266
5.5.2 Using the Reference Policy Headers.............ccooooooeeeeeeeeeeeeeeeeeceinnnnn... 267
5.5.3 Using Fedora Supplied HeQders...................oooovvveeeeeeeeeieeeeeeeieeeaannn.. 268
5.6 MIGRATING COMPILED MODULES TO CIL..uuuveuiieiiiiiiiiiiiiiiiiiieeeeeivveeeeeeeeea, 268
5.7 REFERENCE POLICY SUPPORT IMACROS. ...couuvvveeeiiieieiieeiiiiieieeeeeeieeeeeeeeeeeeeeeeeeenns 268
5.7.1 Loadable Policy MACFOS.........cccooovveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 270
5.7.1.1 policy module MacCrO....cceuueiiiiiiiiiieseieieseeseesesese, 270
5.7.1.2 gen_ require MACTO...c.eeeueerineiniiiiiiiiiiiiiiieieiiieeeeeeeeeeceeeee 271
5.7.1.3 optional POliCY MACIO....ueiiieueeiiieiiiiiieeiieeeeeieeeeeeeeeeeeenn 272
5.7.1.4 gen tunable MacrO.....oeeeueeriieiniiiiieiiiiiiieiiiiicccicce 273
5.7.1.5 tunable POlicY MACIO...uuvviiiieuieiiiiiiiiiieeieeeeeeeeeeeeeeeee e 274
5.7.1.6 interface MACIO...uuuuueiiiiiiiiiiiiiiiiiieeeeeeeiiieee et 275
5.7.1.7 template MACTO...cuvveeieieneeiieiieiiieeeeieeeeeeeeeeeeeeeeeeeeeeee e 277
5.7.2 Miscellaneous MACTOS..........ooooeeeeeeeeiiiiiiiiiiiiiiiiiiieieiieeeieeeeeeeenn, 279

Page 11

The SELinux Notebook

5.7.2.1 gen coONteXt MACTO...ueeuueeeeriiniiiniiiiiiiiiieiieiieiieiecieceeeeee 279
5.7.2.2 gen USEr MACTO...ccuuuiiiiiiiiiiisiiieessess e 281
5.7.2.3 gen boOol MACIO...ceueiuriiiiiiiiiiiiiiiiiiiiiicicicee e, 282
5.7.3 MLS and MCS MACFOS......oooooueeeeeiiiiiiiiieiiiiiiieeeieeeeeeeeeeeeeeeeeaee 283
5.7.3.1 gen cats MACTO..ccuueeuriiiiiiiiiiiiiiiiieiieiieieeieeieeeieeeeee 283
5.7.3.2 gen SENS MACTO..cuuuisueiisiiieiiiiiieseieses s 284
5.7.3.3 gen _1evels MaCIO...ueeueeeeieiieiiiiiiiiiiiiiecieiiieeee 285
5.7.3.4 System High/Low Parameters..........coueeveeeveeeiieieeeiiiieeeeieiivevevnnne. 286
5.7.4 ifdef / ifndef PArameters............coooooeeeeeeeoeeeeiieiiiiieeieiiieiieieeeeeieeenn 286
5.7.4.1 hide_broken SYMPtOMScoeervieiuiiniiiiiiiiiiiiiiiiiiiiiiiieeiiieeeeee, 286
5.7.4.2 enable mls and enable MCS ...coevveiiiiiiiiiiiiii 287
5.7.4.3 enable UbAC ...ceecviiiiiiiiiiiiiiiiiieee 287
5.7.4.4 direct_sysadm_daemoncocceeeeeeiiiiiiiiiiiiiiiiiiiiieee 288

5.8 MODULE EXPANSION PROCESS. ...ciiieiuuiiiiiiiiiiiiiiiiiiieeiieeeeeeeeieieeeeeeeeeeeeeenn 288
6. IMPLEMENTING SELINUX-AWARE APPLICATIONS.....cccceeesneeeeccsanneeee 290
6.1 INTRODUCTION...eiiiiettitteeiieeeeeeettteee e e e et eeeteeeeeeeeeeeieaeeeeeeeeeeeeiisseeeeeeeeeeeniasseees 290
6.1.1 Implementing SELinux-aware ApplicQtions...............cooeeeeeeevvveeeeesennnn..... 290
6.1.2 Implementing Object MANAZErS........ccvvvveveiieeeeeeeeiiiiieeieiieeeaeeeeeeannnn, 292
6.1.3 Reference Policy CRANGES............ooooooeeeeiieiiiiiieeiiieeiiiieiieeeeeeeeeeenn 293
6.1.4 Adding New Object Classes and PermiSSionsS............coooeeeeeveeveeeeveeeenn... 294

7. SECURITY ENHANCEMENTS FOR ANDROID....ccccccerssunueeueeeeeeeesscsssssssnnes 296
7.1 INTRODUCTION. tevveeieetetiiuttteeeeeeeeiieititeeeeeeeeeeeeiiseeeeeeeeeeeeeisteeeeeeeeeeeinisssseeeeeeeeeeanns 296
7 A TerminoOlOGY. ...oooooioiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeieeeeeeeeeeeeeeeeeee 296

7 A2 USCUl LIRKS ..o 297
7.1.3 DOCUMENt SCCHIONS ..ooooooooooiiioiiiiiiiiiiiiiieee 297
7.2 SE FOR ANDROID PROJECT UPDATES. vvvvviiiiiiiiiiiiiieiiiieeeeieiiiiieiieeeeeeeeeieeeeeeeveveiiianns 298
7.3 KERNEL LSM / SELINUX SUPPORT .evvvviiiiiiiiiiiiiiiiiiiieeieiiiiiiiiieieeeieeeeieeeeeeeeeeeeeeee, 301
7.4 SE FOR ANDROID CLASSES & PERMISSIONS....iiiiiiiuivieieiieiiiiiiiiiieeeieeeeiiiiiiieeeeeneannns 302
7.5 SELINUX COMMANDS . c.eitiiiiiiiiiiiiiiiiieiiiieeeieeieeeanen, 304
7.6 SELINUX PUBLIC METHODS. 1vvvvtiiiiiiiiiiiiiiiiiieeeiieiiiiieieeeeeiieiiiiieieeeeeeeeeeessesseeeeeeeens 305
7.7 AnDROID INIT LANGUAGE SELINUX EXTENSIONS. c0eiiiiiiiiiiiiiiieiieiieeeieeeeeieeeeeeeeeeeea, 307
7.8 DEVICE POLICY FILE LLOCATIONS . .ccuuutteiiiiieiiieiiiiieeiieeeeeeeeeeee e eeeeiieeeeveveveiaes 308
7.9 BUILDING THE POLICY teiiiiiiiiiiiiiiiiieeeeeee oot 309
7.9.1 SELinux MAC POlicy FileS......coooeuueeeiiiiiiiiiiieeeiiiiiiiiiiieeeeeeeeeeeeeeeee 309
7.9.1.1 Policy Build FileS....ccoouuuueiiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeeeeeeeiiiinnn 309
7.9.1.2 Policy Configuration FileS..........cooeveeiieeiuviiiiiiiiiiieiiieieieieiieevennn 310
7.9.2 Install-time MMAC Policy File.....cccoooooooooeoiiioiiiiiiiiiiiiiiiiiiiiieieieinnenns 312
7.9.3 Device Specific POLICY.c....ocouuioeeiiioiiiiiiiiiiieeiieeiiieeeeeeeeeeeeeen 312
7.9.3.1 Managing Device Policy Fil€......cooovuuveiiiiiiiiiiiiiiiiiiiiiiiiiinnn, 313
7.9.4 BUIlA TOOIS.....ovooooiioooeeiiiiiiiieeiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeee 315
7.9.5 Miscellaneous INfOrmation.........cccoveeeiioiiiiiiceeeiiiiiiiiiiiiieeeeeeeeeeieeeeaeennn, 316
7.9.5.1 SELinux Policy Versions.........cceeueeeiieeuueeeiiiueiiiiiiiiiieieeeeeeeiiiiivvnenne.. 316
7.9.5.2 SELinux Policy BOOI€aNS.ccuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeieeeeeee 316
7.9.5.3 Setting Permissive / Enforcing Mod€.......ccocueveeieeuveeeeiieiiiiiieieeennn. 316
7.9.5.4 Checking File LabelS.....uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeiieeiiiieeeeeee 317

7.10 UPDATING POLICY FILES...ciiiieuuviiiiiiiiiiiiiiiiieiieiee et 317
7.10.1.1 Local Policy Update.......eeeeiiiieiieeeiiiiiiiiiiiiiiiiiiiieeeeeieeiiiiiiiennnn, 317

7. 11 LLOGGING AND AUDITING . ..uuutseeeeeieeieiisitieseeeeeeeeiiiiiisieeeeeeeeeeiineeieeeeeeeeeeessseeseeeeeeeees 318

Page 12

The SELinux Notebook

7.12 Poricy FiLE CONFIGURATION DETAIL.ceiiiiiiiiiiiiiiiieieieeiieeeeeeeee e, 319
7.12.1 SELinux MAC Configuration Files.............coooooowevoeeeeeiieiieeeeeiieeeean.... 319
7.12.1.1 seapp_contexts File.......coceeeeereiiiiininiiiiiiiiiiiiiiiiieiiieiieceecee, 319
7.12.1.1.1 Default ENtries. ..ooueeeieeeeieeieiiiiieeiiiieeeeiiiieeeeeeeeeeeeeeeeee 319
7.12.1.1.2 Entry DefinitionsS. .coueeeeeeeeiiiiiiiiiiiiiiiiieiieiiiiiieeeeeeeieeeeeeeeeeeeen 320
7.12.1.1.3 Computing @ CONtEXt...eeoureeeiiereieiiiieiiiiiiiiiieiiiiiieeeeeeeeeieiiianns 321
7.12.1.2 property_contexts File........cooeeveieriiiiniiiiiiiiiiiiiieiiiiiiieeieee, 326
7.12.1.3 service_contexts File.......coeeeuieniieiiiiiiiiiiiiiiiiiiiiiiiiieeeieeenn 327
7.12.2 Install-time MMAC Configuration File........cccccooovoiiiiiiiieeieiiiiiiiiiin..... 328
7.12.2.1 POICY RUIES..c.uvviiiieeiiiiiiiiieeeeeeeeeeiieeeeeeeeee et 329
7.12.3 EOps MMAC Configuration File...........ccccoooooooioieevvoiiiiiiiiiiicveeeaaann.. 330
7.12.4 Intent Firewall MMAC Configuration File..........c.ccoovvvveeeeeeeeeeean..... 331
7.13 POLICY BUILD TOOLS. 1ttt eeeeeeeeeeeeeaenn, 332
T A3 CROCKSC oo 332
7.13.2 CheckSeapp.......cccoovvvoiiiiiiiiiiiiiiiiiiiiieiiiiiieeeeeeeeeeeeeeee 333

7 A3 .3 INS@TIRCYS. DV oo 333
7.13.3.1 KeyS.CONT Fil€.uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee oo 334
7.13.4 Build Bundle TOOLS...........oooooooveeeeveeoiiiiiiiieeiiieiiiiieeieiiieieeeeeeeeevaaa 335
7.13.4.1 buildSebundle......uuueeieeiiiiiiiiiiiiiiiiiiiiiiiiieee e 335
7.13.4.1.1 Using an Intent EXample........ooooevveiiiiiieieiiiiiiiiiiiiieeiiieeeeeenn. 336
7.13.4.2 buildeopbundle.......couuvveeiiiiiiiiiiiiiiiiiiiiiiieeeeeeennn 337
7.13.4.2.1 Eops EXample.....ccooeeuueeeiiiiiiiiiiiiiiiiiiieeeeeeeieeeee e 338
7.13.4.3 buildifWbundle......uuueeeeiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeee e 339
713431 TFW EXAMPIC..vvviiiiiiiiiiiieiiiiiieeiiieeeiieeeeeeeeeeeeeeeeeeeeeen 339

7.13.5 pOSt_PrOCeSS MAC_PEOFMS...c.uveeveeeeeeeeeieeieeiieeieeeeeenee 340
7.13.6 8epolicy CRECK.......cocoouoaviiiiiiiiiiiiiiiiiiiiieii 341
7.13.7 8epolicy-Analyze.......cccovveiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 341
7.13.7.1 Type EQUIVAICNCE. ..uvviiiiiiiiiiiiieiiiiieieeieeeeieeeeeeeeeeeeee e 341
7.13.7.2 Type Difference....uuuuiiieiuueeeiiiiiiiiiiiiiiiiiieeeeiiieeiieeee e 342
7.13.7.3 Duplicate ALIOW RUIES......vvviiieeiiiiieiiiiiiieiiiiieeeiieeeeeeeeeeeve 342

T A3 8 8CtOOL oo 343
7.14 SELINUX-NETWORK.SH CONFIGURATIONeeveeeeeiiiuttseeeseeeeeiseiiseeeeeeeeesesseeeseeseennssenes 344
7.15 UID TO USERNAME UTILITY t1ttttttttstetsesessseeeeeseeeseseeeseeeeeseeeseeeeeeseeeseeeeeeeeennieeeseeeeenns 345
8. APPENDIX A - OBJECT CLASSES AND PERMISSIONS.....cccceeeeeeeeeeeececeee 347
LI B G 10010 1 (0 P 347
8.2 DEFINING OBJECT CLASSES AND PERMISSIONS...vviiiiiiiiiiiiiiiieieeiiiiiiiiiieieeeeeiseeseeeeeeens 347
8.3 COMMON PERMISSIONS. ..uuuuuinesiitiissineeeeeeeeeenns 348
8.3.1 Common File PermiSSIONS........ooooueeeeeeeeeeeiiiiiiieiieeeeeeeeeeeeeiieieiieeeeeeennn, 348
8.3.2 Common Socket PermiSSTIONS.ccooovevveeeiiiiiiiiiiiiiiiiiiiiiiieeeiieeeeeeennn, 348
8.3.3 Common IPC PermiSSIONS.......uveeeeeeeeeeeieeiiiiiieiiieieeeiieeeeeeeeeeeeeeeeeeenn 349
8.3.4 Common Database PermiSSIONS.cooooooeveeeeiiiiiiiiieiiieieeieiaannnn., 349
8.3.5 Common X _Device PEermiSSIONScccuveeieevieiieiiiiiiiiiiiiiiiiiiiiiieaenns 350
8.4 FILE OBIECT CLASSES. eeviiiiiiiiiiiiiiiiiiieeiiiiiiiiieeieieieeeiieiieeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeennn, 350
8.5 NETWORK OBIECT CLASSES. . eiiiiuutuueeiiiieeiiieiiiieeiieeeeiieiiiiieeeeeeeeeeiesisiaeeeeeseeeeeeeeeeees 353
8.5.1 IPSec Network Object ClaSSeS........oooooeeeeeeeiiiiiiiiieiiiiiiiiiiiieiiiieaaeen, 355
8.5.2 Netlink Object ClASSES......ccouuveeveiiiiiieieiiiiiiiiieiieeeeieeeeeeeieieiieeeeeeen 356
8.5.3 Miscellaneous Network Object ClaSSeS..........coooooueeeeecveeeiiiiiiiieeeeeeaaann.. 358
8.6 TPC OBIECT CLASSES . uuuutveeiiiieeiiiiiiiieeeiieeeeieeiiiiieeeeeeeeeeeeiitteeeeeeeeeeesiiiseeeeeeeeeeseees 359
8.7 PROCESS OBJECT (CLASS. 1uuuuuteeestsssesesssesssssseesesssssesesesesesssesesessessesessessseseenneeeeeeeeeenns 359

Page 13

The SELinux Notebook

8.8 SECURITY OBIECT CLASS. cuuuiitie ittt e et e e e etaeseeteaeeeeeeaaasetenaeeesennaeaeeennaeaeeennns 360
8.9 SYSTEM OPERATION OBIECT CLASS...uiiiiiiituiueeeesieettieuenaaseseseeeeesnnnnaaeessenaseeeannseeens 361
8.10 KERNEL SERVICE OBIECT CLASS . tuuuutititnt ettt e eeiieeeeeteeeeeeteaeeeeennaaeeeeeaaeenaaeenaaeens 361
8.11 CAPABILITY OBIECT CLASSES. itttuuuuueeeieitttuunuaeseeeseeeeuseennaaeeseeeseenennnsaaeseeeeeennnnnnnnes 362
8.12 X WINDOWS OBIECT (CLASSES. ..uuttieeneetteneeeeteeeeeteaaeeeeenaaeeeeenaeeeeennaaeeeeenaeenaaeanns 363
8.13 DATABASE OBIECT CLASSES . tuuuuuutttittuuuniaeeeeeeeteeennsaesesseeeeeesnnsaaaeseeessnaserennsserens 368
8.14 MISCELLANEOUS OBJIECT CLASSES. . teuuuutttitueseteuaeeetenaeeeeeuaeseeenaeseeennaeaeenaaennaeenns 370
9. APPENDIX B - LIBSELINUX LIBRARY FUNCTIONS...cccceeeeeeeeececsessssssssss 373
10. APPENDIX C - SELINUX COMMANDS....ccceeeeessseenssscosssssssssssssssssasssssssssssss 389
11. APPENDIX D - DOCUMENT REFERENCES....cccccceeeeeeeeeeeeesensscescesssnnsssssces 390
12. APPENDIX E - POLICY VALIDATION EXAMPLE....cccccceecee0000e0u000000s0000ee 391
13. APPENDIX F - GNU FREE DOCUMENTATION LICENSE.....ccccceeeeeeeee.. 393

Page 14

The SELinux Notebook

1. The SELinux Notebook

1.1 Introduction
This Notebook should help with explaining:
a) SELinux and its purpose in life.

b) The LSM / SELinux architecture, its supporting services and how they are
implemented within GNU / Linux.

¢) SELinux Networking, Virtual Machine, X-Windows, PostgreSQL and
Apache/SELinux-Plus SELinux-aware capabilities.

d) The core SELinux kernel policy language and how basic policy modules can
be constructed for instructional purposes.

e) An introduction to the new Common Intermediate Language (CIL)
implementation.

f) The core SELinux policy management tools with examples of usage.

g) The Reference Policy architecture, its supporting services and how it is
implemented.

h) The integration of SELinux within Android - SE for Android.

Note that this Notebook will not explain how the SELinux implementations are
managed for each GNU / Linux distribution as they have their own supporting
documentation.

While the majority of this Notebook is based on Fedora 20, all additional
developments as seen on the SELinux mail list (selinux@tycho.nsa.gov) up to
September '14 have been added.

1.2 Notebook Overview
This volume has the following major sections:

SELinux Overview - Gives a description of SELinux and its major components
to provide Mandatory Access Control services for GNU / Linux. Hopefully it will
show how all the SELinux components link together and how SELinux-aware
applications / object manager have been implemented (such as Networking, X-
Windows, PostgreSQL and virtual machines).

SELinux Configuration Files - Describes all known SELinux configuration files
with samples. Also lists any specific SELinux commands or 1ibselinux APIs
used by them.

SELinux Policy Language - Gives a brief description of each policy language
statement, with supporting examples taken from the Reference Policy source. Also
an introduction to the new CIL language (Common Intermediate Language).

The Reference Policy - Describes the Reference Policy and its supporting
macros.

SE for Android - An overview of the SELinux services used to support Android.

Page 15

mailto:selinux@tycho.nsa.gov

The SELinux Notebook

Object Classes and Permissions - Describes the SELinux object classes and
permissions.

libselinux Functions - Describes the 1 ibselinux library functions.

1.2.1 Notebook Source Overview

To demonstrate some of the SELinux capabilities a supporting Notebook source
tarball is available (notebook-source-4.0.tar.gz). The tarball contains
directories and READMEs covering the following:

Building a Basic Policy - Describes how to build monolithic, base and loadable
policy modules using core policy language statements and SELinux commands.
Note that these policies should not to be used in a live environment, they are
examples to show simple policy construction. These can be extended with
additional modules in kernel policy language and CIL.

Example 1ibselinux applications - This contains over 100 samples that use
the 1ibselinux 2.2.1-6 functions. To save typing long context strings it makes
use of a configuration file. There are also some supporting policy modules for the
F-20 targeted policy to show how the functions work.

Example Android emulator device - This replaces the kernel policy language
version with a CIL policy using namespaces. This is built using Android 4.4
AOSP master and will show processes as u:r:kernel.process:s0,
u:r:untrusted app.process:s0:c512,c768. and files as
u:r:bluetooth.data file:s0,

u:r:app.data file:s0:c512,c768 etc..

Page 16

The SELinux Notebook

2. SELinux Overview

2.1 Introduction

SELinux is the primary Mandatory Access Control (MAC) mechanism built into a
number of GNU / Linux distributions. SELinux originally started as the Flux
Advanced Security Kernel (FLASK) development by the Utah university Flux team
and the US Department of Defence. The development was enhanced by the NSA and
released as open source software. The history of SELinux can be found at the Flux
and NSA websites.

Each of the sections that follow will describe a component of SELinux, and hopefully
they are is some form of logical order.

Note: When SELinux is installed, there are three well defined directory locations
referenced. Two of these will change with the old and new locations as follows:

Description Old Location New Location

The SELinux filesystem that |/selinux /sys/fs/selinux
interfaces with the kernel
based security server.

The new location has been
available since Fedora 17.

The SELinux configuration /etc/selinux No change
directory that holds the sub-
system configuration files and
policies.

The SELinux policy store that |/etc/selinux/ /var/lib/selinux/
holds policy modules and <SELINUXTYPE>/module |<SELINUXTYPE>/module
configuration details (see
https://github.com/SELinuxPro
ject/selinux/wiki/Policy-Store-
Migration and Policy Store

Migration).

2.1.1 Is SELinux useful

There are many views on the usefulness of SELinux on Linux based systems, this
section gives a brief view of what SELinux is good at and what it is not (because its
not designed to do it).

SELinux is not just for military or high security systems where Multi-Level Security
(MLYS) is required (for functionality such as 'no read up' and 'no write down'), as using
the 'type enforcement' (TE) functionality applications can be confined (or contained)
within domains and limited to the mimimum privileges required to do their job, so in
a 'nutshell”:

1. If SELinux is enabled, the policy defines what access to resources and
operations on them (e.g. read, write) are allowed (i.e. SELinux stops all access

Page 17

https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration
https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration
https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration
http://www.nsa.gov/selinux/
http://www.cs.utah.edu/flux/

The SELinux Notebook

10.

11.

12.

unless allowed by policy). This is why SELinux is called a 'mandatory access
control' (MAC) system.

The policy design, implementation and testing against a defined security
policy or requirements is important, otherwise there could be 'a false sense of
security'.

SELinux can confine an application within its own 'domain' and allow it to
have the minimum priviledges required to do its job. Should the application
require access to networks or other applications (or their data), then (as part of
the security policy design), this access would need to be granted (so at least it
is known what interactions are allowed and what are not - a good security

goal).

Should an application 'do something' it is not allowed by policy (intentional or
otherwise), then SELinux would stop these actions.

Should an application 'do something' it is allowed by policy, then SELinux
may contain any damage that maybe done intentional or otherwise. For
example if an application is allowed to delete all of its data files or database
entries and the bug, virus or malicious user gains these priviledges then it
would be able to do the same, however the good news is that if the policy
'confined' the application and data, all your other data should still be there.

User login sessions can be confined to their own domains. This allows clients
they run to be given only the priviledges they need (e.g. admin users, sales
staff users, HR staff users etc.). This again will confine/limit any damage or
leakage of data.

Some applications (X-Windows for example) are difficult to confine as they
are generally designed to have total access to all resources. SELinux can
generally overcome these issues by providing sandboxing services.

SELinux will not stop memory leaks or buffer over-runs (because its not
designed to do this), however it may contain the damage that may be done.

SELinux will not stop all viruses/malware getting into the system (as there are
many ways they could be introduced (including by legitimate users), however
it should limit the damage or leaks they cause.

SELinux will not stop kernel vulnerabilities, however it may limit their
effects.

It is easy to add new rules to an SELinux policy using tools such as
audit2allow (1) if a user has the relevant permissions, however be aware
that this may start opening holes, so check what rules are really required.

Finally, SELinux cannot stop anything allowed by the security policy, so good
design is important.

The following maybe useful in providing a practical view of SELinux:

l.

A discussion regarding Apache servers and SELinux that may look negative at
first but highlights the containment points above. This is the initial study:
http://blog.ptsecurity.com/2012/08/selinux-in-practice-dvwa-test.html, and

this is a response to the study: http://danwalsh.livejournal.com/56760.html.

Page 18

http://danwalsh.livejournal.com/56760.html
http://blog.ptsecurity.com/2012/08/selinux-in-practice-dvwa-test.html

The SELinux Notebook

2.2

However with careful design and known security goals the SELinux Apache /
SELinux Plus services could be used to build a more secure web service (also
see http://code.google.com/p/sepgsql/wiki/Apache SELinux plus).

SELinux services have been added to Andriod, producing SE for Android. The
presentation "The Case for Security Enhanced (SE)Android" [20] gives use-
cases and types of Android exploits that SELinux could have overcome. The
presentation and others are available at:

http://seandroid.bitbucket.org/PapersandPresentation.html#3

Core SELinux Components

Figure 2.1 shows a high level diagram of the SELinux core components that manage
enforcement of the policy and comprise of the following:

1.

A subject that must be present to cause an action to be taken by an object
(such as read a file as information only flows when a subject is involved).

An Object Manager that knows the actions required of the particular resource
(such as a file) and can enforce those actions (i.e. allow it to write to a file if
permitted by the policy).

A Security Server that makes decisions regarding the subjects rights to
perform the requested action on the object, based on the security policy rules.

A Security Policy that describes the rules using the SELinux policy language.

An Access Vector Cache (AVC) that improves system performance by
caching security server decisions.

Subject
Requests access.

v

Security Server
Object Manager ——— P ——P» .
! g Query Access Vector Makes decisions
. . L Cache If answer not
Knows what objects it | permissions in cache. ask based on the
. . ’ . .
manages, so queries if the Stores decisions | security server | security policy.

to cache

actlort} is allo}\;ved and.then ¢ made by the <
enforces the security Answer from| Security Server. Add answer Security Policy

policy decision. Cache

Figure 2.1: High Level Core SELinux Components - Decisions by the Security
Server are cached in the AVC to enhance performance of future requests. Note that it

is the kernel and userspace Object Managers that enforce the policy.

Page 19

http://seandroid.bitbucket.org/PapersandPresentation.html#3
http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

The SELinux Notebook

e —
Reference Policy
Headers
Or
Reference Policy
Source
Or

Custom Policy
Source

-— 0@

0
—

Audit Log

e —
Labeled File
Systems

L (xattr)]

Network, USB etc.
Connectivity

checkmodule semodule_package semodule
. . . 1
Compiles the policy Package the policy modules Manages the policy store by installing, loading, updating i
' source into with optional configuration ' and removing modules‘and thelrlsuppomr.lg configuration ' b SELinux POlicy
intermediate format. files. files. Also builds the binary policy file. s
v A A v A ---- Policy Store -----
- - e
PO]IC}{ Object Optlongl Policy Files P |var/lib/selinux/<SELINUXTYPE>/
y
Files Configuration
Files O hodules:
Linux commands semanage || L EERECIEC IO
i i i . - Configures elements of .
SELinux-aware Apphcatlons Linux commands modified to gu . / m;;jgl;;/acme'
SELi h the policy such as login, Fommit num
Userspace Object Managers support SELInux, such as 1s, users, and ports. 1 il cancexes
ps, pam. R ile_contexts.homedirs
V N 1 [file_contexts.template
Access | These may use the olicycoreutils b i
.final
Veetor |)5 pae) i AVC licye | < (Bl
ache services or build their SEhnL"xutllmes’ such as secon, o : hodules/active/modules:
Jibselinu own. audit2allowand system- These libraries bhmavis.pp
config-selinux. are linked into a amt“ PP
o . ey g H N Labbix.pp
A File Labeling Utilities SELinux aware a
applications as I i i —
Al Utilities that initialise or update pphica” d g /etc/selAian:/‘:?ELiqu%(;';égﬂ
A file security contexts, such as required. e
setfiles and restorecon. setrans.conf
SELinux User \ 2 A J v olicy:
. olicy.29
Space Services §)
libselinux (supports security policy, xattr file attribute and process APIs) ontexts:
JC JC JC CEiTirer eontexts
Audit /proc/self/task/ - textséfiies:
Services <tid>/attr/<attr> /selinuxor/sys/fs/selinux (selinuxfs) g ﬁ:;ggﬁtgzt;homedirs
T s~ | A
S - SELi ion Fi
. . nux Configuration Files
M ELi
:> S B '." /etc/selinux/config
P /etc/selinux/semanage.conf
<:> H SKernel Access L— /etc/selinux/restorecond.conf
. 1 /etc/sestatus
Linux Kernel ° ervices <i———>1 Security | Loadea
Services : <:>Vect0r Cache| Server Policy
s

~——

Figure 2.2: High Level SELinux Architecture - Showing the major supporting services

Page 20

The SELinux Notebook

Figure 2.2 shows a more complex diagram of kernel and userspace with a number of
supporting services that are used to manage the SELinux environment. This diagram
will be referenced a number of times to explain areas of SELinux, therefore starting
from the bottom:

a) In the current implementation of SELinux the security server is embedded in
the kernel with the policy being loaded from userspace via a series of
functions contained in the libselinux library (see SELinux Userspace

Libraries for details).
The object managers (OM) and access vector cache (AVC) can reside in:

kernel space - These object manages are for the kernel services such as
files, directory, socket, IPC etc. and are provided by hooks into the
SELinux sub-system via the Linux Security Module (LSM) framework
(shown as LSM Hooks in Figure 2.2) that is discussed in the LSM section.
The SELinux kernel AVC service is used to cache the security servers
response to the kernel based object managers thus speeding up access
decisions should the same request be asked in future.

userspace - These object managers are provided with the application or
service that requires support for MAC and are known as 'SELinux-aware'
applications or services. Examples of these are: X-Windows, D-bus
messaging (used by the Gnome desktop), PostgreSQL database, Name
Service Cache Daemon (nscd), and the GNU / Linux passwd command.
Generally, these OMs use the AVC services built into the SELinux library
(1ibselinux), however they could, if required supply their own AVC
or not use an AVC at all (see Implementing SELinux-aware Applications
for details).

b) The SELinux security policy (right hand side of Figure 2.2) and its supporting
configuration files are contained in the /etc/selinux directory. This
directory contains the main SELinux configuration file (confiq) that has the
name of the policy to be loaded (via the SELINUXTYPE entry) and the initial
enforcement mode' of the policy at load time (via the SELINUX entry). The
/etc/selinux/<SELINUXTYPE> directories contain policies that can be
activated along with their configuration files (e.g.
'SELINUXTYPE=targeted' will have its policy and associated
configuration files located at /etc/selinux/targeted). All known
configuration files are shown in the SELinux Configuration Files section.

¢) SELinux supports a 'modular policy', this means that a policy does not have to
be one large source policy but can be built from modules. A modular policy
consists of a base policy that contains the mandatory information (such as
object classes, permissions etc.), and zero or more policy modules where
generally each supports a particular application or service. These modules are

" When SELinux is enabled, the policy can be running in ‘permissive mode'
(SELINUX=permissive), where all accesses are allowed. The policy can also be run in
‘enforcing mode' (SELINUX=enforcing), where any access that is not defined in the policy is
denied and an entry placed in the audit log. SELinux can also be disabled (at boot time only) by
setting SELINUX=d1isabled. There is also support for the permissive statement that allows
a domain to run in permissive mode while the others are still confined (instead of the all or nothing
set by SELINUX=).

Page 21

The SELinux Notebook

d)

g)

h)

compiled, linked, and held in a 'policy store' where they can be built into a
binary format that is then loaded into the security server (in the diagram the
binary policy is located at
/etc/selinux/targeted/policy/policy.29). The types of policy
and their construction are covered in the Types of SELinux Policy section.

To be able to build the policy in the first place, policy source is required (top
left hand side of Figure 2.2). This can be supplied in three basic ways:

1) as source code written using the SELinux Policy Language. This is
how the simple policies have been written to support the examples in
this Notebook, however it is not recommended for large policy
developments such as the Reference Policy, although the smaller SE
for Android policy is written this way with some m4 macro support.

i1) using the Reference Policy that has high level macros to define policy
rules. This is the standard way policies are now built for SELinux
distributions such as Red Hat and Debian and is discussed in the
Reference Policy section. Note that SE for Android also uses high level
macros to define policy rules but the overall policy is much less
complex.

ii1) using CIL (Common Intermediate Language). An overview can be
found at https:/github.com/SELinuxProject/cil/wiki and the CIL
Overview section.

To be able to compile and link the policy source then load it into the security
server requires a number of tools (top of Figure 2.2).

To enable system administrators to manage policy, the SELinux environment
and label file systems, tools and modified GNU / Linux commands are used.
These are mentioned throughout the Notebook as needed and summarised in
Appendix C - SELinux Commands. Note that there are many other
applications to manage policy, however this Notebook only concentrates on
the core services.

To ensure security events are logged, GNU / Linux has an audit service that
captures policy violations. The Auditing SELinux Events section describes the
format of these security events.

SELinux supports network services that are described in the SELinux
Networking Support section.

The Linux Security Module and SELinux section goes into greater detail of the LSM /

SELinux modules with a walk through of a fork and exec process.

2.3

Mandatory Access Control (MAC)

Mandatory Access Control (MAC) is a type of access control in which the operating
system is used to constrain a user or process (the subject) from accessing or
performing an operation on an object (such as a file, disk, memory etc.).

Each of the subjects and objects have a set of security attributes that can be
interrogated by the operating system to check if the requested operation can be
performed or not. For SELinux the:

Page 22

https://github.com/SELinuxProject/cil/wiki

The SELinux Notebook

subjects are processes.
objects are system resources such as files, sockets, etc.

security attributes are the security context.

Security Server within the Linux kernel authorizes access (or not) using the
security policy (or policy) that describes rules that must be enforced.

Note that the subject (and therefore the user) cannot decide to bypass the policy rules
being enforced by the MAC policy with SELinux enabled. Contrast this to standard
Linux Discretionary Access Control (DAC), which also governs the ability of subjects
to access objects, however it allows users to make policy decisions. The steps in the
decision making chain for DAC and MAC are shown in Figure 2.3.

User-space Process makes a System Call

User Space
—t L p

Service System Call Kernel Space

+ Failed Denied

Check for Errors

v

DAC Checks

+ Linux

or Den
LSM Hook o ‘ Security [« SELinux Security

Policy

¢ Access Module Server, AVC and

Return from System
Call

Figure 2.3: Processing a System Call - The DAC checks are carried out first, if they

pass then the Security Server is consulted for a decision.

SELinux supports two forms of MAC:

Type Enforcement - Where processes run in domains and the actions on objects
are controlled by the policy. This is the implementation used for general purpose
MAC within SELinux along with Role Based Access Control. The Type
Enforcement and Role Based Access Control sections covers these in more detail.

Multi-Level Security - This is an implementation based on the Bell-La Padula
(BLP) model, and used by organizations where different levels of access are
required so that restricted information is separated from classified information to
maintain confidentiality. This allows enforcement rules such as 'no write down'
and 'no read up' to be implemented in a policy by extending the security context to
include security levels. The MLS section covers this in more detail along with a
variant called Multi-Category Security (MCS).

The MLS / MCS services are now more generally used to maintain application
separation, for example SELinux enabled:

Page 23

The SELinux Notebook

» virtual machines use MCS categories to allow each VM to run within its
own domain to isolate VMs from each other (see the SELinux Virtual
Machine Support section).

* Android devices use dynamically generated MCS categories so that an app
running on behalf of one user cannot read or write files created by the
same app running on behalf of another user (see the Security

Enhancements for Android - Computing a Process Context section).

2.4 SELinux Users

Users in GNU / Linux are generally associated to human users (such as Alice and
Bob) or operator/system functions (such as admin), while this can be implemented in
SELinux, SELinux user names are generally groups or classes of user. For example
all the standard system users could be assigned an SELinux user name of user u
and administration staff under staff u.

There is one special SELinux user defined that must never be associated to a GNU /
Linux user as it a special identity for system processes and objects, this user is
system u.

The SELinux user name is the first component of a 'security context' and by
convention SELinux user names end in ' u', however this is not enforced by any
SELinux service (i.e. it is only to identify the user component), although CIL with
namespaces does make identification of an SELinux user easier for example a 'user'
could be declared as unconfined.user.

It is possible to add constraints and bounds on SELinux users as discussed in the Type
Enforcement section.

2.5 Role-Based Access Control (RBAC)

To further control access to TE domains SELinux makes use of role-based access
control (RBAC). This feature allows SELinux users to be associated to one or more
roles, where each role is then associated to one or more domain types as shown in

Figure 2.4.

The SELinux role name is the second component of a 'security context' and by
convention SELinux roles end in ' r', however this is not enforced by any SELinux
service (i.e. it is only used to identify the role component), although CIL with
namespaces does make identification of a role easier for example a 'role' could be
declared as unconfined.role.

It is possible to add constraints and bounds on roles as discussed in the Type
Enforcement section.

Page 24

The SELinux Notebook

In the basic policy, the SELinux
SELinux User user unconfined u is
unconfined u associated to all GNU / Linuxusers
/ \ by default.
Role Role
unconfined r message filter r
TE Domain TE Domain TE Domain TE Domain
unconfined t ext gateway t int gateway t move file t
This domain includes most These domains are entered fromthe unconfined t domain by
processes started at boot e T
. . performing domain transitions using SELinux facilities. This can be done
time and logins. . . . \
because unconfined uis associated to roles unconfined rand
message filter r within the policy.

Figure 2.4: Role Based Access Control - Showing how SELinux controls access via
user, role and domain type association.

2.6 Type Enforcement (TE)

SELinux makes use of a specific style of type enforcement® (TE) to enforce
mandatory access control. For SELinux it means that all subjects and objects have a
type identifier associated to them that can then be used to enforce rules laid down by
policy.

The SELinux type identifier is a simple variable-length string that is defined in the
policy and then associated to a security context. It is also used in the majority of
SELinux language statements and rules used to build a policy that will, when loaded
into the security server, enforce policy via the object managers.

Because the type identifier (or just 'type') is associated to all subjects and objects, it
can sometimes be difficult to distinguish what the type is actually associated with (it's
not helped by the fact that by convention, type identifiers end in ' t'). In the end it
comes down to understanding how they are allocated in the policy itself and how they
are used by SELinux services (although CIL policies with namespaces do help in that
a domain process 'type' could be declared as msg filter.ext gateway.process
with object types being any others (such as msg filter.ext gateway.exec).

Basically if the type identifier is used to reference a subject it is referring to a Linux
process or collection of processes (a domain or domain type). If the type identifier is
used to reference an object then it is specifying its object type (i.e. file type).

While SELinux refers to a subject as being an active process that is associated to a
domain type, the scope of an SELinux type enforcement domain can vary widely. For
example in the simple policy built in the basic-selinux-policy directory of
the source tarball, all the processes on the system run in the unconfined t domain
(or for the CIL version in the unconfined.process domain), therefore every

2 There are various 'type enforcement' technologies.

Page 25

The SELinux Notebook

process is 'of type unconfined t'(that means it can do whatever it likes within the
limits of the standard Linux DAC policy as all access is allowed by SELinux).

It is only when additional policy statements are added to the simple policy that areas
start to be confined. For example, an external gateway is run in its own isolated
domain (ext gateway t) that cannot be 'interfered’ with by any of the
unconfined t processes (except to run or transition the gateway process into its
own domain). This scenario is similar to the 'targeted' policy delivered as standard in
Red Hat Fedora where the majority of user space processes run under the
unconfined t domain (although don't think the simple policies implemented in
source tarball are equivalent to the Reference Policy, they are not - so do not use them
as live implementations).

The SELinux type is the third component of a 'security context' and by convention
SELinux types end in' t', however this is not enforced by any SELinux service (i.e.
it is only used to identify the type component), although as explained above CIL with
namespaces does make identification of types easier.

2.6.1 Constraints

It is possible to add constraints on users, roles, types and MLS ranges, for example
within a TE environment, the way that subjects are allowed to access an object is via a
TE allow rule, for example:

allow unconfined t ext gateway t : process transition;

This states that a process running in the unconfined t domain has permission to
transition a process to the ext gateway t domain. However it could be that the
policy writer wants to constrain this further and state that this can only happen if the
role of the source domain is the same as the role of the target domain. To achieve this
a constraint can be imposed using a constrain statement:

constrain process transition (rl == r2);

This states that a process transition can only occur if the source role is the same as the
target role, therefore a constraint is a condition that must be satisfied in order for one
or more permissions to be granted (i.e. a constraint imposes additional restrictions on
TE rules). Note that the constraint is based on an object class (process in this case)
and one or more of its permissions.

The kernel policy language constraints are defined in the Constraint Statements

section).

2.6.2 Bounds

It is possible to add bounds to users, roles and types, however currently only types are
enforced by the kernel using the typebounds rule as described in the Bounds
Overview section (although user and role bounds may be declared using CIL,
however they are validated at compile time).

Page 26

The SELinux Notebook

2.7 Security Context

SELinux requires a security context to be associated with every process (or subject)
and object that are used by the security server to decide whether access is allowed or
not as defined by the policy.

The security context is also known as a 'security label' or just label that can cause
confusion as there are many types of label depending on the context.

Within SELinux, a security context is represented as variable-length strings that
define the SELinux user’, their role, a type identifier and an optional MCS / MLS
security range or level as follows:

user:role:type[:range]

Where:

user The SELinux user identity. This can be associated to one or more
roles that the SELinux user is allowed to use.

role The SELinux role. This can be associated to one or more types the
SELinux user is allowed to access.

type When a type is associated with a process, it defines what processes
(or domains) the SELinux user (the subject) can access.
When a type is associated with an object, it defines what access
permissions the SELinux user has to that object.

range This field can also be know as a 1evel and is only present if the

policy supports MCS or MLS. The entry can consist of:

* A single security 1evel that contains a sensitivity level and
zero or more categories (e.g. s0, s1:c0,s7:c10.cl5).

* A range that consists of two security levels (a low and
high) separated by a hyphen (e.g. sO - s15:c0.c1023).

These components are discussed in the Security Levels section.

However note that:

1. Access decisions regarding a subject make use of all the components of the
security context.

2. Access decisions regarding an object make use of the components as follows:

a) the user is either set to a special user called system u or it is set to
the SELinux user id of the creating process. It is possible to add
contraints on users within policy based on their object class (an
example of this is the Reference Policy UBAC (User Based Access
Control) option.

b) the role is generally set to a special SELinux internal role of
object r, although policy version 26 with kernel 2.6.39 and above
do support role transitions on any object class. It is then possible to add
contraints on the role within policy based on their object class.

* An SELinux user id is not the same as the GNU / Linux user id. The GNU / Linux user id is
mapped to the SELinux user id by configuration files.

Page 27

The SELinux Notebook

The Computing Security Contexts section decribes how SELinux computes the

security context components based on a source context, target context and object

class.

The examples below show security contexts for processes, directories and files (note
that the policy did not support MCS or MLS, therefore no 1evel field):

Example Process Security Context:

P e

These are process security contexts taken from a ps -Z command
(edited for clarity) that show four processes:

LABEL PID TTY CMD

unconfined u:unconfined r:unconfined t 2539 pts/0 bash

unconfined u:message filter r:ext gateway t 3134 pts/0 secure server
unconfined u:message filter r:int gateway t 3138 pts/0 secure server
unconfined u:unconfined r:unconfined t 3146 pts/0 ps

Note the bash and ps processes are running under the
unconfined t domain, however the secure server has two instances
running under two different domains (ext gateway t and

int gateway t). Also note that they are using the

message filter r role whereas bash and ps use unconfined r.

These results were obtained by running the system in permissive
mode (as in enforcing mode the gateway processes would not
be shown) .

Example Object Security Context:

#

These are the message queue directory object security contexts
taken from an ls -Zd command (edited for clarity):
system u:object r:in queue t /usr/message queue/in queue

system u:object r:out queue t /usr/message queue/out queue

Note that they are instantiated with system u and object r

#
#

/usr/message queue/in queue:
unconfined u:object r:in file t Message-1
unconfined u:object r:in file t Message-2

/usr/message queue/out queue:

unconfined u:object r:out file t Message-10

unconfined u:object r:out file t Message-11

Note that they are instantiated with unconfined u as that was
the SELinux user id of the process that created the files

(see the process example above). The role remained as

object r.

These are the message queue file object security contexts
taken from an ls -Z command (edited for clarity):

Page 28

The SELinux Notebook

2.8 Subjects

A subject is an active entity generally in the form of a person, process, or device that
causes information to flow among objects or changes the system state.

Within SELinux a subject is an active process and has a security context associated
with it, however a process can also be referred to as an object depending on the
context in which it is being taken, for example:

1. A running process (i.e. an active entity) is a subject because it causes
information to flow among objects or can change the system state.

2. The process can also be referred to as an object because each process has an
associated object class® called 'orocess'. This process 'object', defines what
permissions the policy is allowed to grant or deny on the active process.

An example is given of the above scenarios in the Allowing a Process Access to an
Object section.

In SELinux subjects can be:

Trusted - Generally these are commands, applications etc. that have been written
or modified to support specific SELinux functionality to enforce the security
policy (e.g. the kernel, init, pam, xinetd and login). However, it can also cover any
application that the organisation is willing to trust as a part of the overall system.
Although (depending on your paranoia level), the best policy is to trust nothing
until it has been verified that it conforms to the security policy. Generally these
trusted applications would run in either their own domain (e.g. the audit daemon
could run under auditd t) or grouped together (e.g. the semanage (8) and
semodule (8) commands could be grouped under semanage t).

Untrusted - Everything else.

2.9 Objects

Within SELinux an object is a resource such as files, sockets, pipes or network
interfaces that are accessed via processes (also known as subjects). These objects are
classified according to the resource they provide with access permissions relevant to
their purpose (e.g. read, receive and write), and assigned a security context as
described in the following sections.

2.9.1 Object Classes and Permissions

Each object consists of a class identifier that defines its purpose (e.g. file, socket)
along with a set of permissions® that describe what services the object can handle
(read, write, send etc.). When an object is instantiated it will be allocated a name
(e.g. a file could be called config or a socket my connection) and a security
context (e.g. system u:object r:selinux config t) as shown in Figure
2.5.

4 The object class and its associated permissions are explained in the Process Object Class section.

> Also known in SELinux as Access Vectors (AV).

Page 29

The SELinux Notebook

Object — ofthe ‘fi1e’ object class

read

-

File name: write a

/etc/selinux/config < =

w2

Security Context: < append §'

system u:object r:selinux config t @
etc.

Figure 2.5: Object Class = '£ile' and permissions - the policy rules would define
those permissions allowed for each process that needs access to the
/etc/selinux/configfile.

The objective of the policy is to enable the user of the object (the subject) access to
the minimum permissions needed to complete the task (i.e. do not allow write
permission if only reading information).

These object classes and their associated permissions are built into the GNU / Linux
kernel and user space object managers by developers and are therefore not generally
updated by policy writers.

The object classes consist of kernel object classes (for handling files, sockets etc.)
plus userspace object classes for userspace object managers (for services such as X-
Windows or dbus). The number of object classes and their permissions can vary
depending on the features configured in the GNU / Linux release. All the known
object classes and permissions are described in Appendix A - Object Classes and

Permissions.

2.9.2 Allowing a Process Access to Resources
This is a simple example that attempts to explain two points:
1. How a process is given permission to use an objects resource.

2. By using the 'process' object class, show that a process can be described as a
process or object.

An SELinux policy contains many rules and statements, the majority of which are
allow rules that (simply) allows processes to be given access permissions to an
objects resources.

The following allow rule and Figure 2.6 illustrates 'a process can also be an object'
as it allows processes running in the unconfined t domain, permission to
'transition' the external gateway application to the ext gateway t domain
once it has been executed:

allow Rule | source domain | target type : class | permission

——————————— W o W W

allow unconfined t ext gateway t : process transition;
Where:

allow The SELinux language allow rule.

unconfined_t The source domain (or subject) identifier - in this case the

Page 30

The SELinux Notebook

shell that wants to exec the gateway application.

ext_gateway_t The target object identifier - the object instance of the

gateway application process.

process The target object class - the 'process' object class.

transition The permission granted to the source domain on the

targets object - in this case the unconfined t domain
has transition permission on the ext gateway t
'process' object.

transition
unconfined_t > ext_gateway t

(Permission)

Subject — the
process Object Instance — of the

‘brocess’ object class

Figure 2.6: The allow rule - Showing that the subject (the processes running

in the unconfined t domain) has been given the transition permission on the

ext gateway t 'process’object.

It should be noted that there is more to a domain transition than described above, for a
more detailed explanation, see the Domain Transition section.

2.9.3 Labeling Objects

Within a running SELinux enabled GNU / Linux system the labeling of objects is
managed by the system and generally unseen by the users (until labeling goes
wrong !!). As processes and objects are created and destroyed, they either:

l.
2.

Inherit their labels from the parent process or object.

The policy type, role and range transition statements allow a different label to
be assigned as discussed in the Domain and Object Transitions section.

SELinux-aware applications can enforce a new label (with the policies
approval of course) using the 1ibselinux API functions.

An object manager (OM) can enforce a default label that can either be built
into the OM or obtained via a configuration file (such as those used by X-
Windows).

Use an 'initial security identifier' (or initial SID). These are defined in all base
and monolithic policies and are used to either set an initial context during the
boot process, or if an object requires a default (i.e. the object does not already
have a valid context).

The Computing Security Contexts section gives detail on how some of the kernel
based objects are computed.

Page 31

The SELinux Notebook

The SELinux policy language supports object labeling statements for file and network
services that are defined in the File System Labeling Statements and Network
Labeling Statements sections.

An overview of the process required for labeling file systems that use extended
attributes (such as ext3 and ext4) is discussed in the Labeling Extended Attribute

Filesystems section.

2.9.3.1 Labeling Extended Attribute Filesystems

The labeling of file systems that implement extended attributes® is supported by
SELinux using:

1. The fs use xattr statement within the policy to identify what file
systems use extended attributes. This statement is used to inform the security
server how to label the filesystem.

2. A 'file contexts' file that defines what the initial contexts should be for each
file and directory within the filesystem. The format of this file is described in
themodules/active/file contexts.template file’ section.

3. A method to initialise the filesystem with these extended attributes. This is
achieved by SELinux utilities such as fixfiles (8) and setfiles (8).
There are also commands such as chcon(l), restorecon (8) and
restorecond (8) that can be used to relabel files.

Extended attributes containing the SELinux context of a file can be viewed by the 1s
-7 orgetfattr (1) commands as follows:

ls -Z myfile
-rw-r—-r-- rch rch unconfined u:object r:user home:s0 myfile

getfattr -n security.selinux myfile
file name: myfile
security.selinux="unconfined u:object r:user home:s0

Where -n security.selinux is the name of the extended
attribute and 'myfile' is a file name. The security context
(or label) held for the file is displayed.

2.9.3.1.1 Copying and Moving Files

Assuming that the correct permissions have been granted by the policy, the effects on
the security context of a file when copied or moved differ as follows:

- copy a file - takes on label of new directory.

. move a file - retains the label of the file.

However, if the restorecond daemon is running and the restorecond.conf
file is correctly configured, then other security contexts can be associated to the file as

® These file systems store the security context in an attribute associated with the file.

7 Note that this file contains the contexts of all files in all extended attribute filesystems for the

policy. However within a modular policy each module describes its own file context information,
that is then used to build this file.

Page 32

The SELinux Notebook

it is moved or copied (provided it is a valid context and specified in the
file contexts file). Note that there is also the install (1) command that
supports a —Z option to specify the target context.

The examples below show the effects of copying and moving files:

These are the test files in the /root directory and their current security
context:

#

-rw-r--r-- root root unconfined u:object r:unconfined t copied-file
-rw-r--r-- root root unconfined u:object r:unconfined t moved-file

These are the commands used to copy / move the files:
Standard copy file:
cp copied-file /usr/message queue/in queue

Standard move file:
mv moved-file /usr/message queue/in_ queue

The target directory (/usr/message queue/in queue) is labeled "in queue t".
The results of "1ls -Z" on the target directory are:

#

-rw-r--r-- root root unconfined u:object r:in queue t copied-file
-rw-r--r-- root root unconfined u:object r:unconfined t moved-file

However, if the restorecond daemon is running;:

If the restorecond daemon is running with a restorecond.conf file entry of:
#

/usr/message queue/in queue/*

AND the file context file has an entry of:
#

/usr/message_queue/in_queue(/.*)? -- system u:object r:in file t

Then all the entries would be set as follows when the daemon detects the files
creation:

#

-rw-r--r-- root root unconfined u:object r:in file t copied-file
-rw-r--r-- root root unconfined u:object r:in file t moved-file

This is because the restorecond process will set the contexts defined in
the file contexts file to the context specified as it is created in the
new directory.

This is because the restorecond process will set the contexts defined in the
file contexts file to the context specified as it is created in the new directory.

2.9.3.2 Labeling Subjects

On a running GNU / Linux system, processes inherit the security context of the parent
process. If the new process being spawned has permission to change its context, then
a 'type transition' is allowed that is discussed in the Domain Transition section.

The policy language supports a number of statements to assign components to
security contexts such as:

user, role and type statements.
and manage their scope:

role allowand constrain
and manage their transition:

type transition,role transitionand range transition

Page 33

The SELinux Notebook

2.9.4 Object Reuse

As GNU / Linux runs it creates instances of objects and manages the information they
contain (read, write, modify etc.) under the control of processes, and at some stage
these objects may be deleted or released allowing the resource (such as memory
blocks and disk space) to be available for reuse.

GNU / Linux handles object reuse by ensuring that when a resource is re-allocated it
is cleared. This means that when a process releases an object instance (e.g. release
allocated memory back to the pool, delete a directory entry or file), there may be
information left behind that could prove useful if harvested. If this should be an issue,
then the process itself should clear or shred the information before releasing the object
(which can be difficult in some cases unless the source code is available).

210 Computing Security Contexts

SELinux uses a number of policy language statements and 1ibselinux functions
to compute a security context via the kernel security server.

When security contexts are computed, the different kernel, userspace tools and policy
versions can influence the outcome. This is because patches have been applied over
the years that give greater flexiblity in computing contexts. For example a 2.6.39
kernel with SELinux userspace services supporting policy version 26 can influence
the computed role.

The security context is computed for an object using the following components: a
source context, a target context and an object class.

The 1ibselinux userspace functions used to compute a security context are:
avc_compute_create (3) and security compute create (3)
avc_compute member (3) and security compute member (3)
security compute relabel (3)

Note that these 1ibselinux functions actually call the kernel equivalent functions
in the security server (see kernel source security/selinux/ss/services.c:
security compute sid, security member sid and
security change sid) that actually compute the security context.

The kernel policy language statements that influence a computed security context are:

type transition, role transition, range transition,
type member and type change, default user, default role,
default type and default range statements (their corresponding CIL
statements exclude the underscore).

The sections that follow give an overview of how security contexts are computed for
some kernel classes and also when using the userspace 1ibselinux functions.

2.10.1 Security Context Computation for Kernel Objects

Using a combination of the email thread:
http://www.spinics.net/lists/selinux/msg10746.html and kernel 3.14 source, this is
how contexts are computed by the security server for various kernel objects (also see

Page 34

http://www.spinics.net/lists/selinux/msg10746.html

The SELinux Notebook

the Linux Security Module and SELinux section and "Implementing SELinux as a

Linux Security Module" [1]).

2.10.1.1 Process

The initial task starts with the kernel security context, but the "init" process will
typically transition into its own unique context (e.g. init t) when the init binary is
executed after the policy has been loaded. Some init programs re-exec themselves
after loading policy, while in other cases the initial policy load is performed by the
initrd/initramfs script prior to mounting the real root and executing the real
init program.

Processes inherit their security context as follows:
1. On fork a process inherits the security context of its creator/parent.

2. On exec, a process may transition to another security context based on policy
statements: type transition, range transition,
role transition (policy version 26), default user,
default role, default range (policy versions 27) and
default type (policy version 28) or if a security-aware process, by calling
setexeccon (3) if permitted by policy prior to invoking exec.

3. At any time, a security-aware process may invoke setcon (3) to switch its
security context (if permitted by policy) although this practice is generally
discouraged - exec-based transitions are preferred.

2.10.1.2 Files

The default behavior for labeling files (actually inodes that consist of the following
classes: files, symbolic links, directories, socket files, fifo's and block/character) upon
creation for any filesystem type that supports labeling is as follows:

1. The user component is inherited from the creating process (policy version 27
allows a default user of source or target to be defined for each object
class).

2. The role component generally defaults to the object r role (policy version
26 allows a role transition and version 27 allows a default role
of source or target to be defined for each object class).

3. The type component defaults to the type of the parent directory if no matching
type transition rule was specified in the policy (policy version 25
allows a filename type transition rule and version 28 allows a
default type of source or target to be defined for each object class).

4. The range/level component defaults to the low/current level of the
creating process if no matching range transition rule was specified in
the policy (policy version 27 allows a default range of source or target
with the selected range being low, high or low-high to be defined for each
object class).

Security-aware applications can override this default behavior by calling
setfscreatecon (3) prior to creating the file, if permitted by policy.

Page 35

http://www.nsa.gov/research/_files/selinux/papers/module-abs.shtml
http://www.nsa.gov/research/_files/selinux/papers/module-abs.shtml

The SELinux Notebook

For existing files the label is determined from the xattr value associated with the
file. If there is no xattr value set on the file, then the file is treated as being labeled
with the default file security context for the filesystem. By default, this is the "file"
initial SID, which is mapped to a context by the policy. This default may be
overridden via the defcontext= mount option on a per-mount basis as described in
mount (8).

2.10.1.3 File Descriptors

Inherits the label of its creator/parent.

21014 Filesystems

Filesystems are labeled using the appropriate fs use kernel policy language
statement as they are mounted, they are based on the filesystem type name (e.g.
ext4) and their behaviour (e.g. xattr). For example if the policy specifies the
following:

fs use task pipefs system u:object r:fs t:s0

then as the pipefs filesystem is being mounted, the SELinux LSM security hook
selinux set mnt optswillcall security fs use that will:

a) Look for the filesystem name within the policy (pipefs)
b) If present, obtain its behaviour (fs_use task)

¢) Then obtain the allocated security context
(system u:object r:fs t:s0)

Should the behaviour be defined as fs use task, then the filesystem will be
labeled as follows:

1. The user component is inherited from the creating process (policy version 27
allows a default user of source or target to be defined).

2. The role component generally defaults to the object r role (policy version
26 allows a role transition and version 27 allows a default role
of source or target to be defined).

3. The type component defaults to the type of the target type if no matching
type transition rule was specified in the policy (policy version 28
allows a default type of source or target to be defined).

4. The range/level component defaults to the low/current level of the
creating process if no matching range transition rule was specified in
the policy (policy version 27 allows a default range of source or target
with the selected range being low, high or low-high to be defined).

Notes:

1. Filesystems that support xattr extended attributes can be identified via the
mount command as there will be a 'seclabel' keyword present.

Page 36

The SELinux Notebook

2. There are mount options for allocating various context types: context=,
fscontext=, defcontext= and rootcontext=. They are fully
described in the mount (8) man page.

2.10.1.5 Network File System (nfsv4)

If labeled NFS is implemented with xattr support, then the creation of inodes are
treated as described in the Files section.

2.10.1.6 INET Sockets
If a socket is created by the socket (3) call they are labeled as follows:

1. The user component is inherited from the creating process (policy version 27
allows a default user of source or target to be defined for each socket

object class).

2. The role component is inherited from the creating process (policy version 26
allows a role transition and version 27 allows a default role of
source or target to be defined for each socket object class).

3. The type component is inherited from the creating process if no matching
type transition rule was specified in the policy and version 28 allows a
default type of source or target to be defined for each socket object
class).

4. The range/level component is inherited from the creating process if no
matching range transition rule was specified in the policy (policy
version 27 allows a default range of source or target with the selected
range being low, high or low-high to be defined for each socket object class).

Security-aware applications may use setsockcreatecon (3) to explicitly label
sockets they create if permitted by policy.

If created by a connection they are labeled with the context of the listening process.

Some sockets may be labeled with the kernel SID to reflect the fact that they are
kernel-internal sockets that are not directly exposed to applications.

2101.7 IPC

Inherits the label of its creator/parent.

2.10.1.8 Message Queues

Inherits the label of its sending process. However if sending a message that is
unlabeled, compute a new label based on the current process and the message queue it
will be stored in as follows:

1. The user component is inherited from the sending process (policy version 27
allows a default user of source or target to be defined for the message

object class).

Page 37

The SELinux Notebook

2. The role component is inherited from the sending process (policy version 26
allows a role transition and version 27 allows a default role of
source or target to be defined for the message object class).

3. The type component is inherited from the sending process if no matching
type transition rule was specified in the policy and version 28 allows a
default type of source or target to be defined for the message object
class).

4. The range/level component is inherited from the sending process if no
matching range transition rule was specified in the policy (policy
version 27 allows a default range of source or target with the selected
range being low, high or low-high to be defined for the message object class).

2.10.1.9 Semaphores

Inherits the label of its creator/parent.

2.10.1.10 Shared Memory

Inherits the label of its creator/parent.

2.10.1.11 Keys
Inherits the label of its creator/parent.

Security-aware applications may use setkeycreatecon (3) to explicitly label
keys they create if permitted by policy.

210.2 Using libselinux Functions

2.10.21 avc_compute create and security compute create

The table below® shows how the components from the source context scon, target
context tcon and class tclass are used to compute the new context newcon
(referenced by SIDs for ave _compute create (3)). The following notes also

apply:
a) Any valid policy role transition, type transition and
range transition enforcement rules will influence the final outcome as
shown.

b) For kernels less than 2.6.39 the context generated will depend on whether the
class is process or any other class.

¢) For kernels 2.6.39 and above the following also applies:

i. Those classes suffixed by socket will also be included in the
process class outcome.

ii. Ifavalid role transitionrulefor tclass, then use that instead
of the default object r. Also requires policy version 26 or greater -
sec security policyvers(3).

The table only contains the kernel version, the text gives the policy version also required.

Page 38

The SELinux Notebook

iii. If the type transition rule is classed as the 'file name transition
rule' (i.e. it has an object name parameter), then provided the

object name in the rule matches the last component of the objects name
(in this case a file or directory name), then wuse the rules
default type . Also requires policy version 25 or greater.

d) For kernels 3.5 and above with policy version 27 or greater, the
default user, default role, default range statements will
influence the user, role and range of the computed context for the
specified class tclass. With policy version 28 or greater the
default type statement can also influence the type in the computed

context.
user role type range
If kernel >= 3.5 with a If kernel >=2.6.39, and If there is a valid If there is a valid

default user tclass there is a valid type_transition range_ transition
target rule then use tcon role_transition rule then use the rules rule then use the rules new_range

user rule then use the rules default type OR

ELSE new role OR If kernel >= 3.5 with

Use scon user OR If kernel >= 3.5 with default range tclass

If kernel >= 3.5 with

role
OR
If kernel >= 3.5 with

target rule then use tcon
role

OR

If kernel >=2.6.39 and
tclass is process or

role
OR
If kernel <=2.6.38 and
tclass is process, then
use scon role
ELSE
Use object_r

default role tclass
source rule then use scon

default role tclass

*socket, then use scon

default type tclass
source rule then use scon

type
OR
If kernel >= 3.5 with

default type tclass
target rule then use tcon

type
OR

If kernel >= 2.6.39 and
tclass is process or

*socket, then use scon

type
OR
If kernel <= 2.6.38 and
tclass is process, then
use scon type
ELSE
Use tcon type

source low rule then use
scon low
OR
If kernel >= 3.5 with
default range tclass
source high rule then use
sconhigh
OR
If kernel >= 3.5 with
default range tclass
source low_high rule then
use scon range
OR
If kernel >= 3.5 with
default range tclass
target low rule then use
tcon low
OR
If kernel >= 3.5 with
default range tclass
target high rule then use
tconhigh
OR
If kernel >= 3.5 with
default range tclass
target low_high rule then
use tcon range
OR
If kernel >=2.6.39 and tclass
is process or *socket, then
use scon range
OR
If kernel <=2.6.38 and tclass
is process, then use scon
range
ELSE
Use scon low

Page 39

The SELinux Notebook

2.10.2.2 avc_compute member and security compute member

The table below’ shows how the components from the source context, scon target
context, tcon and class, tclass are used to compute the new context newcon
(referenced by SIDs for ave _compute member (3)). The following notes also

apply:
a) Any valid policy type member enforcement rules will influence the final
outcome as shown.

b) For kernels less than 2.6.39 the context generated will depend on whether the
class is process or any other class.

c) For kernels 2.6.39 and above, those classes suffixed by socket are also
included in the process class outcome.

d) For kernels 3.5 and above with policy version 28 or greater, the
default role,default range statements will influence the role and
range of the computed context for the specified class tclass. With policy
version 28 or greater the default type statement can also influence the
type in the computed context.

° The table only contains the kernel version, the text gives the policy version also required.

Page 40

The SELinux Notebook

user role type range
Always uses tcon user If kernel >= 3.5 with If there is a valid If kernel >= 3.5 with

source rule then use scon
role

OR
If kernel >= 3.5 with

role
OR

If kernel >=2.6.39 and
tclass is process or

role
OR
If kernel <=2.6.38 and
tclass is process, then
use scon role
ELSE
Use object_r

default role tclass

default role tclass
target rule then use tcon

*socket, then use scon

type_member
rule then use the rules
member type
OR
If kernel >= 3.5 with

default type tclass
source rule then use scon

type
OR
If kernel >= 3.5 with

default type tclass
target rule then use tcon

type
OR

If kernel >= 2.6.39 and
tclass is process or

*socket, then use scon

type
OR
If kernel <= 2.6.38 and
tclass is process, then
use scon type
ELSE
Use tcon type

default range tclass
source low rule then use
scon low
OR
If kernel >= 3.5 with
default range tclass
source high rule then use
sconhigh
OR
If kernel >= 3.5 with
default range tclass
source low_high rule then
use scon range
OR
If kernel >= 3.5 with
default range tclass
target low rule then use
tcon low
OR
If kernel >= 3.5 with
default range tclass
target high rule then use
tconhigh
OR
If kernel >= 3.5 with
default range tclass
target low_high rule then
use tcon range
OR
If kernel >=2.6.39 and tclass
is process or *socket, then
use scon range
OR
If kernel <=2.6.38 and tclass
is process, then use scon
range
ELSE
Use scon low

2.10.2.3 security compute relabel

The table below'® shows how the components from the source context, scon target
context, tcon and class, tclass are used to compute the new context newcon for
security compute relabel (3). The following notes also apply:

a) Any valid policy type change enforcement rules will influence the final

outcome shown in the table.

b) For kernels less than 2.6.39 the context generated will depend on whether the
class is process or any other class.

c) For kernels 2.6.39 and above, those classes suffixed by socket are also
included in the process class outcome.

10

The table only contains the kernel version, the text gives the policy version also required.

Page 41

The SELinux Notebook

d) For kernels 3.5 and above with policy version 28 or greater, the
default user, default role, default range statements will
influence the user, role and range of the computed context for the

specified class

tclass.

With policy version 28 or

greater the

default type statement can also influence the type in the computed

context.

user

role

type

range

If kernel >= 3.5 with a

default user tclass
target rule then use tcon

user
ELSE

Use scon user

If kernel >= 3.5 with

default role tclass
source rule then use scon

role
OR
If kernel >= 3.5 with

default role tclass
target rule then use tcon

role
OR
If kernel >= 2.6.39 and
tclass is process or
*socket, then use scon
role

OR
If kernel <=2.6.38 and
tclass is process, then
use scon role
ELSE
Use object_r

If there is a valid
type_change
rule then use the rules
change type
OR

If kernel >= 3.5 with

default type tclass
source rule then use scon

type
OR
If kernel >= 3.5 with

default type tclass
target rule then use tcon

type
OR
If kernel >=2.6.39 and
tclass is process or

*socket, then use scon

type
OR
If kernel <= 2.6.38 and
tclass is process, then
use scon type
ELSE
Use tcon type

If kernel >= 3.5 with
default range tclass
source low rule then use
scon low
OR
If kernel >= 3.5 with
default range tclass
source high rule then use
sconhigh
OR
If kernel >= 3.5 with
default range tclass
source low_high rule then
use scon range
OR
If kernel >= 3.5 with
default range tclass
target low rule then use
tcon low
OR
If kernel >= 3.5 with
default range tclass
target high rule then use
tconhigh
OR
If kernel >= 3.5 with
default range tclass
target low_high rule then
use tcon range
OR
If kernel >=2.6.39 and tclass
is process or *socket, then
use scon range
OR
If kernel <=2.6.38 and tclass
is process, then use scon
range
ELSE

Use scon low

211 Computing Access Decisions

There are a number of ways to compute access decisions within userspace SELinux-
aware applications or object managers:

1. Use functions that do not cache access decisions (i.e. they do not use the
libselinux AVC services). These require a call to the kernel for every

decision

using

security compute_av (3) or

Page 42

The SELinux Notebook

security compute av_flags(3). The avc _netlink *(3)
functions can be used to detect policy change events. Auditing would need to
be implemented if required.

2. Use functions that utilise the 1ibselinux userspace AVC services that are
initialised with ave_open (3) . These can be built in various configurations
such as:

a) Using the default single threaded mode where ave_has perm(3)
will automatically cache entries, audit the decision and manage the
handling of policy change events.

b) Implementing threads or a similar service that will handle policy
change events and auditing in real time with ave_has perm(3) or
avc_has perm noaudit (3) handling decisions and caching.
This has the advantage of better performance, which can be further
increased by caching the entry reference.

3. Implement custom caching services with security compute_av (3) or
security compute av_flags (3) for computing access decisions. The
avc _netlink *(3) functions can then be used to detect policy change
events. Auditing would need to be implemented if required.

4. Use of the selinux check access (3) function is generally the
recommended option provided only one permission requires the check. This
utilises the AVC services defined in bullet 2, in a single call with the option to
add supplemental auditing information (that is handled as described in
avc_audit (3)).

Where performance is important when making policy decisions, then the
selinux_status_open (3), selinux_ status_updated (3),
selinux status_getenforce (3), selinux status policyload(3)
and selinux status_close(3) functions could be used to detect policy
updates etc. as these do not require kernel system call over-heads once set up. Note
that these functions are only available from 1ibselinux 2.0.99, with Linux kernel
2.6.37 and above.

2.12 Domain and Object Transitions

This section discusses the t ype transition statement that is used to:
1. Transition a process from one domain to another (a domain transition).
2. Transition an object from one type to another (an object transition).

These transitions can also be achieved using the 1ibselinux API functions for
SELinux-aware applications.

2121 Domain Transition

A domain transition is where a process in one domain starts a new process in another
domain under a different security context. There are two ways a process can define a
domain transition:

Page 43

The SELinux Notebook

1. Using a type transition statement, where the exec system call will
automatically perform a domain transition for programs that are not
themselves SELinux-aware. This is the most common method and would be in
the form of the following statement:

type transition unconfined t secure services exec t : process ext gateway t;

2. SELinux-aware applications can specify the domain of the new process using
the 1ibselinux API call setexeccon (3). To achieve this the SELinux-
aware application must also have the setexec permission, for example:

allow crond t self : process setexec;

However, before any domain transition can take place the policy must specify that:
1. The source domain has permission to transition into the target domain.
2. The application binary file needs to be executable in the source domain.
3. The application binary file needs an entry point into the target domain.

The following is a type transition statement taken from the example loadable
module message filter ext gateway.conf (described in the source tarball) that
will be used to explain the transition process'':

type transition | source domain | target type : class | target domain;
———————————————— W o W W
type transition unconfined t secure services exec t : process ext gateway t;

This type transition statement states that when a process running in the
unconfined t domain (the source domain) executes a file labeled
secure_services _exec _t, the process should be changed to ext gateway t (the target
domain) if allowed by the policy (i.e. transition from the unconfined t domain to the
ext_gateway t domain).

However as stated above, to be able to transition to the ext gateway t domain, the
following minimum permissions must be granted in the policy using allow rules,
where (note that the bullet numbers correspond to the numbers shown in Figure 2.7):

1. The domain needs permission to framsition into the ext gateway t (target)
domain:

allow unconfined t ext gateway t : process transition;

2. The executable file needs to be executable in the unconfined t (source)
domain, and therefore also requires that the file is readable:

allow unconfined t secure services exec t : file { execute read getattr };

3. The executable file needs an entry point into the ext gateway t (target)
domain:

For reference, the external gateway uses a server application called secure server that is
transitioned to the ext gateway t domain from the unconfined t domain. The
secure_ server executable is labeled secure services exec t.

Page 44

The SELinux Notebook

allow ext gateway t secure services exec t : file entrypoint;

These are shown in Figure 2.7 where unconfined t forks a child process, that
then exec's the new program into a new domain called ext gateway t. Note that
because the type transition statement is being used, the transition is
automatically carried out by the SELinux enabled kernel.

Process

system u:system r:unconfined t
unconfined t |~ < _
- ~
Parent Process T~a @
-
~ =~

~N
allow unconfined_t ext gateway t : process |_> transition

~
. ~
unconfined t ~ @
- ~

Child Process ~

execve| () type_transition unconfined_t S
secure_services_exec_t : process ext_gateway_t;\\
A
system ufsystem r:ext gateway t execute
: ; L e read
allow unconfined_t secure_services_exec_t : file
getattr
| allow ext gateway t secure services exec t : file |—> entrypoint
= = = = = -

ext gateway t -
New program
(secure_server)

Figure 2.7: Domain Transition - Where the secure server is executed within the
unconfined t domain and then transitioned to the ext gateway t domain.

2.121.1 Type Enforcement Rules

When building the ext gateway.conf and int gateway.conf modules the
intention was to have both of these transition to their respective domains via
type transition statements. The ext gateway t statement would be:

type transition unconfined t secure services exec_t : process ext gateway t;

and the int gateway t statement would be:

type transition unconfined t secure services exec t : process int gateway t;

However, when linking these two loadable modules into the policy, the following
error was given:

Page 45

The SELinux Notebook

semodule -v -s modular-test -i int gateway.pp -i ext gateway.pp
Attempting to install module 'int gateway.pp':

Ok: return value of 0.

Attempting to install module 'ext gateway.pp':

Ok: return value of 0.

Committing changes:

libsepol.expand terule helper: conflicting TE rule for (unconfined t,
secure_ services exec t:process): old was ext gateway t, new is int gateway t
libsepol.expand module: Error during expand
libsemanage.semanage expand sandbox: Expand module failed

semodule: Failed!

This
type

happened because the type enforcement rules will only allow a single 'default'
for a given source and target (see the Type Rules section). In the above case

there were two type transition statements with the same source and target, but

diffe

rent default domains. The ext gateway.conf module had the following

statements:

Allow the client/server to transition for the gateways:

allow unconfined t ext gateway t : process { transition };

allow unconfined t secure services exec t : file { read execute getattr };
allow ext gateway t secure services exec t : file { entrypoint };

type transition unconfined t secure services exec t : process ext gateway t;

And

the int gateway.conf module had the following statements:

Allow the client/server to transition for the gateways:

allow unconfined t int gateway t : process { transition };

allow unconfined t secure services _exec t : file { read execute getattr };
allow int gateway t secure services exec t : file { entrypoint };

type transition unconfined t secure services exec t : process int gateway t;

While the allow rules are valid to enable the transitions to proceed, the two
type transition statements had different 'default' types (or target domains), that
breaks the type enforcement rule.

It was decided to resolve this by:

1.

Keeping the type transition rule for the 'default' type of
ext gateway t and allow the secure server process to be exec'd from
unconfined t as shown in Figure 2.7, by simply running the command
from the prompt as follows:

Run the external gateway 'secure server' application on port 9999 and
let the policy transition the process to the ext gateway t domain:

secure_server 99999

2. Use the SELinux runcon (1) command to ensure that the internal gateway

The

runs in the correct domain by running runcon from the prompt as follows:

Run the internal gateway 'secure server' application on port 1111 and
use runcon to transition the process to the int gateway t domain:

runcon -t int gateway t -r message filter r secure server 1111

Note - The role is required as a role transition that is defined in the
policy.

runcon command makes use of a number of 1ibselinux API functions to

check the current context and set up the new context (for example getfilecon (3)

Page 46

The SELinux Notebook

is used to get the executable files context and setexeccon (3) is used to set the
new process context). If all contexts are correct, then the execvp (2) system call is
executed that exec's the secure server application with the argument of '1111'
into the int gateway t domain with the message filter r role. The
runcon source can be found in the coreutils package.

Other ways to resolve this issue are:

1. Use the runcon command for both gateways to transition to their respective
domains. The type transition statements are therefore not required.

2. Use different names for the secure server executable files and ensure they have
a different type (i.e. instead of secure service exec t label the
external gateway ext gateway exec t and the internal gateway
int gateway exec t. This would involve making a copy of the
application binary (which has already been done as part of the module testing
by calling the server 'server' and labeling it unconfined t and then
making a copy called secure server and labeling it
secure services exec t).

3. Implement the policy using the Reference Policy utilising the template
interface principles discussed in the template Macro section.

It was decided to use runcon as it demonstrates the command usage better than
reading the man pages.

212.2 Object Transition

An object transition is where a new object requires a different label to that of its
parent. For example a file is being created that requires a different label to that of its
parent directory. This can be achieved automatically using a type transition
statement as follows:

type transition ext gateway t in queue t:file in file t;

The following details an object transition used in the ext gateway.conf loadable
module (see the source tarball) where by default, files would be labeled
in queue_ t when created by the gateway application as this is the label attached to
the parent directory as shown:

1s -Za /usr/message queue/in queue
drwxr-xr-x root root unconfined u:object r:in queue t
drwxr-xr-x root root system u:object r:unconfined t

However the requirement is that files in the in queue directory must be labeled
in file t. To achieve this the files created must be relabeled to in file t by
using a type transition rule as follows:

type transition | source domain | target type : object | default type;
—————————————————— W o W W
type transition ext gateway t in queue t : file in file t;

Page 47

The SELinux Notebook

This type transition statement states that when a process running in the
ext_gateway t domain (the source domain) wants to create a file object in the
directory that is labeled in_queue ¢, the file should be relabeled in_file ¢ if allowed by
the policy (i.e. label the file in_file t).

However as stated abov,e to be able to create the file, the following minimum
permissions need to be granted in the policy using al1low rules, where:

1. The source domain needs permission to add file entries into the directory:

allow ext gateway t in queue t : dir { write search add name };

2. The source domain needs permission to create file entries:

allow ext gateway t in file t : file { write create getattr };

3. The policy can then ensure (via the SELinux kernel services) that files created
in the in queue are relabeled:

type transition ext gateway t in queue t : file in file t;

An example output from a directory listing shows the resulting file labels:

ls -Za /usr/message queue/in queue
drwxr-xr-x root root unconfined u:object r:in queue t
drwxr-xr-x root root system u:object r:unconfined t

-rw-r--r—- root root unconfined u:object r:in file t Message-1
-rw-r--r—- root root unconfined u:object r:in file t Message-2

2.13 Multi-Level Security and Multi-Category Security

As stated in the Mandatory Access Control (MAC) section as well as supporting Type
Enforcement (TE), SELinux also supports MLS and MCS by adding an optional
level or range entry to the security context. This section gives a brief introduction
to MLS and MCS.

Figure 2.8 shows a simple diagram where security levels represent the classification
of files within a file server. The security levels are strictly hierarchical and conform to
the Bell-La & Padula model (BLP) in that (in the case of SELinux) a process (running
at the 'Confidential' level) can read / write at their current level but only read down
levels or write up levels (the assumption here is that the process is authorised).

This ensures confidentiality as the process can copy a file up to the secret level, but
can never re-read that content unless the process 'steps up to that level', also the
process cannot write files to the lower levels as confidential information would then
drift downwards.

Page 48

http://en.wikipedia.org/wiki/Bell-LaPadula_model

The SELinux Notebook

Security Files Data Flows Process
Levels (each with a different label)
Write only
e D .
File B Read and Write Process
Confidential <
L Label = Conﬁdentlalj Label = Confidential
No No
e ™ :
File C Read only Write e
Restricted _ > Down Up
Label = Restricted
N\ J
Read only * &

>

Figure 2.8: Security Levels and Data Flows - This shows how the process can only
'Read Down' and 'Write Up' within an MLS enabled system.

To achieve this level of control, the MLS extensions to SELinux make use of
constraints similar to those described in the type enforcement Constraints section,
except that the statement is called m1sconstrain.

However, as always life is not so simple as:

1. Processes and objects can be given a range that represents the low and high
security levels.

2. The security level can be more complex, in that it is a hierarchical sensitivity
and zero or more non-hierarchical categories.

3. Allowing a process access to an object is managed by 'dominance' rules
applied to the security levels.

4. Trusted processes can be given privileges that will allow them to bypass the
BLP rules and basically do anything (that the security policy allowed of
course).

5. Some objects do not support separate read / write functions as they need to
read / respond in cases such as networks.

The sections that follow discuss the format of a security level and range, and how
these are managed by the constraints mechanism within SELinux using dominance
rules.

2.13.1 Security Levels

Table 1 shows the components that make up a security level and how two security
levels form a range for the fourth and optional [:range] of the security context

within an MLS / MCS environment.

The table also adds terminology in general use as other terms can be used that have
the same meanings.

Page 49

The SELinux Notebook

Security Level (or Level) Note that SELinux uses level, sensitivity and
. L category in the language statements (see the MLS
Consisting of a sensitivity and zero or .
- Language Statements section), however when
more category entries: discussing these the following terms can also be used:
labels, classifications, and compartments.
sensitivity [: category, ...]
also known as:
Sensitivity Label
Consisting ofa classification and
compartment.
< Range 2
Low High
sensitivity [: category, ...] - sensitivity [: category,
For a process or subject this is the For a process or subject this is the
current level or sensitivity Clearance
For an object this is the current level or For an object this is the maximum range
sensitivity
SystemLow SystemHigh
This is the lowest level or classification for This is the highest level or classification for
the system (for SELinux this is generally the system (for SELinux this is generally
's0', note that there are no categories). 's15:c0, c255', although note that they will
be the highest set by the policy).

Table 1: Level, Label, Category or Compartment - this table shows the meanings
depending on the context being discussed.

The format used in the policy language statements is fully described in the MLS
Statements section, however a brief overview follows.

21311 MLS/MCS Range Format

The following components (shown in bold) are used to define the MLS / MCS
security levels within the security context:

user:role:type:sensitivity[:category,...] - sensitivity [:category,...
——————————————— A e e A i e e e e 4
| level | = | level
|
| range
Where:
sensitivity Sensitivity levels are hierarchical with (traditionally) sO

being the lowest. These values are defined using the
sensitivity statement. To define their hierarchy, the

dominance statement is used.

Page 50

The SELinux Notebook

category

level

For MLS systems the highest sensitivity is the last one
defined in the dominance statement (low to high).
Traditionally the maximum for MLS systems is s15
(although the maximum value for the Reference Policy is a
build time option).

For MCS systems there is only one sensitivity defined, and
that is sO.

Categories are optional (i.e. there can be zero or more
categories) and they form unordered and unrelated lists of
'compartments'. These values are defined using the
category statement, where for example cO . c3 represents
arange (c0 cl c3)and c0, c3, c7 represent an unordered
list. Traditionally the values are between cO and c255
(although the maximum value for the Reference Policy is a
build time option).

The level is a combination of the sensitivity and
category values that form the actual security level. These

values are defined using the 1evel statement.

213.1.2 Translating Levels

When writing policy for MLS / MCS security level components it is usual to use an
abbreviated form such as s0, s1 etc. to represent sensitivities and c0, c1 etc. to
represent categories. This is done simply to conserve space as they are held on files as
extended attributes and also in memory. So that these labels can be represented in

human readable form, a translation service is provided via the setrans.conf
configuration file that is used by the mestransd (8) daemon. For example s0 =
Unclassified, s15 = Top Secret and cO0 = Finance, c100 = Spy Stories. The
semanage (8) command can be used to set up this translation and is shown in the
setrans.conf configuration file section.

2.13.2 Managing Security Levels via Dominance Rules

As stated earlier, allowing a process access to an object is managed by 'dominance’
rules applied to the security levels. These rules are as follows:

Security Level 1 dominates Security Level 2 - If the sensitivity of Security
Level 1 is equal to or higher than the sensitivity of Security Level 2 and the
categories of Security Level 1 are the same or a superset of the categories of
Security Level 2.

Security Level 1 is dominated by Security Level 2 - If the sensitivity of
Security Level 1 is equal to or lower than the sensitivity of Security Level 2 and
the categories of Security Level 1 are a subset of the categories of Security Level
2.

Security Level 1 equals Security Level 2 - If the sensitivity of Security Level 1
is equal to Security Level 2 and the categories of Security Level 1 and Security
Level 2 are the same set (sometimes expressed as: both Security Levels dominate
each other).

Page 51

The SELinux Notebook

Security Level 1 is incomparable to Security Level 2 - If the categories of
Security Level 1 and Security Level 2 cannot be compared (i.e. neither Security
Level dominates the other).

To illustrate the usage of these rules, Table 2 lists the security level attributes in a
table to show example files (or documents) that have been allocated labels such as
s3:c0. The process that accesses these files (e.g. an editor) is running with a range
of sO - s3:cl.c5 and has access to the files highlighted within the grey box area.

As the MLS dominance statement is used to enforce the sensitivity hierarchy, the
security levels now follow that sequence (lowest = sO to highest = s3) with the
categories being unordered lists of 'compartments'. To allow the process access to
files within its scope and within the dominance rules, the process will be constrained
by using the m1 sconstrain statement as illustrated in Figure 2.9.

Category = c0 cl c2 c3 cd c5 cb6 c7
s3 Secret s3:c0 s3:c5 | s3:c6
s2 Confidential s2:cl s2:c2 | s2:c3 | s2:c4 s2:c7
sl Restricted sl:cO0| sl:cl sl:c7
s0 Unclassified s0:c0 s0:c3 s0:c7
A A A\ File Labels

Sensitivity | Security Level A process running with a range of s0 - s3:c1.c5 has access to the files
(sensitivity:category) within the grey boxed area.
aka: classification

Table 2: MLS Security Levels - Showing the scope of a process running at a
security range of s0 — s3:cl.cbh.

mlsconstrain file write (11 domby 12); # Write Up

s3:c5 Incomparable

v

s2:cl, c2, c3, c4 .7 Dominates

4 v
sl:cl Dominated By
» F v
s0:c3 Dominated By 2
mlsconstrain file read (11 dom 12); # Read Down

Figure 2.9: Showing the ml1sconstrain Statements controlling Read Down &
Write Up - This ties in with Table 2 that shows a process running with a security
range of sO - s3:cl.c5.

Page 52

The SELinux Notebook

Using Figure 2.9:

1. To allow write-up, the source level (11) must be dominated by the target
level (12):

Source level =s0:c3orsl:cl
Target level = s2:cl.c4
As can be seen, either of the source levels are dominated by the target level.

2. To allow read-down, the source level (11) must dominate the target level
(12):

Source level = s2:cl.c4
Target level = s0:c3
As can be seen, the source level does dominate the target level.

However in the real world the SELinux MLS Reference Policy does not allow the
write-up unless the process has a special privilege (by having the domain type added
to an attribute), although it does allow the read-down. The default is to use 11 eq
12 (i.e. the levels are equal). The reference policy MLS source file (policy/mls)
shows these mlsconstrain statements.

2.13.3 MLS Labeled Network and Database Support

Networking for MLS is supported via the NetLabel CIPSO (commercial IP security
option) service as discussed in the SELinux Networking Support section.

PostgreSQL supports labeling for MLS database services as discussed in the SE-
PostgreSQL section.

2.13.4 Common Criteria Certification

While the Common Criteria certification process is beyond the scope of this
Notebook, it is worth highlighting that specific Red Hat GNU / Linux versions of
software, running on specific hardware platforms with SELinux / MLS policy
enabled, have passed the Common Criteria evaluation process. Note, for the
evaluation (and deployment) the software and hardware are tied together, therefore
whenever an update is carried out, an updated certificate should be obtained.

The Red Hat evaluation process cover the:

Labeled Security Protection Profile (LSPP) - This describes how systems that
implement security labels (i.e. MLS) should function.

Controlled Access Protection Profile (CAPP) - This describes how systems
that implement DAC should function.

An interesting point:

Both Red Hat Linux 5.1 and Microsoft Server 2003 (with XP) have both been
certified to EAL4+ , however while the evaluation levels may be the same the
Protection Profiles that they were evaluated under were: Microsoft CAPP
only, Red Hat CAPP and LSPP. Therefore always look at the protection
profiles as they define what was actually evaluated.

Page 53

http://www.commoncriteriaportal.org/files/ppfiles/capp.pdf
http://www.commoncriteriaportal.org/files/ppfiles/lspp.pdf
http://www.commoncriteriaportal.org/

The SELinux Notebook

214 Types of SELinux Policy

This section describes the different type of policy descriptions and versions that can
be found within SELinux.

The type of SELinux policy can described in a number of ways:

1. Source code - These can be described as: Example, Reference Policy or
Custom. They are generally written using either kernel policy language, m4
macro support with kernel policy language, or CIL.

2. They can also be classified as: Monolithic, Base Module or Loadable Module.

3. Policies can also be described by the type of policy functionality they provide
such as: targeted, mls, mcs, standard, strict or minimum.

4. Classified using language statements - These can be described as Modular
Optional or Conditional.

5. Binary policy (or kernel policy) - These can be described as Monolithic
Kernel Policy or Binary file.

6. Classification can also be on the 'policy version' used (examples are version
22,23 and 24).

As can be seen the description of a policy can vary depending on the context.

2141 Example Policy

The Example policy is the name used to describe the original SELinux policy source
used to build a monolithic'* policy produced by the NSA and is now superseded by
the Reference Policy.

2.14.2 Reference Policy

Note that this section only gives an introduction to the Reference Policy, the
installation, configuration and building of a policy using this is contained in The
Reference Policy section.

The Reference Policy is now the standard policy source used to build Linux based
SELinux policies, and its main aim is to provide a single source tree with supporting
documentation that can be used to build policies for different purposes such as
confining important daemons, supporting MLS / MCS and locking down systems so
that all processes are under SELinux control.

The Reference Policy is now used by all major distributions of Linux, however each
distribution makes its own specific changes to support their 'version of the Reference
Policy'. For example, the F-20 distribution is based on a specific build of the standard
Reference Policy that is then modified and distributed by Red Hat as a number of
RPMs.

2 The term 'monolithic' generally means a single policy source is used to create the binary policy file

that is then loaded as the 'policy' using the checkpolicy (8) command. However the term is
sometimes used to refer to the binary policy file (as it is one file that describes the policy).

Page 54

The SELinux Notebook

2.14.3 Policy Functionality Based on Name or Type

Generally a policy is installed with a given name such as targeted, mls,
refpolicy or minimum that attempts to describes its functionality. This name then
becomes the entry in:

1. The directory pointing to the policy location (e.g. if the name is targeted,
then the policy will be installed in /etc/selinux/targeted).

2. The SELINUXTYPE entry in the /etc/selinux/config file when it is
the active policy (e.g. if the name is targeted, then a
SELINUXTYPE=targeted entry would be in the
/etc/selinux/config file).

This is how the reference policies distributed with F-20 are named, where:

minimum - supports a minimal set of confined daemons within their own
domains. The remainder run in the unconfined t space. Red Hat pre-
configure MCS support within this policy.

targeted - supports a greater number of confined daemons and can also
confine other areas and users. Red Hat pre-configure MCS support within this
policy.

mls - supports server based MLS systems.

The Reference Policy also has a TYPE description that describes the type of policy
being built by the build process, these are:

standard - supports confined daemons and can also confine other areas and
users (this is an amalgamated version of the older 'targeted' and 'strict' versions).

mcs - As standard but supports MCS labels.
mls - supports server based MLS systems.

The NAME and TYPE entries are defined in the reference policy build.conf file
that is described in the Source Configuration Files section.

214.4 Custom Policy
This generally refers to a policy source that is either:
1. A customised version of the Example policy.

2. A customised version of the Reference Policy (i.e. not the standard
distribution version e.g. Red Hat policies).

3. A policy that has been built using policy language statements to build a
specific policy such as the basic policy built in the Notebook source tarball.

2.14.5 Monolithic Policy

A Monolithic policy is an SELinux policy that is compiled from one source file called
(by convention) policy.conf (i.e. it does not use the Loadable Module Policy

statements and infrastructure which therefore makes it suitable for embedded systems
as there is no policy store overhead).

Page 55

The SELinux Notebook

An example monolithic policy is the NSAs original Example Policy.
Monolithic policies are compiled using the checkpolicy (8) SELinux command.
The Reference Policy supports the building of monolithic policies.

In some cases the kernel policy binary file (see the Binary Policy section) is also
called a monolithic policy.

2.14.6 Loadable Module Policy

The loadable module infrastructure allows policy to be managed on a modular basis,
in that there is a base policy module that contains all the core components of the
policy (i.e. the policy that should always be present), and zero or more modules that
can be loaded and unloaded as required (for example if there is a module to enforce
policy for ftp, but ftp is not used, then that module could be unloaded).

There are number of components that form the infrastructure:

1. Policy source code that is constructed for a modular policy with a base module
and optional loadable modules.

2. Utilities to compile and link modules and place them into a "policy store'.

3. Utilities to manage the modules and associated configuration files within the
'policy store'.

Figure 2.2 shows these components along the top of the diagram. The files contained
in the policy store are detailed in the Policy Store Configuration Files section.

The policy language was extended to handle loadable modules as detailed in the
Policy Support Statements section. For a detailed overview on how the modular
policy is built into the final binary policy for loading into the kernel, see "SELinux
Policy Module Primer" [3].

2.14.6.1 Optional Policy

The loadable module policy infrastructure supports an optional policy statement that
allows policy rules to be defined but only enabled in the binary policy once the
conditions have been satisfied.

2.14.7 Conditional Policy

Conditional policies can be implemented in monolithic or loadable module policies
and allow parts of the policy to be enabled or not depending on the state of a boolean
flag at run time. This is often used to enable or disable features within the policy (i.e.
change the policy enforcement rules).

The boolean flag status is held in kernel and can be changed using the
setsebool (8) command either persistently across system re-boots or temporarily
(i.e. only valid until a re-boot). The following example shows a persistent conditional
policy change:

setsebool -P ext gateway audit false

Page 56

http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/
http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/

The SELinux Notebook

The conditional policy language statements are the bool Statement that defines the
boolean flag identifier and its initial status, and the if Statement that allows certain
rules to be executed depending on the state of the boolean value or values.

2.14.8 Binary Policy

This is also know as the kernel policy and is the policy file that is loaded into the
kernel and is located at
/etc/selinux/<SELINUXTYPE>/policy/policy.<version>. Where
<SELINUXTYPE> is the policy name specified in the SELinux configuration file
/etc/selinux/configand <version> is the SELinux policy version.

The binary policy can be built from source files supplied by the Reference Policy or
custom built source files.

An example /etc/selinux/config file is shown below where the
SELINUXTYPE=targeted entry identifies the policy name that will be used to
locate and load the active policy:

SELINUX=permissive

SELINUXTYPE=targeted

From the above example, the actual binary policy file would be located at
/etc/selinux/targeted/policy and be called policy.29 (as version 29
is supported by F-20):

/etc/selinux/targeted/policy/policy.29

2149 Policy Versions

SELinux has a policy database (defined in the 1ibsepol library) that describes the
format of data held within a binary policy, however, if any new features are added to
SELinux (generally language extensions) this can result in a change to the policy
database. Whenever the policy database is updated, the policy version is incremented.

The sestatus (8) command will show the maximum policy version supported by
the kernel in its output as follows:

SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
Loaded policy name targeted
Current mode: enforcing

Mode from config file: permissive
Policy MLS status: enabled

Policy deny unknown status: allowed

Max kernel policy version: 29

Table 3 describes the different versions, although note that there is also another
version that applies to the modular policy, however the main policy database version
is the one that is generally quoted (some SELinux utilities give both version
numbers).

Page 57

The SELinux Notebook

policy db
Version

modular db
Version

Description

15

4

The base version when SELinux was merged into the
kernel.

16

Added Conditional Policy support (the bool feature).

17

Added support for IPv6.

18

Added Netlink support.

19

Added MLS support, plus the validatetrans
Statement.

20

Reduced the size of the access vector table.

21

Added support for the MLS range transition
Statement.

22

Added policy capabilities that allows various kernel options
to be enabled as described in the SELinux Filesystem
section.

23

Added support for the permissive statement. This
allows a domain to run in permissive mode while the others
are still confined (instead of the all or nothing set by the
SELINUX entry in the /etc/selinux/config file).

24

9/10

Add support for the t ypebounds statement. This was
added to support a hierarchical relationship between two
domains in multi-threaded web servers as described in "A_

secure web application platform powered by SELinux"
[16].

25

11

Add support for file name transition in the
type transition rule. Requires kernel 2.6.39
minimum.

26

12/13

Add support for a class parameter in the
role transition rule.

Add support for the attribute role and
roleattribute statements.

These require kernel 2.6.39 minimum.

14

Separate tunables.

27

15

Support setting object defaults for the user, role and range
components when computing a new context. Requires
kernel 3.5 minimum.

28

16

Support setting object defaults for the type component
when computing a new context. Requires kernel 3.5
minimum.

29

17

Support attribute names within constraints. This allows
attributes as well as the types to be retrieved from a kernel
policy to assist audit2allow (8) etc. to determine what
attribute needs to be updated. Note that the attribute does
not determine the constraint outcome, it is still the list of

Page 58

http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf
http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf

The SELinux Notebook

policy db | modular db

Description
Version Version escrip tio

types associated to the constraint. Requires kernel 3.14
minimum.

Table 3: Policy version descriptions

2.15 SELinux Permissive and Enforcing Modes
SELinux has three major modes of operation:
Enforcing - SELinux is enforcing the loaded policy.

Permissive - SELinux has loaded the policy, however it is not enforcing the
policy rules. This is generally used for testing as the audit log will contain the
AVC denied messages as defined in the Auditing SELinux Events section. The
SELinux utilities such as audit2allow (1) and audit2why (8) can then be
used to determine the cause and possible resolution by generating the appropriate
allow rules.

Disabled - The SELinux infrastructure is not enabled, therefore no policy can be
loaded.

These flags are set in the /etc/selinux/config file as described in the Global
Configuration Files section.

There is another method for running specific domains in permissive mode using the
permissive statement. This can be used directly in a user written module or
semanage (8) will generate the appropriate module and load it using the following
example command:

This example will add a new module in
/etc/selinux/<SELINUXTYPE>/modules/active/modules/permissive unconfined t.pp
and then reload the policy:

semanage permissive -a unconfined t

It is also possible to set permissive mode on a userspace object manager using the
libselinux function avc_open (3), for example the X-Windows object

manager uses avc_open to set whether it will always run permissive, enforcing or
follow the current SELinux enforcement mode.

The sestatus (8) command will show the current SELinux enforcement mode in
its output, however it does not display individual domain or object manager
enforcement modes.

2.16 Auditing SELinux Events

For SELinux there are two main types of audit event:

1. AVC Audit Events - These are generated by the AVC subsystem as a result of
access denials, or where specific events have requested an audit message (i.e.
where an auditallow rule has been used in the policy).

2. SELinux-aware Application Events - These are generated by the SELinux
kernel services and SELinux-aware applications for events such as system

Page 59

The SELinux Notebook

errors, initialisation, policy load, changing boolean states, setting of
enforcing / permissive mode, relabeling etc.

The audit and event messages are generally stored in one of the following logs (in F-

20 anyway):

1. The SELinux kernel boot events are logged in the /var/log/dmesg log.

2. The system log /var/log/messages contains messages generated by
SELinux before the audit daemon has been loaded, although some kernel
messages continue to be logged here as well .

3. The audit log /var/log/audit/audit.log contains events that take
place after the audit daemon has been loaded. The AVC audit messages of
interest are described in the AVC Audit Events section with others described
in the General SELinux Audit Events section. F-20 uses the audit framework
auditd (8) as standard.

Notes:

a) It is not mandatory for SELinux-aware applications to audit events or even log
them in the audit log. The decision is made by the application designer.

b) The format of audit messages do not need to conform to any format, however
where possible applications should use the
audit log user avc_message (3) function with a suitably formatted
message if using auditd (8). The type of audit events possible are defined
inthe include/libaudit.hand include/linux/audit.h files.

¢) Those libselinux library functions that output messages do so to stderr by
default, however this can be changed by calling
selinux set_callback (3) and specifying an alternative log handler.

2.16.1 AVC Audit Events

Table 4 describes the general format of AVC audit messages in the audit.log
when access has been denied or an audit event has been specifically requested. Other
types of events are shown in the section that follows.

Keyword Description

type

For SELinux AVC events this can be:
type=AVC - for kernel events
type=USER_AVC - for user-space object manager events

Note that once the AVC event has been logged, another event with
type=SYSCALL may follow that contains further information
regarding the event.

The AVC event can always be tied to the relevant SYSCALL event
as they have the same serial number in the
msg=audit (time:serial number) ficld as shown in the

13

For example if the iptables are loaded and there are SECMARK security contexts present, but the

contexts are invalid (i.e. not in the policy), then the event is logged in the messages log not the
audit log.

Page 60

The SELinux Notebook

Keyword Description
following example:
type=AVC msg=audit (1243332701.744:101): avc: denied
{ getattr } for pid=2714 comm="1ls"
path="/usr/lib/locale/locale-archive" dev=dm-0 ino=353593
scontext=system u:object r:unlabeled t:s0
tcontext=system u:object r:locale t:s0 tclass=file
type=SYSCALL msg=audit (1243332701.744:101): arch=40000003
syscall=197 success=yes exit=0 a0=3 al=553ac0 a2=552ff4
a3=bfcb5eab0 items=0 ppid=2671 pid=2714 auid=0 uid=0 gid=0 euid=0
suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=ptsl ses=1 comm="1s"
exe="/bin/1s" subj=system u:object r:unlabeled t:s0 key=(null)
msg This will contain the audit keyword with a reference number (e.g.
msg=audit(1243332701.744:101))
avc This will be either denied when access has been denied or
granted when an auditallow rule has been defined by the
policy.
The entries that follow the avc= field depend on what type of
event is being audited. Those shown below are generated by the
kernel AVC audit function, however the user space AVC audit
function will return fields relevant to the application being
managed by their Object Manager.
pid If a task, then log the process id (pid) and the name of the
Comm executable file (comm).
capability | Ifa capability event then log the identifier.
path If a File System event then log the relevant information. Note that
name the name field may not always be present.
dev
ino
laddr If a Socket event then log the Source / Destination addresses and
Iport ports for IP4 or IP6 sockets (AF INET).
faddr
fport
path If a File Socket event then log the path (AF_UNIX).
saddr If a Network event then log the Source / Destination addresses and
ST ports with the network interface for IP4 or IP6 networks
(AF_INET).
daddr
dest
netif
sauid IPSec security association identifiers
hostname

Page 61

The SELinux Notebook

Keyword Description

addr

terminal

resid X-Windows resource ID and type.
restype

scontext The security context of the source or subject.
tcontext The security context of the target or object.
tclass The object class of the target or object.

Table 4: AVC Audit Message Description - The keywords in bold are in all AVC
audit messages, the others depend on the type of event being audited.

Example audit.log denied and granted events are shown in the following

examples:

type=AVC calls,

type=SYSCALL msg=audit (1242575005.122:101) :
exit=0 a0=82d2760 al=82d2850 a2=da6660 a3=82cb550 items=0 ppid=2179 pid=2508
auid=500 uid=500 gid=500 euid=500 suid=500 fsuid=500 egid=500 sgid=500 fsgid=500
tty=(none) ses=1 comm="canberra-gtk-pl" exe="/usr/bin/canberra-gtk-play"
subj=test u:staff r:oddjob mkhomedir t:s0 key=(null)

This is an example denied message - note that there are two
but only one corresponding type=SYSCALL entry.

type=AVC msg=audit (1242575005.122:101): avc: denied { rename } for pid=2508
comm="canberra-gtk-pl" name="c73a516004b572d8c845c74c49b2511d: runtime. tmp"
dev=dm-0 ino=188999 scontext=test u:staff r:oddjob mkhomedir t:s0
tcontext=test u:object r:gnome home t:s0 tclass=lnk file

type=AVC msg=audit (1242575005.122:101): avc: denied { unlink } for pid=2508
comm="canberra-gtk-pl" name="c73a516004b572d8c845c74c49b2511d: runtime" dev=dm-0
ino=188578 scontext=test u:staff r:oddjob mkhomedir t:s0
tcontext=system u:object r:gnome home t:s0 tclass=1lnk file

arch=40000003 syscall=38 success=yes

type=USER AVC msg=audit (1267534171.023:18) :
5es5=4294967295 subj=system u:unconfined r:unconfined t msg='avc: denied
{ getfocus } for request=X1ll:GetInputFocus comm=X-setest xdevice="Virtual core
keyboard" scontext=unconfined u:unconfined r:x select paste t
tcontext=system u:unconfined r:unconfined t tclass=x_keyboard
exe="/usr/bin/Xorg" sauid=0 hostname=? addr=? terminal=?"'

These are example X-Windows object manager audit message:

type=USER_AVC msg=audit (1267534395.930:19): user pid=1169 uid=0 auid=4294967295
5e5=4294967295 subj=system u:unconfined r:unconfined t msg='avc: denied
} for request=SELinux:SELinuxGetClientContext comm=X-setest resid=3c00001
restype=<unknown> scontext=unconfined u:unconfined r:x select paste t
tcontext=unconfined u:unconfined r:unconfined t tclass=x_resource
exe="/usr/bin/Xorg" sauid=0 hostname=? addr=? terminal=?'

user pid=1169 uid=0 auid=4294967295

{ read

type=SYSCALL msg=audit (1239116352.727:311):
exit=0 a0=8a6ea98 al=8a56fa8 a2=8a578e8 a3=0 items=0 ppid=2660 pid=7687 auid=0
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=(none) ses=1

This is an example granted audit message:

type=AVC msg=audit (1239116352.727:311): avc: granted { transition } for
pid=7687 comm="bash" path="/usr/move file/move file c" dev=dm-0 ino=402139
scontext=unconfined u:unconfined r:unconfined t

tcontext=unconfined u:unconfined r:move file t tclass=process

arch=40000003 syscall=11l success=yes

Page 62

The SELinux Notebook

comm="move file c" exe="/usr/move file/move file c"
subj=unconfined u:unconfined r:move file t key=(null)

2.16.2 General SELinux Audit Events

This section shows a selection of non-AVC SELinux-aware services audit events
taken from the audit. log. For a list of valid t ype= entries, the following include
files should be consulted: include/libaudit.h and
include/linux/audit.h.

Note that there can be what appears to be multiple events being generated for the
same event. For example the kernel security server will generate a
MAC POLICY LOAD event to indicate that the policy has been reloaded, but then
each userspace object manager could then generate a USER MAC POLICY LOAD
event to indicate that it had also processed the event.

Policy reload - MAC POLICY LOAD, USER MAC POLICY LOAD - These events
were generated when the policy was reloaded.

type=MAC POLICY LOAD msg=audit (1336662937.117:394): policy loaded auid=0 ses=2
type=SYSCALL msg=audit (1336662937.117:394): arch=c000003e syscall=1l success=yes
exit=4345108 a0=4 al=7f0a0c547000 a2=424d14 a3=7fffe3450f20 items=0 ppid=3845
pid=3848 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts2
ses=2 comm="load policy" exe="/sbin/load policy"
subj=unconfined u:unconfined r:load policy t:s0-s0:c0.c1023 key=(null)

type=USER MAC POLICY LOAD msg=audit (1336662938.535:395): pid=0 uid=0
auid=4294967295 ses=4294967295 subj=system u:system r:xserver t:s0-s0:c0.cl1023
msg='avc: received policyload notice (seqgno=2) : exe="/usr/bin/Xorg" sauid=0
hostname=? addr=? terminal=?'

Change enforcement mode - MAC STATUS - This was generated when the SELinux
enforcement mode was changed:

type=MAC_ STATUS msg=audit (1336836093.835:406): enforcing=1 old enforcing=0
auid=0 ses=2

type=SYSCALL msg=audit (1336836093.835:406): arch=c000003e syscall=1 success=yes
exit=1 a0=3 al=7fffe743f9%e0 a2=1 a3=0 items=0 ppid=2047 pid=5591 auid=0 uid=0
gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2
comm="setenforce" exe="/usr/sbin/setenforce"
subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 key=(null)

Change boolean value - MAC_CONFIG CHANGE - This event was generated when
setsebool (8) was run to change a boolean. Note that the bolean name plus new
and old values are shown in the MAC CONFIG CHANGE type event with the
SYSCALL event showing what process executed the change.

type=MAC_CONFIG CHANGE msg=audit (1336665376.629:423):
bool=domain paste after confirm allowed val=0 old val=1 auid=0 ses=2
type=SYSCALL msg=audit (1336665376.629:423): arch=c000003e syscall=1l success=yes
exit=2 a0=3 al=7f£ff42803200 a2=2 a3=7fff42803£f80 items=0 ppid=2015 pid=4664
auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=ptsO ses=2
comm="setsebool" exe="/usr/sbin/setsebool"
subj=unconfined u:unconfined r:setsebool t:s0-s0:c0.c1023 key=(null)

Page 63

The SELinux Notebook

NetLabel - MAC UNLBL_STCADD - Generated when adding a static non-mapped
label. There are many other NetLabel events possible, such as: MAC MAP DEL,
MAC CIPSOV4 DEL ...

type=MAC UNLBL STCADD msg=audit (1336664587.640:413): netlabel: auid=0 ses=2
subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 netif=lo
src=127.0.0.1 sec_obj=system u:object r:unconfined t:s0-s0:c0,cl00 res=1
type=SYSCALL msg=audit (1336664587.640:413): arch=c000003e syscall=46 success=yes
exit=96 a0=3 al=7fffde77£f160 a2=0 a3=666e6£636e753a72 items=0 ppid=2015 pid=4316
auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=ptsO ses=2
comm="netlabelctl" exe="/sbin/netlabelctl"
subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 key=(null)

Labeled IPSec - MAC IPSEC EVENT - Generated when running setkey (8) to
load IPSec configuration:

type=MAC IPSEC EVENT msg=audit (1336664781.473:414): op=SAD-add auid=0 ses=2
subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.cl1023 sec alg=1 sec_doi=l
sec_obj=system u:system r:postgresql t:s0-s0:c0,c200 src=127.0.0.1 dst=127.0.0.1
spi=592 (0x250) res=1

type=SYSCALL msg=audit (1336664781.473:414): arch=c000003e syscall=44 success=yes
exit=176 a0=4 al=7f£f£f079d5100 a2=b0 a3=0 items=0 ppid=2015 pid=4356 auid=0 uid=0
gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=2 comm="setkey"
exe="/sbin/setkey" subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023
key=(null)

SELinux kernel errors - SELINUX ERR - These example events were generated by
the kernel security server. These were generated by the kernel security server because
anon webapp t has been give privileges that are greater than that given to the
process that started the new thread (this is not allowed).

type=SELINUX ERR msg=audit (1311948547.151:138): op=security compute av
reason=bounds scontext=system u:system r:anon webapp t:s0-s0:c0,c100,c200
tcontext=system u:object r:security t:s0 tclass=dir perms=ioctl, read, lock

type=SELINUX ERR msg=audit (1311948547.151:138): op=security compute av
reason=bounds scontext=system u:system r:anon webapp t:s0-s0:c0,c100,c200
tcontext=system u:object r:security t:s0 tclass=file

perms=ioctl, read,write, getattr, lock, append, open

These were generated by the kernel security server when an SELinux-aware
application was trying to use setcon(3) to create a new thread. To fix this a

typebounds statement is required in the policy.

type=SELINUX ERR msg=audit (1311947138.440:126): op=security bounded transition
result=denied oldcontext=system u:system r:httpd t:s0-s0:c0.c300
newcontext=system u:system r:anon webapp t:s0-s0:c0,c100,c200

type=SYSCALL msg=audit (1311947138.440:126): arch=c000003e syscall=1l success=no
exit=-1 a0=b al=7£1954000al0 a2=33 a3=6e65727275632f72 items=0 ppid=3295
pid=3473 auid=4294967295 uid=48 gid=48 euid=48 suid=48 fsuid=48 egid=48 sgid=48
fsgid=48 tty=(none) ses=4294967295 comm="httpd" exe="/usr/sbin/httpd"
subj=system u:system r:httpd t:s0-s0:c0.c300 key=(null)

Role changes - USER_ ROLE CHANGE - Used newrole (1) to set a new role that
was not valid.

Page 64

The SELinux Notebook

type=USER ROLE CHANGE msg=audit (1336837198.928:429): pid=0 uid=0 auid=0 ses=2
subj=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 msg='newrole: old-
context=unconfined u:unconfined r:unconfined t:s0-s0:c0.c1023 new-context=2?:
exe="/usr/bin/newrole" hostname=? addr=? terminal=/dev/pts/0 res=failed'

217 Polyinstantiation Support

GNU / Linux supports the polyinstantiation of directories that can be utilised by
SELinux via the Pluggable Authentication Module (PAM) that is explained in the
next section. The "Polyinstantiation of directories in an SELinux system" [4] also
gives a more detailed overview of the subject.

Polyinstantiation of objects is also supported for X-windows selections and properties
that are discussed in the X-windows section. Note that sockets are not yet supported.

To clarify polyinstantiation support:

1. SELinux has libselinux functions and a policy rule to support
polyinstantiation.

2. The polyinstantiation of directories is a function of GNU / Linux not SELinux
(as more correctly, the GNU / Linux services such as PAM have been
modified to support polyinstantiation of directories and have also been made
SELinux-aware. Therefore their services can be controlled via policy).

3. The polyinstantiation of X-windows selections and properties is a function of
the XSELinux Object Manager and the supporting XACE service.

2171 Polyinstantiated Objects

Determining a polyinstantiated context for an object is supported by SELinux using
the policy language type member statement and the
avc_compute_member (3) and security compute member (3)
libselinux API functions. These are not limited to specific object classes,
however only dir, x selection and x property objects are currently
supported.

2.17.2 Polyinstantiation support in PAM

PAM supports polyinstantiation (namespaces) of directories at login time using the
Shared Subtree / Namespace services available within GNU / Linux (the
namespace.conf (5) man page is a good reference). Note that PAM and
Namespace services are SELinux-aware.

The default installation of F-20 does not enable polyinstantiated directories, therefore
this section will show the configuration required to enable the feature and some

examples.
To implement polyinstantiated directories PAM requires the following files to be
configured:

1. A pam namespace module entry added to the appropriate /etc/pam.d/
login configuration file (e.g. Login, sshd, gdm etc.). F-20 already has these

Page 65

http://www.coker.com.au/selinux/talks/sage-2006/PolyInstantiatedDirectories.html

The SELinux Notebook

entries configured, with an example /etc/pam.d/gdm-password file

being:
auth [success=done ignore=ignore default=bad] pam selinux permit.so
auth substack password-auth
auth optional pam_gnome keyring.so
auth include postlogin
account required pam _nologin.so
account include password-auth
password include password-auth
session required pam_selinux.so close
session required pam_loginuid.so
session optional pam_console.so
-session optional pam_ck connector.so
session required pam_selinux.so open
session optional pam_keyinit.so force revoke
session required pam_namespace.Sso
session include password-auth
session optional pam_gnome keyring.so auto_start
session include postlogin

2. Entries added to the /etc/security/namespace.conf file that defines
the directories to be polyinstantiated by PAM (and other services that may
need to use the namespace service). The entries are explained in the
namespace.conf Configuration File section, with the default entries in F-
20 being (note that the entries are commented out in the distribution):

#polydir instance-prefix method list of uids
/tmp /tmp-inst/ level root, adm
/var/tmp /var/tmp/tmp-inst/ level root, adm
SHOME SHOME/SUSER.inst/ level

Once these files have been configured and a user logs in (although not root or adm
in the above example), the PAM pam namespace module would unshare the
current namespace from the parent and mount namespaces according to the rules
defined in the namespace.conf file. The F-20 configuration also includes an
/etc/security/namespace.init script that is used to initialise the
namespace every time a new directory instance is set up. This script receives four
parameters: the polyinstantiated directory path, the instance directory path, a flag to
indicate if a new instance, and the user name. If a new instance is being set up, the
directory permissions are set and the restorecon (8) command is run to set the
correct file contexts.

2.17.21 namespace.conf Configuration File

Each line in the namespace. conf file is formatted as follows:

polydir instance prefix method list of uids

Where:

polydir The absolute path name of the directory to
polyinstantiate. The optional strings $SUSER and $HOME
will be replaced by the user name and home directory

Page 66

The SELinux Notebook

instance prefix

method

list of uids

respectively.

A string prefix used to build the pathname for the
polyinstantiated directory. The optional strings SUSER
and $SHOME will be replaced by the user name and home
directory respectively.

This is used to determine the method of
polyinstantiation with valid entries being:

user - Polyinstantiation is based on user name.

level - Polyinstantiation is based on the user name
and MLS level.

context - Polyinstantiation is based on the user
name and security context.

Note that 1evel and context are only valid for
SELinux enabled systems.

A comma separated list of user names that will not have
polyinstantiated directories. If blank, then all users are
polyinstantiated. If the list is preceded with an '~'
character, then only the users in the list will have
polyinstantiated directories.

There are a number of optional flags available that are
described in the namespace . conf (5) man page.

217.2.2 Example Configurations

This section shows two sample namespace.conf configurations, the first uses the
method=user and the second method=context. It should be noted that while
polyinstantiation is enabled, the full path names will not be visible, it is only when
polyinstantiation is disabled that the directories become visible.

Example 1 - method=user:

1.

Setthe /etc/security/namespace.conf entries as follows:

#polydir
/ tmp
/var/tmp
SHOME

instance-prefix method list of uids
/tmp-inst/ user root, adm
/var/tmp/tmp-inst/ user root, adm
SHOME/SUSER.inst/ user

2. Login as a normal user (rch in this example) and the PAM / Namespace
process will build the following polyinstantiated directories:

/tmp

/var/tmp:

The directories will contain the user name as a part of
the polyinstantiated directory name as follows:

/tmp/tmp-inst/rch

Page 67

The SELinux Notebook

/var/tmp/tmp-inst/rch

SHOME
/home/rch/rch.inst/rch

Example 2 - method=context:

1. Setthe /etc/security/namespace.conf entries as follows:

#polydir instance-prefix method list of uids
/tmp /tmp-inst/ context root,adm
/var/tmp /var/tmp/tmp-inst/ context root, adm
SHOME SHOME/SUSER.inst/ context

2. Login as a normal user (rch in this example) and the PAM / Namespace
process will build the following polyinstantiated directories:

The directories will contain the security context and
user name as a part of the polyinstantiated directory
name as follows:

/tmp
/tmp/tmp-inst/unconfined u:unconfined r:unconfined t rch

/var/tmp:
/var/tmp/tmp-inst/unconfined u:unconfined r:unconfined t rch

SHOME
/home/rch/rch.inst/unconfined u:unconfined r:unconfined t rch

2.17.3 Polyinstantiation support in X-Windows

The X-Windows SELinux object manager and XACE (X Access Control Extension)
supports x _selection and x property polyinstantiated objects as discussed in
the SELinux X-windows Support section.

217.4 Polyinstantiation support in the Reference Policy

The reference policy files.te and files.if modules (in the kernel layer)
support polyinstantiated directories. There is also a global tunable (a boolean called
allow polyinstantiation) that can be used to set this functionality on or off
during login. By default this boolean is set false (off).

The polyinstantiation of X-Windows objects (x _selection and x property)
are not currently supported by the reference policy.

2.18 PAM Login Process

Applications used to provide login services (such as gdm and ssh) in F-20 use the
PAM (Pluggable Authentication Modules) infrastructure to provide the following
services:

Page 68

The SELinux Notebook

Account Management - This manages services such as password expiry, service
entitlement (i.e. what services the login process is allowed to access).

Authentication Management - Authenticate the user or subject and set up the
credentials. PAM can handle a variety of devices including smart-cards and
biometric devices.

Password Management - Manages password updates as needed by the specific
authentication mechanism being used and the password policy.

Session Management - Manages any services that must be invoked before the
login process completes and / or when the login process terminates. For SELinux
this is where hooks are used to manage the domains the subject may enter.

The pam and pam. conf man pages describe the services and configuration in detail
and only a summary is provided here covering the SELinux services.

The PAM configuration for F-20 is managed by a number of files located in the
/etc/pam.d directory which has configuration files for login services such as:
gdm, gdm-autologin, login, remote and sshd, and at various points in this
Notebook the gdm configuration file has been modified to allow root login and the
pam_namespace.so module used to manage polyinstantiated directories for users.

There are also a number of PAM related configuration files in /etc/security,
although only one is directly related to SELinux that is described in the
etc/security/sepermit.conf file section.

The main login service related PAM configuration files (e.g. gdm) consist of multiple
lines of information that are formatted as follows:

service type control module-path arguments

Where:

service The service name such as gdm and 1ogin reflecting the
login application. If there is a /etc/pam. d directory, then
this is the name of a configuration file name under this
directory. Alternatively, a configuration file called
/etc/pam.conf can be used. F-20 uses the /etc/pam.d
configuration.

type These are the management groups used by PAM with valid
entries being: account, auth, password and session
that correspond to the descriptions given above. Where there
are multiple entries of the same 't ype', the order they appear
could be significant.

control This entry states how the module should behave when the
requested task fails. There can be two formats: a single
keyword such as required, optional, and include; or
multiple space separated entries enclosed in square brackets
consisting of :

[valuel=actionl valueZ2=action?2 ..]

Page 69

The SELinux Notebook

Both formats are shown in the example file below, however
see the pam. conf man pages for the gory details.

module-path Either the full path name of the module or its location relative
to /1ib/security (but does depend on the system
architecture).

arguments A space separated list of the arguments that are defined for
the module.

An example PAM configuration file is as follows, although note that the 'service'
parameter is actually the file name because F-20 uses the /etc/pam.d directory
configuration (in this case gdm-password for the Gnome login service).

auth [success=done ignore=ignore default=bad] pam selinux permit.so
auth substack password-auth

auth optional pam_gnome keyring.so

auth include postlogin

account required pam _nologin.so

account include password-auth

password include password-auth

session required pam_selinux.so close debug
session required pam_loginuid.so

session optional pam_console.so

-session optional pam_ck connector.so

session required pam_selinux.so open debug
session optional pam_keyinit.so force revoke
session required pam_namespace.Sso

session include password-auth

session optional pam_gnome keyring.so auto_ start
session include postlogin

The core services are provided by PAM, however other library modules can be
written to manage specific services such as support for SELinux. The SELinux PAM
modules use the 1ibselinux API to obtain its configuration information and the
three SELinux PAM entries highlighted in the above configuration file perform the
following functions:

pam_selinux permit.so - Allows pre-defined users the ability to logon
without a password provided that SELinux is in enforcing mode (see the
etc/security/sepermit.conf file section).

pam_selinux.so open - Allows a security context to be set up for the user at
initial logon (as all programs exec'ed from here will use this context). How the
context is retrieved is described in the seusers configuration file section.

pam_selinux.so close - This will reset the login programs context to the
context defined in the policy.

2.19 Linux Security Module and SELinux

This section gives a high level overview of the LSM and SELinux internal kernel
structure and workings as enabled in kernel 3.14. A more detailed view can be found
in the "Implementing SELinux as a Linux Security Module" [1] that was used

Page 70

http://www.nsa.gov/research/_files/selinux/papers/module-abs.shtml

The SELinux Notebook

extensively to develop this section (and also using the SELinux kernel source code).
The major areas covered are:

l.
2.
3.

2.19.1

How the LSM and SELinux modules work together.
The major SELinux internal services.

The fork and exec system calls are followed through as an example to tie in
with the transition process covered in the Domain Transition section.

The SELinux filesystem /sys/fs/selinux.

The /proc filesystem area most applicable to SELinux.

The LSM Module

The LSM is the Linux security framework that allows 3™ party access control
mechanisms to be linked into the GNU / Linux kernel. Currently there are five 3™
party services that utilise the LSM:

1.
2.

SELinux - the subject of this Notebook.

AppArmor is a MAC service based on pathnames and does not require
labeling or relabeling of filesystems. See http://wiki.apparmor.net for details.

Simplified Mandatory Access Control Kernel (SMACK). See
http://www.schaufler-ca.com/ for details.

Tomoyo that is a name based MAC and details can be found at
http://sourceforge.jp/projects/tomoyo/docs.

Yama extends the DAC support for ptrace. See
Documentation/security/Yama.txt for further details.

The basic idea behind LSM is to:

Insert security function hooks and security data structures in the various kernel
services to allow access control to be applied over and above that already
implemented via DAC. The type of service that have hooks inserted are shown
in Table 5 with an example task and program execution shown in the Fork
Walk-thorough and Process Transition Walk-thorough sections.

Allow registration and initialisation services for the 3™ party security modules.

Allow process security attributes to be available to userspace services by
extending the /proc filesystem with a security namespace as shown in Table
6. These are located at:

/proc/<self | pid>/attr/<attr>
/proc/<self | pid>/task/<tid>/attr/<attr>

Where <pid> is the process id, <tid> is the thread id and <attr> is the
entry described in Table 6.

Support filesystems that use extended attributes (SELinux uses
security.selinux as explained in the Labeling Extended Attribute

Filesystems section).

Consolidate the Linux capabilities into an optional module.

Page 71

http://sourceforge.jp/projects/tomoyo/docs
http://www.schaufler-ca.com/
http://wiki.apparmor.net/

The SELinux Notebook

It should be noted that the LSM does not provide any security services itself, only the
hooks and structures for supporting 3™ party modules. If no 3™ party module is
loaded, the capabilities module becomes the default module thus allowing standard
DAC access control.

Program execution

Filesystem operations

Inode operations

File operations

Task operations

Netlink messaging

Unix domain networking

Socket operations

XFRM operations

Key Management operations

IPC operations

Memory Segments

Semaphores

Capability

Sysctl

Syslog

Audit

Table 5: LSM Hooks - These are the kernel services that LSM has inserted security
hooks and structures to allow access control to be managed by 3™ party modules (see
./linux-3.14/include/linux/security.h).

/proc/self/attr/ | Permissions | Function

File Name
current -rw-rw-rw- | Contains the current process security context.
exec -rw-rw-rw- | [Jsed to set the security context for the next exec call.
fscreate -rw-rw-rw- | [Jsed to set the security context of a newly created file.
keycreate -rw-rw-rw- | Jsed to set the security context for keys that are cached in the

kernel.

prev ~r--r--r-- | Contains the previous process security context.
sockcreate -rw-rw-rw- | Jsed to set the security context of a newly created socket.

Table 6: /proc Filesystem attribute files - These files are used by the kernel services
and libselinux (for userspace) to manage setting and reading of security contexts
within the LSM defined data structures.

The major kernel source files (relative to ./1linux-3.14/security) that form
the LSM are shown in Table 7. However there is one major header file
(include/linux/security.h) that describes all the LSM security hooks and
structures.

Name Function

capability.c Some capability functions were in various kernel modules have been

consolidated into these source files.

commoncap.c

device cgroup.c

inode.c This allows the 3™ party security module to initialise a security filesystem.
In the case of SELinux this would be /sys/fs/selinux thatis defined

in the selinux/selinuxfs. c source file.

security.c Contains the LSM framework initialisation services that will set up the
hooks described in security.h and those in the capability source files.

It also provides functions to initialise 3™ party modules.

lsm_audit.c Contains common LSM audit functions.

Page 72

The SELinux Notebook

Name Function

min_addr.c Minimum VM address protection from userspace for DAC and LSM.

Table 7: The core LSM source modules.

2.19.2 The SELinux Module

This section does not go into detail of all the SELinux module functionality as the
Implementing SELinux as a Linux Security Module [1] does this (although a bit
dated), however it attempts to highlight the way some areas work by using the fork
and transition process example described in the Domain Transition section.

The major kernel SELinux source files (relative to ./linux-
3.14/security/selinux) that form the SELinux security module are shown
inTable 8. The diagrams shown in Figure 2.2 and Figure 2.12 can be used to see how
some of these kernel source modules fit together.

Name Function

avc.c Access Vector Cache functions and structures. The function calls are for
the kernel services, however they have been ported to form the
libselinux userspace library.

exports.c Exported SELinux services for SECMARK (as there is SELinux specific
code in the netfilter source tree).

hooks.c Contains all the SELinux functions that are called by the kernel resources
viathe security ops function table (they form the kernel resource
object managers). There are also support functions for managing process
exec's, managing SID allocation and removal, interfacing into the AVC
and Security Server.

netif.c These manage the mapping between labels and SIDs for the net*
language statements when they are declared in the active policy.

netnode.c

netport.c

netlabel.c The interface between NetLabel services and SELinux.

netlink.c Manages the notification of policy updates to resources including
userspace applications via 1ibselinux.

nlmsgtab.c

selinuxfs.c The selinuxfs pseudo filesystem (/sys/fs/selinux) that
imports/exports security policy information to/from userspace services.
The services exported are shown in the SELinux Filesystem section.

xfrm.c Contains the IPSec XFRM (transform) hooks for SELinux.

include/classmap.h|classmap.h contains all the kernel security classes and permissions.
initial sid to_string.h contains the initial SID contexts.
These are used to build the flask.hand av_permissions.h
kernel configuration files when the kernel is being built (using the
genheaders script defined in the selinux/Makefile).

These files are built this way now to support the new dynamic security
class mapping structure to remove the need for fixed class to SID
mapping.

ss/avtab.c AVC table functions for inserting / deleting entries.

include/initial si
d to string.h

ss/conditional.c Support boolean statement functions and implements a conditional AV

Page 73

http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf

The SELinux Notebook

Name Function
table to hold entries.

ss/ebitmap.c Bitmaps to represent sets of values, such as types, roles, categories, and
classes.

ss/hashtab.c Hash table.

ss/mls.c Functions to support MLS.

ss/policydb.c Defines the structure of the policy database. See the "SELinux Policy
Module Primer" [3] article for details on the structure.

ss/services.c This contains the supporting services for kernel hooks defined in
hooks. c, the AVC and the Security Server.
For example the security transition sid that computes the
SID for a new subject / object shown in Figure 2.12.

ss/sidtab.c The SID table contains the security context indexed by its SID value.

ss/status.c Interface for selinuxfs/status. Used by the 1ibselinux
selinux_ status_* (3) functions.

ss/symtab.c Maintains associations between symbol strings and their values.

Table 8: The core SELinux source modules - The . h files and those in the

include directory have a number of useful comments.

2.19.21 Fork System Call Walk-thorough

This section walks through the the fork (2) system call shown in Figure 2.7 starting
at the kernel hooks that link to the SELinux services. The way the SELinux hooks are
initialised into the LSM security ops function table are also described.

Using Figure 2.10, the major steps to check whether the unconfined t process
has permission to use the fork permission are:

1.

The kernel/fork.c has a hook that links it to the LSM function
security task create () thatis called to check access permissions.

Because the SELinux module has been initialised as the security module, the
security ops table has been set to point to the SELinux
selinux task create () functionin hooks.c.

The selinux task create() function check whether the task has
permission via the current has perm(current, PROCESS FORK)
function.

This will result in a call to the AVC via the avc _has perm() function in
avc. c that checks whether the permission has been granted or not. First (via
avc_has perm noaudit ()) the cache is checked for an entry. Assuming
that there is no entry in the AVC, then the security compute av ()
function in services. c is called.

The security compute av () function will search the SID table for
source and target entries, and if found will then call the
context struct compute av () function.

Page 74

http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/
http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/

The SELinux Notebook

The context struct compute av () function carries out many checks
to validate whether access is allowed. The steps are (assuming the access is

valid):

a)
b)

2)

Initialise the AV structure so that it is clear.

Check the object class and permissions are correct. It also checks the
status of the allow unknown flag (see the SELinux Filesystem,
etc/selinux/semanage.conf file and Reference Policy

Build Options - build.conf - UNK_PERMS sections).

Checks if there are any type enforcement rules (ALLOW,
AUDIT ALLOW, AUDIT_DENY).

Check whether any conditional statements are involved via the
cond compute av () functionin conditional.c.

Remove permissions that are defined in any constraint via the
constraint expr eval() function call (in services.c).
This function will also check any MLS constraints.

context struct compute av () checks if a process transition
is being requested (it is not). If it were, then the TRANSITION and
DYNTRANSITION permissions are checked and whether the role is
changing.

Finally check whether there are any constraints applied via the
typebounds rule.

Once the result has been computed it is returned to the kernel/fork.c
system call via the initial selinux task create () function. In this case
the fork call is allowed.

The End.

Page 75

The SELinux Notebook

kernel/fork.c
/*
* This creates a new process as a copy of the old one, but does not actually
* start it yet. It copies the registers, and all the appropriate parts of the
* process environment (as per the clone flags). The actual kick-off is left to
* the caller.
*/
static struct task struct *copy process (unsigned long clone flags, ...)
{
int retval;
struct task struct *p;
int cgroup callbacks done = 0;

if ((clone flags & (CLONE NEWNS|CLONE FS)) == (CLONE NEWNS|CLONE FS))

retval = security_task_crea/te(clone_flags);
if (retval) /
goto fork out; !

security ops function pointer structure

- !
This contains a pointer to the SELinuy function in hooks.c that was built when the
SELinux module was initialised: v/

security task_create->selinux_task_create

selinux/hooks.c o selinux/ss/services.c

This contains the SELinux functions. r This contains the Security Server functions.
A The call to security_compute_av will

static int selinux_task_create (unsigned long result in the security server checking whether

clone flags) the requested access is allowed or not and

return the result to the calling fl)ﬂlction,
return current_has_perm (current, '

PROCESS FORK) ; ’
> o B |

/
/
//
» ¥|selinux/avc.c |
e This contains the AVC lel’lCtiO#lS.

The call to ave_has_perm Will result in a
call to avc_has_perm_noa"udit that
will actually check the AVC. If not in cache,

static int current_has_perm(struct taskis/t/ru/ct *tsk,
u32 perms)_-~
{ 7

132 sid, tsid; /// there will be a call to the security server

e function security_ compute_av that
sid = current sid(); will check and return the decision. The AVC
tsid = task_sid(tsk); code will then insert the decision into the
return ave_has_perm (sid, tsid, cache and return the result to the calling

SECCLASS_PROCESS, perms, NULL); function

}

Figure 2.10: Hooks for the fork system call - This describes the steps required to
check access permissions for Object Class 'orocess'and permission 'fork’.

2.19.2.2 Process Transition Walk-thorough

This section walks through the execve (2) and checking whether a process
transition to the ext gateway t domain is allowed, and if so obtain a new SID for
the context (unconfined u:message filter r:ext gateway t) as
shown in Figure 2.7.

The process starts with the Linux operating system issuing a do execve' call from
the CPU specific architecture code to execute a new program (for example, from

4" This function call will pass over the file name to be run and its environment + arguments.

Page 76

The SELinux Notebook

arch/ia64/kernel/process.c). The do execve () function is located in
the fs/exec.c source code module and does the loading and final exec as
described below.

do execve () has a number of calls to security bprm * functions that are a
part of the LSM (see include/linux/security.h), and are hooked by SELinux
during the initialisation process (in security/selinux/hooks.c). Table 9
briefly describes these security bprm functions that are hooks for validating
program loading and execution (although see security.h for greater detail).

LSM / SElinux Function Name Description
security bprm set creds-> Set up security information in the bprm->security field
selinux_bprm set creds based on the file to be exec'ed contained in bprm->file.

SELinux uses this hook to check for domain transitions and
the whether the appropriate permissions have been granted,
and obtaining a new SID if required.

security bprm_committing creds-> | Prepare to install the new security attributes of the process
selinux bprm committing creds being transformed by an execve operation. SELinux uses
this hook to close any unauthorised files, clear parent signal
and reset resource limits if required.

security bprm committed creds-> | Tjidy up after the installation of the new security attributes of
selinux bprm committed creds a process being transformed by an execve operation.
SELinux uses this hook to check whether signal states can
be inherited if new SID allocated.

security bprm_secureexec-> Called when loading libraries to check AT SECURE flag for

selinux_bprm secureexec glibc secure mode support. SELinux uses this hook to check
the process class noatsecure permission if
appropriate.

security_bprm check-> This hook is not used by SELinux.

selinux bprm check security

Table 9: The LSM / SELinux Program Loading Hooks

Therefore starting at the do execve () function and using Figure 2.11, the
following major steps will be carried out to check whether the unconfined t
process has permission to transition the secure server executable to the
ext gateway t domain:

1. The executable file is opened, a call issued to the sched exec () function
and the bprm structure is initialised with the file parameters (name,
environment and arguments).

2. Via the prepare binprm() function call the UID and GIDs are checked
and a call issued to security bprm set creds () that will carry out
the following:

3. Call cap bprm set creds function in commoncap.c, that will set up
credentials based on any configured capabilities.

If setexeccon (3) has been called prior to the exec, then that context will
be used otherwise call security transition sid() function in
services.c. This function will then call security compute sid()

Page 77

The SELinux Notebook

to check whether a new SID needs to be computed. This function will
(assuming there are no errors):

1. Search the SID table for the source and target SIDs.
ii. Sets the SELinux user identity.
iii. Set the source role and type.

iv. Checks that a type transition rule exists in the AV table and /
or the conditional AV table (see Figure 2.12).

v. If a type transition, then also check for a
role transition (there is a role change in the
ext gateway.conf policy module), set the role.

vi. Check if any MLS attributes by calling mls compute sid() in
mls.c. It also checks whether MLS is enabled or not, if so sets up
MLS contexts.

vii. Check whether the contexts are valid by calling
compute sid handle invalid context () that will also log
an audit message if the context is invalid.

viii. Finally obtains a SID for the new context by calling
sidtab context to sid() in sidtab.c that will search the
SID table (see Figure 2.12) and insert a new entry if okay or log a
kernel event if invalid.

The selinux bprm set creds () function will continue by checking
via the avc _has perm() functions (in avc.c) whether the file class
file execute no_ trans is set (in this case it is not), therefore the
process class transition and file class file entrypoint
permissions are checked (in this case they are allowed), therefore the new SID
is set, and after checking various other permissions, control is passed back to
the do_execve function.

The exec binprm function will ultimately commit the credentials calling
the SELinux selinux bprm committing creds and
selinux bprm committed creds.

Various strings are copied (args etc.) and a check is made to see if the exec
succeeded or not (in this case it did), therefore the
security bprm free () function is ultimately called to free the bprm
security structure.

The End.

Page 78

The SELinux Notebook

=ys_execve(] executes

A
struct files struct *displaced
int retvals

S

if (IZ_ERR(filename)) £

return PTR_ERR(filename): N

/% Make copy of current creds */ .-'!

retval = prepare_bprm creds (bprm): /

if {zetuall £
goto ocut_free;

;
check_unsafe exec{bpza) ’
current->in_execwve = 1;

/
file = do_ppen_ewec (filename]
retral = PTR_EBR (file):

sched execidg E {.“
P .

prepare binprm makes many cal:].é to build
* new credentizls. For SELimuxAn
* security/selinux/hooks the -'Ellmng gets
* called via the LIM ser.'u.r:l.t:lrhncks
- selimm bprm set o !
o - 1 . set reds},
retval = prepare bimprm(bprm) ;
if {zetval < 0}
goto out:
retral = copy strings

J
In’
=_kernel{l, &bprm->filename,
bpem) ;
if (retwval < 01

goto out:

int do execve(struct Filenams *Filenams 2 security ops Dmction pointer struct

L Contains 2 ponter to the SELinux functionin hooks.
return do_execve_common(filename, argv, enupl;

1

I mus

2tic int selimix bprm set credsi(..)
2 new program. */ .
static int do execve common (struct / -
Filename ...} 9 f* Check capabilities (DRC) */
I A rc = cap_bprm set_creds{bprm)
struct linux_binprm *bpram: & -
struct file *file:

rity bprm set creds->
ﬁ selirmx bprm set creds
{

if {(old_t=ec-vexec =id) [
1 el=e {
f* Check for a default transition omn
% this program. */
e = :el;.n'u. ty_transition sid
l:old tsec-ssid, Isec- -=sad,
SIEC[.P\SS FROCESS, HULL,

! &rew_t sec-mgid) ;
if izk)
‘ée'burr_ o
1 i
. H
if (ney_t=ec-»>rid == old_t=ec->s=id) [
o = moc_has_pemm,
! l:o.'l.d toec-roid, isec-»sid,
H SECCLASS FILE,
/ FILE :.v::cm\; HO TRANE, &ad);
fiE ixze)

!
i retum rc; |
I odl=e [

i 'tl'ezl: pemissions

for transition.*/

; rc = mc_has ;p-'::m .
! Told tgec- }*J.d new_toec->rid,
i SECCLASS PROCESS,
! FEOCESS 'I'%.P.HS ITION, &ad):
K if ize) '.
v eturn re; II
J ' 5
; i
i

re = moc_has p-e:';: H
{mew _;q'_-}s_ui isec-wsid,

CLASE F[{.E Fi,[.E FHTR?PD[HT &ad) :
if irec) ‘., i

1
return fg:
i

Lo
|,' /* Check foxr d -t-'at.e Ly
/ if (bprm-vunsikfe & LIM)UNSAFE SHARE) [
s _.ll rc T ade I!*.el; pp"m ‘|
“ exec_binprm will fin=lly commit the new ¢ tels L_:;;-;sz-sgﬂ teec->oid,
* credentials. For SELimux in] pRDqu% 5 RE ' HULL) :
* security/selinux/hooks the following get ! i fze) b)
* palled wvia the LSM security hooks: i —et.q-r rEPmm |
* selimm bpm committing creds ! 1 . '. '
* s&lmm{:]:pm:mmittaﬂ_greda i /% Rnyone at-te:lpql:u'.gl to bt-:a[:e has pemm 4/
P ! . o ' |
zetval = exec binprmibpram) ; e, ! .Eigl' H
if {retwal < O) - I yipteid, ek tdec-sid,
goto out; i ".smcu.s,s PROCESS,
/* execve succeeded */ ,!' ?REQES P‘I‘mj\'::. HFLLY ;
current->fs-»in_exec = 0; J' . 4 :| i " :n
S ; | I '.‘ |
f* ultimately calls selirux security_cred free ’:,":’ !: [5 \
free bpm(tpm: / P b
i Voo
J
+ ave.c
ss/services.c / avc has perms()
security transition sid() " Ched that the PROCESS class:
Checleif transition reguirsd TRANSITION, SHARE, PTRACE
security compute sid()
Computs the naw 81D and FILE class:
z5/mls.c _ ENTRYFCINT, EXECUTE _ND_TRANS
mls compute sid() permizsions are vahd. Add decision to cache if not
Checle if MLS if s0 add MLS context almady prasant.
sz fsidtab.c
sidtabk context_to_sidl)
Add new 31D to table

Figure 2.11: Process Transition - This shows the major steps required to check if a
transition is allowed from the unconfined t domain to the ext gateway t

domain.

Page 79

The SELinux Notebook

libselinux

/sys/fs/selinux (selinuxfs.c)

Kernel Services
These are the
Linux kernel
resources such as
files, sockets,
memory
management that
need access
decisions made.

fork.c
security task cre

load new
program

€xec.c
do_execve (...)

execute new
program

Linux Security Module Framework

include/
linux/
security.h

security.c

te(clone flags)

services.c

capabilities.c

:

SELinux Security Module

(selinux’hooks.c)

I

I

I

I

I

. . . . I
This module is the main interface| |
between the kernel resources for :
managing SELinuxaccess |
decisions. Acts as the resource I
Object Manager. |
I

I

I

selinux _task create

selinux_bprm_set” creds

selinux_bprm_committing_creds
selinux_bprm_committed creds

selinux_bprm_secureexec
selinux_bprm_cred_free

selinux_inode permission

o

C

has pe
I;:;
[
(I
[
|

[

|

{

NetLink Services
(selinux/netlink.c)

Informs of policy reloads

Access Vector
Cache
(selinux/ave.c)

ms security _con

<___

avc_ins

Manages the
permissions granted
or denied in a cache
to speed decisions

—»

pute_av

<

ert

security_transition_sid

Security Services
(selinux/ss/services.c)

The SELinux Security Server authorises (or not) access

decisions.
Conditional AV table
Expression
State
IF list

(linked to AV Table)
ELSE list
(linked to AV Table)

Constraints Table
Expression Type
Constraint Attribute
Constraint Operator
(linked to AV Table)

policydb.h
permissions
class

role
role_transition
role_allow
type

user

boolean

level

category

range transition

AV table

allow Rules:

source_type, target_type, class, permissions;

type_transition Rules:

source_type, target_type, class, default_type;

SID & Context Tables
SID=1:system_u:system_r:kernel t
SID=2:system_u:object r:security t

SID=n+1:user wmessage filter r:ext gateway t

Figure 2.12: The Main LSM / SELinux Modules - The fork and exec functions link to Figure 2.7 where the transition process is described.

Page 80

The SELinux Notebook

2.19.2.3 SELinux Filesystem

Table 10 shows the information contained in the SELinux filesystem (selinuxfs) /sys/fs/selinux (or /selinux on older systems)
where the SELinux kernel exports information regarding its configuration and active policy. selinuxfs is a read/write interface used by
SELinux library functions for userspace SELinux-aware applications and object managers. Note: while it is possible for userspace applications
to read/write to this interface, it is not recommended - use the 1ibselinux library.

selinuxfs Directory and File Names

Permissions

Comments

/sys/fs/selinux

Directory

This is the root directory where the SELinux kernel exports relevant information regarding its
configuration and active policy for use by the 1ibselinux library.

access | ~rw-rw-rw- | Compute access decision interface that is used by the security compute_av (3),

security compute_ av_flags(3),avc_has perm(3) and
avc_has_perm noaudit (3) functions.
The kernel security server (see services. c) converts the contexts to SIDs and then calls the
security compute av_user function to compute the new SID that is then converted to
a context string.
Requires security {compute av} permission.

checkregprot [—rw-r--r-= | (= Check requested protection applied by kernel.

1 = Check protection requested by application. This is the default.

These apply to the mmap and mprotect kernel calls. Default value can be changed at boot
time via the checkregprot= parameter.

Requires security {setcheckregprot} permission.

commit pending bools

Commit new boolean values to the kernel policy.
Requires security {setbool} permission.

context

—“rW—Xw—Irw-—

Validate context interface used by the security check context (3) function.

Requires security {check context} permission.

Page 81

The SELinux Notebook

selinuxfs Directory and File Names

Permissions

Comments

create

—“YW—YXYw—Irw-—

Compute create labeling decision interface that is used by the

security compute create (3) and ave_compute create (3) functions.

The kernel security server (see services. c) converts the contexts to SIDs and then calls the
security transition sid user function to compute the new SID that is then
converted to a context string.

Requires security {compute create} permission.

deny unknown | ~r--r--r-- | These two files export deny unknown (read by security deny unknown (3)
reject unknown | -r--r--r-- | function) and rej ect_unk;own status to user space. B B
These are taken from the handle-unknown parameter set" in the
etc/selinux/semanage.conf file when policy is being built and are set as follows:
deny:reject
0 : 0 = Allow unknown object class / permissions. This will set the returned AV with all
I's.
1:0 = Deny unknown object class / permissions (the default). This will set the returned
AV with all 0's.
1:1 = Reject loading the policy if it does not contain all the object classes / permissions.
disable | ——w-——=--- Disable SELinux until next reboot.
enforce | ~rw-r--r=- | Get or set enforcing status.
Requires security {setenforce} permission.
load | —rw-===--- Load policy interface.
Requires security {load policy} permission.
member | ~rw-rw-rw- | Compute polyinstantiation membership decision interface that is used by the

security compute_ member (3) and ave_compute member (3) functions.

The kernel security server (see services. c) converts the contexts to SIDs and then calls the

security member sid function to compute the new SID that is then converted to a

context strin_g. B

Requires security {compute member} permission.

mls [~r=-r--r== | Returns 1 if MLS policy is enabled or O if not.

15

This is also set in the UNK_PERMS entry of the Reference Policy build. conf file. The entry in semanage . conf will over-ride the build. conf entry.

Page 82

The SELinux Notebook

selinuxfs Directory and File Names

Permissions

Comments

null

CrW—Xrw—Xrw-—

The SELinux equivalent of /dev/null for file descriptors that have been redirected by
SELinux.

policy

—r--r--r--

Interface to upload the current running policy in kernel binary format. This is useful to check
the running policy using apol (1) , dispol/sedispol etc. (e.g. cat
/sys/fs/selinux/policy > current-policy then load it into the required tool).

policyvers

-r--r--r--

Returns supported policy version for kernel. Read by security policyvers (3)
function.

relabel

“IW-Xrw—-Irw-

Compute relabeling decision interface that is used by the

security compute_relabel (3) function.

The kernel security server (see services. c) converts the contexts to SIDs and then calls the
security change sid function to compute the new SID that is then converted to a
context string.

Requires security {compute relabel} permission.

status

-r--r--r--

This can be used to obtain enforcing mode and policy load changes with much less over-head
than using the 1ibselinux netlink / call backs. This was added for Object Managers that
have high volumes of AVC requests so they can quickly check whether to invalidate their
cache or not.
The status structure indicates the following:
version - Version number of the status structure. This will increase as other entries are
added.
sequence - This is incremented for each event with an even number meaning that the
events are stable. An odd number indicates that one of the events is changing and therefore
the userspace application should wait before reading the status of any event.
enforcing - 0 = Permissive mode, 1 = enforcing mode.
policyload - This contains the policy load sequence number and should be read and
stored, then compared to detect a policy reload.
deny unknown - 0 = Allow and 1 = Deny unknown object classes / permissions. This is
the same as the deny unknown entry above.

Page 83

The SELinux Notebook

selinuxfs Directory and File Names

Permissions

Comments

user

—“YW—YXYw—Irw-—

Compute reachable user contexts interface that is used by the

security compute_ user (3) function.

The kernel security server (see services. c) converts the contexts to SIDs and then calls the
security get user sids function to compute the user SIDs that are then converted to
context strings.

Requires security {compute user} permission.

/sys/fs/selinux/avc Directory | This directory contains information regarding the kernel AVC that can be displayed by the

avcstat command.

cache stats | ~r=—r~——r=— | Shows the kernel AVC lookups, hits, misses etc.
cache_threshold | ~rw-r--r== | The default value is 512, however caching can be turned off (but performance suffers) by:
echo 0 > /selinux/avc/cache_threshold
Requires security {setsecparam} permission.
hash _stats | ~£=-r=-r=- | Shows the number of kernel AVC entries, longest chain etc.
/sys/fs/selinux/booleans Directory | This directory contains one file for each boolean defined in the active policy.
secmark_audit | —rw-r--r=- [Each file contains the current and pending status of the boolean (0 = false or 1 = true). The
...... getsebool (8), setsebool (8) and sestatus (8) -b commands use this interface via
...... the 1ibselinux library functions.

/sys/fs/selinux/initial contexts Directory | This directory contains one file for each initial SID defined in the active policy. The file name

is the initial SID name with the contents containing its security context.

any_socket | ~r--r=-r=-= | Fach file contains the initial context of the initial SID as defined in the active policy (e.g.
devnull any socket was assigned system u:object r:unconfined t).

/sys/fs/selinux/policy_ capabilities Directory | This directory contains the policy capabilities that have been configured by default in the

kernel via the policycap statement in the active policy. These are generally new features

that can be enabled by using the policycap statement in policy. Their default values are

false.

-r--r--r--

always check network

If true SECMARK and peer labeling are always enabled even if there are no SECMARK,
NetLabel or Labeled IPsec rules configured. This forces checking of the packet class to
protect the system should any rules fail to load or they get maliciously flushed. Requires kernel
3.14 minimum.

Page 84

The SELinux Notebook

selinuxfs Directory and File Names Permissions Comments
network peer controls | ~r~-r=—r=~ | [ftrue the following network peer controls are enabled:
node: sendto recvfrom
netif: ingress egress
peer: recv
open_perms [~r~-r=-r-— | [f true the open permissions are enabled by default on the following object classes: dir,
file,fifo file,chr file,blk file.
redhatl | —r=-r--r== | Available in kernel 3.4 to allow finer control of pt race (this will be named correctly one
day). Requires policy support and the security class permission ptrace child.
/sys/fs/selinux/class Directory | This directory contains a list of classes and their permissions as defined by the policy (for the
Reference Policy the order in the security classes and access vectors files).
/sys/fs/selinux/class/appletalk_socket Directory | Each class has its own directory where each one is named using the appropriate class statement
from the policy (i.e. class appletalk socket). Each directory contains the following:
index | ~r=-r--r-- | This file contains the allocated class number (e.g. appletalk socket is the 56" entry in
the policy security classes file).
/sys/fs/selinux/class/appletalk socket/perms | Directory | This directory contains one file for each permission defined in the policy.
accept | ~r=-r--r-- | Each file is named by the permission assigned in the policy and contains a number that
append represents its position in the list (e.g. accept is the 14™ permission listed in the policy
bind access_vector file for the appletalk socket and therefore contains '14".

Table 10: selinux filesystem Information

Notes:

1. Kernel SIDs are not passed to userspace only the context strings.

2. The /proc filesystem exports the process security context string to userspace via /proc/<self |pid>/attr and /proc/<self |
pid>/task/<tid>/attr/<attr> interfaces.

Page 85

The SELinux Notebook

2.20 libselinux Library

libselinux contains all the SELinux functions necessary to build userspace
SELinux-aware applications and object managers using 'C', Python, Ruby and PHP
languages.

The library hides the low level functionality of (but not limited to):

The SELinux filesystem that interfaces to the SELinux kernel security server.

The proc filesystem that maintains process state information and security

contexts - see proc (5) .

Extended attribute services that manage the extended attributes associated to

files, sockets etc. - see attr (5).

The SELinux policy and its associated configuration files.

The general category of functions available in 1ibselinux are shown in Table 11,
with Appendix B giving a complete list of functions.

Function Category

Description

Access Vector Cache Services

Allow access decisions to be cached and
audited.

Boolean Services

Manage booleans.

Class and Permission Management

Class / permission string conversion and
mapping.

Compute Access Decisions

Determine if access is allowed or denied.

Compute Labeling Compute labels to be applied to new
instances of on object.
Default File Labeling Obtain default contexts for file operations.

File Creation Labeling

Get and set file creation contexts.

File Labeling

Get and set file and file descriptor extended
attributes.

General Context Management

Check contexts are valid, get and set context
components.

Key Creation Labeling

Get and set kernel key creation contexts.

Label Translation Management

Translate to/from, raw/readable contexts.

Netlink Services

Used to detect policy reloads and
enforcement changes.

Process Labeling

Get and set process contexts.

SELinux Management Services

Load policy, set enforcement mode, obtain
SELinux configuration information.

SELinux-aware Application Labeling

Retrieve default contexts for applications
such as database and X-Windows.

Socket Creation Labeling

Get and set socket creation contexts.

Page 86

The SELinux Notebook

User Session Management Retrieve default contexts for user sessions.

Table 11: 1ibselinux function types
Other SELinux userspace libraries are:

libsepol - To build and manipulate the contents of SELinux kernel binary
policy files.

libsemanage - To manage the policy infrastructure.

Details of the libraries, core SELinux utilities and commands with source code are
available at:

https://github.com/SELinuxProject/selinux/wiki

The versions of kernel and SELinux tools and libraries influence the features
available, therefore it is important to establish what level of functionality is required
for the application. The Policy Versions section shows the policy versions and the
additional features they support.

Writing kernel based object managers is a more specialised subject and is not covered
in this section.

The 1ibselinux functions make use of a number of files within the SELinux sub-
system:

1. The SELinux configuration file config that is described in the
etc/selinux/config File section.

2. The SELinux filesystem interface between userspace and kernel that is
generally mounted as /selinux or /sys/fs/selinux and described in
the SELinux Filesystem section.

3. The proc filesystem that maintains process state information and security
contexts - see proc (5).

4. The extended attribute services that manage the extended attributes associated
to files, sockets etc. - see attr (5).

5. The SELinux kernel binary policy that describes the enforcement policy.

6. A number of 1ibselinux functions have their own configuration files that
in conjunction with the policy, allow additional levels of configuration. These
are described in the Policy Configuration Files section and also in the
following man pages:

booleans (5), customizable types (5),

default contexts (5),default_ type(5),

failsafe context(5), file_contexts (5),

local.users (5),media(5), removable context(5),
securetty type(5), selabel db(5), selabel file (5),
selabel media (5), selabel x(5), sepgsql_contexts (5),
service_ seusers (5), seusers (5),user_contexts(5),
virtual domain context (5),

virtual image_context (5),x_contexts (5)

Page 87

https://github.com/SELinuxProject/selinux/wiki

The SELinux Notebook

2.21 SELinux Networking Support
SELinux supports the following types of network labeling:

Internal labeling - This is where network objects are labeled and managed
internally within a single machine (i.e. their labels are not transmitted as part of
the session with remote systems). There are two types supported: SECMARK and
NetLabel. There was a service known as 'compat net' controls, however that
was removed in kernel 2.6.30.

Labeled Networking - This is where labels are passed to/from remote systems
where they can be interpreted and a MAC policy enforced on each system. There
are two types supported: Labeled IPSec and CIPSO (Commercial IP Security
Option).
There are two policy capability options that can be set within policy using the
policycap statement that affect networking configuration:

network peer controls - This is always enabled in the latest Reference
Policy source. Figure 2.14 shows the differences between the policy capability
being set to 0 and 1.

always_use_network - This capability would normally be set to false. If true
SECMARK and NetLabel peer labeling are always enabled even if there are no
SECMARK, NetLabel or Labeled IPsec rules configured. This forces checking of
the packet class to protect the system should any rules fail to load or they get
maliciously flushed. Requires kernel 3.13 minimum.

The policy capability settings are available in userspace via the SELinux filesystem as
shown in Table 10.

To support peer labeling and CIPSO the NetLabel tools need to be installed:

yum install netlabel tools

To support Labeled IPSec the IPSec tools need to be installed:

yum install ipsec-tools

It is also possible to use an alternative Labeled IPSec service that was OpenSwan but
is now distributed as LibreSwan:

yum install libreswan

It is important to note that the kernel must be configured to support these services.
The F-20 kernels are configured to handle all the above services.

The Linux networking package iproute has an SELinux aware socket statistics
command ss (8) that will show the SELinux context of network processes (-Z or
-—context option) and network sockets (-z or ——contexts option). Although
note that the socket contexts are taken from the inode associated to the socket and not
from the actual kernel socket structure (as currently there is no standard
kernel/userspace interface to achieve this).

Page 88

The SELinux Notebook

2211 SECMARK

SECMARK makes use of the standard kernel NetFilter framework that underpins the
GNU / Linux IP networking sub-system. NetFilter services automatically inspects all
incoming and outgoing packets and can place controls on interfaces, IP addresses
(nodes) and ports with the added advantage of connection tracking. The SECMARK
security extensions allow security contexts to be added to packets (SECMARK) or
sessions (CONNSECMARK).

The NetFilter framework inspects and tag packets with labels as defined within
iptables (8) and then uses the security framework (e.g. SELinux) to enforce the
policy rules. Therefore SECMARK services are not SELinux specific as other
security modules using the LSM infrastructure could also implement the same
services (e.g. SMACK).

While the implementation of iptables / NetFilter is beyond the scope of this
Notebook, there are tutorials available'®. Figure 2.13 shows the basic structure with
the process working as follows:

A table called the 'security table' is used to define the parameters that identify
and 'mark’ packets that can then be tracked as the packet travels through the
networking sub-system. These 'marks' are called SECMARK and
CONNSECMARK.

A SECMARK is placed against a packet if it matches an entry in the security
table applying a label that can then be used to enforce policy on the packet.

The CONNSECMARK 'marks' all packets within a session'” with the
appropriate label that can then be used to enforce policy.

' There is a very good tutorial at http://www.frozentux.net/documents/iptables-tutorial/ [5], however

it does not cover the security table that was introduced by: http://Iwn.net/Articles/267140/. It is still
possible to use the 'mangle table' to hold security labels as described in [5].

For example, an ftp session where the server is listening on a specific port (the destination port)
but the client will be assigned a random source port. The CONNSECMARK will ensure that all
packets for the ftp session are marked with the same label.

Page 89

http://lwn.net/Articles/267140/
http://www.frozentux.net/documents/iptables-tutorial/

The SELinux Notebook

Receive Client or Server Application Send
rr-——m—m—-----"""""""""""""""""""-""-"-"-""-"-"-""-"=-"=-"=-"=-—-"=-—-"=-"=-= I
I Policy: |
lallow ext gateway t ext gateway packet t:packet { send recv };
L - - - . T T o e _____
I__.____,__i______l
security table entries:
INPUT <_ - — _| iptables -t security -A INPUT -p tcp -—dport 9999 -3 |As packets are sent, they
SECMARK --selctx are marked and either
. ob . ACCEPT ed or
s packets are received, l_sgtgm__u iblect, riext gatemay packet t — — — — — —l DROP’ed
they are marked and ' |))
cither ACCEPT ed or | ;Ezables_:zeiiiirlty -A OUTPUT -p tcp --dport 9999 -j I_ _ _> OUTPUT
DROP”ed ls&te_m_uﬂ)ject r:ext gateway packet t =~ J
Route P Forward
Network Interface

Figure 2.13: SECMARK Processing - Received packets are processed by the

INPUT chain where labels are added to the appropriate packets that will either be
accepted or dropped by the SECMARK process. Packets being sent are treated the

same way.

An example iptables'® 'security table' entry is as follows:

Flush the security table first:
iptables -t security -F

e INPUT IP Stream —--——---——————————————- #

This INPUT rule sets all packets to msg filter.default packet: as it is

executed first:

iptables -t security -A INPUT -i lo -p tcp -d 127.0.0.0/8 -j SECMARK --selctx
system.user:object r:msg filter.default packet:s0

These rules will replace the above context with the internal or

external gateway if port 9999 or 1111 is found in either the source or

destination port of the packet:

iptables -t security -A INPUT -i lo -p tcp --dport 9999 -j SECMARK --selctx
system.user:object r:msg filter.ext gateway.packet:s0

iptables -t security -A INPUT -i lo -p tcp --sport 9999 -j SECMARK --selctx
system.user:object r:msg filter.ext gateway.packet:s0

#

The internal gateway:

iptables -t security -A INPUT -i lo -p tcp --dport 1111 -j SECMARK --selctx
system.user:object r:msg filter.int gateway.packet:s0

iptables -t security -A INPUT -i lo -p tcp --sport 1111 -j SECMARK --selctx
system.user:object r:msg filter.int gateway.packet:s0

iptables -t security -A INPUT -m state --state ESTABLISHED,RELATED -j
CONNSECMARK --save

This OUTPUT rule sets all packets to msg filter.default packet: as it is
executed first:

18

The tables will not load correctly if the policy does not allow the iptables domain to relabel the
security table entries unless permissive mode is enabled (i.e. iptables must have the relabel
permission for each entry in the table).

Page 90

The SELinux Notebook

iptables -t security -A OUTPUT -o lo -p tcp -d 127.0.0.0/8 -j SECMARK --selctx
system.user:object r:msg filter.default packet:s0

These rules will replace the above context with the internal or

external gateway if port 9999 or 1111 is found in either the source or

destination port of the packet:

iptables -t security -A OUTPUT -o lo -p tcp --dport 9999 -j SECMARK --selctx
system.user:object r:msg filter.ext gateway.packet:s0

iptables -t security -A OUTPUT -o lo -p tcp --sport 9999 -j SECMARK --selctx
system.user:object r:msg filter.ext gateway.packet:s0

#

The internal gateway:

iptables -t security -A OUTPUT -o lo -p tcp --dport 1111 -j SECMARK --selctx
system.user:object r:msg filter.int gateway.packet:s0

iptables -t security -A OUTPUT -o lo -p tcp --sport 1111 -j SECMARK --selctx
system.user:object r:msg filter.int gateway.packet:s0

iptables -t security -A OUTPUT -m state --state ESTABLISHED,RELATED -j
CONNSECMARK --save

An example policy that makes use of SECMARK services is described in the
Notebook source tarball. There are also articles "Transitioning to Secmark" [7] and
"New secmark-based network controls for SELinux" [6] that explain the services.

2.21.2 NetLabel - Fallback Peer Labeling

Fallback labeling can optionally be implemented on a system if the Labeled IPSec or
CIPSO is not being used (hence 'fallback labeling"). If either Labeled IPSec or CIPSO
are being used, then these take priority. There is an article "Fallback [Label

Configuration Example" [8] that explains their usage, the netlabelctl (8) man
page is also a useful reference.

The example message filter has an optional module that makes use of fallback labels
and can be found in the Notebook source tarball.

The network peer controls have been extended to support an additional object class of
'peer' that 1is enabled by default in the F-20 policy as the
network peer controls in
/sys/fs/selinux/policy capabilities is set to '1". Figure 2.14 shows
the differences between the policy capability network peer controls being set
to 0 and 1.

& network peer control 1
tcp_socket: peer:
allow ext gateway t netlabel peer t: allow ext gateway t netlabel peer t:
tcp socket recvfrom; peer recv;
— - ‘15 _______________ ‘T} ______ .
| NetLabel Command: |

|netlabelctl unlbl add interface:lo address:127.0.0.1 \ |
I label:system u:object r:netlabel peer t

Figure 2.14: Fallback Labeling - Showing the differences between the policy
capability network peer controlssetto0and .

Page 91

http://paulmoore.livejournal.com/1758.html
http://paulmoore.livejournal.com/1758.html
http://james-morris.livejournal.com/11010.html
http://paulmoore.livejournal.com/4281.html

The SELinux Notebook

2.21.3 NetLabel - CIPSO

To allow security levels to be passed over a network between MLS systems', the
CIPSO protocol is used. This is defined in the CIPSO Internet Draft document (this is
an obsolete document, however the protocol is still in use). The protocol defines how
security levels are encoded in the IP packet header.

Note that only the level component of the security context is passed over the network.
The exception is in loopback mode as explained in "Full SELinux Labels Over
Loopback with NetLabel and CIPSQO" available at
http://paulmoore.livejournal.com/7234.html.

The protocol is implemented by the NetLabel service (see netlabelctl (8)) and
can be used by other security modules that use the LSM infrastructure. The NetLabel
implementation supports:

1. Tag Type 1 bit mapped format that allows a maximum of 256 sensitivity
levels and 240 categories to be mapped.

2. A non-translation option where labels are passed to / from systems unchanged
(for host to host communications as show in Figure 2.15).

S

MLS Host 1 MLS Host 2

Figure 2.15: MLS Systems on the same network

3. A translation option where both the sensitivity and category components can
be mapped for systems that have either different definitions for labels or
information can be exchanged over different networks (for example using an
SELinux enabled gateway as a guard as shown in Figure 2.16).

g > MLS Gateway g >

MLS Host 1 (Guard) MLS Host 2

Figure 2.16: MLS Systems on different networks communicating via a gateway

2.21.4 Labeled IPSec

Labeled IPSec has been built into the standard GNU / Linux IPSec services as
described in the "Leveraging IPSec for Distributed Authorization" [9]. Figure 2.17
shows the basic components that form the service based on IPSec tools where it is
generally used to set up either an encrypted tunnel between two machines® or an
encrypted transport session. The extensions defined in [9] describe how the security
context is configured and negotiated between the two systems (called security
associations (SAs) in I[PSec terminology).

' Note only the security levels are passed over the network as the other components of the security

context are not part of standard MLS systems (as it may be that the remote end is a Trusted Solaris
system).

2 Also known as a virtual private network (VPN).

Page 92

http://nsrc.cse.psu.edu/tech_report/NAS-TR-0037-2006.pdf
http://paulmoore.livejournal.com/7234.html
http://paulmoore.livejournal.com/7234.html
http://paulmoore.livejournal.com/7234.html
http://tools.ietf.org/html/draft-ietf-cipso-ipsecurity-01

The SELinux Notebook

Internet Key
Client setkey racoon — _Exehange{KE) - -p| racoon setkey Server
Appli 3 Manages Manages key . Manages key Manages Appli 3
pplication configuration exchange Negotiates the SAs exchange configuration pplication

v o»

Security Policy ASecu'ritt.y Asecu,ﬁ:,y Security Policy
ssociation ssociation
Database (SPD) Database (SAD) Database (SAD) Database (SPD)

S Sl N DR I SR

communications

channel >

IPSec packet management services IP Sec packet management services

Figure 2.17: IPSec communications - The SPD contains information regarding the
security contexts to be used. These are exchanged between the two systems as part of
the channel set-up.

Basically what happens is as follows*":

1. The security policy database (SPD) defines the security communications
characteristics to be used between the two systems. This is populated using the
setkey (8) utility with an example shown in the Configuration Example
section.

2. The SAs have their configuration parameters such as protocols used for
securing packets, encryption algorithms and how long the keys are valid held
in the Security Association database (SAD). For Labeled IPSec the security
context (or labels) is also defined within the SAD. SAs can be negotiated
between the two systems using either racoon or pluto® that will
automatically populate the SAD or manually by the setkey utility (see the
example below).

3. Once the SAs have been negotiated and agreed, the link should be active.

A point to note is that SAs are one way only, therefore when two systems are
communicating (using the above example), one system will have an SA, SAout for
processing outbound packets and another SA, SAin, for processing the inbound
packets. The other system will also create two SAs for processing its packets.

Each SA will share the same cryptographic parameters such as keys and protocol®
(e.g. ESP (encapsulated security payload) and AH (authentication header)).

The object class used for the association of an SA is association and the
permissions available are as follows:

2l There is an “IPSec HOWTO" [10] at http://www.ipsec-howto.org that gives the gory details,
however it does not cover Labeled IPSec.

22 These are the Internet Key Exchange (IKE) daemons that exchange encryption keys securely and

also supports Labeled IPSec parameter exchanges.

2 The GNU / Linux version supports a number of secure protocols, see setkey (8) for details.

Page 93

http://www.ipsec-howto.org/

The SELinux Notebook

polmatch Match the SPD context (-ctx) entry to an SELinux domain
(that is contained in the SAD -ctx entry)

recvirom Receive from an IPSec association.

sendto Send to an IPSec association.

setcontext Set the context of an [PSec association on creation (e.g.

when running setkey the process will require this
permission to set the context in the SAD and SPD, also
racoon / pluto will need this permission to build the
SAD).

When running Labeled IPSec it is recommended that the systems use the same
type/version of policy to avoid any problems with them having different meanings.

There are worked examples of Labeled IPSec sessions showing manual configuration
using setkey and IKE exchanges using racoon?* and LibreSwan (pluto)
configurations in the Notebook source tarball (note that the LibreSwan examples use
the kernel netkey services).

There is a further example in the "Secure Networking with SELinux" [11] article.

There is a good reference covering "Basic Labeled IPsec Configuration" available at:

http://www.redhat.com/archives/redhat-Ispp/2006-November/msg00051.html

2.21.41 Configuration Examples
There are two possible labeled IPSec solutions available:

IPSec Tools - This uses the setkey (8) tools and racoon (8) Internet Key
Exchange (IKE) daemon.

LibreSwan - This uses ipsec (8) tools and pluto (8) Internet Key Exchange
(IKE) daemon.

Both work in much the same way but use different configuration files with samples
shown below. The one point they have in common is that to start any session for label
exchange using IKE, setkey must be used to initially set up the labels in the
security policy database (SPD) on each machine.

Another point to note is that if interoperating between racoon and pluto the IPSEC
Security Association Attribute values are different:

e racoon has this hard-wired to a value of '10".

* pluto is configurable with a default of '32001'. To interoperate with
racoon the ipsec.conf (5) file must have:

config setup
secctx _attr value = 10

The following example configurations show the common setkey configuration to set
up the SPD entries and then a sample supporting racoon and pluto (LibreSwan)
configuration file:

Unfortunately racoon core dumps when using non MCS/MLS policies.

Page 94

http://www.redhat.com/archives/redhat-lspp/2006-November/msg00051.html
http://securityblog.org/brindle/2007/05/28/secure-networking-with-selinux/

The SELinux Notebook

Add label / context to SPD for loopback:

setkey -f configuration file entries for RACOON SA configuration

#
#
If the Internal Gateway module (int gateway.conf) is not loaded,
then the entries should be removed from this file.

#

Flush the SAD and SPD

flush;

spdflush;

#

#H###H##### Security Policy Database entries ############FFFHFHFHFHFHAH
#

Note that the only part of the security context matched against is

the 'type' (e.g. ext gateway t).

Security policies for external gateway:

spdadd 127.0.0.1 127.0.0.1 tcp

-ctx 1 1 "unconfined.user:msg filter.role:msg filter.ext gateway.process
-P out ipsec esp/transport//require;

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "unconfined.user:msg filter.role:msg filter.ext gateway.process
-P in ipsec esp/transport//require;

Security policies for internal gateway:

spdadd 127.0.0.1 127.0.0.1 tcp

-ctx 1 1 "unconfined.user:msg filter.role:msg filter.int gateway.process
-P out ipsec esp/transport//require;

spdadd 127.0.0.1 127.0.0.1 tcp
-ctx 1 1 "unconfined.user:msg filter.role:msg filter.int gateway.process
-P in ipsec esp/transport//require;

HESTO

:sO"

:sO"

:sO"

racoon configuration:

Racoon IKE daemon configuration file.
See 'man racoon.conf' for a description of the format and entries.

path include "/etc/racoon";

path pre shared key "/etc/racoon/psk.txt";
path certificate "/etc/racoon/certs";

path script "/etc/racoon/scripts";

sainfo anonymous

{
lifetime time 1 hour ;
encryption algorithm 3des, blowfish 448, rijndael ;
authentication algorithm hmac shal, hmac md5 ;
compression_algorithm deflate ;

LibreSwan / pluto loopback configuration:

/etc/ipsec.conf - Libreswan IPsec configuration file
version 2.0

config setup
plutorestartoncrash=false
protostack=netkey
plutodebug="all"
A "secctx _attr value" is optional for >= 3.6 as defaults to this:
secctx_attr value = 32001

conn labeled loopback test
auto=start
rekey=no
authby=secret
type=transport

Page 95

The SELinux Notebook

left=127.0.0.1

right=127.0.0.1

ike=3des-shal

phase2=esp

phase2alg=aes-shal

loopback=yes

labeled ipsec=yes

policy label=unconfined.user:msg filter.role:msg filter.ext gateway.process:s0
leftprotoport=tcp

rightprotoport=tcp

2.22 SELinux Virtual Machine Support

SELinux support is available in the KVM/QEMU and Xen virtual machine (VM)
technologies® that are discussed in the sections that follow, however the package
documentation should be read for how these products actually work and how they are
configured.

Currently the main SELinux support for virtualisation is via 1ibvirt that is an
open-source virtualisation API used to dynamically load guest VMs. Security
extensions were added as a part of the Svirt project and the SELinux implementation
for the KVM/QEMU package (gemu-kvm and 1ibvirt rpms) is discussed using
some examples. The Xen product has Flask/TE services that can be built as an
optional service, although it can also use the security enhanced 1ibvirt services as
well.

The sections that follow give an introduction to KVM/QEMU, then libvirt
support with some examples using the Virtual Machine Manager to configure VMs,
then an overview of the Xen implementation follows.

To ensure all dependencies are installed run:

yum install libvirt
yum install gemu
yum install virt-manager

2221 KVM/QEMU Support

KVM is a kernel loadable module that uses the Linux kernel as a hypervisor and
makes use of a modified QEMU emulator to support the hardware I/O emulation. The
"Kernel-based Virtual Machine" [17] document gives a good overview of how KVM
and QEMU are implemented. It also provides an introduction to virtualisation in
general. Note that KVM requires virtulisation support in the CPU (Intel-VT or AMD-
V extensions).

The SELinux support for VMs is implemented by the 1ibvirt sub-system that is
used to manage the VM images using a Virtual Machine Manager, and as KVM is
based on Linux it has SELinux support by default. There are also Reference Policy
modules to support the overall infrastructure (KVM support is in various kernel and
system modules with a virt module supporting the 1ibvirt services). Figure 2.18

¥ KVM (Kernel-based Virtual Machine) and Xen are classed as 'bare metal' hypervisors and they

rely on other services to manage the overall VM environment. QEMU (Quick Emulator) is an
emulator that emulates the BIOS and I/O device functionality and can be used standalone or with
KVM and Xen.

Page 96

http://www.redhat.com/f/pdf/rhev/DOC-KVM.pdf
http://selinuxproject.org/page/SVirt

26

The SELinux Notebook

shows a high level overview with two VMs running in their own domains. The
libvirt Support section shows how to configure these and their VM image files.

Virtual M achine VM Guest 1 VM Guest 2
Mana er svirt_t:s0:cl,c2 svirt t:s0:c7,c8
8 libvirtd(« - P
Linux Guest Windows Guest
) Manages t.he EMU operating system operating system
images, assigns Q §
security labels, start thm
and stop VMs etc. <D-I‘1-V-ef‘ _____________ QEMU_____ > QEMU
KVM Hypervisor (Linux kernel)
Hardware

Figure 2.18: KVM Environment - KVM provides the hypervisor while
OEMU provides the hardware emulation services for the guest
operating systems. Note that KVM requires CPU virtualisation support.

2.22.2 libvirt Support

The Svirt project added security hooks into the 1ibvirt library that is used by the
libvirtd daemon. This daemon is used by a number of VM products (such as
KVM, QEMU and Xen) to start their VMs running as guest operating systems.

The VM supplier can implement any security mechanism they require using a product
specific libvirt driver that will load and manage the images. The SELinux
implementation supports four methods of labeling VM images, processes and their
resources with support from the Reference Policy modules/services/virt.*
loadable module®*®. To support this labeling, 1ibvirt requires an MCS or MLS
enabled policy as the level entry of the security context is used
(user:role:type:level).

The link http:/libvirt.org/drvgemu.html#securityselinux has details regarding the
QEMU driver and the SELinux confinement modes it supports.

2.22.3 VM Image Labeling

This sections assumes VM images have been generated using the simple Linux kernel
available at: http://wiki.qgemu.org/Testing (the 1inux-0.2.1img.bz2 disk image),
this image was renamed to reflect each test, for example 'Dynamic VMI1.img"

These images can be generated using the VMM by selecting the 'Create a new virtual
machine' menu, 'importing existing disk image' then in step 2 Browse... selecting
'Choose Volume: Dynamic VMI1.img' with OS type: Linux, Version: Generic
2.6.x kernel and change step 4 'Name' to Dynamic VMI.

The various images would have been labeled by the virt module installation process (see the
virt.fc module file or the policy file contexts file 1ibvirt entries). If not, then need to
ensure it is relabeled by the most appropriate SELinux tool.

Page 97

http://wiki.qemu.org/Testing
http://libvirt.org/drvqemu.html#securityselinux
http://libvirt.org/drvqemu.html

The SELinux Notebook

2.22.3.1 Dynamic Labeling

The default mode is where each VM is run under its own dynamically configured
domain and image file therefore isolating the VMs from each other (i.e. every time the
VM is run a different and unique MCS label will be generated to confine each VM to
its own domain). This mode is implemented as follows:

a) An initial context for the process is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual domain context file
(the default is system u:system r:svirt tcg t:s0).

b) An initial context for the image file label is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual image context file.
The default is system u:system r:svirt image t:sO that allows
read/write of image files.

c) When the image is used to start the VM, a random MCS level is generated
and added to the process context and the image file context. The process and
image files are then transitioned to the context by the libselinux API
calls setfilecon and setexeccon respectively (see
security selinux.c inthe libvirt source). The following example
shows two running VM sessions each having different labels:

VM Name Object | Dynamically assigned security context

Dynamic VML | Process | System u:system r:svirt tcg t:s0:c585,c¢813

File system u:system r:svirt image t:s0:c585,c813

Dynamic VM2 | Process | system u:system r:svirt tcg t:s0:c535,c601

File system u:system r:svirt image t:s0:c535,c601

The running image 1s -Z and ps -eZ are as follows, and for completeness
an 1s -7 is shown when both VMs have been stopped:

Both VMs running:

ls -z /var/lib/libvirt/images

system u:object r:svirt image t:s0:c585,c813 Dynamic VMl.img
system u:object r:svirt image t:s0:c535,c601 Dynamic VM2.img

ps -eZ | grep gemu

system u:system r:svirt tcg t:s0:c585,c813 8707 ? 00:00:44 gemu-system-—
%86

system u:system r:svirt tcg t:s0:cc535,c601 8796 ? 00:00:37 gemu-system-—
x86

Both VMs stopped (note that the categories are now missing AND
the type has changed from svirt image t to virt image t):

ls -Z /var/lib/libvirt/images

system u:object r:virt image t:s0 Dynamic VMl.img

system u:object r:virt image t:s0 Dynamic VM2.img

2.22.3.2 Shared Image

If the disk image has been set to shared, then a dynamically allocated 1evel will be
generated for each VM process instance, however there will be a single instance of
the disk image.

Page 98

The SELinux Notebook

The Virtual Machine Manager can be used to set the image as shareable by checking
the Shareable box as shown in Figure 2.19.

Shareable_VM Virtual Machine
File Virtual Machine View Send Key

= overvew Virtual Disk
Rl Target device: IDE Disk 1
(o Processor Source path: fvar/lib/libvirt/images/Shareable_VM.img
B8 Memory Storage size: 20.00 MB
[':{_EZS Boot Options Readonly: [
| DE Disk 1 Shareable:
B NIC:f9:0cb6
e [> Advanced options
) Mouse
LE_—_I Display VN C 1 Tip: 'source’ refers to information seen from the host OS,
m Shund iid while 'target’ refers to information seen from the guest OS
G=s Seriall
B video

Add Hardware | | Remove |

Figure 2.19: Setting the Virtual Disk as Shareable

This will set the image (Shareable VM.xml) resource XML configuration file
located in the /etc/1libvirt/gemu directory <disk> contents as follows:

/etc/libvirt/qgemu/Shareable VM.xml:

<disk type='file' device='disk'>
<driver name='gemu' type='raw'/>
<source file='/var/lib/libvirt/images/Shareable VM.img'/>
<target dev='hda' bus='ide'/>
<shareable/>
<address type='drive' controller='0' bus='0' unit='0'/>
</disk>

As the two VMs will share the same image, the Shareable VM service needs to be
cloned and the VM resource name selected was Shareable VM-clone.

Page 99

The SELinux Notebook

Clone Virtual Machine

IE Clone virtual machine

Create a clone based on: Shareable_VM-clone

MName: [ShareabLe_VM-cLone l

Networking: NaT (52:54,00:6e:ae:b4) | Details... |

Storage: |_J Shareable_VM.img (Shareable)

Share disk with Shareable_VM-clone = |

Domain with devices to clone must be paused or shutoff

Cloning creates a new, independent copy of the original disk. Sharing
uses the existing disk image for both the original and the new machine.

| Cancel || Clone |

The resource XML file <disk> contents generated are shown - note that it has the
same source file name asthe Shareable VM.xml above.

/etc/libvirt/qgemu/Shareable_VM-clone.xml:

<disk type='file' device='disk'>
<driver name='gemu' type='raw'/>
<source file='/var/lib/libvirt/images/Shareable VM.img'/>
<target dev='hda' bus='ide'/>
<shareable/>
<address type='drive' controller='0' bus='0' unit='0'/>
</disk>

With the targeted policy on F-20 the shareable option gave a error when the VMs
were run as follows:

Could not allocate dynamic translator buffer

The audit log contained the following AVC message:

type=AVC msg=audit (1326028680.405:367): avc: denied

{ execmem } for pid=5404 comm="gemu-system-x86"
scontext=system u:system r:svirt t:s0:cl21,c746
tcontext=system u:system r:svirt t:s0:cl21,c746 tclass=process

To overcome this error, the following boolean needs to be enabled with
setsebool (8) to allow access to shared memory (the —P option will set the
boolean across reboots):

setsebool -P virt use execmem on

Now that the image has been configured as shareable, the following initialisation
process will take place:

a) An initial context for the process is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual domain context file
(the default is system u:system r:svirt tcg t:s0).

b) An initial context for the image file label is obtained from the
/etc/selinux/<SELINUXTYPE>/contexts/virtual image context file.

Page 100

The SELinux Notebook

The default is system u:system r:svirt image t:s0 that allows
read/write of image files.

¢) When the image is used to start the VM a random MCS level is generated and
added to the process context (but not the image file). The process is then
transitioned to the appropriate context by the libselinux API calls
setfilecon and setexeccon respectively. The following example
shows each VM having the same file label but different process labels:

VM Name Object |Security context

Shareable VM |Process |system u:system r:svirt tcg t:s0:c231,c245

-clone

Shareable VM |Process |system u:system r:svirt tcg t:s0:c695,c894

File system u:system r:svirt image t:s0

The running image 1s -Z and ps -eZ are as follows and for completeness
an 1s -7 is shown when both VMs have been stopped:

Both VMs running and sharing same image:
ls -Z /var/lib/libvirt/images
system u:object r:svirt image t:s0 Shareable VM.img

but with separate processes:

ps -eZ | grep gemu

system u:system r:svirt t:s0:c231,c254 6748 2 00:01:17 gemu-system-x86
system u:system r:svirt t:s0:c695,c894 7664 ? 00:00:03 gemu-system-x86

Both VMs stopped (note that the type has remained as svirt image t)
ls -Z /var/lib/libvirt/images
system u:object r:svirt image_ t:s0 Shareable VM.img

2.22.3.3 Static Labeling

It is possible to set static labels on each image file, however a consequence of this is
that the image cannot be cloned using the VMM, therefore an image for each VM will
be required. This is the method used to configure VMs on MLS systems as there is a
known label that would define the security level. With this method it is also possible
to configure two or more VMs with the same security context so that they can share
resources. A useful reference is at: http://libvirt.org/formatdomain.html#seclabel.

If using the Virtual Machine Manager GUI, then by default it will start each VM
running as they are built, therefore they need to be stopped and restarted once
configured for static labels, the image file will also need to be relabeled. An example
VM configuration follows where the VM has been created as Static_ VM1 using the
F-20 targeted policy in enforcing mode (just so all errors are flagged during the
build):

a) To set the required security context requires editing the Static VM1
configuration file using virsh (1) as follows:

virsh edit Static VM1

Then add the following at the end of the file:

Page 101

http://libvirt.org/formatdomain.html#seclabel

The SELinux Notebook

</devices>
<!-- The <seclabel> tag needs to be placed btween the existing
</devices> and </domain> tags -->
<seclabel type='static' model='selinux' relabel='no'>
<label>system u:system r:svirt t:s0:c1022,cl1023</label>

</seclabel>

</domain>

For this example svirt t has been chosen as it is a valid context (however

it will not run as explained in the text). This context will be written to the
Static VM1.xml configuration file in /etc/libvirt/gemu.

b) Ifthe VM is now started an error will be shown as follows:

Error starting domain: internal error Process exited
while reading console log output: Llibwvir: error : cannot
execute binary fusr/binfgemu-system-x&86_64.
Permission denied

[* Details

| Close

Figure 2.20: Image Start Error

This is because the image file label is incorrect as by default it is labeled
virt image t when the VM image is built (and svirt t does not have
read/write permission for this label):

The default label of the image at build time:
system u:object r:virt image t:s0 Static VMl.img

There are a number of ways to fix this, such as adding an allow rule or
changing the image file label. In this example the image file label will be
changed using chcon (1) as follows:

This command is executed from /var/lib/libvirt/images
#

This sets the correct type:

chcon -t svirt image t Static VMl.img

Optionally, the image can also be relabeled so that the [1evel] is the same
as the process using chcon as follows:

This command is executed from /var/lib/libvirt/images

#

Set the MCS label to match the process (optional step):
chcon -1 s0:c1022,c1023 Static VMl.img

Page 102

The SELinux Notebook

¢) Now that the image has been relabeled, the VM can now be started.

The following example shows two static VMs (one 1is configured for
unconfined t that is allowed to run under the targeted policy - this was possible
because the 'setsebool -P virt transition userdomain on' boolean
was set that allows virtd t domain to transition to a user domain (e.g.
unconfined t).

VM Name Object | Static security context

Static_ VM1 |Process |system u:system r:svirt t:s0:c1022,c1023

File system u:system r:svirt image t:s0:c1022,c1023

Static_ VM2 |Process |system u:system r:unconfined t:s0:cll,c22

File system u:system r:virt image t:s0

The running image 1s -Z and ps -eZ are as follows, and for completeness an 1s
-7 is shown when both VMs have been stopped:

Both VMs running (Note that Static VM2 did not have file level reset):
1s -z /var/lib/libvirt/images

system u:object r:svirt image t:s0:c1022,cl1023 Static VMl.img

system u:object r:virt image t:s0 Static VM2.img

ps —-eZ | grep gemu
system u:system r:svirt t:s0:c585,c813 6707 2 00:00:45 gemu-system-x86
system u:system r:unconfined t:s0:cll,c22 6796 2 00:00:26 gemu-system-x86

Both VMs stopped (note that Static VMl.img was relabeled svirt image t
to enable it to run, however Static VM2.img is still labeled

virt image t and runs okay. This is because the process is run as

unconfined t that is allowed to use virt_image_t):

system u:object r:svirt image t:s0:c1022,c1023 Static VMl.img

system u:object r:virt image t:s0 Static VM2.img

2.22.4 Xen Support

This is not supported by SELinux in the usual way as it is built into the actual Xen
software as a 'Flask/TE' extension”” for the XSM (Xen Security Module). Also the
Xen implementation has its own built-in policy (xen . te) and supporting definitions
for access vectors, security classes and initial SIDs for the policy. These Flask/TE
components run in Domain 0 as part of the domain management and control
supporting the Virtual Machine Monitor (VMM) as shown in Figure 2.21.

2 This is a version of the SELinux security server, avc etc. that has been specifically ported for the

Xen implementation.

Page 103

The SELinux Notebook

Domain 0 Domain U Domain U
Modified Linux |[...- >
Kernel to control Guest Guest
Domain U Guests Linux Windows
Flask/TE (with SELinux
Enforcement if
Module .
required)
| [Xen Security] [TTTTTtpottomteemeemtt m-=- "
Modul) .
r odure Xen Virtual Machine Manager (Hypervisor)
Hardware

Figure 2.21: Xen Hypervisor - Using XSM and Flask/TE to enforce
policy on the physical 1/O resources.

The "How Does Xen Work" [18] document describes the basic operation of Xen, the
"Xen Security Modules" [19] describes the XSM/Flask implementation, and the
xsm-flask.txt file in the Xen source package describes how SELinux and its
supporting policy is implemented.

However (just to confuse the issue), there is another Xen policy module (also called
xen. te) in the Reference Policy to support the management of images etc. via the
Xen console.

For reference, the Xen policy supports additional policy language statements:
iomemcon, ioportcon, pcidevicecon and pirgcon that are discussed in the
Xen section of SELinux Policy Language.

2.23 Sandbox Services

Fedora has support for three types of sandbox services in F-20:

1. Non-GUI sandboxing (sandbox - see
http://danwalsh.livejournal.com/28545.html).

There is also a good use-case with solutions at:
http://opensource.com/education/12/8/harvard-goes-paas-selinux-sandbox that
involves uploading information to web servers and access by staff and
students.

2. GUI sandboxing wusing the Xephyr server (sandbox-X - see
http://danwalsh.livejournal.com/31146.html).

This will allow isolation of X applications via nested Xephyr servers. For
example running:

sandbox -t sandbox web t -i /path/to/user/home/dir/.mozilla -W metacity -X firefox

will load Firefox in an isolated X sandbox. The —1i parameter stops Firefox
displaying the 'welcome to Firefox' page at start-up as it will use a copy from
the users current .mozil1la directory.

Page 104

http://danwalsh.livejournal.com/31146.html
http://opensource.com/education/12/8/harvard-goes-paas-selinux-sandbox
http://danwalsh.livejournal.com/28545.html
http://www.xen.org/files/xensummit_4/xsm-summit-041707_Coker.pdf
http://www.xen.org/files/Marketing/HowDoesXenWork.pdf

The SELinux Notebook

Red Hat use sandbox-X as the preferred alternative to XSELinux when
using the targeted policy, this is because X-clients that get a permission
denied will probably abort as they expect full access to the X-server.

Both of these sandbox services are defined in the sandbox (3) man page and
are available in the policycoreutils package. They make use of
seunshare (8) that allows commands to be run in an alternate home directory,
temp directory or security context. The sandbox.conf (5) file allows the
sandbox name, cpu and memory usage to be configured. There is also a
sandbox.init service that can be run at boot time to set up /var/tmp and
/tmp as private (mount --make-private).

Note that the sandbox services require MCS policy support as a minimum as
categories are used to isolate multiple sandboxes. Issuing the following command
will show this usage:

sandbox id -7%
unconfined u:unconfined r:sandbox t:s0:c421,c945

3. Virtulisation sandboxing of applications using either KVM/qemu or LXC*
(Linux Containers) (virt-sandbox - see
http://people.redhat.com/berrange/fosdem-2012/libvirt-sandbox-fosdem-
2012.pdf that contains a good overview).

This service is available in the 1ibvirt-sandbox package and provides an
API and command line services to start sessions. There is currently limited
policy support for virt-sandbox as it primary aim is for developers to
build services and provide the appropriate policy.

The package is built on Svirt that provides the virtulisation with SELinux
enforcement and KVM/gemu or LXC to provide the virtulisation environment.
If KVM support is not available on the machine (as it requires virtulisation
support in the CPU (Intel-VT or AMD-V extensions)), then LXC is the
alternative to use.

An LXC example:

virt-sandbox -c lxc:/// /bin/sh

To run in enforcing mode, the following policy module was added for the
targeted policy:

module lxc example 1.0.0;

require {
type svirt t, virtd lxc t, root t, bin t, proc net t;
type cache home t, user home t, boot t, user tmp t;
class unix stream socket { connectto };
class chr file { open read write ioctl getattr setattr };
class file { read write open getattr entrypoint };
class process { transition sigchld execmem };
class filesystem getattr;

28

Linux Containers do not provide a virtual machine, but a virtual environment that has its own
process and network space.

Page 105

http://selinuxproject.org/page/SVirt
http://people.redhat.com/berrange/fosdem-2012/libvirt-sandbox-fosdem-2012.pdf
http://people.redhat.com/berrange/fosdem-2012/libvirt-sandbox-fosdem-2012.pdf

The SELinux Notebook

allow virtd lxc t root t : chr file { open read write ioctl setattr };
allow virtd lxc t root t : file { write open };

allow virtd lxc_t svirt t : process { transition };

allow svirt t bin t : file { entrypoint };

allow svirt t proc net t : file { read };

allow svirt t virtd lxc t : unix stream socket { connectto };
allow svirt t virtd lxc t : process { sigchld };

allow svirt t cache home t : file { read getattr open };

allow svirt t proc net t : file { getattr open };

allow svirt t root t : chr file { read write ioctl open getattr };
allow svirt t root t : filesystem { getattr };

allow svirt t user home t : file { read open };

that was built and installed as follows:

checkmodule -M -m lxc example.conf -o lxc example.mod
semodule package -o 1lxc example.pp -m lxc example.mod
semodule -v -i 1lxc example.pp

2.24 X-Windows SELinux Support

The SELinux X-Windows (XSELinux) implementation provides fine grained access
control over the majority of the X-server objects (known as resources) using an X-
Windows extention acting as the object manager (OM). The extension name is
"SELinux".

This Notebook will only give a high level description of the infrastructure based on
Figure 2.22, however the "Application of the Flask Architecture to the X Window

System Server" [14] paper has a good overview of how the object manager has been
implemented, although it does not cover areas such as polyinstantiation.

The X-Windows object classes and permissions are listed in the X Windows Object

Classes section and the Reference Policy modules have been updated to enforce
policy using the XSELinux object manager.

On Fedora XSELinux is disabled in the targeted policy but enabled on the MLS
policy. This is because Red Hat prefers to use sandboxing with the Xephyr server to
isolate windows with the targeted policy, see the Sandbox Services section for details.

2.24.1 Infrastructure Overview

It is important to note that the X-Windows OM operates on the low level window
objects of the X-server. A windows manager (such as Gnome or twm) would then sit
above this, however they (the windows manager or even the lower level Xlib) would
not be aware of the policy being enforced by SELinux. Therefore there can be
situations where X-Windows applications get bitter & twisted at the denial of a
service. This can result in either opening the policy more than desired, or just letting
the application keep aborting, or modifying the application.

Page 106

http://www.nsa.gov/research/_files/selinux/papers/xorg07-paper.pdf
http://www.nsa.gov/research/_files/selinux/papers/xorg07-paper.pdf

The SELinux Notebook

x_contexts
File

Policy

libselinux
Library

User-space
AVC

<+

XSELinux Object
Manager
(X-Extension)

Initialise extension + Atoms:
_SELINUX_CONTEXT and
_SELINUX_CLIENT CONTEXT.

Load x_contexts file.
Manage X Object classes,
permissions and SID
allocation.

XSELinuxGet/Set . Functions.
Manage interfaces between the

X-Server, XACE and the
libselinux APL

X-Server

X-Client
Device Independent Layer (DIX)
X-Client
Device Dependent Layer (DDX)
Graphics, Keyboard and Pointer < > |
Hardware X-Protocol over
TCP/IP or Streams | ===
XACE interfaces Xlib
and tables such as: < >

Function Dispatch
Table and
Resource Table

XACE Interface

Netlink Linux Security Kernel Resources
SELinux Access Vector Module (LSM) and supporting
Security [€————P{ Cache (AVC) 4P HObJect Managers
Server

<

g

Z User-space

Kernel-space

Figure 2.22: X-Server and XSELinux Object Manager - Showing the supporting services. The kernel space services are discussed in the
Linux Security Module and SELinux section.

Page 107

The SELinux Notebook

Using Figure 2.22, the major components that form the overall XSELinux OM are
(top left to right):

The Policy - The Reference Policy has been updated, however in Fedora the OM
is enabled for mls and disabled for targeted policies via the xserver-object-
manager boolean. Enabling this boolean also initialises the XSELinux OM
extension. Important note - The boolean must be present in any policy and be set
to true, otherwise the object manager will be disabled as the code specifically
checks for the boolean.

libselinux - This library provides the necessary interfaces between the OM,
the SELinux userspace services (e.g. reading configuration information and
providing the AVC), and kernel services (e.g. security server for access decisions
and policy update notification).

x_contexts File - This contains default context configuration information that
is required by the OM for labeling certain objects. The OM reads its contents
using the selabel lookup (3) function.

XSELinux Object Manager - This is an X-extension for the X-server process
that mediates all access decisions between the the X-server (via the XACE
interface) and the SELinux security server (via libselinux). The OM is
initialised before any X-clients connect to the X-server.

The OM has also added XSELinux functions that are described in Table 12 to
allow contexts to be retrieved and set by userspace SELinux-aware applications.

XACE Interface - This is an 'X Access Control Extension' (XACE) that can be
used by other access control security extensions, not only SELinux. Note that if
other security extensions are linked at the same time, then the X-function will only
succeed if allowed by all the security extensions in the chain.

This interface is defined in the "X Access Control Extension Specification" [15].
The specification also defines the hooks available to OMs and how they should be
used. The provision of polyinstantiation services for properties and selections is
also discussed. The XACE interface is a similar service to the LSM that supports
the kernel OMs.

X-server - This is the core X-Windows server process that handles all request and
responses to/from X-clients using the X-protocol. The XSELinux OM is
intercepting these request/responses via XACE and enforcing policy decisions.

X-clients - These connect to the X-server are are typically windows managers
such as Gnome, twm or KDE.

Kernel-Space Services - These are discussed in the Linux Security Module and
SELinux section.

2.241.1 Polyinstantiation

The OM / XACE services support polyinstantiation of properties and selections
allowing these to be grouped into different membership areas so that one group does
not know of the exsistance of the others. To implement polyinstantiation the poly
keyword is used in the x_contexts file for the required selections and properties,
there would then be a corresponding type member rule in the policy to enforce the

Page 108

http://www.x.org/releases/X11R7.5/doc/security/XACE-Spec.pdf

The SELinux Notebook

separation by computing a new context with either
security compute member (3) or avc_compute member (3).

Note that the current Reference Policy does not implement polyinstantiation, instead
the MLS policy uses mlsconstrain rules to limit the scope of properties and
selections.

2.24.2 Configuration Information
This section covers:

* How to enable/disable the OM X-extension.
* How to determine the OM X-extension opcode.
* How to configure the OM in a specific SELinux enforcement mode.

* The x-contexts configuration file.

2.24.21 Enable/Disable the OM from Policy Decisions

The Reference Policy has a xserver object manager boolean that
enables/disables the X-server policy module and also stops the object manager
extension from initialising when X-Windows is started. The following command will
enable the boolean, however it will be necessary to reload X-Windows to initialise the
extension (i.e. runthe init 3 and then init 5 commands):

setsebool -P xserver object manager true

If the boolean is set to false, the x-server log will indicate that "SELinux: Disabled
by boolean". Important note - If the boolean is not present in a policy then the object
manager will always be enabled (therefore if not required then either do not include
the object manager in the X-server build, add the boolean to the policy and set it to
false or add a disabled entry to the xorg.conf file as described in the Configure
OM Enforcement Mode section).

2.24.2.2 Determine OM X-extension Opcode

The object manager is treated as an X-server extension and its major opcode can be
queried using Xlib XQueryExtension function as follows:

/* Get the SELinux Extension opcode */
if (!XQueryExtension (dpy, "SELinux", &opcode, &event, &error)) {
perror ("XSELinux extension not available");
exit (1);
}
else
printf ("XQueryExtension for XSELinux Extension - Opcode: %d
Events: %d Error: %d \n", opcode, event, error);
/* Have XSELinux Object Manager */

2.24.2.3 Configure OM Enforcement Mode

If the X-server object manager needs to be run in a specific SELinux enforcement
mode, then the option may be added to the xorg.conf file (normally in
/etc/X11/xorg.conf.d). The option entries are as follows:

Page 109

The SELinux Notebook

"SELinux mode disabled"
"SELinux mode permissive"
"SELinux mode enforcing"

Note that the entry must be exact otherwise it will be ignored. An example entry is:

Section "Module"
SubSection "extmod"
Option "SELinux mode enforcing"
EndSubSection
EndSection

If there is no entry, the object manager will follow the current SELinux enforcement
mode.

2.24.24 The x_contexts File

The x contexts file contains default context information that is required by the
OM to initialise the service and then label objects as they are created. The policy will
also need to be aware of the context information being used as it will use this to
enforce policy or transition new objects. A typical entry is as follows:

object_type object name context

selection PRIMARY system u:object r:clipboard xselection t:s0
or for polyinstantiation support:

object type object name context

poly selection PRIMARY system u:object r:clipboard xselection t:s0

The object name can contain "*' for 'any' or '?' for 'substitute'.

The OM uses the selabel functions (such as selabel lookup (3)) that are a
part of 1ibselinux to fetch the relevant information from the x contexts file.

The valid object type entries are client, property, poly property,
extension, selection,poly selectionand events.

The object name entries can be any valid X-server resource name that is defined
in the X-server source code and can typically be found in the protocol. txt and
BuiltInAtoms source files (in the dix directory of the xorg-server source
package), or user generated via the Xlib libraries (e.g. XInternAtom).

Notes:

1. The way the XSELinux extension code works (see xselinux label.c -
SELinuxAtomToSIDLookup) is that non-poly entries are searched for
first, if an entry is not found then it searches for a matching poly entry.

The reason for this behavior is that when operating in a secure environment all
objects would be polyinstantiated unless there are specific exemptions made
for individual objects to make them non-polyinstantiated. There would then be
a'poly selection *'or'poly property *'atthe end of the section.

Page 110

The SELinux Notebook

2. For systems using the Reference Policy all X-clients connecting remotely will
be allocated a security context from the x contexts file of:

object_type object name context
client * system u:object r:remote t:sO

A full description of the x contexts file format is given in the x_contexts File

section.

Page 111

The SELinux Notebook

2.24.3 SELinux Extension Functions
Function Name Minor | Parameters Comments
Opcode
XSELinuxQueryVersion 0 None Returns the XSELinux version. F-20 returns 1.1
XSELinuxSetDeviceCreateContext 1 Context+Len Sets the context for creating a device object (x_device).
XSELinuxGetDeviceCreateContext 2 None Retrieves the context set by xsELinuxSetDeviceCreateContext.
XSELinuxSetDeviceContext 3 DevicelD + Context+Len | Sets the context for creating the specified DevicelD object.
XSELinuxGetDeviceContext 4 DevicelD Retrieves the context set by XSELinuxSetDeviceContext.
XSELinuxSetWindowCreateContext 5 Context+Len Set the context for creating a window object (x_window).
XSELinuxGetWindowCreateContext 6 None Retrieves the context set by xSELinuxSetWindowCreateContext.
XSELinuxGetWindowContext 7 WindowID Retrieves the specified WindowID context.
XSELinuxSetPropertyCreateContext 8 Context + Len Sets the context for creating a property object (x_property).
XSELinuxGetPropertyCreateContext 9 None Retrieves the context set by XSELinuxSetPropertyCreateContext.
XSELinuxSetPropertyUseContext 10 Context + Len Sets the context of the property object to be retrieved when polyinstantiation is
being used.
XSELinuxGetPropertyUseContext 11 |None Retrieves the property object context set by SELinuxSetPropertyUseContext.
XSELinuxGetPropertyContext 12 WindowID + AtomID Retrieves the context of the property atom object.
XSELinuxGetPropertyDataContext 13 WindowID + AtomID Retrieves the context of the property atom data.
XSELinuxListProperties 14 WindowID Lists the object and data contexts of properties associated with the selected
WindowID.
XSELinuxSetSelectionCreateContext 15 Context+Len Sets the context to be used for creating a selection object.
XSELinuxGetSelectionCreateContext 16 |None Retrieves the context set by SELinuxSetSelectionCreateContext.
XSELinuxSetSelectionUseContext 17 Context+Len Sets the context of the selection object to be retrieved when polyinstantiation is
being used. See the XSELinuxListSelections function for an example.
XSELinuxGetSelectionUseContext 18 None Retrieves the selection object context set by SELinuxSetSelectionUseContext.

Page 112

The SELinux Notebook

Function Name

Minor
Opcode

Parameters

Comments

XSELinuxGetSelectionContext

19

AtomID

Retrieves the context of the specified selection atom object.

XSELinuxGetSelectionDataContext

20

AtomID

Retrieves the context of the selection data from the current selection owner
(x_application data object).

XSELinuxListSelections

21

None

Lists the selection atom object and data contexts associated with this display. The
main difference in the listings is that when (for example) the PRIMARY selection
atom is polyinstantiated, multiple entries can returned. One has the context of the
atom itself, and one entry for each process (or x-client) that has an active
polyinstantiated entry, for example:

Atom: PRIMARY - label defined in the x contexts file (this is also for non-poly listing):
Object Context: system u:object r:primary xselection t
Data Context: system u:object r:primary xselection t

Atom: PRIMARY - Labels for client 1:
Object Context: system u:object r:x select pastel t
Data Context: system u:object r:x select pastel t

Atom: PRIMARY - Labels for client 2:
Object Context: system u:object r:x select paste2 t
Data Context: system u:object r:x select paste2 t

XSELinuxGetClientContext

22

ResourcelD

Retrieves the client context of the specified ResourcelD.

Table 12: The XSELinux Extension Functions - Supported by the object manager as X-protocol extensions. Note that some functions will
return the default contexts, while others (2, 6, 9, 11, 16, 18) will not return a value unless one has been set the the appropriate function (1, 5, 8,
10, 15, 17) by an SELinux-aware application.

Page 113

The SELinux Notebook

2.25 SE-PostgreSQL

This section gives an overview of PostgreSQL version 9.3 with the sepgsqgl
extension to support SELinux labeling. It assumes some basic knowledge of
PostgreSQL that can be found at: http://wiki.postgresql.org/wiki/Main_Page

It is important to note that PostgreSQL from version 9.3 has the necessary
infrastructure to support labeling of database objects via external 'providers'. An
sepgsqgl extension has been added that provides SELinux labeling. This is not
installed by default but as an option as outlined in the sections that follow. Because of
these changes the original version 9.0 patches are no longer supported (i.e. the SE-
PostgreSQL database engine is replaced by PostgreSQL database engine 9.3 plus the
sepgsql extension). A consequence of this change is that row level labeling is no
longer supported.

The features of sepgsql 9.3 and its setup are covered in the following document:

http://www.postgresgl.org/docs/9.3/static/sepgsql.html

2.251 sepgsql Overview

The sepgsgl extension adds SELinux mandatory access controls (MAC) to
database objects such as tables, columns, views, functions, schemas and sequences.
Figure 2.23 shows a simple database with one table, two columns and three rows,
each with their object class and associated security context (the Internal Tables

section shows these entries from the testdb database in the Notebook tarball

example). The database object classes and permissions are described in Appendix A -
Object Classes and Permissions.

database
context = 'unconfined u:object r:postgresql db t:s0'

This context is inherited from the database directory label - 1s -z /var/lib/pgsqgl/data

schema (db schema)

security label = 'unconfined u:object r:sepgsgl schema t:s10'

table (db_ table)

security label = 'unconfined u:object r:sepgsgl table t:s0:c20'

column 1 (db column) | column 2 (db_ column)

security label = security label =
'unconfined u:object r:sep | 'unconfined u:object r:se
gsqgl table t:s0:c30' pgsgl table t:s0:c40'

Figure 2.23: Database Security Context Information - Showing the security
contexts that can be associated to a schema, table and columns.

To use SE-PostgreSQL each GNU / Linux user must have a valid PostgreSQL
database role (not to be confused with an SELinux role). The default installation
automatically adds a user called pgsqgl with a suitable database role.

Page 114

http://www.postgresql.org/docs/9.3/static/sepgsql.html
http://wiki.postgresql.org/wiki/Main_Page

The SELinux Notebook

If a client is connecting remotely and labeled networking is required, then it is
possible to use IPSec or NetLabel as discussed in the SELinux Networking Support
section (the "Security-Enhanced PostgreSQL Security Wiki" [2] also covers these

methods of connectivity with examples).

Using Figure 2.24, the database client application (that could be provided by an API
for Perl/PHP or some other programming language) connects to a database and
executes SQL commands. As the SQL commands are processed by PostgreSQL, each
operation performed on an object is checked by the object manager (OM) to see if the
opration is allowed by the security policy or not.

Database Client

(c.g.psql)
i SQL Query / |
Ve Results SE-PostgreSQL |
S~ Object Manager ;
3 —» 1
‘| Database <P _ Pef:fszlfons (sepgsql extension)
l (filestore) SQL Engine | |
o~ 1
3 libselinux l

4> < g SELinux
Kernel LSM 4P| Kernel AVC 4P Security Al Policy
Resources Server

< 4

Figure 2.24: SE-PostgreSQL Services - The Object Manager checks access
permissions for all objects under its control.

SE-PostgreSQL supports SELinux services via the 1ibselinux library with AVC
audits being logged into the standard PostgreSQL file as described in the Logging
Security Events section.

2.25.2 Installing SE-PostgreSQL

The http://www.postgresql.org/docs/devel/static/sepgsql.html page contains all the
information required to install PostgreSQL and the sepgsgl extension, however the
Notebook tarball sepgsgl-9.3/README file also explains this and adds a simple
test database.

Page 115

http://www.postgresql.org/docs/devel/static/sepgsql.html
http://wiki.postgresql.org/wiki/SEPostgreSQL_Development

The SELinux Notebook

2.25.3 SECURITY LABEL SQL Command

The 'SECURITY LABEL' SQL command has been added to PostgreSQL to allow
security providers to label or change a label on database objects. The command
format is:

SECURITY LABEL [FOR provider] ON
{
TABLE object name |
COLUMN table name.column name |
AGGREGATE agg name (agg type [, ...]) |
DATABASE object name |
DOMAIN object name |
EVENT TRIGGER object name |
FOREIGN TABLE object name
FUNCTION function name ([[argmode] [argname] argtype
[, ---11) |
LARGE OBJECT large object oid |
[PROCEDURAL] LANGUAGE object name |
ROLE object name |
SCHEMA object name |
SEQUENCE object name |
TABLESPACE object name |
TYPE object name |
VIEW object name
} IS 'label'

The full syntax is defined at http://www.postgresql.org/docs/9.3/static/sql-security-
label.html and also in the security label (7) man page. Some examples taken
from the Notebook tarball are:

-—-- These set the security label on objects (default provider
-—-— 1is SELinux) :

SECURITY LABEL ON SCHEMA test ns IS

'unconfined u:object r:sepgsqgl schema t:s0:cl0';

SECURITY LABEL ON TABLE test ns.info IS

'unconfined u:object r:sepgsql table t:s0:c20';

SECURITY LABEL ON COLUMN test ns.info.user name IS
'unconfined u:object r:sepgsqgl table t:s0:c30';

SECURITY LABEL ON COLUMN test ns.info.email addr IS
'unconfined u:object r:sepgsqgl table t:s0:c40';

2.25.4 Additional SQL Functions

The following functions have been added:

sepgsgl getcon () Returns the client security context.

sepgsgl mcstrans in(text Translates the readable range of the
con) context into raw format provided the
mcstransd daemon is running.

sepgsgl_mcstrans_out (text Translates the raw range of the context
con) into readable format provided the
mcstransd daemon is running.

Page 116

http://www.postgresql.org/docs/9.3/static/sql-security-label.html
http://www.postgresql.org/docs/9.3/static/sql-security-label.html

The SELinux Notebook

sepgsgl restorecon (text Sets security contexts on all database

specfile) objects (must be superuser) according to
the specfile. This is normally used for
initialisation of the database by the
sepgsql . sql script. If the parameter is
NULL, then the default
sepgsgl contexts file is used. See
selabel db (5) details.

2.25.5 Additional postgresql.conf Entries

The postgresqgl. conf file supports the following additional entries to enable and
manage SE-PostgreSQL:

1. This entry is mandatory to enable the sepgsqgl extention to be loaded:

shared preload libraries = 'sepgsqgl'

2. These entries are optional and default to 'off'. The
'custom variable classes' entry must contain 'sepgsqgl' to enable
these to be configured.

This entry allows sepgsgl customised entries:
custom variable classes = 'sepgsqgl'

These are the possible entries:
This enables sepgsgl to always run in permissive mode:
sepgsqgl.permissive = on

This enables printing of audit messages regardless of
the policy setting:
sepgsgl.debug _audit = on

To view these settings the SHOW SQL statement can be used (psgl output
shown):

SHOW sepgsqgl.permissive;
sepgsqgl .permissive

on

(1 row)

SHOW sepgsqgl.debug audit;
sepgsqgl.debug audit

on

(1 row)

Page 117

The SELinux Notebook

2.25.6 Logging Security Events

SE-PostgreSQL manages its own AVC audit entries in the standard PostgreSQL log
normally located within the /var/lib/pgsqgl/data/pg log directory and by
default only errors are logged (Note that there are no SE-PostgreSQL AVC entries
added to the standard audit.log). The 'sepgsgl.debug audit = on'can be
set to log all audit events.

2.25.7 Internal Tables

To support the overall database operation PostgreSQL has internal tables in the
system catalog that hold information relating to databases, tables etc. This section will
only highlight the pg seclabel table that holds the security label and other
references. The pg seclabel is described in Table 13 that has been taken from
http://www.postgresqgl.org/docs/9.3/static/catalog-pg-seclabel.html.

Name Type References Comment

objoid oid |any OID column | The OID of the object this security label pertains to.

classoid| oid |pg_class.oid |The OID of the system catalog this object appears in.

objsubid| int4 For a security label on a table column, this is the column
number (the objoid and classoid refer to the table
itself). For all other objects this column is zero.

provider| text The label provider associated with this label. Currently
only SELinux is supported.

label text The security label applied to this object.

Table 13: pg_seclabel Table Columns

These are entries taken from a 'SELECT * FROM pg seclabel;'command that
refer to the example testdb database built using the Notebook tarball samples:

objoid | classoid | objsubid | provider | label

———————— B et et et
16390 | 2615 | 0 | selinux | unconfined u:object r:sepgsql schema t:s0:cl0
16391 | 1259 | 0 | selinux | unconfined u:object r:sepgsql table t:s0:c20
16391 | 1259 | 1 | selinux | unconfined u:object r:sepgsql table t:s0:c30
16391 | 1259 | 2 | selinux | unconfined u:object r:sepgsgl table t:s0:c40

The first entry is the schema, the second entry is the table itself, and the third and
fourth entries are columns 1 and 2.

There is also a built-in 'view' to show additional detail regarding security labels called
'og seclabels'. Using 'SELECT * FROM pg seclabels;' command, the
entries shown above become:

objoid | classoid | objsubid | objtype | objnamespace | objname | provider | label
16390 | 2615 | 0 | schema | 16390 | test_ns | selinux | unconfined u:object r:sepgsqgl_ schema_ t:s0:cl0
16391 | 1259 | 0 | table | 16390 | test_ns.info | selinux | unconfined u:object_r:sepgsql_table t:s0:c20
16391 | 1259 | 1 | column | 16390 | test_ns.info.user name | selinux | unconfined u:object r:sepgsql table t:s0:c30
| | 2| | | | _

16391

1259

column 16390 test ns.info.email addr| selinux

Page 118

unconfined u:object r:sepgsql table t:s0:c40

http://www.postgresql.org/docs/9.3/static/catalog-pg-class.html
http://www.postgresql.org/docs/9.3/static/catalog-pg-seclabel.html

The SELinux Notebook

2.26 Apache SELinux Support

Apache web servers are supported by SELinux using the Apache policy modules from
the Reference Policy (httpd modules), however there is no specific Apache object
manger. There is though an SELinux-aware shared library and policy that will allow
finer grained access control when using Apache with threads. The additional Apache
module is called mod selinux.so and has a supporting policy module called
mod selinux.pp.

The mod selinux policy module makes use of the typebounds Statement that
was introduced into version 24 of the policy (requires a minimum kernel of 2.6.28).
mod selinux allows threads in a multi-threaded application (such as Apache) to be
bound within a defined set of permissions in that the child domain cannot have greater
permissions than the parent domain.

These components are known as 'Apache / SELinux Plus' and are described in the
sections that follow, however a full description including configuration details is
available from:

http://code.google.com/p/sepgsql/wiki/Apache SELinux_ plus

The objective of these Apache add-on services is to achieve a fully SELinux-aware
web stack (although not there yet). For example, currently the LAPP* (Linux,
Apache, PostgreSQL, PHP / Perl / Python) stack has the following support:

L |Linux has SELinux support.

A |Apache has partial SELinux support using the 'Apache SELinux Plus'
module.

P | PostgreSQL has SELinux support using SE-PostgreSQL.

P |PHP / Perl / Python are not currently SELinux-aware, however PHP and
Python do have support for libselinux functions in packages: PHP - with
the php-pecl-selinux package, Python - with the 1ibselinux-
python package.

The "A secure web application platform powered by SELinux" [16] document gives a
good overview of the LAPP architecture.

2.26.1 mod selinux Overview

What the mod selinux module achieves is to allow a web application (or a 'request
handler') to be launched by Apache with a security context based on policy rather than
that of the web server process itself, for example:

1. A user sends an HTTP request to Apache that requires the services of a web
application (Apache may or may not apply HTTP authentication).

2. Apache receives the request and launches the web application instance to
perform the task:

» This is similar to the LAMP (Linux, Apache, MySQL, PHP/Perl/Python) stack, however MySQL
is not SELinux-aware.

Page 119

http://sepgsql.googlecode.com/files/LCA20090120-lapp-selinux.pdf
http://code.google.com/p/sepgsql/wiki/Apache_SELinux_plus

The SELinux Notebook

a) Without mod selinux enabled the web applications security context
is identical to the Apache web server process, it is therefore not
possible to restrict it privileges.

b) With mod selinux enabled, the web application is launched with
the security context defined in the mod selinux.conf file
(selinuxDomainVal <security context> entry). It is also
possible to restrict its privileges as described in the Bounds Overview
section.

3. The web application exits, handing control back to the web server that replies
with the HTTP response.

2.26.2 Bounds Overview

Because multiple threads share the same memory segment, SELinux was unable to
check the information flows between these different threads when using setcon (3)
in pre 2.6.28 kernels. This meant that if a thread (the parent) should launch another
thread (a child) with a different security context, SELinux could not enforce the
different permissions.

To resolve this issue the t ypebounds statement was introduced with kernel support
in 2.6.28 that stops a child thread (the 'bounded domain') having greater privileges
than the parent thread (the 'bounding domain') i.e. the child thread must have equal or
less permissions than the parent.

For example the following t ypebounds statement and allow rules:

parent | child
domain | domain
typebounds httpd t httpd child t;

allow httpd t etc t : file { getattr read };
allow httpd child t etc t : file { read write };

State that the parent domain (httpd t) has file : { getattr read }
permissions. However the child domain (httpd child t) has been given
file : { read write }. Atrun-time, this would not be allowed by the kernel
because the parent does not have write permission, thus ensuring the child domain
will always have equal or less privileges than the parent.

When setcon (3) is used to set a different context on a new thread without an
associated typebounds policy statement, then the call will return 'Operation not
permitted’ and an SELINUX ERR entry will be added to the audit log stating
'op=security bounded transition result=denied' with the old and
new context strings.

Should there be a valid typebounds policy statement and the child domain
exercises a privilege greater that that of the parent domain, the operation will be
denied and an SELINUX ERR entry will be added to the audit log stating
'op=security compute av reason=bounds' with the context strings and
the denied class and permissions.

Page 120

The SELinux Notebook

2.26.2.1 Notebook Examples

The Notebook source tarball contains two demonstrations using setcon (3) with
threads and how the t ypebounds statement is used to allow a thread to be executed.
These are located in the 1ibselinux/examples directory and are:

a)

b)

setcon threadl example.c - this example calls setcon in the main
process loop but also starts a thread. If the setcon example.conf policy
module has been been loaded and a context of
"unconfined u:unconfined r:user t:s0" selected, then an error message
should be displayed as follows:

setcon raw - ERROR: Operation not permitted

This is because the setcon function cannot be run in a threaded environment
without a typebounds statement. Now load the
setcon thread example.conf policy module and then re-run the
example, it should now complete without error.

setcon thread2 example.c - this functions as example 1, however it
calls setcon from a thread.

Page 121

The SELinux Notebook

3. SELinux Configuration Files

3.1 Introduction

This section explains each SELinux configuration file with its format, example
content and where applicable, any supporting SELinux commands or 1ibselinux
library API function names.

Where configuration files have specific man pages, these are noted by adding the man
page section (e.g. semanage.config(5)).

This Notebook classifies the types of configuration file used in SELinux as follows:

1. Global Configuration files that affect the active policy and their supporting
SELinux-aware applications, utilities or commands. This Notebook will only
refer to the commonly used configuration files.

2. Policy Configuration files used by an active (run time) policy and their
supporting Policy Store Configuration files.

The Policy Store Configuration files are 'private'”® and managed by the

semanage (8) and semodule (8) commands®'. These are used to build
the majority of the Policy Configuration files. This store will be moving as
part of a migration programme, see
https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration and
Policy Store Migration for details.

Note that there can be multiple policy configuration areas on a system (e.g.
/etc/selinux/targeted and /etc/selinux/mls), however only
one can be the active policy).

3. SELinux Kernel Configuration files located under the /sys/fs/selinux
directory and reflect the current configuration of SELinux for the active
policy. This area is used extensively by the libselinux library for
userspace object managers and other SELinux-aware applications. These files
and directories should not be updated by users (the majority are read only
anyway), however they can be read to check various configuration parameters.

3.1.1 Policy Store Migration

When distributions move to version 2.4 of libsemanage, libsepol, and
policycoreutils the policy module store will move from
/etc/selinux/<SELINUXTYPE>/modules to
/var/lib/selinux/<SELINUXTYPE>. Once the libraries are upgraded, all
policy stores must be migrated before any commands can be executed that modify or
use the store, for example semodule(8) or semanage(8). See
https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration for details.

30 They should NOT be edited as together they describe the 'policy’.

3 The system-config-selinux GUI (supplied in the polycoreutils-gui rpm) can also

be used to manage users, booleans and the general configuration of SELinux as it calls
semanage (8), however it does not manage all that the semanage command can (it also gets
bitter & twisted if there are no MCS/MLS labels on some operations).

Page 122

https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration
https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration

The SELinux Notebook

Once the migration is complete, it will be possible to build policies containing a
mixture of Reference Policy modules, kernel policy language modules and modules
written in the CIL language as shown in the following example:

Compile and install a base and two modules written in kernel language:
checkmodule -o base.mod base.conf

semodule package -o base.pp -m base.mod -f base.fc

checkmodule -m ext gateway.conf -o ext gateway.mod

semodule package -o ext gateway.pp -m ext gateway.mod -f gateway.fc

checkmodule -m int gateway.conf -o int gateway.mod

semodule package -o int gateway.pp -m int gateway.mod

semodule -s modular-test --priority 100 -i base.pp ext gateway.pp int gateway.pp

Compile and install an updated module written in CIL:
semodule -s modular-test --priority 400 -i custom/int gateway.cil

Show a full listing of modules:

semodule -s modular-test --list-modules=full
400 int gateway cil

100 base PP

100 ext gateway pp

100 int gateway pp

Show a standard listing of modules:

semodule -s modular-test --list-modules=standard
base

ext gateway

int gateway

Note the use of ——priority 100 and --priority 400 option that is available
after migration for semodule (8). This command has a number of new options,
with the most significant being:

1. Setting module priorities (-X | --priority), this is discussed in The
priority Option section.

2. Listing modules (--1ist-modules=full | standard). The 'full’
option shows all the available modules with their priority and policy format.
The 'standard' option will only show the highest priority, enabled modules.

3.1.1.1 The priority Option

32Priorities allow multiple modules with the same name to exist in the policy store,
with the higher priority module included in the final kernel binary, and all lower
priority modules of the same name ignored. For example:

semodule —--priority 100 --install distribution/apache.pp
semodule —--priority 400 --install custom/apache.pp

Both apache modules are installed in the policy store as 'apache', but only the custom
apache module is included in the final kernel binary. The distribution apache module
is ignored. The --11ist-modules options can be used to show these:

Show a full listing of modules:
semodule --list-modules=full

400 apache pp

100 base joje]

100 apache pp

Show a standard listing of modules:
semodule --list-modules=standard

32

This text has been derived from: http://marc.info/?1=selinux&m=141044198403718&w=2.

Page 123

http://marc.info/?l=selinux&m=141044198403718&w=2

The SELinux Notebook

base
apache

The main use case for this is the ability to override a distribution provided policy,
while keeping the distribution policy in the store.

This makes it easy for distributions, 3rd parties, configuration management tools (e.g.
puppet), local administrators, etc. to update policies without erasing each others
changes. This also means that if a distribution, 3rd party etc. updates a module,
providing the local customisation is installed at a higher priority, it will override the
new distribution policy.

This does require that policy managers adopt some kind of scheme for who uses what
priority. No strict guidelines currently exist, however the value used by the
semanage migrate store scriptis ——priority 100 as this is assumed to
be migrating a distribution. If a value is not provided, semodule will use a default
of ——priority 400 asitis assumed to be a locally customised policy.

When semodule builds a lower priority module when a higher priority is already
available, the following message will be given: "A higher priority <name>
module exists at priority <999> and will override the
module currently being installed at priority <111>".

3.1.1.2 Converting policy packages to CIL

A component of the update is to add a facility that converts compiled policy modules
(known as policy packages or the * . pp files) to CIL format. This is achieved via a
pp to CIL high level language conversion utility located at
/usr/libexec/selinux/hl1l/pp. This utility can be used manually as
follows:

cat module name.pp | /usr/libexec/selinux/hll/pp > module name.cil

There is no man page for 'pp', however the help text is as follows:

Usage: pp [OPTIONS] [IN FILE [OUT FILE]]

Read an SELinux policy package (.pp) and output the equivilent CIL.
If IN FILE is not provided or is -, read SELinux policy package from
standard input. If OUT FILE is not provided or is -, output CIL to
standard output.

Options:
-h, --help print this message and exit

3.2 Global Configuration Files

Listed in the sections that follow are the common configuration files used by SELinux
and are therefore not policy specific. The two most important files are:

* /etc/selinux/config - This defines the policy to be activated and its
enforcing mode.

Page 124

The SELinux Notebook

* /etc/selinux/semanage.conf - This is used by the SELinux policy
configuration subsystem for modular or CIL policies.

3.21 /etc/selinux/config File

If this file is missing or corrupt no SELinux policy will be loaded (i.e. SELinux is
disabled). The file man page is selinux config (5), this is because 'config' has
already been taken. The config file controls the state of SELinux using the
following parameters:

SELINUX=enforcing|permissive|disabled
SELINUXTYPE=policy name
SETLOCALDEFS=0|1

REQUIREUSERS=0 |1

AUTORELABEL=0|1

Where:
SELINUX This entry can contain one of three values:
enforcing
SELinux security policy is enforced.
permissive

SELinux logs warnings (see the Auditing
SELinux Events section) instead of enforcing the
policy (i.e. the action is allowed to proceed).

disabled

No SELinux policy is loaded.

Note that this configures the global SELinux
enforcement mode. It is still possible to have domains
running in permissive mode and/or object managers
running as disabled, permissive or enforcing, when the
global mode is enforcing or permissive.

SELINUXTYPE The policy name is used as the directory name
where the active policy and its configuration files will
be located. The system will then use this information to
locate and load the policy contained within this
directory structure.

The policy directory must be located at:
/etc/selinux/<policy name>/
SETLOCALDEFS This optional field should be set to 0 (or the entry
removed) as the policy store management

infrastructure (semanage (8) / semodule (8)) is
now used.

If set to 1, then init (8) and load policy (8)
will read the local customisation for booleans and

Page 125

The SELinux Notebook

users.

REQUIRESEUSERS This optional field can be used to fail a login if there is
no matching or default entry in the seusers file or if
the file is missing.

It is checked by the libselinux function
getseuserbyname (3) that is used by SELinux-
aware login applications such as PAM (8) .

If it is set to O or the entry missing:

getseuserbyname (3) will return the GNU /
Linux user name as the SELinux user.

Ifitissetto 1:

getseuserbyname (3) will fail.

AUTORELABEL This is an optional field. If set to '0' and there is a file
called .autorelabel in the root directory, then on a
reboot, the loader will drop to a shell where a root
logon is required. An administrator can then manually
relabel the file system.

If set to 'l' or the parameter name is not used (the
default) there is no login for manual relabeling,
however should the / .autorelabel file exists, then
the file system will be automatically relabeled using
fixfiles -F restore.

In both cases the /.autorelabel file will be
removed so the relabel is not done again.

Example config file contents are:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.

permissive - SELinux prints warnings instead of enforcing.
disabled - No SELinux policy is loaded.
SELINUX=permissive

#

SELINUXTYPE= can take one of these two values:

targeted - Targeted processes are protected,

mls - Multi Level Security protection.
SELINUXTYPE=targeted

3.2.2 /etc/selinux/semanage.conf File

The semanage.config(5) file controls the configuration and actions of the
semanage (8) and semodule (8) set of commands using the following
parameters:

module-store = method

Page 126

The SELinux Notebook

policy-version = policy version
expand-check = 0|1

file-mode = mode

save-previous = true|false
save-linked = true|false
disable-genhomedircon = true|false
handle-unknown = allow|deny|reject
bzip-blocksize = 0[1..9

bzip-small truel|false

usepasswd = truel|false

ignoredirs dir [;dir]

[verify kernel]

path = <application to run>
args = <arguments>

[end]

[verify module]

path = <application to run>
args = <arguments>

[end]

[verify linked]

path = <application to run>
args = <arguments>

[end]

[load policy]
path = <application to run>

args = <arguments>

[end]

[setfiles]

path = <application to run>
args = <arguments>

[end]

[sefcontext compile]

path = <application to run>
args = <arguments>

[end]

[load policy]

path = <application to run>
args = <arguments>

[end]

libsepol (v2.4) with CIL support add the following:
store-root = <path>

compiler-directory = <path>

ignore-module-cache = true|false

target-platform = selinux | xen

Where:

module-store The method can be one of four options:

direct libsemanage will write

Page 127

The SELinux Notebook

directly to a module store.
This is the default value.

source libsemanage
manipulates a source
SELinux policy.

/foo/bar Write via a policy

management server, whose
named socket is at

/ foo/bar. The path must
begin witha'/".

foo.com:4242 Establish a TCP connection
to a remote policy
management server at
foo.com. Ifthereis a
colon then the remainder is
interpreted as a port
number; otherwise default
to port 4242.

policy-version This optional entry can contain a policy version
number, however it is normally commented out
as it then defaults to that supported by the system.

expand-check This optional entry controls whether hierarchy
checking on module expansion is enabled (1) or
disabled (0). The default is 0.

It is also required to detect the presence of policy
rules that are to be excluded with neverallow

rules.

file-mode This optional entry allows the file permissions to
be set on runtime policy files. The format is the
same as the mode parameter of the chmod
command and defaults to 0644 if not present.

save-previous This optional entry controls whether the previous
module directory is saved (TRUE) after a
successful commit to the policy store. The default
is to delete the previous version (FALSE).

save-linked This optional entry controls whether the
previously linked module is saved (TRUE) after a
successful commit to the policy store. Note that
this option will create a base . 1inked file in

the module policy store.

The default is to delete the previous module

(FALSE).
disable- This optional entry controls whether the
genhomedircon embedded genhomedi rcon function is run

Page 128

The SELinux Notebook

when using the semanage (8) command. The
default is FALSE.

handle-unknown This optional entry controls the kernel behaviour
for handling permissions defined in the kernel but
missing from the policy (that are declared at the
start of the base . conf (loadable policy) or
policy.conf_(monolithic policy)).

The options are: allow the permission, reject
by not loading the policy or deny the
permission. The default is deny. See the
SELinux Filesystem section for how these are
reported in /sys/fs/selinux.

Note: to activate any change, the base policy
needs to be rebuilt with the semodule -B
command.

bzip-blocksize This optional entry determines whether the

modules are compressed or not with bzip. If the
entry is 0, then no compression will be used (this
is required with tools such as sechecker and
apol). This can also be set to a value between 1
and 9 that will set the block size used for
compression (bzip will multiply this by
100,000, so '9' is faster but uses more memory).

bzip-small When this optional entry is set to TRUE the
memory usage is reduced for compression and
decompression (the bzip —s or ——-small
option). If FALSE or no entry present, then does
not try to reduce memory requirements.

usepasswd When this optional entry is set to TRUE
semanage will scan all password records for
home directories and set up their labels correctly.

If set to FALSE (the default if no entry present),
then only the /home directory will be
automatically re-labeled.

ignoredirs With a list of directories to ignore (separated by
'; ") when setting up users home directories. This
is used by some distributions to stop labeling
/root as a home directory.

[verify kernel] Start an additional set of entries that can be used
to validate the kernel policy with an external
application during the build process. There may
be multiple [verify kernel] entries.

The validation process takes place before the
policy is allowed to be inserted into the store with

Page 129

The SELinux Notebook

a worked example shown in Appendix E - Policy
Validation Example.

[verify module] Start an additional set of entries that can be used
to validate each module by an external
application during the build process. There may
be multiple [verify module] entries.

[verify linked] Start an additional set of entries that can be used
to validate module linking by an external
application during the build process. There may
be multiple [verify linked] entries.

[load policy] Replace the default load policy application with
this new policy loader. Defaults are either:
/sbin/load policy or
/usr/sbin/load policy.

[setfiles] Replace the default set files application with this
new set files. Defaults are either:
/sbin/setfiles or
/usr/sbin/setfiles.

[sefcontexts_compile] Replace the default file context build application
with this new builder. Defaults are either:
/sbin/sefcontexts compile or
/usr/sbin/sefcontexts compile.

For 1ibsepol (v2.4) with CIL support add the following entries:

store-root Specify an alternative store root path to use. The
defaultis "/var/lib/selinux".

compiler-directory Specify an alternate directory that will hold the
High Level Language (HLL) to CIL compilers.
The default is
"/usr/libexec/selinux/h11".

ignore-module-cache Whether or not to ignore the cache of CIL
modules compiled from HLL. The default is
false.

target-platform Target platform for generated policy. Default is
"selinux", the alternate is "xen".

Example semanage.config file contents are:

/etc/selinux/semanage.conf

direct
0

module-store =
expand-check =
[verify kernel]
path = /usr/local/bin/validate

Page 130

The SELinux Notebook

args = $@
[end]

3.2.3 /etc/selinux/restorecond.conf and restorecond-
user.conf Files

The restorecond.conf file contains a list of files that may be created by
applications with an incorrect security context. The restorecond (8) daemon will
then watch for their creation and automatically correct their security context to that
specified by the active policy file context configuration files* (located in the
/etc/selinux/<policy name>/contexts/files directory).

Each line of the file contains the full path of a file or directory. Entries that start with
a tilde (~) will be expanded to watch for files in users home directories (e.g.
~/public_html would cause the daemon to listen for changes to public html
in all logged on users home directories).

Note that it is possible to run restorecond in a user session using the —u option
(see restorecond (8)). This requires a restorecond-user.conf file to be
installed as shown in the examples below.

Example restorecond. conf file contents are:

/etc/selinux/restorecond.conf

/etc/services
/etc/resolv.conf
/etc/samba/secrets.tdb
/etc/mtab
/var/run/utmp
/var/log/wtmp

Example restorecond-user. conf file contents are:

/etc/selinux/restorecond-user.conf

This entry expands to listen for all files created for all
logged in users within their home directories:

N/*

~/public_html/*

3.2.4 /etc/selinux/newrole pam.conf

The optional newrole pam.conf file is used by newrole (1) and maps
applications or commands to PAM (8) configuration files. Each line contains the
executable file name followed by the name of a pam configuration file that exists in
/etc/pam.d.

33 The daemon uses functions in 1ibselinux such as matchpathcon (3) to manage the context

updates.

Page 131

The SELinux Notebook

3.2.5 /etc/sestatus.conf File

The sestatus.conf (5) file is used by the sestatus (8) command to list files
and processes whose security context should be displayed when the —v flag is used

(sestatus -v).

The file has the following parameters:

[files]
List of files to display context

[process]
List of processes to display context

Example sestatus. conf file contents are:

/etc/sestatus.conf

[files]
/etc/passwd
/etc/shadow
/bin/bash
/bin/login
/bin/sh
/sbin/agetty
/sbin/init
/sbin/mingetty
/usr/sbin/sshd
/lib/libc.so.6
/lib/1ld-linux.so0.2
/lib/1d.so.1

[process]
/sbin/mingetty
/sbin/agetty
/usr/sbin/sshd

3.2.6 /etc/security/sepermit.conf File

The sepermit.conf (5) file is used by the pam sepermit.so module to
allow or deny a user login depending on whether SELinux is enforcing the policy or
not. An example use of this facility is the Red Hat kiosk policy where a terminal can
be set up with a guest user that does not require a password, but can only log in if

SELinux is in enforcing mode.

The entry is added to the appropriate /etc/pam.d configuration file, with the
example shown being the /etc/pam.d/gdm file (the PAM Login Process section

describes PAM in more detail):

#$PAM-1.0

auth [success=done ignore=ignore default=bad] pam selinux permit.so
auth required pam_succeed if.so user != root quiet

auth required pam_env.so

auth substack system-auth

auth optional pam_gnome_keyring.so

account required pam_nologin.so

account include system-auth

Page 132

The SELinux Notebook

password include system-auth

session required pam_selinux.so close

session required pam_loginuid.so

session optional pam_console.so

session required pam_selinux.so open

session optional pam_keyinit.so force revoke
session required pam_namespace.so

session optional pam_gnome keyring.so auto_start
session include system-auth

The

usage is described in pam _sepermit (5), with the following example that
describes the configuration:

#
#
#
#
#
#

#
#
#
#
#
#
#

#

xguest:exclusive

/etc/security/sepermit.conf

Each line contains either:
- an user name
- a group name, with @group syntax
- a SELinux user name, with %seuser syntax

Each line can contain an optional argument:
exclusive - only single login session will be allowed for
the user and the user's processes will be
killed on logout

ignore - The module will never return PAM SUCCESS status
for the user.

An example entry for 'kiosk mode':

3.3 Policy Store Configuration Files

Depending on the release being used policy stores will be located at:

/etc/selinux/<policy name>/modules - This is the default for
systems that support versions < 2.4 of libsemanage, libsepol, and
policycoreutils.

/var/lib/selinux/<policy name>/modules - This is the default
for systems that support versions >= 2.4 of 1ibsemanage, 1ibsepol, and
policycoreutils. The base (/var/1lib/selinux) may be overridden
by the store-root parameter defined in the semanage.conf (5) file.
The migration process from previous releases 1is described at
https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration.

Note that there can be multiple policy stores on a system, each file described in this
section is relative to the . /<policy name> as discussed above.

The Policy Store files are either installed, updated or built by the semodule (8) and
semanage (8) commands as a part of the build process. The resulting files will
either be copied over to the Policy Configuration files area, or used to rebuild the
kernel binary policy located at /etc/selinux/<policy name>/policy.

All files may have comments inserted where each line must have the '#' symbol to
indicate the start of a comment.

Page 133

https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration

The SELinux Notebook

The command options and outputs shown in the text are based on the current F-20
build. After the migration programme, some command options and their output will
change.

3.3.1 modules/ Files

The policy store has two lock files that are used by 1ibsemanage for managing the
store. Their format is not relevant to policy construction:

semanage.read.LOCK

semanage.trans.LOCK

3.3.2 modules/active/base.pp File

This is the packaged base policy that contains the mandatory modules and policy
components such as object classes, permission declarations and initial SIDs.

3.3.3 modules/active/base.linked File

This is only present if the save-linked is set to TRUE as described in the
etc/selinux/semanage.conf section. It contains the modules that have been
linked using the semodule link (8) command.

3.3.4 modules/active/commit num File

This is a binary file used by 1ibsemanage for managing updates to the store. The
format is not relevant to policy construction.

3.3.5 modules/active/file contexts.template File

This contains a copy all the modules 'Labeling Policy File' entries (e.g. the
<module name>. fc files) that have been extracted from the base.pp and the
loadable modules in the modules/active/modules directory.

The entries in the file contexts.template file are then used to build the
following files as shown in Figure 3.1:

l. homedir template file that will be wused to produce the
file contexts.homedirs file which will then become the policies
./contexts/files/file contexts.homedirs file.

2. file contexts file that will become the policies
./contexts/files/file contexts file.

Note that as a part of the semanage build process, these two files will also have
file contexts.bin and file contexts.homedirs.bin files present in
the Policy Configuration Files ./contexts/files directory. This is because
semanage requires these in the Perl compatible regular expression (PCRE) internal
format. They are generated by the sefcontext compile (8) utility.

Page 134

The SELinux Notebook

| /etc/selinux/
I <policy_ name>/
T T T T T T T T T T les/active ; :
modules/ac Policy . f£c files from
These files are used by the M
i odules and Base
/etc./sellnux/ semanage and semodule
<policy_ name>/ command set.
contexts/files

|

|

|

|

|
These files are used by |
file labeling utilities |
(setfiles, |
fixfiles & |
restorecon) :

|

|

file_contexts.template

|
|
|
|
|
|
I Are used to build the file:
|
|
|
|
|
|

Whose contents are used
to build the file:
homedir_template

Whose contents are used
to build the file:
file_ contexts

S——
file_contexts

genhome@ircon

file_contexts.
homedirs the file:

‘ Whose contents are used to build
file contexts.homedirs

Figure 3.1: File Context Configuration Files - The two files copied to the policy
area will be used by the file labeling utilities to relabel files.

The homedir templateand file contexts files are built is as follows:

homedir template - Any line in the file contexts.template file
that has the keywords HOME ROOT, HOME DIR and/or USER are extracted
and added to the homedir template file. This is because these keywords
are used to identify entries that are associated to a users home directory area.
These lines may also have the ROLE keyword declared.

The homedir template file will then be processed by

genhomedircon (8) ** to generate individual SELinux user entries in the

file contexts.homedirs file as discussed in the
modules/active/file contexts.homedirs section.

These are examples of one line being processed as described above, taken
from the F-20 targeted policy:

The master file contexts.template entry:

HOME DIR\/.wine (/.*)? system u:object r:wine home t:s0

* The genhomedircon command has now been built into the libsemanage library as a

function to build the file contexts.homedirs file via semanage (8).

Page 135

The SELinux Notebook

The homedir template entry is created as:

HOME DIR\/.wine (/.*)? system u:object r:wine home t:s0

The file contexts.homedirs entries are created by
genhomedircon for the SELinux users extracted from the seusers file as
follows:

Home Context for any Linux user that is assigned
the SELinux user unconfined u
/home/ [~/]1*/\.wine(/.*)? unconfined u:object r:wine home t:sO

Home Context for user root
/root/\.wine (/.*)? unconfined u:object r:wine home t:s0

file contexts - All other lines are extracted and added to the
file contexts file as they are files not associated to a users home
directory.

The format of the file contexts.template file is as follows:

Each line within the file consists of the following:

pathname regexp [file type] opt security context

Where:

pathname regexp An entry that defines the pathname that may be
in the form of a regular expression.

The metacharacters '*' (match beginning of line)
and '$' (match end of line) are automatically
added to the expression by the routines that
process this file, however they can be over-
ridden by using '. *' at either the beginning or
end of the expression (see the example

file contexts files below).

There are also keywords of HOME ROOT,
HOME DIR, ROLE and USER that are used by
file labeling commands (see the keyword

definitions below and the
modules/active/homedir template

file section for their usage).

file_type One of the following optional file type
entries (note if blank means "all file types"):

'-b' - Block Device '—c' - Character Device
'-d' - Directory '-p' - Named Pipe (FIFO)
'-1'- Symbolic Link '-s'- Socket File

Page 136

The SELinux Notebook

'-=-'- Ordinary file

By convention this entry is known as 'file type',
however it really represents the 'file object class'.

opt_security context This entry can be either:

a. The security context, including the MLS /
MCS level or range if applicable that
will be assigned to the file.

b. A value of <<none>> can be used to

indicate that matching files should not be
re-labeled.

Keywords that can be in the file contexts.template file are:

HOME_ROOT

HOME DIR

USER
ROLE

This keyword is replaced by the GNU / Linux users root home
directory, normally '/home' is the default.

This keyword is replaced by the GNU / Linux users home
directory, normally '/home /' is the default.

This keyword will be replaced by the users GNU / Linux user id.

This keyword is replaced by the 'prefix' entry from the
users extra configuration file that corresponds to the
SELinux users user id. Example users extra configuration
file entries are:

user user_u prefix user;
user staff u prefix staff;

It is used for files and directories within the users home directory
area.

The prefix can be added by the semanage 1ogin command as
follows (although note that the —P option is suppressed when help
is displayed as it is generally it is not used (defaults to user) -
see http://blog.gmane.org/gmane.linux.redhat.fedora.selinux/month=20110701
for further information):

Add a Linux user:
adduser rch

Modify staff u SELinux user and prefix:
semanage user -m -R staff r -P staff staff u

Associate the SELinux user to the Linux user:
semanage login -a -s staff u rch

Example file contexts.template contents from targeted policy:

./modules/active/file contexts.template - These sample entries

Page 137

http://blog.gmane.org/gmane.linux.redhat.fedora.selinux/month=20110701

The SELinux Notebook

have been taken from the targeted policy and show the

HOME DIR, HOME ROOT and USER keywords whose lines will be
extracted and added to the homedir template file that is

used to manage user home directory entries.

Jo% system u:object r:default t:sO
/114 -- system u:object r:etc runtime t:sO
/a?quota\. (user|group) -- system u:object r:quota db t:s0
/nsr(/.*)? system u:object r:var t:s0
/sys(/.*)? system u:object r:sysfs t:s0
/etc/ntop.* system u:object r:ntop etc t:s0
HOME DIR/.+ system u:object r:user home t:s0
/dev/dri/ .+ -c system u:object r:dri device t:s0
/tmp/gconfd-USER -d system u:object r:user tmp t:sO
/tmp/gconfd-USER/.* -— system u:object r:gconf tmp t:s0
HOME ROOT/\.Jjournal <<none>>

3.3.6 modules/active/file contexts File

This file becomes the policies . /contexts/files/file contexts file and is

built from entries in the ./modules/active/file contexts.template
file as explained above and shown in Figure 3.1. It is then used by the file labeling
utilities to ensure that files and directories are labeled according to the policy.

The format of the file contexts file is the same as the
modules/active/file contexts.template file.

The USER keyword is replaced by the users GNU / Linux user id when the file
labeling utilities are run.

Example file contexts contents:

./modules/active/file contexts - These sample entries have
been taken from the targeted policy.

The keywords HOME DIR, HOME ROOT, USER and ROLE have been
removed and put in the homedir template file.

[o% system u:object r:default t:s0
ARV -- system u:object r:etc runtime t:sO
/a?quota\. (user|group) -- system u:object r:quota db t:sO
/nsr(/.*%)? system u:object r:var t:s0
/sys(/.*)? system u:object r:sysfs t:s0
/xen(/.*)? system u:object r:xen image t:s0
/mnt (/[~/1* -1 system u:object r:mnt t:sO
/mnt (/[~/]1* -d system u:object r:mnt t:s0
/bin/.* system u:object r:bin t:s0
/dev/.* system u:object r:device t:s0
/usxr/.* system u:object r:usr t:s0
/var/.* system u:object r:var t:s0O
/run/.* system u:object r:var run t:sO
/srv/.* system u:object r:var t:s0

*

/tmp/ . <<none>>

Page 138

The SELinux Notebook

./contexts/files/file contexts - Sample entries from the
MLS reference policy.

Notes:

1) The fixed disk device t is labeled SystemHigh (s15:c0.c255)
as it needs to be trusted. Also some logs and configuration
files are labeled SystemHigh as they contain sensitive
information used by trusted applications.

#

2) Some directories (e.g. /tmp) are labeled

SystemLow-SystemHigh (s0-s15:c0.c255) as they will

support polyinstantiated directories.

/o™ system u:object_r:default t:s0

/a?quota\. (user|group) --system u:object r:quota db t:s0

/mnt (/[~/1%) -1 system u:object r:mnt t:s0

/mnt/[~/1%/.* <<none>>

/dev/.*mouse.* -c system u:object r:mouse device t:s0
/dev/.*tty[~/]1* -c system u:object r:tty device t:s0

/dev/ [shmx]d["/]* -b system u:object r:fixed disk device t:sl15:c0.c255
/var/ [xgk]ldm(/.*)? system u:object r:xserver log t:s0

/dev/ (raw/) ?rawctl -c system u:object r:fixed disk device t:sl5:c0.c255
/tmp -d system u:object r:tmp t:s0-s15:c0.c255

/dev/pts -d system u:object r:devpts t:s0-sl5:c0.c255
/var/log -d system_u:object_r:var_log_t:s0-s15:c0.c255
/var/tmp -d system u:object r:tmp t:s0-s15:c0.c255

/var/run -d system u:object r:var run t:s0-s15:c0.c255
/usr/tmp -d system u:object r:tmp t:s0-s15:c0.c255

3.3.7 modules/active/homedir template File

This file is built from entries inthe file contexts.template file (as shown in
Figure 3.1) and explained in the
modules/active/file contexts.template section.

The file is used by genhomedircon, semanage login or semanage user to
generate individual user entries inthe file contexts.homedirs file.

The homedir template file has the same per line format as the
modules/active/file contexts.template file.

Example file contents:

./modules/active/homedir template - These sample entries have
been taken from the targeted policy and show the

HOME DIR, HOME ROOT and USER keywords that are used to manage
users home directories:

HOME DIR/.+ system u:object r:user home t:s0
/tmp/gconfd-USER -d system u:object r:user tmp t:s0
/tmp/gconfd-USER/.* -- system u:object r:gconf tmp t:sO
HOME ROOT/\.Jjournal <<none>>

3.3.8 modules/active/file contexts.homedirs File

This file becomes the policies

contexts/files/file contexts.homedirs file when building policy
as shown in Figure 3.1. It is then used by the file labeling utilities to ensure that users
home directory areas are labeled according to the policy.

Page 139

The SELinux Notebook

The file can be built by the genhomedircon command (that just calls
/usr/sbin/semodule -Bn) or if using semanage with user or login
options to manage users, where it is called automatically as it is now a 1ibsepol
library function.

The file contexts.homedirs file has the same per line format as the

modules/active/file contexts.template file, however the
HOME DIR, ROOT DIR, ROLE and USER keywords will be replaced as explained in
the keyword definitions section above.

Example file contexts.homedirs contents:

./modules/active/file_contexts.homedirs - These sample entries
have been taken from the targeted policy and show that

the HOME DIR, HOME ROOT and USER keywords have been replaced

by entries as explained above.

#

Home Context for the default user (unconfined u)

/home/ [~/]1*/ .+ unconfined u:object r:user home t:s0
/home/ [~/]1*/.maildir (/.*)? unconfined u:object r:mail home rw_t:sO
/tmp/gconfd-.*/.* == unconfined u:object r:gconf tmp t:s0O
/tmp/gconfd-.* -d unconfined u:object r:user tmp t:s0

Home Context for user rch

/home/rch/ .+ staff u:object r:user home t:s0
/home/rch/.maildir (/.*)? staff u:object r:mail home_rw_t:s0
/tmp/gconfd-rch/.* == staff u:object r:gconf tmp t:sO
/tmp/gconfd-rch -d staff u:object r:user tmp t:s0

Home Context for user root

/root/.+ unconfined u:object r:user home t:s0
/root/.maildir (/.*)? unconfined u:object_r:mail home rw_t:s0
/tmp/gconfd-root/.* -= unconfined u:object r:gconf tmp t:s0O
/tmp/gconfd-root -d unconfined u:object r:user tmp t:s0

3.3.9 modules/active/netfilter contexts &
netfilter.local File

These files are not used at present. There is code to produce a
netfilter contexts file for use by the GNU/Linux iptables service” in the
Reference Policy that would generate a file similar to the example below, however
there seems much debate on how they should be managed (see bug 201573 - Secmark
iptables integration for details).

3.3.10 modules/active/policy.kern File

This is the binary policy file built by either the semanage (8) or semodule (8)
commands (depending on the configuration action), that is then becomes the
policy/policy. [ver] binary policy that will be loaded into the kernel.

% This uses SECMARK labeling that has been utilised by SELinux as described in the SELinux
Networking Support section.

Page 140

https://bugzilla.redhat.com/show_bug.cgi?id=201573
https://bugzilla.redhat.com/show_bug.cgi?id=201573

The SELinux Notebook

3.3.11

modules/active/seusers.final and seusers Files

The seusers. final file maps GNU / Linux users to SELinux users and becomes
the policies seusers’® file as discussed in the ./seusers section. The
seusers. final file is built or modified when:

1.

Building a policy where an optional seusers file has been included in the
base package via the semodule package (8) command (signified by the
- s flag) as follows™":

semodule package -o base.pp -m base.mod -s seusers

The seusers file would be extracted by the subsequent semodule
command when building the policy to produce the seusers.final file.

The semanage login command is used to map GNU / Linux users to
SELinux users as follows:

semanage login -a -s staff u rch

This action will update the seusers file that would then be used to produce
the seusers. final file with both policy and locally defined user mapping.

It is also possible to associate a GNU / Linux group of users to an SELinux
user as follows:

semanage login -a -s staff u %staff group

The format of the seusers.final & seusers files are as follows:

[%]user id:seuser id[:range]

Where:
user_id Where user idisthe GNU / Linux user identity. If this is
a GNU / Linux group_id then it will be preceded with the
'$' sign as shown in the example below.
seuser id The SELinux user identity.
range The optional 1evel or range.

Example seusers. final file contents:

./modules/active/seusers.final
system u:system u
root:root

36

Many seusers make confusion: The ./modules/active/seusers file is used to hold

initial seusers entries, the . /modules/active/seusers.final file holds the complete
entries that then becomes the policy . /seusers file.

37

The Reference Policy Makefile 'Rules.modular' script uses this method to install the initial

seusers file.

Page 141

The SELinux Notebook

__default :user u

Example semanage login command to add a GNU / Linux user mapping:

This command will add the rch:user u entry in the seusers
file:

semanage login -a -s user u rch

The resulting seusers file would be:

./modules/active/seusers

rch:user u

The seusers. final file that will become the . /<policy name>/seusers
file is as follows:

./modules/active/seusers.final

system u:system u
root:root
___default :user u
rch:user u

Example semanage login command to add a GNU / Linux group mapping:

This command will add the %user group:user u entry in the
seusers file:

semanage login -a -S user u %user group

The resulting seusers file would be:

./modules/active/seusers

rch:user u
fuser group:user u

The seusers. final file that will become the . /<policy name>/seusers
file is as follows:

./modules/active/seusers.final

system u:system u
root:root
___default :user u
rch:user u

Fuser group:user_u

Page 142

The SELinux Notebook

3.3.12 modules/active/users extra,users_extra.local
and users.local Files

These three files work together to describe SELinux user information as follows:

I. The users extra and users extra.local files are used to map a
prefix to users home directories as discussed in the
modules/active/file contexts.template file section, where
it is used to replace the ROLE keyword. The prefix is linked to an SELinux
user id and should reflect the users role. The semanage user command
will allow a prefix to be added via the —P flag (although no longer used by
policies as discussed in the
modules/active/file contexts.template file section).

The users extra file contains all the policy prefix entries, and the
users_ extra.local file contains those generated by the semanage
user command.

The users extra file can optionally be included in the base package via
the semodule package (8) command (signified by the -u flag) as
follows™:

semodule package -o base.pp -m base.mod -u users extra ...

The users extra file would then be extracted by a subsequent
semodule command when building the policy.

2. The users.local file is used to add new SELinux users to the policy
without editing the policy source itself (with each line in the file following a
policy language user Statement). This is useful when only the Reference
Policy headers are installed and additional users need to added. The
semanage user command will allow a new SELinux user to be added that
would generate the user.local file and if a —-P flag has been specified,
then a users extra.local file is also updated (note: if this is a new
SELinux user and a prefix is not specified a default prefix of user is
generated).

The sections that follow will;

Define the format and show example wusers extra and
users extra.local files.

Execute an semanage user command that will add a new SELinux user
and associated prefix, and show the resulting users extra,
users extra.local and users.local files.

Note that each line of the users.local file contains a user statement that
is defined in the policy language user Statement section, and will be built
into the policy via the semanage command.

The format of the users_extra & users_extra.local files are as follows:

*® The Reference Policy Makefile 'Rules.modular’ script uses this method to install the initial

users_extra file.

Page 143

The SELinux Notebook

user seuser id prefix prefix id;

Where:
user The user keyword.
seuser id The SELinux user identity.
prefix The prefix keyword.
prefix id An identifier that will be used to replace the ROLE keyword
within the . /modules/active/homedir template
file when building the

./modules/active/file contexts.homedirs
file for the relabeling utilities to set the security context on
users home directories.

Example users_extra file contents:

./modules/active/users_extra entries, note that the
users_extra.local file contents are similar and generated by
the semanage user command.

user user u prefix user;
user staff u prefix user;
user sysadm u prefix user;
user root prefix user;

Example semanage user command to add a new SELinux user:

This command will add the user test u prefix staff entry in
the users extra.local file:

semanage user -a -R staff r -P staff test u

The resulting users_extra.local file is as follows:

./modules/active/users_extra.local

user test u prefix staff;

The resulting users_extra file is as follows:

./modules/active/users_extra

user user _u prefix user;
user staff u prefix user;
user sysadm u prefix user;
user root prefix user;
user test u prefix staff;

The resulting users. local file is as follows:

Page 144

The SELinux Notebook

./modules/active/users.local file entry:

user test u roles { staff r } level s0 range sO0;

3.3.13 modules/active/booleans.local File

This file 1s created and updated by the semanage boolean command and holds
boolean value as requested.

Example semanage boolean command to modify a boolean value:

This command will add an entry in the booleans.local
file and set the boolean value to 'off':

semanage boolean -m -0 ext gateway audit

The resulting booleans. local file would be:

./modules/active/booleans.local

ext gateway audit=0

3.3.14 modules/active/file contexts.local File

This file is created and updated by the semanage fcontext command. It is used
to hold file context information on files and directories that were not delivered by the
core policy (i.e. they are not defined in any of the * . fc files delivered in the base and

loadable modules).

The semanage command will add the information to the policy stores
file contexts.local file and then copy this file to the
./contexts/files/file contexts.local file, where it will be used when
the file context utilities are run.

The format of the file contexts.local file is the same as the
modules/active/file contexts.template file.

Example semanage fcontext command to add a new entry:

This command will add an entry in the file contexts.local
file:

semanage fcontext -a -t user t /usr/move file

Note that the type (-t flag) must exist in the policy
otherwise the command will fail.

The resulting file contexts.local file would be:

./modules/active/file contexts.local

Page 145

The SELinux Notebook

/usr/move file system u:object r:user t

3.3.15 modules/active/interfaces.local File

This file is created and updated by the semanage interface command to hold
network interface information that was not delivered by the core policy (i.e. they are
not defined in base.conf file). The new interface information is then built into the
policy by the semanage (8) command.

Each line of the file contains a netifcon statement that is defined along with
examples in the net i fcon Statement section.

3.3.16 modules/active/nodes.local File

This file is created and updated by the semanage node command to hold network
address information that was not delivered by the core policy (i.e. they are not defined
in base.conf file). The new node information is then built into the policy by the
semanage (8) command.

Each line of the file contains a nodecon statement that is defined along with
examples in the policy language nodecon Statement section.

3.3.17 modules/active/ports.local File

This file is created and updated by the semanage port command to hold network
port information that was not delivered by the core policy (i.e. they are not defined in
base.conf file). The new port information is then built into the policy by the
semanage (8) command.

Each line of the file contains a portcon statement that is defined along with
examples in the policy language portcon Statement section.

3.3.18 modules/active/preserve tunables File

This file will only exist if the policy build specified that tunables should be preserved,
if so they would be converted to booleans by the policy build process.

3.3.19 modules/active/disable dontaudit File

This file will only exist if the policy build specified that dontaudit rules should be
disabled.

3.3.20 modules/active/modules Directory Contents

This directory contains loadable modules (<module name>.pp or when disabled
<module name>.pp.disabled) that have been built by the
semodule package command and placed in the store by the semodule or
semanage module -a commands as shown in the following example:

Package the module move file c:

Page 146

The SELinux Notebook

semodule package -o move file c.pp -m move file c.mod -f
move file.fc

Then to install it in the store (at /etc/selinux/modular-test/
modules/active/modules/move file c.pp) and build the binary
policy file, run the semodule command:

semodule -v -s modular-test -i move file c.pp
Or:
semanage module -a -S modular-test move file c.pp

The modules within the policy store may be compressed or not depending on the
value of the bzip-blocksize parameter in the semanage.conf file. The
modules and their status can be listed using the semanage module -1 command
as shown below.

semanage module -1

ext gateway 1.1.0
int gateway 1.1.0
move file 1.1.0
netlabel 1.0.0 Disabled

3.4 Policy Configuration Files

Each file discussed in this section is relative to the policy name as follows:

/etc/selinux/<policy name>

The majority of files are installed by the Reference Policy, semanage (8) or
semodule (8) commands. It is possible to build custom monolithic policies that
only use the files installed in this area (i.e. do not use semanage or semodule).
For example the simple monolithic policy described in the Notebook source tarball
could run at init 3 (i.e. no X-Windows) and only require the following
configuration files:

./policy/policy.29 - The binary policy loaded into the kernel.

./context/files/file contexts - To allow the filesystem to be
relabeled.

If the simple policy is to run at init 5, (i.e. with X-Windows) then an additional
two files are required:

./context/dbus contexts - To allow the dbus messaging service to run
under SELinux.

./context/x contexts - To allow the X-Windows service to run under
SELinux.

Page 147

The SELinux Notebook

3.4.1 seusers File

The seusers (5) file is used by login programs (normally via the 1ibselinux
library) and maps GNU / Linux users (as defined in the user / passwd files) to
SELinux users (defined in the policy). A typical login sequence would be:

- Using the GNU / Linux user 1id, lookup the seuser id from this file. If
an entry cannot be found, then use the default entry.

- To determine the remaining context to be used as the security context, read the
contexts/users/[seuser id] file. If this file is not present, then:

Check for a default context in the
contexts/default contexts file. If no default context is
found, then:

- Read the . /contexts/failsafe context file to allow
a fail safe context to be set.

Note: The system u user is defined in this file, however there must be no
system u GNU / Linux user configured on the system.

The format of the seusers file is the same as the files described in the
modules/active/seusers.final and seusers section, where an
example semanage user command is also shown.

Example seusers file contents:

./seusers file for non-MCS/MLS systems.

system u:system u
root:root
fred:user u
___default :user u

./seusers file for an MLS system. Note that the system u user
has access to all security levels and therefore should not be
configured as a valid GNU / Linux user.

system u:system u:s0-s15:c0.c255
root:root:s0-s15:c0.c255
fred:user u:s0

__default :user u:s0

Supporting 1ibselinux API functions are:

getseuser
getseuserbyname

3.4.2 booleans and booleans. local File

Generally these booleans (5) files are not present if semanage (8) is being used
to manage booleans (see the modules/active/booleans.local File section). However if
semanage is not being used or there is an SELinux-aware application that uses the

Page 148

The SELinux Notebook

libselinux functions listed below, then these files may be present (they could also
be present in older Reference policies):

security set boolean list(3) - Writes a boolean.local file if
flag permanent ='1".

security load booleans(3) - Will look for a booleans or
booleans.local file here unless a specific path is specified.

Both files have the same format and contain one or more boolean names. The format
1S:

boolean name value

Where:
boolean name The name of the boolean.
value The default setting for the boolean that can be

one of the following:
true | false | 1 | O

Note that if SETLOCALDEFS 1is set in the SELinux config file, then
selinux mkload policy (3) will check for a booleans.local file in the
selinux booleans_path(3), and also a local.users file in the
selinux users_path (3).

3.4.3 booleans.subs dist File

The booleans.subs dist file (if present) will allow new boolean names to be
allocated to those in the active policy. This file was added because many older
booleans began with 'allow' that made it difficult to determine what they did. For
example the boolean allow console login becomes more descriptive as
login console enabled. If the booleans.subs dist file is present, then
either name maybe used. selinux booleans subs path (3) will return the
active policy path to this file and selinux boolean sub (3) will will return the
translated name.

Each line within the substitution file booleans.subs dist is:

policy bool name new name

Where:

policy bool name

The policy boolean name.
new_name
The new boolean name.

Example:

./booleans.subs_dist

Page 149

The SELinux Notebook

policy bool name new_name
allow_auditadm exec content auditadm exec content
allow console login login console enabled
allow cvs read shadow cvs read shadow
allow daemons dump core daemons dump core
When security get boolean names (3) or

security set boolean(3) 1is called with a boolean name and the
booleans.subs dist file is present, the name will be looked up and if using the
new_name, then the policy bool name will be used (as that is what is defined
in the active policy).

Supporting 1ibselinux API functions are:

selinux booleans subs path
selinux booleans sub
security get boolean names
security set boolean

3.44 setrans.conf File

The setrans.conf (8) file is used by the mestransd (8) daemon (available in
the mcstrans rpm). The daemon enables SELinux-aware applications to translate
the MCS / MLS internal policy levels into user friendly labels.

There are a number of sample configuration files within the mcstrans package that
describe the configuration options in detail that are located at
/usr/share/mcstrans/examples.

The daemon will not load unless a valid MCS or MLS policy is active.

The translations can be disabled by added the following line to the file:

disable =1

This file will also support the display of information in colour. The configuration file
that controls this is called secolor.conf and is described in the secolor.conf
File section.

The file format is described in setrans.conf (8) with the following giving an
overview:

Syntax

A domain is a self consistent domain of translation (English, German,
Paragraph Markings ...)
Domain=NAME1

Within a domain are a number of fixed translations
format is raw range=trans_range
s3:¢c200.c511=Confidential

repeat as required...

Within a domain are variable translations that are a Base + ModifierGroup +
ModifierGroup

Page 150

The SELinux Notebook

Base=Sensitivity Levels

raw_range=name

sl=Unclassified

Aliases have the same name but a different translation.

The first one is used to compute translations

s1=U

inverse bits should appear in the base of any level that uses inverse bits
s2:c200.c51l1=Restricted

repeat as required...

Modifier Groups should be in the order of appearance in the translated range.
ModifierGroup=GROUP1

Allowed white space can be defined

Whitespace=- ,/

Join defines the character between multiple members of this group
Join=/

A Prefix can be defined per group

Prefix=Releasable to

Inverse categories (releasabilities) should always be set as Default
categories in every ModifierGroup

Default=c200.c511

format is raw_categories=name

~ turns off inverse bits

~c200.c511=EVERYBODY

Aruba - bit 201
~c200, ~c201=ABW

~c200, ~c201=AA

Afghanistan - bit 202
~c200,~c202=AFG

~c200, ~c202=AF

repeat as required...

Another Modifier Group
ModifierGroup=GROUP2

With different white space

Whitespace=

And different Join

Join=,

A Suffix can be defined per group
Suffix=Eyes only

Default categories need to be consistent
Default=c200.c511

New domain
Domain=NAME2

any text can be put in a separate file
Include=PATH
Include=PATH

Example file contents:

./setrans.conf
Multi-Level Security translation table for SELinux

#
#
#
#
Uncomment the following to disable translation library
disable=1

#

SystemLow and SystemHigh

sO0=SystemLow

s15:c0.cl1023=SystemHigh
s0-s15:c0.cl023=SystemLow-SystemHigh

Unclassified level
sl=Unclassified

Page 151

The SELinux Notebook

Secret level with compartments
s2=Secret

s2:c0=A

s2:cl=B

ranges for Unclassified
sO0-sl=SystemLow-Unclassified
sl-s2=Unclassified-Secret
s1-s15:c0.cl023=Unclassified-SystemHigh

ranges for Secret with compartments
sO0-s2=SystemLow-Secret
s2:¢cl-s15:¢c0.c1023=Secret:B-SystemHigh
s2:c0,cl-s15:c0.cl023=Secret:AB-SystemHigh

Supporting 1ibselinux API functions are:

selinux translations path
selinux raw to trans context
selinux trans to raw context

3.4.5 secolor.conf File

The secolor.conf (5) file controls the colour to be associated to the components
of a context when information is displayed by an SELinux colour-aware application
(currently none, although there are two examples in the Notebook source tarball under
the 1ibselinux/examples directory). The file format is as follows:

color color name = #color mask

context component string fg color name bg color name

Where:
color The color keyword.
color name A descriptive name for the colour (e.g. red).
color mask A colour mask starting with a hash (#) that

describes the RGB colours with black being
#000000 and white being # ff£fff.

context component The colour translation supports different colours on
the context string components (user, role, type
and range). Each component is on a separate line.

string This is the context component string that will
be matched with the raw context component

passed by
selinux raw_context to_color (3)

A wildcard '*' may be used to match any undefined
string for the user, role and type
context component entries only

Page 152

The SELinux Notebook

A wildcard '*' may be used to match any undefined
string for the user, role and type
context component entries only.

fg color name The color name string that will be used as the
foreground colour.

A color mask may also be used.

bg color name The color name string that will be used as the
background colour.

A color mask may also be used.

Example file contents:

color black = #000000
color green = #008000
color yellow = #f£f£f£f00
color blue = #0000ff
color white = #ffffff
color red = #£f£0000
color orange = #ffa500
color tan = #D2B48C

user * black white

role * white black

type * = tan orange

range s0-s0:c0.c1023 = black green
range sl-sl:c0.cl1023 = white green
range s3-s3:c0.cl1023 = black tan
range s5-s5:c0.cl1023 = white blue
range s7-s7:c0.cl1023 = black red
range s9-s9:c0.c1023 = black orange
range s15:c0.cl1023 = black yellow

Supporting 1ibselinux API functions are:

selinux colors path

selinux raw context to color - this call returns the foreground
and background colours of the context string as the specified
RGB 'color' hex digits as follows:

user] role] type] range
#000000 #ffffff #ffffff #000000 #d2b48c #£f£fa500 #000000 #008000
black white white black tan orange black green

3.4.6 policy/policy.<ver> File

This is the binary policy file that is loaded into the kernel to enforce policy and is
built by either checkpolicy or semodule. Life is too short to describe the format
but the 1ibsepol source could be used as a reference or for an overview the
"SELinux Policy Module Primer" [3] notes.

Page 153

http://securityblog.org/brindle/2006/07/05/selinux-policy-module-primer/

The SELinux Notebook

By convention the file name extension is the policy database version used to build the
policy, however is is not mandatory as the true version is built into the policy file. The
different policy versions are discussed in the Policy Versions section.

3.4.7 contexts/customizable types File

The customizable types (5) file contains a list of types that will not be
relabeled by the setfiles (8) or restorecon (8) commands. The commands
check this file before relabeling and excludes those in the list unless the -F flag is
used (see the man pages).

The file format is as follows:

type

Where:

type The type defined in the policy that needs to excluded from

relabeling. An example is when a file has been purposely
relabeled with a different type to allow an application to
work.

Example file contents:

./contexts/customizable_ types

mount loopback t

public content rw t

public content t

swapfile t

sysadm untrusted content t
sysadm untrusted content tmp t

Supporting 1ibselinux API functions are:

is _context customizable
selinux customizable types path
selinux context path

3.4.8 contexts/default contexts File

The default contexts (5) file is used by SELinux-aware applications that need
to set a security context for user processes (generally the login applications) where:

l.
2.

The GNU / Linux user identity should be known by the application.

If a login application, then the SELinux user (seuser), would have been
determined as described in the seusers file section.

The login applications will check the _./contexts/users
[seuser id] file first and if no valid entry, will then look in the
[seuser 1id] file for a default context to use.

Page 154

The SELinux Notebook

The file format is as follows:

role:type[:range] role:typel:range]

Where:

role:type[:range] The file contains one or more lines that consist of
role:type|[:range] pairs (including the MLS /
MCS level or range if applicable).

The entry at the start of a new line corresponds to
the partial role:type[:range] context of
(generally) the login application.

The other role: type[:range] entries on that
line represent an ordered list of valid contexts that
may be used to set the users context.

Example file contents:

./contexts/default_ contexts

system r:crond t:s0 system r:system crond t:s0
system r:local login t:s0 user r:user t:sO
system r:remote login t:s0 user r:user t:s0

system r:sshd t:s0 user r:user t:s0
system r:sulogin t:sO sysadm r:sysadm t:s0
system r:xdm t:sO user r:user t:s0

Supporting 1ibselinux API functions are:

Note that the ./contexts/users/[seuser_id] file is also read
by some of these functions.

selinux contexts path

selinux default context path

get default context

get ordered context list

get ordered context list with level
get default context with level

get default context with role

get default context with rolelevel
query user context

manual user enter context

An example use in this Notebook (to get over a small feature) is that when the initial
basic policy was built, no default contexts file entries were required as only
one role:type of unconfined r:unconfined t had been defined,
therefore the login process did not need to decide anything (as the only user context
was unconfined u:unconfined r:unconfined t).

However when adding the loadable module that wused another type
(ext gateway t) but with the same role and user (e.g.
unconfined u:unconfined r:ext gateway t),then it was found that the
login process would always set the logged 1in wuser context to

Page 155

The SELinux Notebook

unconfined u:unconfined r:ext gateway t (i.e. the login application
now had a choice and choose the wrong one, probably because the types are sorted
and 'e' comes before 'u').

The end result was that as soon as enforcing mode was set, the system got bitter and
twisted. To resolve this the default contexts file entries were set to:

unconfined r:unconfined t unconfined r:unconfined t

The login process could now set the context correctly to
unconfined r:unconfined t. Note that adding the same entry to the
contexts/users/unconfined u configuration file instead could also have
achieved this.

3.4.9 contexts/dbus_contexts File

This file is for the dbus messaging service daemon (a form of IPC) that is used by a
number of GNU / Linux applications such as GNOME and KDE desktops. If
SELinux is enabled, then this file needs to exist in order for these applications to
work. The dbus-daemon (1) man page details the contents and the Free Desktop

web site has detailed information at;

http: dbus . freedesktop.org

Example file contents:

./contexts/dbus_contexts

<!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-BUS Bus
Configuration 1.0//EN"
"http://www.freedesktop.org/standards/dbus/
1.0/busconfig.dtd">
<busconfig>

<selinux>

</selinux>
</busconfig>

Supporting 1ibselinux API function is:

selinux context path

3.410 contexts/default type File

The default type (5) file allows SELinux-aware applications such as
newrole (1) to select a default type for a role if one is not supplied.

The file format is as follows:

role:type

Where:

Page 156

http://dbus.freedesktop.org/

The SELinux Notebook

role:type The file contains one or more lines that consist of
role: type entries. There should be one line for each role

defined within the policy.

Example file contents:

./contexts/default type

auditadm r:auditadm t
secadm r:secadm t

sysadm r:sysadm t

staff r:staff t
unconfined r:unconfined t
user r:user t

Supporting 1ibselinux API functions are:

selinux default type path
get default type

3.411 contexts/failsafe context File

The failsafe context (5) is used when a login process cannot determine a
default context to use. The file contents will then be used to allow an administrator
access to the system.

The file format is as follows:

role:typel[:range]

Where:

role:typel:range] A single line that has a valid context to allow an
administrator access to the system, including the
MLS /MCS level or range if applicable.

Example file contents:

./contexts/failsafe context - Taken from the targeted policy.

unconfined r:unconfined t

./contexts/failsafe context - Taken from the MLS policy.

sysadm r:sysadm t:s0

Supporting 1ibselinux API functions are:

selinux context path
selinux failsafe context path
get default context
get default context with role

Page 157

The SELinux Notebook

get default context with level

get default context with rolelevel
get ordered context list

get ordered context list with level

3.412 contexts/initrc context File

This is used by the run_init (8) command to allow system services to be started
in the same security context as init. This file could also be used by other SELinux-
aware applications for the same purpose.

The file format is as follows:

user:role:type|:range]

Where:

user:role:type[:range] The file contains one line that consists of a
security context, including the MLS / MCS
level or range if applicable.

Example file contents:

./contexts/initrc_context - Taken from the targeted policy.

system u:system r:initrc t:sO

./contexts/initrc_context - Taken from the MLS policy
Note that the init process has full access via the
range s0-s15:c0.c255.

system u:system r:initrc t:s0-s15:c0.c255

Supporting 1ibselinux API functions are:

selinux context path

3.413 contexts/lxc contexts File

This file supports labeling Ixc containers within the 1ibvirt library (see libvirt
source src/security/security selinux.c). This 1is similar to the
virtual domain context and virtual image context used by libvirt
gemu services.

The file format is as follows:

process = "security context"

file = "security context"

content = "security context"
Where:

Page 158

The SELinux Notebook

process A single process entry that contains the
Ixc domain security context, including the
MLS /MCS level or range if applicable.

file A single £ile entry that contains the Ixc file
security context, including the MLS / MCS
level or range if applicable.

content A single content entry that contains the
Ixc content security context, including the
MLS /MCS level or range if applicable.

sandbox_kvm process These entries may be present, however in F-

sandbox_1xc process 20 they are not currently used.

Example file contents:

./contexts/lxc_contexts

process = "system u:system r:svirt 1lxc net t:s0"
file = "system u:object r:svirt sandbox file t:s0"
content = "system u:object r:virt var lib t:sO"

Supporting 1ibselinux API functions are:

selinux context path
selinux 1xc context path

3.414 contexts/netfilter contexts File

This file will support the Secmark labeling for Netfilter / iptable rule matching of
network packets, = however it is currently unused (see the

modules/active/netfilter contexts & netfilter.local file
section for further information).

Supporting 1ibselinux API functions are:

selinux context path
selinux netfilter context path

3.415 contexts/removable context File

The removable context (5) file contains a single default label that should be

used for removable devices that are not defined in the contexts/files/media
file.

The file format is as follows:

user:role:type|:range]

Page 159

The SELinux Notebook

Where:

user:role:type[:range] The file contains one line that consists of a
security context, including the MLS / MCS
level or range if applicable.

Example file contents:

./contexts/removable contexts

system u:object r:removable t:s0

Supporting 1ibselinux API functions are:

selinux removable context path

3.416 contexts/securetty types File

The securetty types (5) file is used by the newrole (1) command to find
the type to use with t ty devices when changing roles or levels.

The file format is as follows:

type

Where:

type Zero or more type entries that are defined in the policy for
tty devices.

Example file contents:

./contexts/securetty_ types

sysadm tty device t
user tty device t
staff tty device t

Supporting 1ibselinux API functions are:

selinux securetty types path

3.4.17 contexts/sepgsql contexts File

This file contains the default security contexts for SE-PostgreSQL database objects
and is descibed in selabel db (5).

The file format is as follows:

Each line within the database contexts file is as follows:

Page 160

The SELinux Notebook

object type object name context

Where:

object_type This is the string representation of the object type.

object_name These are the object names of the specific database objects.

The entry can contain '*' for wildcard matching or '?' for
substitution. Note that if the '*' is used, then be aware that
the order of entries in the file is important. The '*' on its own
is used to ensure a default fallback context is assigned and
should be the last entry in the object type block.

context The security context that will be applied to the object.

Example file contents:

./contexts/sepgsql contexts file

object type object name context

db database my database system u:object r:my sepgsqgl db t:s0
db database * system u:object r:sepgsqgl db t:s0

db_ schema W% system u:object r:sepgsgl schema t:s0

3.418 contexts/systemd contexts File

This file is not currently used in F-20 but seems to contain file contexts to be used by
tasks run via systemd (8) in a later release. There are some patches in the
systemd mail archive that relate to this file.

The file format is as follows:

service class = security context
Where:
service class One or more entries that relate to the systemd

service (e.g. runtime, transient).

security context The security context, including the MLS / MCS
level or range if applicable of the service to be
run.

Example file contents:

./contexts/systemd contexts

runtime=system u:object r:systemd runtime unit file t:s0

Page 161

The SELinux Notebook

Supporting 1ibselinux API functions are:

selinux context path
selinux systemd contexts path

3.419 contexts/userhelper context File

This file contains the default security context used by the system-config-*
applications when running from root.

The file format is as follows:

security context

Where:

security context The file contains one line that consists of a full
security context, including the MLS / MCS level or

range if applicable.

Example file contents:

./contexts/userhelper context - Taken from the standard
reference policy.

system u:sysadm r:sysadm t

./contexts/userhelper context - Taken from the MLS/MCS
reference policy.

system u:sysadm r:sysadm t:sO

Supporting 1ibselinux API functions are:

selinux context path

3.420 contexts/virtual domain context File

The virtual domain context (5) file is used by the virtulization API
(1ibvirt) and provides the gemu domain contexts available in the policy (see
libvirt source src/security/security selinux.c). There may be two
entries in this file, with the second entry being an alternative domain context.

Example file contents:

./contexts/virtual domain context - From targeted policy.

system u:system r:svirt t:s0

Supporting 1ibselinux API functions are:

Page 162

The SELinux Notebook

selinux virtual domain context path

3.421 contexts/virtual image context File

The virtual image context (5) file is used by the virtulization API
(1ibvirt) and provides the image contexts that are available in the policy (see
libvirt source src/security/security selinux.c). The first entry is the
image file context and the second entry is the image content context.

Example file contents:

./contexts/virtual image context - From targeted policy.

system u:system r:svirt image t:s0
system u:system r:svirtcontent t:s0

Supporting 1ibselinux API functions are:

selinux virtual image context path

3.4.22 contexts/x contexts File

The x_contexts (5) file provides the default security contexts for the X-Windows
SELinux security extension. The usage is discussed in the X-windows SELinux
Support section. The MCS / MLS version of the file has the appropriate level or
range information added.

A typical entry is as follows:

object type object name context
selection PRIMARY system u:object r:clipboard xselection t

Where:

object type These are types of object supported and valid entries are:
client, property, poly property, extension,
selection, poly selectionand events.

object_name These are the object names of the specific X-server resource
such as PRIMARY, CUT BUFFERO etc. They are generally
defined in the X-server source code (protocol.txt and
BuiltInAtoms in the dix directory of the xorg-
server source package).

This can contain '*' for 'any' or '?' for 'substitute' (see the
CUT_BUFFER? entry where the '?' would be substituted for

a number between 0 and 7 that represents the number of
these buffers).

Page 163

The SELinux Notebook

context This is the security context that will be applied to the object.
For MLS/MCS systems there would be the additional MLS
label.

Example file contents:

#
Config file for XSELinux extension

#

Rules for X Clients

The default client rule defines a context to be used for all clients
connecting to the server from a remote host.

#

client * system u:object r:remote t

#

Rules for X Properties

Property rules map a property name to a context. A default property
rule indicated by an asterisk should follow all other property rules.

#
Properties that normal clients may only read
property SELINUX * system u:object r:seclabel xproperty t

Clipboard and selection properties
property CUT BUFFER? system u:object r:clipboard xproperty t

Default fallback type
property * system u:object r:xproperty t

#

Rules for X Extensions

Extension rules map an extension name to a context. A default extension
rule indicated by an asterisk should follow all other extension rules.

#
Restricted extensions
extension SELinux system u:object r:security xextension t

Standard extensions
extension * system u:object r:xextension t

#

Rules for X Selections

Selection rules map a selection name to a context. A default selection
rule indicated by an asterisk should follow all other selection rules.

#

Standard selections

selection PRIMARY system u:object r:clipboard xselection_t
selection CLIPBOARD system u:object r:clipboard xselection_t

Default fallback type
selection * system u:object r:xselection t

#

Rules for X Events

Event rules map an event protocol name to a context. A default event
rule indicated by an asterisk should follow all other event rules.

#

Input events

event X11:KeyPress system u:object r:input xevent t
event X1ll:KeyRelease system u:object r:input xevent t
event X1l:ButtonPress system u:object r:input xevent t
event Xll:ButtonRelease system u:object r:input xevent t
event X11l:MotionNotify system u:object r:input xevent t
event XInputExtension:DeviceKeyPress system u:object r:input xevent t
event XInputExtension:DeviceKeyRelease system u:object r:input xevent t
event XInputExtension:DeviceButtonPress system u:object r:input xevent t
event XInputExtension:DeviceButtonRelease system u:object r:input xevent t
event XInputExtension:DeviceMotionNotify system u:object r:input xevent t
event XInputExtension:DeviceValuator system u:object r:input xevent t
event XInputExtension:ProximityIn system u:object r:input xevent t
event XInputExtension:ProximityOut system u:object r:input xevent t

Page 164

The SELinux Notebook

Client message events

event X1l:ClientMessage system u:object r:client xevent t
event Xll:SelectionNotify system u:object r:client xevent t
event X11:UnmapNotify system u:object r:client xevent t
event X1l:ConfigureNotify system u:object r:client xevent t

Default fallback type
event * system u:object r:xevent t

Supporting 1ibselinux API functions are:

selinux x context path
selabel open

selabel close

selabel lookup

selabel stats

3.4.23 contexts/files/file contexts File

The file contexts(5) file is managed by the semodule (8) and
semanage (8) commands® as the policy is updated (adding or removing modules or
updating the base), and therefore should not be edited.

The file is used by a number of SELinux-aware commands (setfiles(8),
fixfiles (8), matchpathcon (8), restorecon (8)) to relabel either part or
all of the file system.

Note that users home directory file contexts are not present in this file as they are
managed by the file contexts.homedirs file as explained below.

The format of the file contexts file is the same as the files described in the
modules/active/file contexts file section.

There may also be a file contexts.bin present that is built and used by
semanage (8). The format of this file conforms to the Perl compatible regular
expression (PCRE) internal format.

Supporting 1ibselinux API functions are:

selinux file context path
selabel open

selabel close

selabel lookup

selabel stats

3.4.24 contexts/files/file contexts.local File

This file is added by the semanage fcontext command as described in the
modules/active/file contexts.local file section to allow locally

* As each module would have its own file contexts component that is either added or

removed from the policies overall /etc/selinux/<policy name>/contexts/
files/file contexts file.

Page 165

The SELinux Notebook

defined files to be labeled correctly. The file contexts (5) man page also
decribes this file.

Supporting 1ibselinux API functions are:

selinux file context local path

3.4.25 contexts/files/file contexts.homedirs File

This file is managed by the semodule (8) and semanage (8) commands as the
policy is updated (adding or removing users and modules or updating the base), and
therefore should not be edited.

It is generated by the genhomedircon (8) command (in fact by semodule -Bn
that rebuilds the policy) and used to set the correct contexts on the users home
directory and files.

It is fully described in the . /modules/active/file contexts.homedirs

file section. The £file contexts (5) man page also decribes this file.

There may also be a file contexts.homedirs.bin present that is built and
used by semanage (8). The format of this file conforms to the Perl compatible
regular expression (PCRE) internal format.

Supporting 1ibselinux API functions are:

selinux file context homedir path
selinux homedir context path

3.4.26 contexts/files/file contexts.subs and

file contexts.subs dist File

These files allow substitution of file names (. subs for local use and . subs dist
for GNU / Linux distributions wuse) for the libselinux functions

matchpatchcon (3) and selabel lookup (3). The file contexts (5)
man page also decribes this file.

The subs files contain a list of space separated path names such as:

/myweb /var/www
/myspool /var/spool/mail

Then (for example), when matchpatchcon (3) or selabel lookup (3) is
passed a path /myweb/index.html the functions will substitute the /myweb
component with /var/www, with the final result being:

/var/www/index.html

Supporting 1ibselinux API functions are:

selinux file context subs path

Page 166

The SELinux Notebook

selinux file context subs dist path
selabel lookup

matchpathcon

matchpathcon index

3.4.27 contexts/files/media File

The media (5) file is used to map media types to a file context. If the media id
cannot be found in this file, then the default context in the
contexts/removable contexts is used instead.

The file format is as follows:

media id file context

Where:
media id The media identifier (those known are: cdrom,
floppy, disk and usb).
file context The context to be used for the device. Note that it does

not have the MLS / MCS level).

Example file contents:

contexts/files/media
Note the same file is generated for all types of policy.

cdrom system u:object r:removable device t
floppy system u:object r:removable device t
disk system u:object r:fixed disk device t

Supporting 1ibselinux API functions are:

selinux media context path

3.4.28 contexts/users/[seuser id] File

These optional files are named after the SELinux user they represent. Each file has the
same format as the contexts/default contexts file and is used to assign the
correct context to the SELinux wuser (generally during login). The
user_ contexts (5) man page also decribes these entries.

Example file contents:

./contexts/users/unconfined u - From the targeted policy.

system r:crond t:s0 unconfined r:unconfined t:s0
system r:initrc t:s0 unconfined r:unconfined t:s0
system r:local login t:s0 unconfined r:unconfined t:s0

Page 167

The SELinux Notebook

system r:remote login t:s0 unconfined r:unconfined t:s0
system r:sshd t:s0 unconfined r:unconfined t:s0
system r:sysadm su t:s0 unconfined r:unconfined t:s0
system r:unconfined t:s0 unconfined r:unconfined t:s0
system r:initrc su t:s0 unconfined r:unconfined t:s0
unconfined r:unconfined t:s0 wunconfined r:unconfined t:s0
system r:xdm t:s0 unconfined r:unconfined t:s0

Supporting 1ibselinux API functions are:

selinux user contexts path

selinux users path

selinux usersconf path

get default context

get default context with role

get default context with level

get default context with rolelevel
get ordered context list

get ordered context list with level

3.429 logins/<linuxuser id> File

These optional files are used by SELinux-aware login applications such as PAM
(using the pam selinux module) to obtain an SELinux user name and level based
on the GNU / Linux login id and service name. It has been implemented for SELinux-
aware applications such as FreeIPA (Identity, Policy Audit - see
http://freeipa.org/page/Main_Page for details). The service_ seusers (5) man
page also decribes these entries.

The file name is based on the GNU/Linux user that is used at log in time (e.g. ipa).

If getseuser (3) fails to find an entry, then the seusers file is used to retrieve
default information.

The file format is as follows:

service name:seuser id:level

Where:
service name The name of the service.
seuser id The SELinux user name.
level The run level

Example file contents:

./logins/ipa example entries

ipa service:user u:s0
another service:unconfined u:s0

Page 168

http://freeipa.org/page/Main_Page)for

The SELinux Notebook

Supporting 1ibselinux API functions are:

getseuser

3.4.30 users/local.users File

Generally the local .users (5) file is not present if semanage (8) is being used
to manage users, however if semanage is not being used then this file may be
present (it could also be present in older Reference or Example policies).

The file would contain local user definitions in the form of user statements as
defined in the modules/active/users.local section.

Note that if SETLOCALDEFS is set in the SELinux config file, then
selinux mkload policy (3) will check for a local.users file in the
selinux users path(3), and a booleans.local file in the
selinux booleans path(3).

Page 169

The SELinux Notebook

4. SELinux Policy Languages

4.1 Introduction

This section is intended as a reference to give a basic understanding of the kernel
policy language statements and rules with supporting examples taken from the
Reference Policy sources. Also all of the language updates to Policy DB version 29
should have been captured. For a more detailed explanation of the policy language the
"SELinux by Example" [12] book is recommended.

There is currently a project underway called the Common Intermediate Language
(CIL) project that defines a new policy definition language that has an overview of its
motivation and design at: https://github.com/SELinuxProject/cil/wiki, however some
of the language statement definitions out of date. The CIL compiler source and
language reference guide can be found at: https://github.com/SELinuxProject/cil.git
and cloned via:

git clone https://github.com/SELinuxProject/cil.git

The CIL compiler language reference guide has examples for each type of statement
and can be built in pdf or html formats, therefore this Notebook will not cover the CIL
policy language (there is a pdf copy of the CIL Reference Guide in the Notebook
tarball). There is a migration programme underway that will convert the Reference
Policy to CIL via a high level language module that is discussed in the Policy Store
Migration section. Once migration is complete, the CIL compiler will be in available
the libsepol library and CIL modules will be compiled with an updated
semodule (8) command as follows:

Compile and install an updated module written in CIL:
semodule -s modular-test --priority 400 -i custom/int gateway.cil

Note that any source policy file name with the '. ci1' extension will automatically be
built as a CIL module.

4.1.1 CIL Overview

While the CIL design web pages give the main objectives of CIL, from a language
perspective it will:

a) Apply name and usage consistancy to the current kernel language statements.
For example the kernel language uses attribute and attribute role
to declare identifiers, whereas CIL wuses typeattribute and
roleattribute. Also statements to associate types or roles have been
made consistant and enhanced to allow expressions to be defined.

Examples:

Kernel CIL
attribute typeattribute
typeattribute typeattributeset
attribute role roleattribute

Page 170

https://github.com/SELinuxProject/selinux/wiki/Policy-Store-Migration
https://github.com/SELinuxProject/cil.git
https://github.com/SELinuxProject/cil/wiki

The SELinux Notebook

roleattribute roleattributeset
allow allow

allow (role) roleallow
dominance sensitivityorder

b) Additional CIL statements have been defined to enhance functionality:
classpermission - Declare a classpermissionset identifier.

classpermissionset - Associate class / permissions also supporting
expressions.

classmap / classmapping - Statements to support declaration and
association of multiple classpermissionset's. Useful when defining
an allow rule with multiple class/permissions.

context - Statement to declare security context.
¢) Allow named and anonymous definitions to be supported.

d) Support namespace features allowing policy modules to be defined within
blocks with inheritance and template features.

e) Remove the order dependancy in that policy statements can be anywhere
within the source (i.e. remove dependancy of class, sid etc. being within a base
module).

f) Able to define macros and calls that will remove any dependancy on M4
macro support.

g) Directly generate the binary policy file and other configuration files - currently
the file contexts file.

h) Support transformation services such as delete, transform and inherit with
exceptions.

An simple CIL policy is as follows:

These CIL statements declare a user, role, type and range of:
unconfined.user:unconfined.role:unconfined.process:s0-s0

A CIL policy requires at least one 'allow' rule and sid to be declared
before a policy will build.

Ne N N Ne N~

(handleunknown allow)
(mls true)
(policycap open_ perms)

(category cO0)

(categoryorder (c0))

(sensitivity sO0)

(sensitivityorder (s0))
(sensitivitycategory s0 (c0))

(level systemLow (sO0))

(levelrange low_low (systemLow systemLow))

(sid kernel)
(sidorder (kernel))
(sidcontext kernel unconfined.sid context)

(classorder (file))
(class file (read write open getattr))

Page 171

The SELinux Notebook

; Define object r role. This must be assigned in CIL.
(role object r)

; The unconfined namespace:
(block unconfined
(user user)
(userrange user (systemLow systemLow))
(userlevel user systemLow)
(userrole user role)

(role role)

(type process)

(roletype object r process)

(roletype role process)

; Define a SID context:

(context sid context (user role process low_ low))

(type object)
(roletype object r object)

; An allow rule:
(allow process object (file (read)))

There are CIL examples in the Notebook source tarball with a utility that will produce
a base policy in either the kernel policy language or CIL (notebook-
tools/build-sepolicy). The only requirement is that the initial sids,
security classes and access_vectors files from the Reference policy are
required, although the F-20 versions are supplied in the basic-policy/policy-
files/flask-files directory.

Usage: build-sepolicy [-k] [-M] [-c|-i|-pl-s] -d flask directory -o output file

-k Output kernel classes only (exclude # userspace entries in the
security classes file).

-M Output an MLS policy.

-c Output a policy in CIL language (otherwise gererate a kernel policy
language policy) .

-p Output a file containing class and classpermissionsets + their order
for use by CIL policies.

-s Output a file containing initial SIDs + their order for use by
CIL policies.

-i Output a header file containing class/permissions for use by
selinux_set mapping(3) .

-0 The output file that will contain the policy source or header file.

-d Directory containing the initial sids, security classes and
access vectors Flask files.

4.2 Kernel Policy Language

4.2.1 Policy Source Files

There are three basic types of policy source file*’ that can contain language statements
and rules. The three types of policy source file*' are:

It is important to note that the Reference Policy builds policy using makefiles and m4 support

macros within its own source file structure. However, the end result of the make process is that
there can be three possible types of source file built (depending on the MONOLITHIC=Y /N build
option). These files contain the policy language statements and rules that are finally complied into
a binary policy.

Page 172

The SELinux Notebook

Monolithic Policy - This is a single policy source file that contains all statements.
By convention this file is called policy.conf and is compiled using the
checkpolicy (8) command that produces the binary policy file.

Base Policy - This is the mandatory base policy source file that supports the
loadable module infrastructure. The whole system policy could be fully contained
within this file, however it is more usual for the base policy to hold the mandatory
components of a policy, with the optional components contained in loadable
module source files. By convention this file is called base.conf and is
compiled using the checkpolicy (8) or checkmodule (8) command.

Module (or Non-base) Policy - These are optional policy source files that when
compiled, can be dynamically loaded or unloaded within the policy store. By
convention these files are named after the module or application they represent,
with the compiled binary having a '. pp' extension. These files are compiled using
the checkmodule command.

Table 14 shows the order in which the statements should appear in source files with
the mandatory statements that must be present.

41

This does not include the 'file contexts' file as it does not contain policy statements, only
default security contexts (labels) that will be used to label files and directories.

Page 173

The SELinux Notebook

Base Entries

M/O | Module Entries

M/0

Security Classes (class)

m module Statement

Initial SIDs

Access Vectors
(permissions)

m require Statement

MLS sensitivity, category
and level Statements

MLS Constraints

Policy Capability

Statements

Attributes

W) Attributes 0

Booleans

Booleans o

o

range rules

Default user, role, type, o

Type / Type Alias

Type / Type Alias

Roles

Roles

Policy Rules

Policy Rules

Users

o|o|o|©

Users

Constraints

Default SID labeling

Statements

fs use xattr

©c|B|eo|B|B|B|B

Statements

fs use taskand 0
fs use trans

genfscon Statements o

portcon, netifcon and 0
nodecon Statements

Table 14: Base and Module Policy Statements - There must be at least one of each
of the mandatory statements, plus at least one allow rule in a policy to successfully

build.

The language grammar defines what statements and rules can be used within the
different types of source file. To highlight these rules, the following table is included
in each statement and rule section to show what circumstances each one is valid

within a policy source file:

Monolithic Policy Base Policy Module Policy
Yes/No Yes/No Yes/No
Where:

Monolithic Policy Whether the statement is allowed within a monolithic
policy source file or not.

Base Policy Whether the statement is allowed within a base (for
loadable module support) policy source file or not.

Module Policy Whether the statement is allowed within the optional

loadable module policy source file or not.

Page 174

The SELinux Notebook

Table 16 shows a cross reference matrix of statements and rules allowed in each type
of policy source file.

4.2.2 Conditional, Optional and Require Statement Rules

The language grammar specifies what statements and rules can be included within
Conditional Policy, Optional Policy statements and the require statement. To
highlight these rules the following table is included in each statement and rule section
to show what circumstances each one is valid within a policy source file:

Conditional Policy (if) Statement optional Statement reqguire Statement
Yes/No Yes/No Yes/No
Where:
Conditional Policy Whether the statement is allowed within a conditional
(1 f) Statement statement (IF / ELSE construct) as described in the

i f Statement section. Conditional statements can be
in all types of policy source file.

optional Statement Whether the statement is allowed within the
optional { rule list } constructas
described in the optional Statement section.

require Statement Whether the statement keyword is allowed within the
require { rule list } constructas
described in the require Statement section.

Table 16 shows a cross reference matrix of statements and rules allowed in each of
the above policy statements.

4.2.3 MLS Statements and Optional MLS Components

The MLS Statements section defines statements specifically for MLS support.
However when MLS is enabled, there are other statements that require the MLS
Security Context component as an argument, therefore these statements show an
example taken from the Reference Policy MLS build.

4.2.4 General Statement Information

1. Identifiers can generally be any length but should be restricted to the following
characters: a-z, A-Z, 0-9 and _ (underscore).

2. A '#'indicates the start of a comment in policy source files.
All statements available to policy version 29 have been included.

4. When multiple source and target entries are shown in a single statement or rule,
the compiler (checkpolicy (8) or checkmodule (8)) will expand these to
individual statements or rules as shown in the following example:

This allow rule has two target entries console device t and
tty device t:

Page 175

The SELinux Notebook

and:

allow apm t { console device t tty device t }:chr file
{ getattr read write append ioctl lock };

The compiler will expand this to become:
allow apm t console device t:chr file { getattr read write
append ioctl lock };

allow apm t tty device t:chr file { getattr read write append
ioctl lock };

Therefore when comparing the actual source code with a compiled binary using
(for example) apol (8), sedispol or sedismod, the results will differ

(however the resulting policy rules will be the same).

Some statements can be added to a policy via the policy store using the
semanage (8) command. Examples of these are shown where applicable,
however the semanage man page should be consulted for all the possible

command line options.

6. Table 15 lists words reserved for the SELinux policy language.

alias allow and
attribute attribute role auditallow
auditdeny bool category
cfalse class clone
common constrain ctrue

dom domby dominance
dontaudit else equals
false filename filesystem
fscon fs use task fs use trans
fs use xattr genfscon hl

h2 identifier if

incomp inherits iomemcon
ioportcon ipv4 addr ipv6_addr
11 12 level
mlsconstrain mlsvalidatetrans module
netifcon neverallow nodecon
not notequal number
object r optional or

path pcidevicecon permissive
pirgcon policycap portcon

rl r2 r3

range range_ transition require
role roleattribute roles

role transition sameuser sensitivity
sid source tl

t2 t3 target

Page 176

The SELinux Notebook

true type typealias
typeattribute typebounds type change

type member types type transition

ul u2 u3

user validatetrans version identifier
Xor default user default role

default type

default range

low

high

low_high

Table 15: Policy language reserved words.

7. Table 16 shows what policy language statements and rules are allowed within
each type of policy source file, and whether the statement is valid withinan i1 f /
else construct, optional {rule list}, or require {rule list}

statement.
Statement / Rule Monolithic Base Module | Conditional | optional [require
Policy Policy Policy | Statements | Statement | Statement®

allow Yes Yes Yes Yes Yes No
allow - Role Yes Yes Yes No Yes No
attribute Yes Yes Yes No Yes Yes
attribute role Yes Yes Yes No Yes Yes
auditallow Yes Yes Yes Yes Yes No
auditdeny Yes Yes Yes Yes Yes No
(Deprecated)

bool Yes Yes Yes No Yes Yes
category Yes Yes No No No Yes
class Yes Yes No No No Yes
common Yes Yes No No No No
constrain Yes Yes No No No No
default user Yes Yes No No No No
default_role Yes Yes No No No No
default type Yes Yes No No No No
default_range Yes Yes No No No No
dominance - MLS Yes Yes No No No No
dominance - Role Yes Yes Yes No Yes No
(Deprecated)

dontaudit Yes Yes Yes Yes Yes No
fs_use_task Yes Yes No No No No
fs use trans Yes Yes No No No No
fs use xattr Yes Yes No No No No
genfscon Yes Yes No No No No
if Yes Yes Yes No Yes No
level Yes Yes No No No No
mlsconstrain Yes Yes No No No No

42

Only the statement keyword is allowed.

Page 177

The SELinux Notebook

Statement / Rule Monolithic Base Module | Conditional | optional require
Policy Policy Policy | Statements | Statement | Statement
mlsvalidatetrans Yes Yes No No No No
module No No Yes No No No
netifcon Yes Yes No No No No
neverallow Yes Yes Yes® No Yes No
nodecon Yes Yes No No No No
optional No Yes Yes Yes Yes Yes
permissive Yes Yes Yes Yes Yes No
policycap Yes Yes No No No No
portcon Yes Yes No No No No
range transition Yes Yes Yes No Yes No
require No Yes* Yes Yes® Yes No
role Yes Yes Yes No Yes Yes
roleattribute Yes Yes Yes No Yes No
role_transition Yes Yes Yes No Yes No
sensitivity Yes Yes No No No Yes
sid Yes Yes No No No No
type Yes Yes Yes No No Yes
type change Yes Yes Yes Yes Yes No
type member Yes Yes Yes Yes Yes No
type transition Yes Yes Yes Yes Yes No
typealias Yes Yes Yes No Yes No
typeattribute Yes Yes Yes No Yes No
typebounds Yes Yes Yes No Yes No
user Yes Yes Yes No Yes Yes
validatetrans Yes Yes No No No No

Table 16: The policy language statements and rules that are allowed within each
type of policy source file - The left hand side of the table shows what Policy
Language Statements and Rules are allowed within each type of policy source file.
The right hand side of the table shows whether the statement is valid within the
1f / elseconstruct, optional {rule list}, or require
{rule 1ist} statement.

4.2.5 Section Contents

The policy language statement and rule sections are as follows:

a) Policy Configuration Statements

b) Default Object Rules

¢) User Statements

43

file must have the expand-check=1 entry present.

44

45

Only if preceded by the optional statement.
Only if preceded by the optional statement.

neveral low statements are allowed in modules, however to detect these the semanage.conf

Page 178

The SELinux Notebook

d) Role Statements

e) Type Statements
f) Bounds Rules
g) Access Vector Rules

h) Object Class and Permission Statements

1) Conditional Policy Statements

j) Constraint Statements
k) MLS Statements
1) Security ID (SID) Statement

m) File System Labeling Statements

n) Network Labeling Statements

0) Modular Policy Support Statements
p) XEN Statements

4.3 Policy Configuration Statements

4.3.1 policycap

Policy version 22 introduced the policycap statement to allow new capabilities to
be enabled or disabled in the kernel via policy in a backward compatible way. For
example policies that are aware of a new capability can enable the functionality, while
older policies would continue to use the original functionality. An example is shown
in the SELinux Networking Support section using the network peer controls
capability.

In the 3.14 kernel there are four policy capabilities configured as shown in the
SELinux Filesystem section.

The statement definition is:

policycap capability;

Where:
policycap The policycap keyword.
capability A single capability identifier that will be

enabled for this policy.

The statement is valid in:

Page 179

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No No
Example:

#

This statement enables the network peer controls to be enabled
for use by the policy.

policycap network peer controls;

4.4 Default Object Rules

These rules allow a default user, role, type and/or range to be used when computing a
context for a new object. These require policy version 27 or 28 with kernels 3.5 or

greater.

4.41 default user

Allows the default user to be taken from the source or target context when computing
a new context for an object of the defined class. Requires policy version 27.

The statement definition is:

default user class

default;

Where:

default user

class

default

The statement is valid in:

The default user rule keyword.

One or more class identifiers. Multiple entries
consist of a space separated list enclosed in braces

({1

Entries can be excluded from the list by using the
negative operator (-).

A single keyword consisting of either source or
target that will state whether the default user
should be obtained from the source or target
context.

Page 180

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

No

No

Examples:

When computing the context for a new file object, the user
will be obtained from the target context.
default user file target;

When computing the context for a new x selection or x property
object, the user will be obtained from the source context.
default user { x selection x property } source;

4.4.2 default role

Allows the default role to be taken from the source or target context when computing
a new context for an object of the defined class. Requires policy version 27.

The statement definition is:

default role class default;

Where:
default role

class

The default role rule keyword.

One or more c1lass identifiers. Multiple entries

consist of a space separated list enclosed in braces

({1).

Entries can be excluded from the list by using the
negative operator (-).

default

A single keyword consisting of either source or

target that will state whether the default role
should be obtained from the source or target
context.

The statement is valid in:

Monolithic Policy

Base Policy

Module Policy

Yes

Yes

No

Conditional Policy (i f) Statement

optional Statement

require Statement

No

No

No

Page 181

The SELinux Notebook

Example:

will be obtained from the target context.
default role file target;

When computing the context for a new file object, the role

object, the role will be obtained from the source context
default role { x selection x property } source;

When computing the context for a new x selection or x property

4.4.3 default type

Allows the default type to be taken from the source or target context when computing

a new context for an object of the defined class. Requires policy version 28.

The statement definition is:

default type class default;

Where:

default type The default type rule keyword.

class One or more c1lass identifiers. Multiple entries
consist of a space separated list enclosed in braces
({1
Entries can be excluded from the list by using the
negative operator (-).

default A single keyword consisting of either source or

target that will state whether the default type

should be obtained from the source or target

context.
The statement is valid in:
Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement optional Statement reguire Statement

No No No

Example:

will be obtained from the target context.
default type file target;

When computing the context for a new file object, the type

When computing the context for a new x selection or x property

Page 182

The SELinux Notebook

object, the type will be obtained from the source context.
default type { x selection x property } source;

4.4.4 default range

Allows the default range or level to be taken from the source or target context when
computing a new context for an object of the defined class. Requires policy version

27.

The statement definition is:

default range class default range;

Where:

default range The default range rule keyword.

class One or more class identifiers. Multiple entries
consist of a space separated list enclosed in braces
(1)
Entries can be excluded from the list by using the
negative operator (-).

default A single keyword consisting of either source or
target that will state whether the default level or
range should be obtained from the source or target
context.

range A single keyword consisting of either: 1ow, high
or low_high that will state what part of the range
should be used.

The statement is valid in:
Monolithic Policy Base Policy Module Policy
Yes Yes No
o R |
Conditional Policy (if) Statement optional Statement require Statement
No No No

Example:

When computing the context for a new file object, the lower
level will be taken from the target context range.
default range file target low;

When computing the context for a new x selection or x property
object, the range will be obtained from the source context.
default type { x selection x property } source low high;

Page 183

The SELinux Notebook

4.5 User Statements

4.5.1 user

The user statement declares an SELinux user identifier within the policy and
associates it to one or more roles. The statement also allows an optional MLS level
and range to control a users security level. It is also possible to add SELinux user
id's outside the policy using the 'semanage user' command that will associate the
user with roles previously declared within the policy.

The statement definition is:

user seuser id roles role id;

Or for MCS/MLS Policy:

user seuser id roles role id level mls level range mls range;

Where:

user The user keyword.

seuser id The SELinux user identifier.

roles The roles keyword.

role id One or more previously declared role or
attribute role identifiers. Multiple role
identifiers consist of a space separated list enclosed
in braces ({ }).

level If MLS is configured, the MLS level keyword.

mls level The users default MLS security 1evel that has
been previously declared with a 1evel statement.
Note that the compiler only accepts the
sensitivity component of the level (e.g.
s0).

range If MLS is configured, the MLS range keyword.

mls range The range of security levels that the user can run.

The format is described in the MLS range
Definition section.

The statement is valid in:

Page 184

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No Yes Yes

Example:

Using the user statement to define an SELinux user user u that
has been assigned the role of user r. The SELinux user u is a
generic user identity for Linux users who have no specific

SELinux user identity defined.

#

user user u roles { user r };

MLS Examples:

Using the user statement to define an MLS SELinux user user u
that has been assigned the role of user r and has a default
login security level of sO assigned, and is only allowed
access to the s0 range of security levels (See the

MLS Statements section for details):

S+ o o 3 e

user user u roles { user r } level sO0 range sO0;

Using the user statement to define an MLS SELinux user
sysadm u that has been assigned the role of sysadm r and has
a default login security level of s0 assigned, and is
allowed access to the range of security levels (low - high)
between s0 and s15:c0.c255 (See the MLS Statements section
for details):

S o 3 S o

user sysadm u roles { sysadm r } level s0 range s0-s15:c0.c255;

semanage (8) Command example:

Add user mque u to SELinux and associate to the unconfined r
role:
semanage user -a -R unconfined r mque u

This command will produce the following files in the default <policy name>
policy store and then activate the policy:

/etc/selinux/<policy name>/modules/active/users.local:

This file is auto-generated by libsemanage
Do not edit directly.

user mque u roles { unconfined r } ;

/etc/selinux/<policy name>/modules/active/users extra:

This file is auto-generated by libsemanage

Page 185

The SELinux Notebook

Do not edit directly.

user mque u prefix user;

/etc/selinux/<policy name>/modules/active/users extra.local:

This file is auto-generated by libsemanage
Do not edit directly.

user mque u prefix user;

4.6 Role Statements

Policy version 26 introduced two new role statements aimed at replacing the role
dominance rule by making role relationships easier to understand. These new
statements: attribute role and roleattribute are defined in this section
with examples.

4.6.1 role

The role statement either declares a role identifier or associates a role identifier to
one or more types (i.e. authorise the role to access the domain or domains). Where
there are multiple role statements declaring the same role, the compiler will
associate the additional t ypes with the role.

The statement definition to declare a role is:

role role id;

The statement definition to associate a role to one or more types is:

role role id types type id;

Where:

role The role keyword.

role id The identifier of the role being declared. The same
role identifier can be declared more than once in a
policy, in which case the t ype id entries will be
amalgamated by the compiler.

types The optional types keyword.

type id When used with the types keyword, one or more

type, typealias or attribute identifiers
associated with the role id. Multiple entries
consist of a space separated list enclosed in braces
({}). Entries can be excluded from the list by using
the negative operator (-).

For role statements, only type, typealias or

Page 186

The SELinux Notebook

attribute identifiers associated to domains have
any meaning within SELinux.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No Yes Yes

Examples:

Declare the roles:

role system r;
role sysadm r;
role staff r;
role user r;
role secadm r;
role auditadm r;

Within the policy the roles are then associated to the
required types with this example showing the user r role
being associated to two domains:

role user r types user t;
role user r types chfn t;

4.6.2 attribute role

The attribute role statement declares a role attribute identifier that can then be
used to refer to a group of roles.

The statement definition is:

attribute role attribute id;

Where:
attribute role The attribute role keyword.
attribute id The attribute identifier.

The statement is valid in:

Page 187

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes Yes

- _____________________________|
Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

Yes

Yes

Examples:

attribute role role list 1;
attribute role srole list 2;

Using the attribute role statement to declare attributes that
can then refers to a list of roles.
roles associated with them yet.

Note that

there are no

4.6.3 roleattribute

The roleattribute statement allows the association of previously declared
roles to one or more previously declared attribute roles.

The statement definition is:

roleattribute role id attribute id;

Where:
roleattribute The roleattribute keyword.
role id The identifier of a previously declared role.

attribute_ id One or more previously declared

attribute role identifiers. Multiple entries

consist of a comma (,) separated list.

The statement is valid in:

Monolithic Policy

Base Policy

Module Policy

Yes

Yes

Yes

Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

Yes

No

Examples:

Using the roleattribute statement to associate a previously
declared role of service r to a previously declared
role list 1 attribute role.

attribute role role list 1;
role service r;

The association using the roleattribute statement:

Page 188

The SELinux Notebook

roleattribute service r role list 1;

4.6.4 allow

The role allow rule checks whether a request to change roles is allowed, if it is, then
there may be a further request for a role transition so that the process runs
with the new role or role set.

Note that the role a11ow rule has the same keyword as the allow AV rule.

The statement definition is:

allow from role id to role id;

Where:
allow The role allow rule keyword.
from role id One or more role or attribute role
identifiers that identify the current role. Multiple
entries consist of a space separated list enclosed
in braces ({ }).
to role id One or more role or attribute role

identifiers that identify the new role to be granted
on the transition. Multiple entries consist of a
space separated list enclosed in braces ({ }).

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes

Conditional Policy (i f) Statement optional Statement reguire Statement

No Yes No
Example:
Using the role allow rule to define authorised role
transitions in the Reference Policy. The current role
sysadm r is granted permission to transition to the secadm r
role in the MLS policy.
allow sysadm r secadm r;

4.6.5 role transition

The role transition rule specifies that a role transition is required, and if
allowed, the process will run under the new role. From policy version 25, the class
can now be defined.

Page 189

The SELinux Notebook

The statement definition is:

role transition current role id type id new role id;

Or from Policy version 25:

role transition current role id type id : class new role id;

Where:
role transition The role transition keyword.
current role id One or more role or attribute role
identifiers that identify the current role. Multiple
entries consist of a space separated list enclosed in
braces ({ }).
type id One or more type, typealiasorattribute
identifiers. Multiple entries consist of a space
separated list enclosed in braces ({ }). Entries can
be excluded from the list by using the negative
operator (-).
class For policy versions >= 25 an object class that
applies to the role transition. If omitted defaults to
the process object class.
new role id A single role identifier that will become the new
role.
The statement is valid in:
Monolithic Policy Base Policy Module Policy
Yes Yes Yes
Y ___|
Conditional Policy (i f) Statement optional Statement require Statement
No Yes No
Example:
This is a role transition used in the ext gateway.conf
loadable module to allow the secure client / server process to
run under the message filter r role. The role needs to be
declared, allowed to transition from its current role of
unconfined r and it then transitions when the process
transitions via the type transition statement (not shown).
Note that the role needs to be associated to a user by either:
1) An embedded user statement in the policy. This is not
recommended as it makes the policy fixed to either
standard, MCS or MLS.
2) Using the semanage (8) command to add the role. This will
allow the module to be used by MCS/MLS policies as well.
#

Page 190

The SELinux Notebook

The secure client / server will run in this domain:
type ext gateway t;

The binaries will be labeled:
type secure services exec_ t;

Use message filter r role and then transition
role message filter r types ext gatway t;
allow unconfined r message filter r;

role transition unzonfined_r gecure_s_ervices_exec_t message filter r;

4.6.6 dominance

This rule has been deprecated and therefore should not be used. The role
dominance rule allows the dom role id to dominate the role id (consisting
of one or more roles). The dominant role will automatically inherit all the type
associations of the other roles.

Notes:

1. There is another dominance rule for MLS (see the MLS dominance
statement).

2. The role dominance rule is not used by the Reference Policy as the policy
manages role dominance using the constrain statement.

3. Note the usage of braces '{ }'and the '; ' in the statement.

The statement definition is:

dominance { role dom role id { role role id;

Where:
dominance The dominance keyword.
role The role keyword.

dom role id

role id

The statement is valid in:

The dominant role identifier.

For the simple case each { role role id; }
pair defines the role id that will be dominated by
the dom role id.

Monolithic Policy Base Policy Module Policy
Yes Yes Yes

Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

Yes

No

Example:

Page 191

The SELinux Notebook

This shows the dominance role rule, note however that it
has been deprecated and should not be used.

dominance { role message filter r { role unconfined r };}

4.7 Type Statements

These statements share the same namespace, therefore the general convention is to

use ' t'as the final two characters of a type identifier to differentiate it from an
attribute identifier as shown in the following examples:

Statement Identifier Comment

type bin t; # A type identifier ends with t
attribute file type; # An attribute identifier ends with
generally ends with type

4.71 type

The type statement declares the t ype identifier and any optional associated alias
or attribute identifiers. Type identifiers are a component of the Security Context.

The statement definition is:

type type id [alias alias id] [, attribute id];

Where:

type The type keyword.

type id The type identifier.

alias Optional alias keyword that signifies alternate
identifiers for the type id that are declared in the
alias_idlist.

alias_id One or more alias identifiers that have been
previously declared by the typealias statement.
Multiple entries consist of a space separated list
enclosed in braces ({ }) .

attribute_id One or more optional attribute identifiers that

have been previously declared by the attribute
statement. Multiple entries consist of a comma ()
separated list, also note the lead comma.

The statement is valid in:

Page 192

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- __|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No Yes

Examples:

Using the type statement to declare a type of shell exec t,
where exec t is used to identify a file as an executable type.

type shell exec t;

Using the type statement to declare a type of bin t, where
bin t is used to identify a file as an ordinary program type.

type bin t;

Using the type statement to declare a type of bin t with two
alias names. The sbin t is used to identify the file as a
system admin program type.

type bin t alias { 1ls exec t sbin t };

Using the type statement to declare a type of boolean t that
also associates it to a previously declared attribute

booleans type (see the attribute statement)

attribute booleans_ type; # declare the attribute

type boolean t, booleans type; # and associate with the type

Using the type statement to declare a type of setfiles t that
also has an alias of restorecon t and one previously declared
attribute of can relabelto binary policy associated with it.

attribute can relabelto binary policy;

type setfiles t alias restorecon_ t, can relabelto binary policy;

Using the type statement to declare a type of
ssh server packet t that also associates it to two previously
declared attributes packet type and server packet type.

attribute packet type; # declare attribute 1
attribute server packet type; # declare attribute 2

Associate the type identifier with the two attributes:

type ssh server packet t, packet type, server packet type;

Page 193

The SELinux Notebook

4.7.2 attribute

An attribute statement declares an identifier that can then be used to refer to a
group of type identifiers.

The statement definition is:

attribute attribute id;

Where:
attribute The attribute keyword.
attribute id The attribute identifier.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement require Statement
No Yes Yes

Examples:

Using the attribute statement to declare attributes domain,
daemon, file type and non security file type:

attribute domain;

attribute daemon;

attribute file type;

attribute non security file type;

4.7.3 typeattribute

The typeattribute statement allows the association of previously declared
types to one or more previously declared attributes.

The statement definition is:

typeattribute type id attribute id;

Where:
typeattribute The typeattribute keyword.
type id The identifier of a previously declared type.
attribute_ id One or more previously declared attribute

identifiers. Multiple entries consist of a comma ()
separated list.

The statement is valid in:

Page 194

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No Yes No

Examples:

Using the typeattribute statement to associate a previously
declared type of setroubleshootd t to a previously declared
domain attribute.

The previously declared attribute:
attribute domain;

The previously declared type:
type setroubleshootd t;

The association using the typeattribute statement:
typeattribute setroubleshootd t domain;

Using the typeattribute statement to associate a type of
setroubleshootd exec t to two attributes file type and
non security file type.

These are the previously declared attributes:
attribute file type;
attribute non security file type;

The previously declared type:
type setroubleshootd exec t;

These are the associations using the typeattribute statement:
typeattribute setroubleshootd exec t file type, non security file type;

4.7.4 typealias

The typealias statement allows the association of a previously declared type to
one or more alias identifiers (an alternative way is to use the t ype statement.

The statement definition is:

typealias type id alias alias_id;

Where:
typealias The typealias keyword.
type id The identifier of a previously declared type.
alias The alias keyword.
alias id One or more alias identifiers. Multiple entries
consist of a space separated list enclosed in braces
({1

Page 195

The SELinux Notebook

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes

Conditional Policy (i f) Statement optional Statement reguire Statement
No Yes No

Examples:

Using the typealias statement to associate the previously
declared type mount t with an alias of mount ntfs t.

Declare the type:
type mount t;

Then alias the identifier:
typealias mount t alias mount ntfs t;

Using the typealias statement to associate the previously
declared type netif t with two alias, lo netif t and
netif lo t.

Declare the type:
type netif t;

Then assign two alias identifiers lo netif t and netif lo t:
typealias netif t alias { lo netif t netif lo t };

4.7.5 permissive

Policy version 23 introduced the permissive statement to allow the named domain
to run in permissive mode instead of running all SELinux domains in permissive
mode (that was the only option prior to version 23). Note that the permissive
statement:

1. Only tests the source context for any policy denial.

2. Can be set by the semanage (8) command as it supports a permissive option
as follows:

semanage supports enabling and disabling of permissive
mode using the following command:
semanage permissive -a|d type

This example will add a new module in /etc/selinux/
<policy name>/modules/active/modules/ called

permissive unconfined t.pp and then reload the policy:

semanage permissive -a unconfined t

3. Can be built into a loadable policy module so that permissive mode can be
easily enabled or disabled by adding or removing the module. An example
module is as follows:

Page 196

The SELinux Notebook

This is an example loadable module that would allow the
domain to be set to permissive mode.
#
module permissive unconfined t 1.0.0;
require {
type unconfined t;
}

permissive unconfined t;

The statement definition is:

permissive type id;

Where:
permissive The permissive keyword.
type id The type identifier of the domain that will be run

in permissive mode.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No Yes No

Example:

This is the simple statement that would allow permissive mode
to be set on the httpd t domain, however this statement is

generally built into a loadable policy module so that the

permissive mode can be easily removed by removing the module.
#

permissive httpd t;

semanage (8) Command example:

semanage permissive -a unconfined t

This command will produce the following module in the default <policy name>
policy store and then activate the policy:

/etc/selinux/<policy name>/modules/active/modules/permissive unconfined t.pp

4.7.6 type transition

The type transition rule specifies the default type to be used for domain
transistion or object creation. Kernels from 2.6.39 with Policy versions from 25 also
support the 'name transition rule' extension. See the Computing Security Contexts

Page 197

The SELinux Notebook

section for more details. Note than an allow rule must be used to authorise the
transition.

The statement definitions are:

type transition source type target type : class default type;

Policy versions 25 and above also support a 'name transition' rule however, this is
only appropriate for the file classes:

type transition source type target type : class default type object name;
Where:
type transition The type transition rule keyword.
source type One or more source / target t ype, typealias or
target type attribute identifiers. Multiple entries consist of

a space separated list enclosed in braces ({ }).

Entries can be excluded from the list by using the
negative operator (-).

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({ }).

default type A single type or typealias identifier that will
become the default process t ype for a domain
transition or the t ype for object transitions.

object_name For the 'name transition' rule this is matched against
the objects name (i.e. the last component of a path).
If object name exactly matches the object
name, then use default type for the type.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement regquire Statement
Yes Yes No

Example - Domain Transition:

Using the type transition statement to show a domain

transition (as the statement has the process object class).
The rule states that when a process of type initrc_ t executes
a file of type acct exec t, the process type should be changed
to acct t if allowed by the policy (i.e. Transition from the
initrc t domain to the acc t domain).

H= o 3 3

Page 198

The SELinux Notebook

type transition initrc t acct exec t:process acct t;

Note that to be able to transition to the acc t domain the
following minimum permissions need to be granted in the policy
using allow rules (as shown in the allow rule section).

File needs to be executable in the initrc t domain:
allow initrc t acct exec t:file execute;

The executable file needs an entry point into the acct t
domain:
allow acct t acct exec t:file entrypoint;

Process needs permission to transition into the acct t domain:
allow initrc t acct t:process transition;

Example - Object Transition:

Using the type transition statement to show an object

transition (as it has other than process in the class).

The rule states that when a process of type acct t creates a
file in the directory of type var log t, by default it should
have the type wtmp t if allowed by the policy.

type transition acct t var log t:file wtmp t;

Note that to be able to create the new file object with the
wtmp t type, the following minimum permissions need to be
granted in the policy using allow rules (as shown in the
allow rule section).

.

A minimum of: add name, write and search on the var log t

directory. The actual policy has:

#

allow acct_t var log t:dir { read getattr lock search ioctl
add name remove name write };

A minimum of: create and write on the wtmp t file. The actual

policy has:

#

allow acct t wtmp t:file { create open getattr setattr read
write append rename link unlink ioctl lock };

Example - Name Transition:

type transition to allow using the last path component as
part of the information in making labeling decisions for
new objects. An example rule:

#

type transition unconfined t etc t : file system conf t eric;

This rule says if unconfined t creates a file in a directory
labeled etc t and the last path component is "eric" (must be
an exact strcmp) it should be labeled system conf t.

Page 199

The SELinux Notebook

4.7.7 type change

The type change rule specifies a default type when relabeling an existing object.

For example userspace

security compute relabel (3)

SELinux-aware

applications would use
and type change rules in policy to

determine the new context to be applied. Note that an allow rule must be used to
authorise access. See the Computing Security Contexts section for more details.

The statement definition is:

type change source type target type

class change type;

Where:
type change The type change rule keyword.
source type One or more source / target t ype, typealias or

target type

attribute identifiers. Multiple entries consist of

a space separated list enclosed in braces ({ }).

Entries can be excluded from the list by using the
negative operator (-).

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({ }).

change type A single type or typealias identifier that will
become the new type.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes

Conditional Policy (i f) Statement

optional Statement

regquire Statement

Yes

Yes

No

Examples:

Using the type change statement to show that when relabeling a
character file with type sysadm devpts t on behalf of
auditadm t, the type auditadm devpts t should be used:

type change auditadm t sysadm devpts t:chr file auditadm devpts t;

H o o 3

should be used:

Using the type change statement to show that when relabeling a
character file with any type associated to the attribute

server ptynode on behalf of staff t, the type staff devpts t

type change staff t server ptynode:chr file staff devpts t;

Page 200

The SELinux Notebook

4.7.8 type member

The type member rule specifies a default type when creating a polyinstantiated
object. For example a wuserspace SELinux-aware application would use
avc_compute member (3) or security compute member (3) with
type member rules in policy to determine the context to be applied. Note that an
allow rule must be used to authorise access. See the Computing Security Contexts
section for more details.

The statement definition is:

member type source type target type : class member type;
Where:
type member The type member rule keyword.
source type One or more source / target type, typealias or
target type attribute identifiers. Multiple entries consist of

a space separated list enclosed in braces ({ }).

Entries can be excluded from the list by using the
negative operator (-).

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({ }).

member type A single type or typealias identifier that will
become the polyinstantiated t ype.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
Yes Yes No

Example:

Using the type member statement to show that if the source
type is sysadm t, and the target type is user home dir t,
then use user home dir t as the type on the newly created
directory object.

type member sysadm t user home dir t:dir user home dir t;

4.8 Bounds Rules

Bounds handling was added in version 24 of the policy and consisted of adding
userbounds, rolebounds and typebounds information to the policy.
However only the typebounds rule 1is currently implemented by

Page 201

The SELinux Notebook

checkpolicy (8) and checkmodule (8) with kernel support from 2.6.28. The
CIL compiler does support userbounds and rolebounds but these are resolved
at policy compile time, not via the kernel at run-time.

4.8.1 typebounds

The typebounds rule was added in version 24 of the policy. This defines a
hierarchical relationship between domains where the bounded domain cannot have
more permissions than its bounding domain (the parent). It requires kernel 2.6.28 and
above to control the security context associated to threads in multi-threaded

applications.

The statement definition is:

typebounds bounding domain bounded domain;

Where:
typebounds

bounding domain

bounded domain

The statement is valid in:

The typebounds keyword.

The type or typealias identifier of the parent
domain.

One or more type or typealias identifiers of
the child domains. Multiple entries consist of a
comma (,) separated list.

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
Y ___|

Conditional Policy (i f) Statement optional Statement require Statement

No Yes No
Example:

This example states that:

The httpd child t cannot have file:{write} due to lack of

permissions on httpd t which is the parent. It means the

child domains will always have equal or less privileges

than the parent.

The typebounds statement:
typebounds httpd t httpd child t;

The parent is allowed file 'getattr' and 'read':
allow httpd t etc t file { getattr read };

However the child process has been given 'write' access that
will not be allowed by the kernel SELinux security server.
allow httpd child t etc t : file { read write };

Page 202

The SELinux Notebook

4.9 Access Vector Rules

The AV rules define what access control privileges are allowed for processes. There
are four types of AV rule: allow, dontaudit, auditallow, and neverallow
as explained in the sections that follow with a number of examples to cover all the
scenarios. There is also an auditdeny rule, however it is no longer used in the
Reference Policy and has been replaced by the dontaudit rule.

The general format of an AV rule is that the source type is the identifier of a
process that is attempting to access an object identifier target type, that has an
object class of class, and perm set defines the access permissions
source_type is allowed.

The common format of the Access Vector Rule is:

rule name source type target type : class perm set;
Where:
rule name The applicable allow, dontaudit,

auditallow, and neverallow rule keyword.

source_type One or more source / target type, typealias or

target type attribute ideptiﬁers. Mul'tiple entries consist 'of a
space separated list enclosed in braces ({ }). Entries
can be excluded from the list by using the negative
operator (-).

The target type can have the self keyword
instead of type, typealiasorattribute
identifiers. This means that the target type is
the same as the source type.

The neverallow rule also supports the wildcard
operator (*) to specify that all t ypes are to be
included and the complement operator (~) to specify
all types are to be included except those explicitly
listed.

class One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({ }).

perm set The access permissions the source is allowed to
access for the target object (also known as the Acess
Vector). Multiple entries consist of a space separated
list enclosed in braces ({ }).

The optional wildcard operator (*) specifies that all
permissions for the object class can be used.

The complement operator (~) is used to specify all
permissions except those explicitly listed (although
the compiler issues a warning if the dontaudit
rule has '~').

Page 203

The SELinux Notebook

The statements are valid in:

Monolithic Policy

Base Policy

Module Policy

Yes

Yes

Yes

Conditional Policy (i f) Statement

optional Statement

require Statement

allow = Yes
auditallow = Yes
dontaudit = Yes
neverallow = No

allow = Yes
auditallow = Yes
dontaudit = Yes
neverallow = Yes

allow = No
auditallow = No
dontaudit = No
neverallow = No

491 allow

The allow rule checks whether the operations between the source type and
target type are allowed for the class and permissions defined. It is the most
common statement that many of the Reference Policy helper macros and interface
definitions expand into multiple al1low rules.

Examples:

Using the allow rule to show that initrc t is allowed access
to files of type acct exec t that have the getattr, read and
execute file permissions:

allow initrc t acct exec t:file { getattr read execute };

P

attribute:

This rule includes an attribute filesystem type and states
that kernel t is allowed mount permissions on the filesystem
object for all types associated to the filesystem type

allow kernel t filesystem type:filesystem mount;

This rule includes the self keyword in the target type that
states that staff t is allowed setgid,
permissions on the capability object:

allow staff t self:capability { setgid chown fowner };

This would be the same as the above:
allow staff t staff t:capability { setgid chown fowner };

chown and fowner

This rule includes the wildcard operator
and states that bootloader t is allowed to use all permissions
available on the dbus object that are type system dbusd t:

allow bootloader t system dbusd t:dbus *;

This would be the same as the above:
allow bootloader t system dbusd t:dbus { acquire svc send msg };

on the perm set

This rule includes the complement operator

on the perm set

Page 204

The SELinux Notebook

and two class entries file and chr file.

The allow rule states that all types associated with the
attribute files unconfined type are allowed to use all
permissions available on the file and chr file objects except
the execmod permission when they are associated to the types
listed within the attribute file type:

EIENE e e

allow files unconfined type file type:{ file chr file } ~execmod;

4.9.2 dontaudit

The dontaudit rule stops the auditing of denial messages as it is known that this
event always happens and does not cause any real issues. This also helps to manage
the audit log by excluding known events.

Example:

Using the dontaudit rule to stop auditing events that are
known to happen. The rule states that when the traceroute t
process is denied access to the name bind permission on a
tcp socket for all types associated to the port type
attribute (except port t), then do not audit the event:

S o S 3 e

dontaudit traceroute t { port type -port t }:tcp socket name bind;

4.9.3 auditallow

Audit the event as a record as it is useful for auditing purposes. Note that this rule
only audits the event, it still requires the al1low rule to grant permission.

Example:

Using the auditallow rule to force an audit event to be
logged. The rule states that when the ada t process has
permission to execstack, then that event must be audited:

auditallow ada t self:process execstack;

4.9.4 neverallow

This rule specifies that an al1low rule must not be generated for the operation, even if
it has been previously allowed. The neverallow statement is a compiler enforced
action, where the checkpolicy or checkmodule* compiler checks if any
allow rules have been generated in the policy source, if so it will issue a warning
and stop.

Examples:

Using the neverallow rule to state that no allow rule may ever
grant any file read access to type shadow t except those
associated with the can read shadow passwords attribute:

% neverallow statements are allowed in modules, however to detect these the semanage.conf

file must have the expand-check=1 entry present.

Page 205

The SELinux Notebook

neverallow ~can read shadow passwords shadow t:file read;

Using the neverallow rule to state that no allow rule may ever
grant mmap zero permissions any type associated to the domain
attribute except those associated to the mmap low domain type
attribute (as these have been excluded by the negative
operator (-)):

P T

neverallow { domain -mmap low domain type } self:memprotect mmap zero;

4.10 Object Class and Permission Statements

For those who write or manager SELinux policy, there is no need to define new
objects and their associated permissions as these would be done by those who actually
design and/or write object managers.

A list of object classes used by the Reference Policy can be found in the
./policy/flask/security classes file.

There are two variants of the class statement for writing policy:
1. There is the c1lass statement that declares the actual class identifier or name.

2. There is a further refinement of the class statement that associates

permissions to the class as discussed in the Associating Permissions to a Class
section.

4101 class

Object classes are declared within a policy as follows:

The statement definition is:

class class_id

Where:
class The class keyword.
class_id The class identifier.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No Yes

Example:

Define the PostgreSQL db tuple object class

Page 206

The SELinux Notebook

#
class db tuple

4.10.2 Associating Permissions to a Class
Permissions can be defined within policy in two ways:

1. Define a set of common permissions that can then be inherited by one or more
object classes using further class statements.

2. Define class specific permissions. This is where permissions are declared
for a specific object class only (i.e. the permission is not inherited by any other
object class).

A list of classes and their permissions used by the Reference Policy can be found in
the . /policy/flask/access vectors file.

4.10.3 common

Declare a common identifier and associate one or more common permissions.

The statement definition is:

common common id { perm set }

Where:
common The common keyword.
common id The common identifier.
perm set One or more permission identifiers in a space

separated list enclosed within braces ({ }).

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Example:

Define the common PostgreSQL permissions
#

common database { create drop getattr setattr relabelfrom relabelto }

4104 class

Inherit and / or associate permissions to a perviously declared class identifier.

The statement definition is:

Page 207

The SELinux Notebook

class class_id [inherits common set] [{ perm set }]
Where:
class The class keyword.
class_id The previously declared c1ass identifier.
inherits The optional inherits keyword that allows a

set of common permissions to be inherited.
common_set A previously declared common identifier.
perm set One or more optional permission identifiers in a
space separated list enclosed within braces ({ }).
Note:

There must be at least one common set or one perm set defined within the
statement.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No Yes
Examples:

The following example shows the db tuple object class being
allocated two permissions:

class db tuple { relabelfrom relabelto }

The following example shows the db blob object class
inheriting permissions from the database set of common
permissions (as described in the

Associating Permissions to a Class section):

H= o 3 3

class db blob inherits database

The following example (from the access vector file) shows the
db blob object class inheriting permissions from the database
set of common permissions and adding a further four

permissions:

class db blob inherits database { read write import export }

Page 208

The SELinux Notebook

4.11 Conditional Policy Statements

Conditional policies consist of a bool statement that defines a condition as true or
false, with a supporting if / else construct that specifies what rules are valid
under the condition as shown in the example below:

bool allow daemons use tty true;

if (allow_daemons use tty) {
Rules if condition is true;

} else {
Rules if condition is false;

}

Table 16 shows what policy statements or rules are valid within the if / else
construct under the "Conditional Statements" column.

The bool statement default value can be changed when a policy is active by using
the setsebool command as follows:

This command will set the allow daemons use tty bool to false,
however it will only remain false until the next system

re-boot where it will then revert back to its default state

(in the above case, this would be true).

setsebool allow daemons use tty false

This command will set the allow daemons use tty bool to false,
and because the -P option is used (for persistent), the value
will remain across system re-boots. Note however that all
other pending bool values will become persistent across
re-boots as well (see setsebool (8) man page) .

S o 3 o e

setsebool -P allow daemons use tty false

The getsebool command can be used to query the current bool statement value
as follows:

This command will list all bool values in the active policy:

getsebool -a

This command will show the current allow daemons use tty bool
value in the active policy:

getsebool allow daemons use tty

4111 bool

The bool statement is used to specify a boolean identifier and its initial state (true
or false) that can then be used with the if statement to form a 'conditional policy'
as described in the Conditional Policy section.

Page 209

The SELinux Notebook

The statement definition is:

bool bool id default value;

Where:
bool The bool keyword.
bool id The boolean identifier.
default value Either true or false.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement regquire Statement
No Yes Yes

Examples:

Using the bool statement to allow unconfined executables to
make their memory heap executable or not. As the value is
false, then by default they cannot make their heap executable.

bool allow execheap false;

Using the bool statement to allow unconfined executables to
make their stack executable or not. As the value is true,
then by default their stacks are executable.

bool allow execstack true;

411.2 if

The 1 f statement is used to form a 'conditional block' of statements and rules that are
enforced depending on whether one or more boolean identifiers (defined by the bool
Statement) evaluate to TRUE or FALSE. An if / else construct is also supported.

The only statements and rules allowed within the 1f / else construct are:

allow, auditallow, auditdeny, dontaudit, type member,
type transition (except 'file_name_transition'), type change and
require.

The statement definition is:

if (conditional expression) { true list } [else { false list }]
Where:
if The if keyword.

Page 210

The SELinux Notebook

conditional expression One or more bool name identifiers that
have been previously defined by the bool
Statement. Multiple identifiers must be
separated by the following logical operators:
&&, 11,0, 1, == 1=

The conditional expressionis
enclosed in brackets ().

true list A list of rules enclosed within braces '{ }' that
will be executed when the
conditional expressionis'true".

Valid statements and rules are highlighted
within each language definition statement.

else Optional else keyword.

false list A list of rules enclosed within braces '{ }' that
will be executed when the optional 'e1se'
keyword is present and the
conditional expressionis'false".

Valid statements and rules are highlighted
within each language definition statement.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No Yes No

Examples:

An example showing a boolean and supporting if statement.
bool allow execmem false;

The bool allow execmem is FALSE therefore the allow statement
is not executed:

if (allow execmem) {
allow sysadm t self:process execmem;

An example showing two booleans and a supporting if statement.

bool allow execmem false;
bool allow execstack true;

The bool allow execmem is FALSE and allow execstack is TRUE
therefore the allow statement is not executed:

Page 211

The SELinux Notebook

if (allow execmem && allow execstack) {
allow sysadm t self:process execstack;

#

} else {

}

is FALSE,

An example of an IF - ELSE statement where the bool statement
therefore the ELSE statements will be executed.

bool read untrusted content false;

if (read untrusted content) ({

allow sysadm t { sysadm untrusted content t

sysadm untrusted content tmp t }:dir { getattr search
read lock ioctl };

dontaudit sysadm t { sysadm untrusted content t
sysadm untrusted content tmp t }:dir { getattr search
read lock ioctl };

4.12 Constraint Statements

4121 constrain

The constrain statement allows further restriction on permissions for the specified

object classes by using boolean expressions covering: source and target types, roles
and users as described in the examples.

The statement definition is:

constrain class perm set expression;

Where:

constrain

class

perm set

expression

The constrain keyword.

One or more object classes. Multiple entries consist
of a space separated list enclosed in braces ({ }).

One or more permissions. Multiple entries consist of
a space separated list enclosed in braces ({ }).

The boolean expression of the constraint that is
defined as follows:

(expression : expression)
not expression
expression and expression

ul op u2

|
|
| expression or expression
|
| rl role op r2

Page 212

The SELinux Notebook

| tl op t2

| ul op names
| u2 op names
| rl op names
| r2 op names
| tl op names
| t2 op names

Where:
ul, rl, tl = Source user, role, type
u2, r2, t2 = Target user, role, type
and:
op : == | I=
role op : == | != | eq | dom | domby | incomp
names : name | { name list }
name list : name | name list name

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Examples:

These examples have been taken from the Reference Policy source
./policy/constraints file.

This constrain statement is the "SELinux process identity
change constraint" taken from the Reference Policy source and
contains multiple expressions.

The overall constraint is on the process object class with the
transition permission, and is stating that a domain transition
is being constrained by the rules listed (ul == u2 etc.),
however only the first two expressions are explained.

The first expression ul == u2 states that the source (ul) and
target (u2) user identifiers must be equal for a process
transition to be allowed.

However note that there are a number of or operators that can
override this first constraint.

The second expression:
(£l == can change process identity and t2 == process user target)

states that if the source type (tl) is equal to any type
associated to the can change process identity attribute, and
the target type (t2) is equal to any type associated to the
process_user target attribute, then a process transition is
allowed.

B T o o e -

Page 213

The SELinux Notebook

What this expression means in the 'standard' build Reference
Policy is that if the source domain is either cron t,
firstboot t, local login t, su login t, sshd t or xdm t (as
the can change process identity attribute has these types
associated to it) and the target domain is sysadm t (as that
is the only type associated to the can change process identity
attribute), then a domain transition is allowed.
#
SELinux process identity change constraint:
constrain process transition (

ul == u2
or

(tl == can_change process identity and t2 == process user target)
or

(tl == cron source domain and (t2 == cron job domain or u2 == system u))
or

(tl == can_system change and u2 == system u)
or

(tl == process uncond exempt));

This constrain statement is the "SELinux file related object
identity change constraint" taken from the Reference Policy
source and contains two expressions.

The overall constraint is on the listed file related object
classes (dir, file etc.), covering the create, relabelto, and
relabelfrom permissions. It is stating that when any of the
object class listed are being created or relabeled, then they
are subject to the constraint rules listed (ul == u2 etc.).

The first expression ul == u2 states that the source (ul) and
target (u2) user identifiers (within the security context)
must be equal when creating or relabeling any of the file
related objects listed.

The second expression:
or tl == can change object identity

states or if the source type (tl) is equal to any type
associated to the can change object identity attribute, then
any of the object class listed can be created or relabeled.

What this expression means in the 'standard' build

Reference Policy is that if the source domain (tl) matches a
type entry in the can change object identity attribute, then
any of the object class listed can be created or relabeled.

B I I S N e e e

SELinux file related object identity change constraint:
constrain { dir file 1lnk file sock file fifo file chr file
blk file } { create relabelto relabelfrom }
(
ul == u2
or tl == can change object identity
) i

Page 214

The SELinux Notebook

412.2 validatetrans

Only file related object classes are currently supported by this statement and it is used
to control the ability to change the objects security context.

Note there are no validatetrans statements specified within the Reference
Policy source.

The statement definition is:

validatetrans class expression;

Where:
validatetrans The validatetrans keyword.

class One or more file related object classes. Multiple
entries consist of a space separated list enclosed
in braces ({ }).

expression The boolean expression of the constraint that
is defined as follows:

(expression : expression)
| not expression

| expression and expression

| expression or expression

| ul op u2

| rl role op r2

| £l op t2

| ul op names

| u2 op names

| rl op names

| r2 op names

| tl op names

| t2 op names

| u3 op names

| r3 op names

| t3 op names

Where:
ul, rl, tl = 01ld user, role, type
uz2, r2, t2
u3, r3, t3
and:
op : == | I=
role op : == | != | eq | dom | domby | incomp
names : name | { name list }
name list : name | name list name

New user, role, type
Process user, role, type

The statement is valid in:

Page 215

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement optional Statement require Statement
No No No
Example:
validatetrans { file } { tl == unconfined t);

412.3 mlsconstrain

The mlsconstrain statement allows further restriction on permissions for the
specified object classes by using boolean expressions covering: source and target
types, roles, users and security levels as described in the examples.

The statement definition is:

mlsconstrain class perm set expression;

Where:

mlsconstrain

class

perm set

expression

The mlsconstrain keyword.

One or more object classes. Multiple entries consist
of a space separated list enclosed in braces { }.

One or more permissions. Multiple entries consist of
a space separated list enclosed in braces { }.

The boolean expression of the constraint that is

defined as follows:

(expression : expression)

not expression

ul op u2

rl role mls op
tl op t2

11 role mls op
11 role mls op
hl role mls op
hl role mls op
11 role mls op
12 role mls op
ul op names

uZ2 op names

rl op names

r2 op names

tl op names

t2 op names

r2

12
h2
12
h2
hl
h2

expression and expression
expression or expression

Page 216

The SELinux Notebook

Where:
ul,rl,tl,11,hl = Source user,role, type, low level,high level
u2,r2,t2,12,h2 = Target user,role, type, low level,high level

and:

op : == | I=

role mls op : == | != | eq | dom | domby | incomp
names : name | { name list }

name list : name | name list name

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No
[——
Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Examples:

These examples have been taken from the Reference Policy source . /policy/mls
constraints file. These are built into the policy at build time and add constraints to
many of the object classes.

reads as follows:

If the source type is equal to a type associated to the
mlsfilereadtoclr attribute and the source high security
level is dominated by the targets low security level,

then search permission is allowed on the dir object class.

The MLS Reference Policy mlsconstrain statement for searching
directories that comprises of multiple expressions. Only the
first two expressions are explained.

#

Expression 1 (11 dom 12) reads as follows:

The dir object class search permission is allowed if the

source low security level is dominated by the targets

low security level.

OR

Expression 2 ((tl == mlsfilereadtoclr) and (hl dom 12))
#

#

#

#

#

mlsconstrain dir search
((11 dom 12) or

((tl == mlsfilereadtoclr) and (hl dom 12)) or
(tl == mlsfileread) or
(t2 == mlstrustedobject));

4124 mlsvalidatetrans

The mlsvalidatetrans is the MLS equivalent of the validatetrans
statement and is only used for file related object classes where it is used to control the
ability to change the objects security context.

The statement definition is:

Page 217

The SELinux Notebook

mlsvalidatetrans class expression;

Where:

mlsvalidatetrans

class

expression

Where:
ul,rl, tl,11,hl
u2,r2,t2,12,h2
u3,r3,t3,13,h3 =

and:
op

role mls op : == |
names
name list

| =

name | {
name |

The statement is valid in:

(expression

| not expression
and

The mlsvalidatetrans keyword.

One or more file type object classes. Multiple
entries consist of a space separated list enclosed
in braces { }.

The boolean expression of the constraint that
is defined as follows:

expression)

(expression and expression

or expression or expression

ul
rl
tl
11
11
hl
hl

\

\

\ op u2
\

\

\

\

\

\

| 11
\

\

\

\

\

\

\

\

\

\

role mls op
op t2

role mls op
role mls op
role mls op
role mls op
role mls op
role mls op
op names

op names

op names

op names

op names

op names

op names

op names

op names

12
ul
u2
rl
r2
tl
t2
u3
r3
t3

eq | dom | domby

name list }
name list name

r2

12
h2
12
h2
hl
h2

0ld user, role, type, low level,high level
New user, role, type, low level,high level
Process user,role, type, low level, high level

incomp

Monolithic Policy Base Policy Module Policy
Yes Yes No

optional Statement

|
Conditional Policy (i f) Statement

reguire Statement

No

No

No

Examples:

Page 218

The SELinux Notebook

This example has been taken from the Reference Policy source . /policy/mls file.

The MLS Reference Policy mlsvalidatetrans statement for
managing the file upgrade/downgrade rules that comprises of
multiple expressions. Only the first two expressions are
explained.

Expression 1: (11 eq 12) reads as follows:

For a file related object to change security context, its
current (old) low security level must be equal to the new
objects low security level.

The second part of the expression:

or ((t3 == mlsfileupgrade) and (11 domby 12)) reads as
follows:

or the process type must equal a type associated to the
mlsfileupgrade attribute and its current (old) low security
level must be dominated by the new objects low security level.

S e o S S o o SR b S SR o S S o o o

mlsvalidatetrans { dir file lnk file chr file blk file sock file
fifo file }
(((11 eg 12) or

((t3 == mlsfileupgrade) and (11 domby 12)) or

((t3 == mlsfiledowngrade) and (11 dom 12)) or

((t3 == mlsfiledowngrade) and (11 incomp 12))) and ((hl eqg h2)
or

((t3 == mlsfileupgrade) and (hl domby h2)) or

((t3 == mlsfiledowngrade) and (hl dom h2)) or

((t3 == mlsfiledowngrade) and (hl incomp h2))));

4.13 MLS Statements

The optional MLS policy extension adds an additional security context component
that consists of the following highlighted entries:

user:role:type:sensitivity[:category,...]- sensitivity [:category,...]

These consist of a mandatory hierarchical sensitivity and optional non-
hierarchical category's. The combination of the two comprise a Level or security
level as shown in Table 17. Depending on the circumstances, there can be one level
defined or a range as shown in Table 17.

Page 219

The SELinux Notebook

Security Level (or Level) Note that SELinux uses level, sensitivity and
. L category in the language statements, however when
Consisting of a sensitivity and zero or . . .]
-~ discussing these the following terms can also be used:
more category entries: labels, classifications, and compartments.
sensitivity [: category, ... 1
€ Range 2
Low High
sensitivity [: category, ...] - sensitivity [: category, ...]
For aprocess or subject this is the For a process or subject this is the
current level or sensitivity Clearance
For an object this is the current level or For an object this is the maximum range
sensitivity
SystemLow SystemHigh
This is the lowest level or classification for This is the highest level or classification for
the system (for SELinux this is generally the system (for SELinux this is generally
's0', note that there are no categories). 's15:c0, c255', although note that they will
be the highest set by the policy).

Table 17: Sensitivity and Category = Security Level - this table shows the
meanings depending on the context being discussed.

To make the security levels more meaningful, it is possible to use the setransd
daemon to translate these to human readable formats. The semanage (8) command
will allow this mapping to be defined as discussed in the . /setrans.conf file

section.

4131 sensitivity

The sensitivity statement defines the MLS policy sensitivity identifies and
optional alias identifiers.

The statement definition is:

sensitivity sens id [alias sensitivityalias id ...];
Where:
sensitivity The sensitivity keyword.
sens_id The sensitivity identifier.
alias The optional alias keyword.

sensitivityalias_id One or more sensitivityalias identifiers
in a space separated list.

The statement is valid in:

Page 220

The SELinux Notebook

Monolithic Policy

Base Policy

Module Policy

Yes

Yes

No

- _____________________________|
Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

No

Yes

Examples:

The MLS Reference Policy default is to assign 16 sensitivity
identifiers (sO to sl1b5):
sensitivity sO0;

sensitivity sl15;
The policy does not specify any alias entries, however a valid

example would be:
sensitivity s0 alias secret wellmaybe ornot;

4.13.2

When more than one sensitivity statemement is defined within a policy, then a
dominance statement is required to define the actual hierarchy between all
sensitivities.

dominance

The statement definition is:

dominance { sensitivity id ... }
Where:
dominance The dominance keyword.

sensitivity id A space separated list of previously declared
sensitivityorsensitivityalias
identifiers in the order lowest to highest. They
are enclosed in braces ({ }), and note that there is

no terminating semi-colon (;).

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No

- _____________________________|
Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

No

No

Example:

The MLS Reference Policy dominance statement defines sO as the
lowest and sl5 as the highest sensitivity level:

dominance { s0 sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sl1l1 sl12 sl13 sl14 sl15 }

Page 221

The SELinux Notebook

413.3 category

The category statement defines the MLS policy category identifiers*’ and optional

alias identifiers.

The statement definition is:

category category id [alias categoryalias id ...];

Where:

category
category id
alias

categoryalias id

The statement is valid in:

The category keyword.
The category identifier.
The optional alias keyword.

One or more alias identifiers in a space separated
list.

Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No Yes
Examples:

category cO0;

category c255;

example would be:

The MLS Reference Policy default is to assign 256 category
identifiers (c0 to c255):

The policy does not specify any alias entries, however a valid

category c0 alias planning development benefits;

4134 1level

The level statement enables the previously declared sensitivity and category
identifiers to be combined into a Security Level.

Note there must only be one 1evel statement for each sensitivity statemement.

The statement definition is:

level sensitivity id [

:category id];

Where:

47

SELinux use the term 'category' or 'categories' while some MLS systems and documentation use
the term 'compartment' or 'compartments', however they have the same meaning.

Page 222

The SELinux Notebook

level The 1level keyword.

sensitivity id A previously declared sensitivity or
sensitivityalias identifier.

category id An optional set of zero or more previously
declared category or categoryalias
identifiers that are preceded by a colon (:), that
can be written as follows:

- The period (.) separating two
category identifiers means an
inclusive set (e.g. c0.c16).

- The comma (,) separating two
category identifiers means a non-
contiguous list (e.g. c21,c36,c45).

- Both separators may be used (e.g.
cO0.cl6, c21,c36,c4db).

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Examples:

The MLS Reference Policy default is to assign each Security

Level with the complete set of categories (i.e. the inclusive
set from c0 to c255):

level s0:c0.c255;

level s15:c0.c255;

4.13.5 range transition

The range transition statement is primarily used by the init process or
administration commands to ensure processes run with their correct MLS range (for
example init would run at SystemHigh and needs to initialise / run other
processes at their correct MLS range). The statement was enhanced in Policy version
21 to accept other object classes.

The statement definition is (for pre-policy version 21):

range_ transition source type target type new range;

or (for policy version 21 and greater):

Page 223

The SELinux Notebook

range transition source type target type class new range;

Where:

range transition The range transition keyword.

source_type One or more source / target type or attribute
identifiers. Multiple entries consist of a space

target type) -
- separated list enclosed in braces ({ }).

Entries can be excluded from the list by using the
negative operator (-).

class The optional object class keyword (this allows
policy versions 21 and greater to specify a class

other than the default of process).

new_range The new MLS range for the object class. The
format of this field is described in the MLS range

Definition section.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes Yes

Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

Yes

No

Examples:

A range transition statement from the MLS Reference Policy
showing that a process anaconda t can transition between

systemLow and systemHigh depending on calling applications
level.

range transition anaconda t init script file type:process s0-s15:c0.c255;
Two range transition statements from the MLS Reference Policy
showing that init will transition the audit and cups daemon

to systemHigh (that is the lowest level they can run at).

range transition initrc t auditd exec t:process s15:c0.c255;
range transition initrc t cupsd exec t:process sl15:c0.c255;

4.13.5.1 MLS range Definition

The MLS range is appended to a number of statements and defines the lowest and
highest security levels. The range can also consist of a single 1evel as discussed at
the start of the MLS section.

The definition is:

low level[- high level]

Page 224

The SELinux Notebook

Where:

low level The processes lowest 1evel identifier that has
been previously declared by a 1evel statement.

Ifahigh level is not defined, then it is taken
as the same as the 1low level.

- The optional hyphen (-) separator if a
high level is also being defined.

high level The processes highest 1evel identifier that has
been previously declared by a 1evel statement.

413.6 mlsconstrain

This is decribed in the Constraints section.

413.7 mlsvalidatetrans

This is decribed in the Constraints section.

4.14 Security ID (SID) Statement

There are two SID statements, the first one declares the actual SID identifier and is
defined at the start of a policy source file. The second statement is used to associate
an initial security context to the SID, this is used when SELinux initialises but the
policy has not yet been activated or as a default context should an object have an
invalid label.

4141 sid

The sid statement declares the actual SID identifier and is defined at the start of a
policy source file.

The statement definition is:

sid sid id
Where:
sid The sid keyword.
sid id The sid identifier.

The statement is valid in:

Page 225

The SELinux Notebook

Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement

optional Statement

regquire Statement

No

No

No

Example:

This example has been taken from the Reference

../policy/flask/initial sids file.

Policy source

This example was taken from the

./policy/flask/initial sids file and declares some
of the initial SIDs:

#

sid
sid
sid
sid

kernel
security
unlabeled
fs

4.14.2

sid context

The sid context statement is used to associate an initial security context to the SID.

sid sid id context

Where:
sid The sid keyword.
sid id The previously declared sid identifier.
context The initial security context.

The statements are valid in:

Monolithic Policy Base Policy Module Policy

Yes Yes No

Conditional Policy (i f) Statement optional Statement
No No No

require Statement

Examples:

This is from a targeted policy:
sid unlabeled

sid unlabeled system u:object r:unlabeled t

This is from an MLS policy. Note that the security level
is set to SystemHigh as it may need to label any object in
the system.

Page 226

The SELinux Notebook

sid unlabeled

sid unlabeled system u:object r:unlabeled t:s15:c0.c255

4.15 File System Labeling Statements

There are four types of file labeling statements: fs use xattr, fs use task,
fs use trans and genfscon that are explained below.

The filesystem identifiers (fs_name) used by these statements are defined by the
SELinux teams who are responsible for their development, the policy writer then uses
those needed to be supported by the policy.

A security context is defined by these filesystem labeling statements, therefore if the
policy supports MCS / MLS, then an mls range is required as described in the
MLS range Definition section.

4151 fs use xattr

The fs use xattr statement is used to allocate a security context to filesystems
that support the extended attribute security.selinux. The labeling is persistent
for filesystems that support these extended attributes, and the security context is
added to these files (and directories) by the SELinux commands such as setfiles
as explained in the Labeling Extended Attribute Filesystems section.

The statement definition is:

fs use xattr fs name fs context;

Where:
fs use xattr The fs use xattr keyword.
fs name The filesystem name that supports extended
attributes. Example names are: encfs, ext2,
ext3, ext4, extddev,gfs,gfs2, jffs2,
jfs, lustre and xfs.
fs_context The security context allocated to the filesystem.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Example:

Page 227

The SELinux Notebook

These statements define file systems that support extended
attributes (security.selinux).

fs use xattr encfs system u:object r:fs t:s0;
fs use xattr ext2 system u:object r:fs t:s0;
fs use xattr ext3 system u:object r:fs t:s0;

4.15.2 f£fs use task

The fs use task statement is used to allocate a security context to pseudo
filesystems that support task related services such as pipes and sockets.

The statement definition is:

fs use task fs name fs context;

Where:
fs_use_task The fs use task keyword.
fs name Filesystem name that supports task related services.
Example valid names are: eventpollfs,
pipefs and sockfs.
fs_context The security context allocated to the task based
filesystem.
The statement is valid in:
Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement optional Statement reguire Statement

No No No
Example:
These statements define the file systems that support pseudo
filesystems that represent objects like pipes and sockets, so
that these objects are labeled with the same type as the
creating task.
#

fs use task eventpollfs system u:object r:fs t:s0;
fs use task pipefs system u:object r:fs t:s0;
fs use task sockfs system u:object r:fs t:s0;

4.15.3 fs use trans

The fs use trans statement is used to allocate a security context to pseudo
filesystems such as pseudo terminals and temporary objects. The assigned context is
derived from the creating process and that of the filesystem type based on transition
rules.

Page 228

The SELinux Notebook

The statement definition is:

fs use trans fs name fs context;

Where:
fs use trans The fs use trans keyword.
fs name Filesystem name that supports transition rules.
Example names are: mqueue, shm, tmpfs and
devpts.
fs context The security context allocated to the transition

based on that of the filesystem.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Example:

These statements define pseudo filesystems such as devpts

and tmpfs where objects are labeled with a derived context.
#

fs use trans mqueue system u:object r:tmpfs t:s0;

fs use trans shm system u:object r:tmpfs t:s0;

fs use trans tmpfs system u:object r:tmpfs t:s0;

fs use trans devpts system u:object r:devpts t:s0;

415.4 genfscon

The genfscon statement is used to allocate a security context to filesystems that
cannot support any of the other file labeling statements (fs use xattr,
fs use task or fs use trans). Generally a filesystem would have a single
default security context assigned by genfscon from the root (/) that would then be
inherited by all files and directories on that filesystem. The exception to this is the
/proc filesystem, where directories can be labeled with a specific security context
(as shown in the examples). Note that there is no terminating semi-colon (;) on this
statement.

The statement definition is:

genfscon fs name partial path fs context

Where:
genfscon The genfscon keyword.
fs name The filesystem name.

Page 229

The SELinux Notebook

partial path If £s name is proc, then the partial path (see the
examples). For all other types, this must be '/".

fs context The security context allocated to the filesystem

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

MLS Examples:

The following examples show those filesystems that only
support a single security context across the filesystem
with the MLS levels added.

genfscon msdos / system u:object r:dosfs t:s0
genfscon 1s09660 / system u:object r:is09660 t:sO
genfscon usbfs / system u:object r:usbfs t:s0
genfscon selinuxfs / system u:object r:security t:s0

The following show some example /proc entries. Note that the
/kmsg has the highest sensitivity level assigned (sl5) because
it is a trusted process.

genfscon proc / system u:object r:proc t:s0O

genfscon proc /sysvipc system u:object r:proc t:sO

genfscon proc /fs/openafs system u:object r:proc afs t:s0
genfscon proc /kmsg system u:object r:proc kmsg t:sl5:c0.c255

4.16 Network Labeling Statements

The network labeling statements are used to label the following objects:

Network interfaces - This covers those interfaces managed by the
ifconfig(8) command.

Network nodes - These are generally used to specify host systems using either
IPv4 or IPv6 addresses.

Network ports - These can be either udp or tcp port numbers.

A security context is defined by these network labeling statements, therefore if the
policy supports MCS / MLS, then an mls range is required as described in the
MLS range Definition section. Note that there are no terminating semi-colons (;)

on these statements.

If any of the network objects do not have a specific security context assigned by the
policy, then the value given in the policies initial SID is used (netif, node or port
respectively), as shown below:

Page 230

The SELinux Notebook

Network Initial SIDs from the MLS Reference Policy:
sid netif system u:object r:netif t:s0 - s15:c0.c255
sid node system u:object r:node t:s0 - s15:c0.c255
sid port system u:object r:port t:s0

4.16.1 IP Address Formats

416.1.1 IPv4 Address Format

IPv4 addresses are represented in dotted-decimal notation (four numbers, each
ranging from 0 to 255, separated by dots as shown:

192.77.188.166

4.16.1.2 |IPv6 Address Formats

IPv6 addresses are written as eight groups of four hexadecimal digits, where each
group is separated by a colon (:) as follows:

2001:0db8:85a3:0000:0000:8a2e:0370:7334

To shorten the writing and presentation of addresses, the following rules apply:

a) Any leading zeros in a group may be replaced with a single '0' as shown:

2001:db8:85a3:0:0:8a2e:370:7334

b) Any leading zeros in a group may be omitted and be replaced with two colons
(: :), however this is only allowed once in an address as follows:

2001 :db8:85a3::8a2e:370:7334

¢) The localhost (loopback) address can be written as:

0000:0000:0000:0000:0000:0000:0000:0001

d) An undetermined IPv6 address i.e. all bits are zero is written as:

4.16.2 netifcon
The netifcon statement is used to label network interface objects (e.g. eth0).

It is also possible to use the 'semanage interface' command to associate the
interface to a security context.

Page 231

The SELinux Notebook

The statement definition is:

netifcon netif id netif context packet context

Where:
netifcon The netifcon keyword.
netif id The network interface name (e.g. eth0).
netif context The security context allocated to the network
interface.
packet context The security context allocated packets. Note that

these are defined but currently unused.
The iptable SECMARK services should be used to

label packets.
The statement is valid in:
Monolithic Policy Base Policy Module Policy
Yes Yes No
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Examples:

The following netifcon statement has been taken from the
MLS policy that shows an interface name of lo with the same
security context assigned to both the interface and packets.

netifcon lo system u:object r:lo netif t:s0 - s15:c0.c255
system u:object r:unlabeled t:s0 - s15:c0.c255

semanage (8) Command example:

semanage interface -a -t netif t eth2

This command will produce the following file in the default <policy name>
policy store and then activate the policy:

/etc/selinux/<policy name>/modules/active/interfaces.local:

This file is auto-generated by libsemanage
Do not edit directly.

netifcon eth2 system u:object r:netif t:s0 system u:object r:netif t:sO

4.16.3 nodecon

The nodecon statement is used to label network address objects that represent IPv4
or IPv6 IP addresses and network masks.

Page 232

The SELinux Notebook

It is also possible to add SELinux these outside the policy using the 'semanage
node' command that will associate the node to a security context.

The statement definition is:

nodecon subnet netmask node context

Where:
nodecon The nodecon keyword.
subnet The subnet or specific IP address in IPv4 or IPv6
format.
Note that the subnet and netmask values are
used to ensure that the node context is
assigned to all IP addresses within the subnet
range.
netmask The subnet mask in IPv4 or IPv6 format.
node context The security context for the node.
The statement is valid in:
Monolithic Policy Base Policy Module Policy
Yes Yes No

Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Examples:

The MLS policy nodecon statement using an IPv4 address:

nodecon 127.0.0.1 255.255.255.255 system u:object r:lo node t:
80 = 8153€0.e255

The MLS policy nodecon statement for the multicast address
using an IPv6 address:

nodecon f£f00:: ££f00:: system u:object r:multicast node t:
B0 = S158El; 2535

semanage (8) Command example:

semanage node -a -t node t -p ipv4 -M 255.255.255.255 127.0.0.2

This command will produce the following file in the default <policy name>
policy store and then activate the policy:

/etc/selinux/<policy name>/modules/active/nodes.local:

Page 233

The SELinux Notebook

This file is auto-generated by libsemanage
Do not edit directly.

nodecon ipv4 127.0.0.2 255.255.255.255 system u:object r:node t:s0

416.4 portcon
The portcon statement is used to label udp or tcp ports.

It is also possible to add a security context to ports outside the policy using the
'semanage port' command that will associate the port (or range of ports) to a
security context.

The statement definition is:

portcon protocol port number port context

Where:
portcon The portcon keyword.
protocol The protocol type. Valid entries are udp or tcp.
port number The port number or range of ports. The ranges are
separated by a hyphen (-).
port context The security context for the port or range of ports.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
Yes Yes No
[——
Conditional Policy (i f) Statement optional Statement regquire Statement
No No No

Examples:

The MLS policy portcon statements:

portcon tcp 20 system u:object r:ftp data port t:s0

portcon tcp 21 system u:object r:ftp port t:s0

portcon tcp 600-1023 system u:object r:hi reserved port t:s0
portcon udp 600-1023 system u:object r:hi reserved port t:sO
portcon tcp 1-599 system u:object r:reserved port t:s0
portcon udp 1-599 system u:object r:reserved port t:s0

semanage (8) Command example:

semanage port -a -t reserved port t -p udp 1234

This command will produce the following file in the default <policy name>
policy store and then activate the policy:

/etc/selinux/<policy name>/modules/active/ports.local:

Page 234

The SELinux Notebook

This file is auto-generated by libsemanage
Do not edit directly.

portcon udp 1234 system u:object r:reserved port t:s0

4.17 Modular Policy Support Statements

This section contains language statements used to support policy modules.

4171 module

This statement is mandatory for loadable modules (non-base) and must be the first
line of any module policy source file. The identifier should not conflict with other
module names within the overall policy, otherwise it will over-write an existing
module when loaded via the semodule command. The semodule -1 command
can be used to list all active modules within the policy.

The statement definition is:

module module name version number;

Where:
module The module keyword.
module name The module name.
version_ number The module version number in M. m.m format

(where M = major version number and m = minor
version numbers).

The statement is valid in:

Monolithic Policy Base Policy Module Policy
No No Yes
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement
No No No

Example:

Using the module statement to define a loadable module called
bind with a version 1.0.0:

module bind 1.8.0;

417.2 require

The require statement is used for two reasons:

Page 235

The SELinux Notebook

1. Within loadable module policy source files to indicate what policy
components are required from an external source file (i.e. they are not
explicitly defined in this module but elsewhere). The examples below show
the usage.

2. Within a base policy source file, but only if preceded by the optional
Statement to indicate what policy components are required from an external
source file (i.e. they are not explicitly defined in the base policy but
elsewhere). The examples below show the usage.

The statement definition is:

require { rule list }

Where:
require The require keyword.

require list One or more specific statement keywords with their
required identifiers in a semi-colon (;) separated list
enclosed within braces ({ }).

The valid statement keywords are:

« role, type,attribute, user, bool,
sensitivity and category. The keyword is
followed by one or more identifiers in a comma (,)
separated list, with the last entry being terminated
with a semi-colon (;).

- class. The class keyword is followed by a single
object class identifier and one or more permissions.
Multiple permissions consist of a space separated
list enclosed within braces ({ }). The list is then
terminated with a semi-colon (;).

The examples below show these in detail.

The statement is valid in:

Monolithic Policy Base Policy Module Policy
No Yes - But only if Yes

proceeded by the
optional Statement.
- _____________________________|
Conditional Policy (i f) Statement optional Statement reguire Statement

Yes - But only if proceeded by Yes No
the optional Statement.

Examples:

A series of require statements showing various entries:

require {

Page 236

The SELinux Notebook

role system r;

class security { compute av compute create compute member
check context load policy compute relabel compute user
setenforce setbool setsecparam setcheckregprot };

class capability2 { mac_override mac_admin };

}
#

require {
attribute direct run init, direct init, direct init entry;
type initrc t;
role system r;
attribute daemon;

}
#

require {
type nscd t, nscd var run t;
class nscd { getserv getpwd getgrp gethost shmem