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Chapter 1. Introduction

Welcome

The Internet and the World Wide Web have changed mankind, forever. It isto early too tell, but their
impact may be as great as the combustion engine or the introduction of electric devices. The Internet
gave universal access to information, not just information that broadcasters or newspapers thought
that was important, but information that interests the ‘websurfer'. However the Internet is not a one-
way street, every Internet user is also a producer: people make websites, maintain blogs, post tweets,
and socialize via social networks.

Since a substantial part of the world has Internet access, and every user is also a producer, there is
an enormous amount of information available. Some of it is of peer-reviewed and of a high quality,
most of it is unchecked and biased. Still, every single piece of information can contain valuable
information. For instance, as a vacuum cleaner producer, you might think that social media are not
so interesting. However, the contrary is true: between billions of messages there may be hundreds
expressing sentiment about your product. Such messages can answer questions about how your brand
is conceived, what problems people commonly have with your product, etc.

Obviousdly, it is out of anyone's reach to manually analyze a significant portion of the information
that is available on the Internet. The amount is just too overwhelming. Classic data analysis tools
may not suffice either, most of the information is seemingly unstructured, and consist of blobs of
natural language sentences. However, language is also structure. It is just not the kind of structure
that computers can normally deal with. Computers deal with neat XML files, fragments of JSON, or
comma separated values. No, it is the structure that we humans use to convey and transfer meaning.
This book is about that type of information. We will go into many of the techniques that so-called
computational linguists use to analyze the structure of human language, and transform it into aform
that computers work with.

What is natural language processing?

Stub

What is Haskell?

Haskell isastatic, pure, lazy, functional language. Gee, that sounds an awful lot like buzzword lingo!
That may well be, but these properties make Haskell a very effective language, and sometimes a bit
odd. These properties are also opposite to most mainstream languages. For instance, Java is static,
impure, eager, and not functional, Ruby isdynamic, impure, eager, and only functional at times. While
it is hard to give an accurate definition of every characteristic, we will try anyway.

Functional: Haskell puts an emphasis on functions and treats computation as the evaluation of
functions. Thisin contrast to so-called imperative languages, that specify an order of instructions. As
such, Haskell functions very often resemble mathematical functions closely. Being functional aso has
practical implications. For instance, iteration is accomplished by means of recursion, and functions
are also values and can be passed to other functions.

Pure: Haskell is a pure language, in that functions do not have side-effects. This means that existing
values cannot be changed, since changing datawould be a side-effect of afunction. It also guarantees
that the evaluation of a function will always result in the same value given the same function
arguments.

Lazy: Asalazy language, Haskell only eval uates expressions when needed. Say you just implemented
afunction that gives alist of al prime numbers. In a strict language, the function that makes the list
will never terminate (since there are always more prime numbers). Haskell, on the contrary, will only
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evaluate this function when and as much as necessary. Aslong as you take a finite number of primes
from the list, the program will happily terminate.

Static: Haskell programs are compiled before they can run. This means that the Haskell compiler will
catch many errors for you at compile-time, rather than finding them when your program is used in
production. Additionally, Haskell does type-inference. This means that the Haskell compiler can find
out the types of values most of the times, and you do not need to type-annotate every value.

If you have prior programming experience in an imperative or eager language, Haskell can feel a bit
odd in the beginning. Don't worry, you will feel warm and fuzzy eventualy!

You may ask why we chose Haskell as the main programming language for this book, rather than
a more mainstream language. During our own experiences developing natural language processing
tools, we noticed that very many natural language processing tasks are relatively straightforward data
transformations. Haskell is alanguage that is exceptionally good at data transformations. First of all,
because it has higher order functions (functions that take functions as an argument) that traverselists,
sets, mappings, etc. Second, Haskell makesit easy to construct more complex transformations out of
simple transformations.

Although this book does not provide a full introduction to the Haskell programming language,
we try to cover Haskell concepts extensively when required. If you require more background on
certain concepts, we recommend you to consult the book Learn Haskell for Great Good! [http://
lear nyouahaskell.conv]

What you need

To work with this book, you need the Haskell Platform and a text editor. The Haskell Platform is
available for Mac OS X, Windows, and Linux at: http://hackage.haskell.org/platform/ Download the
package for your platform, and install it.

If you do not use one of these platforms, not all is lost. First of al, you should download the ghc
Haskell compiler. If you operating system provides a ports system or package manager, useit to locate
and install a ghc package. If your operating system does not provide a port or package for ghc, you
can still try to download a binary distribution from the GHC website [http://www.haskell.org/ghc/].
Once you haveinstalled and set up ghc, install the packages of the Haskell Platform.

For the text editor, pick any editor you find comfortable, as long as it saves files as plain text.
Programming Haskell becomes more comfortable if you have an editor with syntax highlighting and
interpreter integration. Y our authors prefer the Emacs editor with haskell-mode. haskell-mode provides
good support for highlighting, and Haskell code formatting. Besidesthat, Emacs allowsyou to run the
ghci Haskell interpreter within the editor.

Some examples in the book use corpora. These corpora are available at: http://nlpwp.org/

Ready, set, go!

You will probably want to get acquainted with the ghci Haskell interpreter. It alows you
to try Haskell expressions and get immediate feedback. On UNIX systems, type ghci -
XNoMonomor phismRestriction in aterminal to launch the interpreter. Y ou will be greeted with a
prompt that resembles the following:

$ ghci - XNoMononor phi snRestri ction
GHC, version 7.0.2: http://ww. haskell.org/ghc/ :? for help

Loadi ng package ghc-prim... linking ... done.
Loadi ng package integer-gnp ... linking ... done.
Loadi ng package base ... linking ... done.

Loadi ng package ffi-1.0 ... linking ... done.
Prel ude>
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On Windows, choose Start -> All Programs -> Haskell Platform -> WinGHCi. The first time,
you should set the NoMonomorphismRestriction option that is required for some examples.
Do this by going to the following item: File > Options > GHCi Sartup. Then append -
XNoMonomor phismRestriction in thefield (make sure that there is a space before this addition). Click
OK, and restart WinGHCi.




Chapter 2. Words

Introduction

Words are the most fundamental building blocks of our language. Although they may look simple
on the surface, they are very ingenious devices that pack not only meaning, but also grammatical
information. For our purposes, we will say that a word consists of a stem and affixes. Let's look at
three simple sentences:

e | walk.
» John walks.
» Jack walked.

All three sentences contain some 'form' of walk. We say that these instances are all inflections of the
verb walk. The part of theinflections that is shared (walk) is what we call the stem. The parts that are
not common are named affixes. We inflect verbs to indicate tense (present, past, etc.), the person of
the verb's subject (first, second, and third), and the number (singular or plural). The affix sin John
walks, for instance, tells us (in combination with the subject John) that the verb walk is in present
tense, third person singular.

Other types of words have inflections as well. For example, we inflect nouns to distinguish singular
and plural:

| saw one duck. | saw two ducks.

Up to this point, we have just seen one kind of affix: one that is glued to the end of the word. There
are actually many types of affixes. For now, you should only know about two:

» Prefix: appearsin front of the stem. For example, unbelievable.
 Suffix: appears after the stem. For example, ducks.

Now, with that out of the way, let's get some work done.

Playing with words

Written words consist of characters. We can write down characters in Haskell with single quotes. If
you typein a character in ghci, it will simply echo back the character:

Prel ude> 'h'
] hl

Thisis dl that ghci does, it evaluates whatever you type. A character evaluates to... a character. We
confirm that Haskell agrees with us that this actually a character by asking the type with :type or its
shorthand :t:

Prel ude> :type 'h'
"h' :: Char

Great. Haskell indeed confirms that 'h' is a character, or in Haskell's words: that 'h' is of type Char.
Not all that practical with the small amount of single-lettered words in English though. Rather than
a single character, we want a sequence of characters. Not surprisingly, Haskell has a data types to
build sequences. The most commonly used sequence is the list. Y ou can have lists of many things:
lists of groceries, lists of planets, but also lists of characters. We can make aliteral list in Haskell by
enumerating its elements, separated by commas and surrounded by square brackets. For instance, the
list1, 2, 3,4,5iswrittenas[1, 2, 3,4, 5]. Let'stry to make alist of characters:
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Prelude> ['h','e" ,"I',"I',"0"]
"hel | 0"

Now we are getting somewhere! Let's ook at the type of thislist:

Prelude> :type ['h','e ,"I',"I','0"]
["h* e 1", 1, 0] 1 [Char]

Its type is [Char], which should be read as 'list of characters. Such alist of characters is known as
a string Of course, writing down words in this manner is not very convenient. Fortunately, as the
evaluation of the second to last example already suggests, thereisamore convenient notation. We can
represent strings by wrapping charactersin double quotes:

Prel ude> "hell 0"

"hel | o"
Prel ude> :type "hello"
"hell 0" :: [Char]

Wewill takethisopportunity to seriously demolish somewords, but all with the noble cause of learning
some commonly-used Haskell list functions. The first function | engt h returns the length of alist:

Prel ude> length "hello"
5
Prel ude> length [1,2,3]
3

To get abetter impression of functions, it is often useful to look at its type:

Prel ude> :type Iength
length :: [a] -> Int

That's one heck of atype! Basicaly, it says 'give me alist of something (denoted by the a between
the list brackets), then | will give you an Int'. In these so-called type signatures, letters that are not
capitalized are generic, meaning that they can be of some unspecified type. That is, [a] isalist with
elements of some type. But: all elements should be of the same type. An Int is an integral number:
apositive or negative whole number.

Two other basic list functions are head and t ai | . head returns the first element of a list, t ai |
everything but the first element:

Pr el ude> head "hel | 0"

Che
Prel ude> tail "hello"
"ell 0"

The type of head is the following:
Prel ude> :type head

head :: [a] -> a

Hey, two a's! Equipped with the knowledge we have, we know that head is a function that takes a
list of something, and gives back something. But there is an additional constraint here: although ais
some type, all a's have to be the same type. So, applying head to alist of numbers gives a number,
applying head to alist of characters gives a character, etc.

In analogy, the type of t ai | should now be easy to understand:

Prel ude> :type tail
tail :: [a] -> [a]

Weapply t ai | toalist of sometype, and get back alist with the same type.
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Finally, the last function for now isr ever se. We have to admit presenting this function with a bit
of joy, since it will allow us to write our first little useful Haskell program. As expected, r ever se
reverses the elements of alist:

Pr el ude> reverse "hel |l 0"
"ol | eh"

Olé And another one;

Pr el ude> reverse "l evel "
"l evel "

Hold on there! We bumped into apalindrome: aword that isread the same way, no matter whether it is
read forward or backward. Now, supposewewould liketo write our own function to determinewhether
awordisapalindrome. Wefirst need to make aslightly moreformal definition of apalindrome: aword
isapaindromeif it is equal to itsreverse. In Haskell we can compare values using the == operator:

Prel ude> "hello" == "hello"
True

Prel ude> "hello" == "ol |l eh"
Fal se

Such a comparison evaluates to True if both values are equal, or to False in case they are not. True
and False are the only values of the Bool type. Sincer ever se aso returns avalue, nothing holds us
from using it in comparisons:

Prel ude> "hell 0" == reverse "hell 0"
Fal se
Prel ude> "level" == reverse "level"
True

The test that we devised for detecting palindromes seems to work. But it is alot of typing. Luckily,
we can generalize thisinto afunction. Let's replace both words by the symbolic name word (but don't
execute thisin ghci yet, since it does not know this symbolic name):

word == reverse word
And as anext step, Let's do some magic:
Prel ude> let palindrone word = word == reverse word

This defines the function pal i ndr one taking one argument, and binds this argument to the symbolic
name word. To this function we assign the expression word == reverse word. Play alittle with this
function to be convinced that it actually works. Some examples:

Pr el ude> pal i ndrome "hel | 0"

Fal se

Pr el ude> palindrome "level"
True

Pr el ude> pal i ndrome "racecar”
True

If thisfunction is still amystery to you, it may be useful to write down the application of the function
stepwise for aword that is not a palindrome:

pal i ndrorme "hel | 0"

palindrome "hello" = "hello" == reverse "hell 0"
pal i ndrome "hello" = "hello" == "ol l eh"
pali ndronme "hell 0" = Fal se

and aword that is a palindrome:

pal i ndrome "racecar"
pal i ndrome "racecar" = "racecar" == reverse "racecar"
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"racecar" == "racecar"
True

pal i ndrome "racecar”
pal i ndrome "racecar”

Congratulations, you have made your first function, which isin essence a small program!

From words to sentences

So far, we have looked at words in isolation. However, in language, words are often combined to
form a higher level of meaning representation: a sentence. Provided what we have learned about
representing words in Haskell, the step towards representing sentences should be a minor one. We
could, for example, represent sentences in the exactly the same way we represented words:

Prel ude> "The cat is on the mat."
"The cat is on the mat."

That's fine for a beginning, although not so convenient. Let us see why. Assume we ask you to give
us the first word of a sentence. In the previous section, we learned that head can be used to get the
first element of alist. Let'stry to apply that here:

Prel ude> head "The cat is on the mat."
CT

Asyou probably expected, that didn't work. We represented asentence asalist of characters (astring),
and hence asking for the first element will give the first character. But wait! What if we represented
asentence as alist of words?

Prel ude> ["The", "cat", "is", "on", "the", "mat", "."]
["The","cat","is","on","the", "mat","."]

Prel ude> :type ["The", "cat", "is", "on", "the", "mat", "."]
["The", "cat", "is", "on", "the", "mat", "."] :: [[Char]]

Nifty! We just constructed a list, of alist of characters. Though, you may wonder why we made the
punctuation at the end of the sentence a separate "word". Well, this is mostly a pragmatic choice,
because gluing this punctuation sign to mat does not really form aword either. Having the period sign
separate is more practical for future processing. Hence, formally we say that a sentence consists of
tokens, where atoken can be aword, a number, and a punctuation sign.

Rinse and repeat:

Prel ude> head ["The", "cat", "is", "on", "the", "mat", "."]
"The"

Sinceaword isalso alist, we can apply afunction to words aswell. For example, we can get the first
character of the first word by applying head, to the head of a sentence:

Prel ude> head (head ["The", "cat", "is", "on", "the", "mat", "."])
CT

Note that we need parenthesis to force Haskell to evaluate the part in parentheses first. If we do not
enforce this order of evaluation, Haskell will try to evaluate head head first, which makes no sense.
Remember that head requires alist asits argument, and head ishot alist.

Now that we know how to represent sentence, this is a good time to try to write yet another small
program. This time, we will write a function to compute the average token length in a corpus (a
collection of texts). Since we did not look at real corporayet, pick any sentence you like as My Little
Corpus™. The authors will use "Oh, no, flying pink ponies!” The average token length is the sum of
the lengths of all tokens, divided by the total number of tokensin the corpus. So, stepwise, we haveto:

1. Get the length of each token in the corpus.

2. Sum the lengths of the tokens.
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3. Divide the sum by the length of the corpus.
Y ou know how to get the in characters length of a single token:

Prel ude> length "flying"
6

Since you are lazy, you are not going to apply | engt h to every token in the corpus manually. Instead
we want tell Haskell "Hey Haskell! Please apply this length function to each element of the list.” It
turns out that Haskell has a function to do thiswhich is called map. Time to inspect map:

Prel ude> :type nmap
map :: (a ->b) ->[a] ->[b]

And we are in for another surprise. The most surprising element is probably the first element in the
type signature, (a-> b). Also surprising isthat we now seethreetypes, (a-> b), [a] and [b]. Thelatter
issimple: thisfunction takes two arguments, (a-> b) and [a], and returns[b]. (a -> b) asthe notation
suggests, isafunction taking an a and returning ab. So, map isactually afunction that takesafunction
asitsargument, or in functional programming-speak: a higher order function.

So, map is afunction that takes a function that maps from a to b, takes alist of as, and returns a list
of bs. That looks a suspicious lot like what we want! We have alist of tokens represented as strings,
the function length that takes a list and returns its length as an integer, and we want to have a list of
integers representing the lengths. Looks like we have a winner!

Pr el ude> map |ength ["d‘]", ", "no", ",", "flyl ng"! " "pi nk"’ "ponies","!"]
[2,1,2,1,6,1, 4,6,1]

We have now completed our first step: we have the length of each token in the corpus. Next, we have
to sum the lengths that we have just retrieved. Fortunately, Haskell has a sumfunction:

Prel ude> :type sum
sum:: (Numa) =>[a] -> a

This function takes a list of as, and returns an a. But where did the (Num @) => come from? Well,
Numis a so-called typeclass. A type can belong to one or more of such typeclasses. But belonging to
a typeclass does not come without cost. In fact, it requires that certain functions need to be defined
for types that belong to it. For instance, the typeclass Numis a typeclass for numbers, which requires
amongst others, functions that define addition or subtraction. Coming back to the type signature, sum
will sum alist of as, but not just any as, only those that belong to the typeclass Num. And after all,
this makes sense, doesn't it? We cannot sum strings or planets, but we can sum numbers. In fact, we
can only sum numbers.

After this solemn introduction into typeclasses, feel free to take a cup of tea (or coffee), and try step
two:

Prel ude> :{

sum (map length ["Ch", ",", "no", ",", "flying", ",", "pink", "ponies", "!"])
i}
24
By now, you will probably smell victory. The only step that remainsisto divide the sum by the length
of the sentence using the division operator (/):

Prel ude> :{

sum (map length ["Ch", ",", "po", ",", "flying", ",", "pink", "ponies", "!"]) [/
length ["C0", ",", "po", ",", "flying", ",", "pink", "ponies", "!"]

o}

<interactive>:1:0:
No i nstance for (Fractional Int)
arising froma use of /' at <interactive>:1:0-136
Possible fix: add an instance declaration for (Fractional Int)
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In the expression:

sum (map length ["CO", ",", "no", ",", ....])
/ length ["Ch", ",", "no", ",", ....]
In the definition of “it':
it = sum(map length ["Ch", ",", "no", ....])
/[ length ["Ch", ",", "no", ....]

And we have... Failure! | hope you poured yourself a cup of herb teal (again alternatively: espresso!)
Whilethisisall abit cryptic, the second line (No instance for (Fractional Int)) gives someideawhere
the trouble stems from. Fractional istypeclass for fractional numbers, and Haskell complains that Int
isnot defined to be of thetypeclass Fractional. This sounds obvious, since aninteger is not afractional
number. In other words, Haskell istrying to tell usthat thereisan Int in some place where it expected
atype belonging to the typeclass Fractional. Since the division is the only new component, it is the
first suspect of the breakdown:

Prel ude> :type (/)
(/) :: (Fractional a) =>a ->a -> a

First off, notice that we have put the division operator in parentheses. We have done this because the
division operator is used as a so-called infix function: it is afunction that is put between its arguments
(like 1.0/ 2.0). By putting an infix operator in parentheses, you are stating that you would like to use
it asaregular function. This means you can do things like this:

Prelude> (/) 1.0 2.0
0.5

Anyway, the verdict of the type signature of (/) isclear, it requires two arguments that belong to the
Fractional typeclass. The sum and length that we calculated clearly do not belong to this typeclass,
since they are of the type Int:

Prel ude> :{

(type
sum (map length ["OCh", ",", "po", ",", "flying", ",", "pink", "ponies", "!"])
i}
sum (map length ["OCO", ",", "no", ",", "flying", ",", "pink", "ponies", "!"])
I nt
Prel ude> :{
(type
length ["Ch", ",", "no", ",", "flying", ",", "pink", "ponies", "!"]
3
length ["Oh", ",", "no", ",", "flying", ",", "pink", "ponies", "I"]
o Int

Fortunately, Haskell provides the function f r om nt egr al that converts an integer to any kind of
number. Add f r onl nt egr al , and you surely do get the average token length of the corpus:

Prel ude> :{
from ntegral
(sum (map length ["Ch", ",", "no", ",", "flying", ",", "pink", "ponies", "I"])) /
fromntegral (length ["On", ",", "no", ",", "flying", ",", "pink", "ponies", "!"])
'}
2.6666666666666665

Well, that was abumpier ride than you might have expected. Don't worry! During our first foraysinto
Haskell, we were convinced that we were too stupid for this too (and here we are writing a book).
However, after more practice, you will learnthat Haskell isactually avery simpleand | ogical language.

Maybe it will feel more like a victory after generalizing this to a function. Y ou can follow the same
pattern as in the palindrome example: replace the sentence with a symbolic name and transform it
into a function:

Prel ude> :{
| et averagelLength | =
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fromntegral (sum (map length I)) / fromntegral (length I)
“}
Prel ude> :{
aver ageLength ["Ch", ",", "po", ",", "flying", ",", "pink" ,"ponies", "!"]
o}
2.6666666666666665

Congratulations, you just wrote your second function! But wait, you actually accomplished more than
you may expect. Check the type signature of aver ageLengt h.

Prel ude> :type averagelLength
averagelLength :: (Fractional b) =>[[a]] -> b

Y ou made your first weird type signature. Show it off to your colleagues, significant other, or dog.
aver ageLengt hisafunctionthat takesalist of alist of a, and returnsab that belongsto the Fractional
typeclass. But wait, a can be anything, right? What happens if we apply this function to a list of

sentences?

Pr el ude> averageLength [["I", "like", "Haskell", "."],
["Ruby", "rocks", "too", "."],
["Wo", "needs", "Java", "?"]]

4.0

Woo! That's the average sentence length, expressed in number of words. It turns out that, although we
set out to make a function to calculate the average token length, we wrote a function that calculates
the average length of listsin alist (e.g., characters in words, words in sentences, or sentences in a
text). This happens very often when you write Haskell programs: |ots of functions are generic and can
be reused for other tasks.

A note on tokenization

When dealing with real-world text, it isusually not neatly split in sentences and tokens. For example,
consider this book - punctuation is usually glued to words. These processes, sentence splitting and
tokenization may seem trivial, unfortunately they are not. Consider the following sentence:

E.g. Jack doesn't have 19.99 to spend.

If we simply perform sentence splitting on periods (.), we will find four sentences:
1 E

2. 0

3. Jack doesn't have 19.

4. 99 to spend.

Of course, it is just one sentence. Similar problems arise during punctuation: how do we know that
E.g. and 19.99 should not be split? And how about doesn't, which should probably be split as does n't
or does not? Tokenization can be performed accurately, but it requires techniques that you will seein
later chapters. So don't worry, we will get back to proper tokenization later on. We promise!

Of course, up to the point where we handle tokenization, we need materia to work on. To make life
easier for you, the material for the first chapters of the book is pre-tokenized in a plain-text file using
two simple rules:

1. One sentence per line.
2. Tokens are separated by a space.

To convert atext file to a Haskell representation, sentence splitting is amatter of splitting by line, and
tokenization a matter of splitting by space. Have alook at the following example:
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Prel ude> "This is Jack .\nHe is a Haskeller ."
"This is Jack .\nHe is a Haskeller

Thisisexactly the representation that we will be using for our textual data. Asyou can see, the tokens
are separated by spaces. Both sentences are separated using a newline. When writing down a string
literally, you can insert anewline using \n.

Haskell providesal i nes function to split up astring by line. Not surprisingly, this function accepts
astring asitsfirst argument, and will return alist of strings:

Prel ude> :type lines

lines :: String -> [String]

Prelude> lines "This is Jack .\nHe is a Haskeller ."
["This is Jack .","He is a Haskeller ."]

That was easy! Now to the actual tokenization. For all sentences, we have a string representing the
sentence. We want to split this string on the space character. Haskell also has a function to do this,
named wor ds. wor ds isnearly the samefunction as! i nes, except that it splits on spaces rather than
newlines:

Prel ude> words "This is Jack ."
["This","is","Jack","."]

That will do, but we have to apply this to every sentence in the list of sentences. Recall that we can
use the map function we have seen earlier to apply the wor ds function to each element of the list of
(untokenized) sentences:

Prel ude> map words (lines "This is Jack .\nHe is a Haskeller .")
[[IIThI S","iS"’"Jack","_"]’[""b"’"iS","a","|'|aske|Ier","_"]]

Allright! That will do the job. We know how to turn this into a full-fledged function:

Prel ude> let splitTokenize text = map words (lines text)
Prel ude> splitTokenize "This is Jack .\nHe is a Haskeller ."
[["Thl sll, lli Sll’ ll\]aCkII’ II. II] , [II l_bll’ lli sll, " a.II’ " l_bskel I erll, II. II]]

Thisis a good moment to beautify this function a bit. To make it simpler, we first need to get rid of
the parentheses. We used the parenthesesto tell Haskell that it should evaluate linestext first, because
it would otherwise try to map over the function | i nes, which would fail, becauseitisnot alist. Very
often, you will encounter function applications of the form f(g(x)), or f(g(h(x))), etc. Haskell provides
the (.) function to combine such function applications. So, f(g(x)) can be rewritten to (f . g) x (apply
function f to the outcome of g(x)) and f(g(h(x))) as (f . g . h) x (apply function f to the outcome of a
function g, which isin turn applied to the outcome of h(x)). As you can see, this so-called function
composition makes things much easier to read. We can now rewrite our tokenization function by using
function composition:

Prel ude> let splitTokenize text = (map words . lines) text

This states that we apply map words to the outcome lines text. This may not yet seem so interesting.
However, it allows us to make yet another simplification step. Consider the type of the map function:

Prel ude> :type map
map :: (a->Db) ->[a] ->[b]

map takes afunction, and a list, and returns a list. Now we will do something that may look weird,
but is very common in functional programming.

Prel ude> :type map words
map words :: [String] -> [[String]]

Applying map to just one argument will give... another function! In fact, what we just did isbind only
the first argument of the map function, leaving the second unbound. This gives a novel map function
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that only takes one argument, as it has its first argument implicitly bound to the function words.
This process is called currying (indeed, named after the mathematician Haskell Curry) in functional
programming slang.

If we look back at our spl i t Tokeni ze function, and look up the type of map words . lines, we see
that it isafunction that takes a Sring and returns alist of alist of strings:

Prel ude> :type map words . lines
map words . lines :: String -> [[String]]

In our function body, we apply thisfunction to the argument text. Of course, thisisnot really necessary,
because map words . lines already defines our function (as we have shown above). We just need to
bind thisto the namespl i t Tokeni ze. Consequently the function can once more be simplified:

Prel ude> let splitTokenize = map words . |ines

splitTokenize :: String -> [[String]]

Prel ude> splitTokenize "This is Jack .\nHe is a Haskeller ."
[["This","is","Jack","."],["He","is","a", "Haskeller","."]]

Word lists

In the following two sections, we will introduce two prototypical tasks related to words. The first is
to make aword (or actually token) list, the second task is making aword frequency list.

A word list is a very simple data structure: it isjust alist of unique words or tokens that occur in a
text. Our corpusis also just alist of words, but since it contains duplicates, it is not aword list. The
obvious method to make aword list is to go through a corpus word by word, and adding words that
we have not yet seen to a second list. This requires some functions we haven't seen yet:

» Adding an element to alist.
» Checking whether an element is (or isnot) in alist.
 Constructing alist while traversing another list.

We like easy things first, so let's start with the first item: adding an element to a list. We have seen
the head function before that chops of the head of the list and returns it. But we can also do the
reverse: take alist and give it anew head. The old head then becomes the head of thetail (are you still
following?). In Haskell, we can do thisusing the (: ) function:

Prelude> 2 : [3,4,5]
[2,3,4,5]

Ain't that great? We can also add a head, and yet another:

Prelude> 1 : 2 : [3,4,5]
[1,2,3,4,5]

What if we do not have an element yet? Add the head to the empty list ([]):

Prelude> "H " : []
["H "]

With that covered, the next thing we need to be able to do is checking whether some element belongs
to alist. We can do this using the el emfunction. It takes an element as its first argument, and a list
asitssecond. It will return aBool of the value True if the element wasin the list, or False otherwise.
For example:

Prelude> elem?2 [1,2,3,4,5]
True
Prel ude> elem6 [1,2,3,4,5]
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Fal se

The function not El emis exactly the inverse of el em and returns Trueif an element isnot in the list,
and False otherwise:

Prel ude> notEl em "foo" ["foo","bar", "baz"]
Fal se

Pr el ude> not El em "pony" ["foo0", "bar", "baz"]
True

Ok, so we want to add an element to alist if, but only if, it is true that it is not yet a member of
that list. Or in other words, the addition is conditional. Haskell provides a set of keywords to model
conditionals, if..then..else. The structureislike this:

if expr then a else b

This whole structure itself is an expression. This expression evaluates to a if expr evaluates to True
or to b if expr evauatesto False. To give aworking, but useless example:

Prelude> if 1 == 2 then "cuckoo" else "egg"
" egg"

Prelude> if 1 == 1 then "cuckoo" else "egg"
"cuckoo"

Thislooks exactly like what we need. Just fill in the blanks:

Prelude> if elem"foo" ["foo","bar","baz"] then ["foo","bar", "baz"]
el se "foo" : ["foo", "bar", "baz"]

["foo","bar", "baz"]

Prel ude> if elem"pony" ["foo0","bar","baz"] then ["foo0","bar", "baz"]
el se "pony" : ["foo", "bar", "baz"]

["pony", "foo", "bar", "baz"]

That's a bit contrived, but (as you hopefully see) not if we rewriteit to afunction:

Prelude> let elenrAdd e | = if eleme | then | else e:l
Prel ude> elemrAdd "foo" ["foo", "bar", "baz"]
["foo","bar", "baz"]

Prel ude> el emr Add "pony" ["foo", "bar", "baz"]
["pony", "foo","bar", "baz"]

Good, now we need to apply thisto all wordsin atext, starting with an empty list. Haskell provides a
function to do this, but brace yourself, the first time it may look abit 'difficult’. It isnamed f ol dI (a
so-called) left fold. A left fold traverses alist from head to tail, applying a function to each element,
just like map. However, the difference isthat it can, but does not necessarily return alist. Assuch, itis
ageneralization of the map function. Asusual, you can inspect the type signature to see the arguments
of fol dl :

Prel ude> :type foldl
foldl :: (a->b->a) ->a->[b] ->a

Now consider this example using f ol dl :

Prel ude> foldl (+) 0 [1,2,3,64,5]
15

Stepwise, thisfold is executed in the following manner:

foldl (+) 01,2 3,4,5]
foldl (+) ((0)+1) [2 3,4,5]

foldl (+) (((0)+1)+2) [3,4,5]
foldl (+) ((((0)+1)+2)+3) [4,5]
foldl (+) (((((0)+1)+2)+3)+4) [5]

13



Words

foldl (+) ((((((0)+1)+2)+3)+4)+5)) []
(CC(((0) +1) +2) +3) +4) +5) )

So, it works by applying a function to some initial argument (O in this case) as its first argument,
and the first element of the list as its second argument. When processing the second element of the
list, this expression is then the first argument of the function, and the second element is the second
argument, etc. The first argument of the function that is applied is also called the accumulator, since
it accumulates results up till that point.

This could also work for our el entr Add function. Unfortunately, el enr Add requires the
accumulator asthe second argument, and the function passedtof ol dI asthefirst argument. Compare
the type signatures:

Prel ude> :type foldl

foldl :: (a->b->a) ->a->[b] ->a
Prel ude> :type el enr Add

elen>rAdd :: (Eq a) => a -> [a] -> [a]

In the function that is the first argument to f ol dl , the return type is the same as the type of the first
argument. In the case of el enOr Add, the type of the second argument corresponds to that of thefirst.
Of course, an easy 'hack' to solve this, is to redefine elemOrAdd, switching its arguments, and plug
itinto foldl:

Prelude> let elem>Add | e =if eleme | then | else e:l

Now, since we are building alist, we use the empty list ([]) astheinitial accumulator for thisfold:

Prel ude> foldl elenOAdd [] ["Dblue", "blue", "red", "blue", "red"]
["red", "blue"]

That looks good! Stepwise, the fold works like this:

foldl elemorAdd [] ["blue", "blue", "red", "blue", "red"]

foldl elemorAdd ("blue":([])) ["blue", "blue", "red", "blue", "red"]
foldl elemorAdd ("blue":([])) ["blue", "red", "blue", "red"]

foldl elemorAdd ("blue":([])) ["red", "blue", "red"]

foldl elemorAdd ("red":("blue":([]))) ["blue", "red"]

foldl elemOorAdd ("red": ("bl ue" )) ["red"]

foldl elemOorAdd ("red": ("bl ue"
("red":("blue":([1)))

["red", "blue"]

“(L1)
(1)

Now we wrap it up in another function, and you have constructed two functions that, together, make
word lists:

Prel ude> let wordList = foldl elenOAdd []
Prel ude> wordList ["blue", "blue", "red", "blue", "red"]
[llredlI’ llbl uell]

Whileour littleword list function worksfine on small texts, it will not be very efficient for big corpora.
The reason is simple - suppose that we have already found 100,000 different tokens. For every word,
it would have to check the list of 100,000 tokens. There is no other way of doing thisthan to traverse
the list word by word. Or, on average, we compare a token to 100,000 / 2 = 50,000 elements in the
list. Asacomputer scientist would say: el enOr Add worksin linear time, its processing timeislinear
to the number of different tokens that were seen.

Thisis atypical case of picking the wrong data structure for the task. But for illustrative purposes,
using lists was nice and simple. However, since you are a working programmer, you want workable
solutions. Bring in the setsl A set is, like the mathematical set, a collection that does not contain
duplicate elements. That's good, because a word list does not contain duplicate elements. Silly us,
we were fooled by the word list. What we actually want to build is a word set. In fact, it is just for
historical purposesthat it is called aword list.
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Beside the uniqueness of elements, another nice property of sets, asthey are normally implemented, is
that set membership can be checked rather quickly. In the setsthat we will use, membership checking
isin logarithmic time. Or in other words, if comparison took one second, we would on average need
50,000 seconds to search the list mentioned earlier, but only 10g(100,000) or approximately 11.5
seconds to check whether the element is in a set. Talking about optimizations!

Haskell provides set functionality, but not in the so-called Prelude. Prelude is a module that contains
functions. The Prelude module is always loaded, so its functions are always available (unless you
explicitly ask Haskell to hide them). The functions map, head, tai | , and | engt h, for instance, are
defined in the Prelude. Functions for set manipulation, on the other hand, are defined in a module
named Data.Set. For the time being, we will access functions from modules by prefixing the name of
the module. For instance, thiswill give usthe empty set:

Pr el ude> Data. Set. enpty
fromList []

Likealist, aset can contain elements of various types. We see thiswhen inspecting the type signature
of the enpt y function:

Prel ude> :type Data. Set.enpty
Data. Set.enpty :: Data. Set. Set a

enmpt y returns a Set of some type a. We can also construct a Set from a list using the f r onli st
function:

Prel ude> Data. Set.fronList [5,2,5,8,1,1, 23]
fromlist [1,2,5,8, 23]

Asyou can see here, the set does not contain duplicates. Another nice property of Haskell setsisthat
they are ordered. We can aso do theinverse, convert asettoalist usingt oLi st :

Prel ude> Data. Set.tolList (Data.Set.fronList [5,2,5,8,1,1,23])
[1,2,5,8, 23]

Elements can be added to or removed from a Set using respectively thei nsert anddel et e functions.
Both functions return a set with that element inserted or removed:

Prel ude> Data.Set.insert 42 (Data.Set.fronList [5,2,5,8,1,1,23])
fronlist [1,2,5,8,23,42]

Prel ude> Data. Set.delete 5 (Data.Set.fronlist [5,2,5,8,1,1,23])
froniist [1,2,8,23]

Finally, we can check whether some value is a member of a set by using the menber function:

Prel ude> Data. Set. nenber 23 (Data.Set.fronList [5,2,5,8,1,1,23])
True

Prel ude> Data. Set. nenber 24 (Data.Set.fronList [5,2,5,8,1,1,23])
Fal se

We have now seen enough to change our word list function. Rather than checking whether avalueis
inalist and adding it if not, we check whether it isin a Set and add it in when it is not:

Prel ude> :{
let elen>rAdd s e =
if Data.Set.nenber e s then s else Data.Set.insert e s
'}
Prel ude> el enr Add (Data.Set.fronList [5,2,5,8,1,1,23]) 24
fronList [1,2,5,8, 23, 24]

That wassimple. Butit feelsaweird, right? Themost vital characteristic of aset isthat it never contains
duplicate elements, why do we need to check for duplicates? We don't. So, forget about el enOr Add,
we will only use Data.Set.insert from this point. Our objective now is to traverse a list of tokens,
adding each token to a set, starting with the empty set. Our first take isthis:
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Prel ude> let wordSet = foldl Data.Set.insert Data.Set.enpty

However, thiswill not work. Remember that in the function we givetof ol dI , the accumulator hasto
be the first argument (the reason why we swapped the elements of our initial elemOrAdd function)?
We are accumulating a Set, but the set is the second argument to Data.Set.insert. We will pull alittle
trick out of our hat.

Prel ude> let wordSet = foldl (\s e -> Data.Set.insert e s) Data.Set.enpty

Y ou might be thinking "Oh, no, more syntax terror! Doesit ever stop?' Actualy, (e-> Data.Set.insert
es) isvery familiar. You could see it as an inline function. In functional programming jargon, thisis
called alambda. Check out the type signature of the lambda:

Prel ude> :type (\s e -> Data. Set.insert e s)
(\s e -> Data. Set.insert e s)
(Od a) => Data.Set.Set a -> a -> Data. Set. Set a

Itisjust afunction, it takes a set of some type a, a value of type a, and returns a. Additionally, a has
the typeclass Ord, which means that some comparison operators should be defined for a. The lambda
has two arguments that are bound to s and e. The function body comes after the arrow. To emphasize
that thisisjust afunction, the following functions are equivalent:

myFun = (\s e -> Data. Set.insert e s)
myFun s e = Data. Set.insert e ss

Back to our wor dSet function. We used the lambda to swap the arguments of Data.Set.insert.
Data.Set.insert takes a value and a set, our lambda takes a set and a value. The rest of the function
follows the same pattern as wordList, except that we start with an empty set rather than an empty list.
The function works as expected:

Prel ude> wordSet ["blue", "blue", "red", "blue", "red"]
fronmli st ["blue","red"]

Y ou have doneit! You are now not only able to make afunction that creates aword list, but also one
that is performant.

Exercises

1. To measure the vocabulary of awriter, a so-called type-token ratio can be calculated. Thisis the
number of distinct tokens occurring in atext (types) divided by the total number of tokensin that
text.

Equation 2.1. Type-token ratio

For instance the phrase "to be or not to be" contains six tokens and four types (to, be, or, not). The
type-token ratio of this phraseis4/6=2/3.

Writeafunction that cal culatesthe type-tokenratio of alist of tokens. Y ou can usethe Data.Set.size
function to get the number of elementsin a set.

Storing functions in a file

Now that we are writing longer and longer functions, it becomes more convenient to define functions
inafilerather than the ghci prompt. Y ou can do thisby creating afile using aplain-text editor with the
.hsextension. Functions can be written down in the same manner asin ghci, but without the preceding
let keyword. It is aso highly recommended to add a type signature before the function. Haskell will
check the function against the type signature, and report an error if they do not correspond. This will
help you catch incorrect function definitions.
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Thepal i ndr ome function discussed earlier in this chapter can be written to afile like this:

palindrome :: (Eq a) => [a] -> Bool
pali ndrome word = word == reverse word

If you saved thisfile asexample.hs, you canload it in ghci using the:| (shorthand for :1oad) command:

Prel ude> :1 exanple

[1 of 1] Conpiling Main ( exanple.hs, interpreted )
Gk, nodul es | oaded: Mi n.

*Mai n> pal i ndrome "racecar"

True

For code fragments that use a module other than the prelude, add an import statement at the top of
the file. For example, the wor dSet function from the previous section should be saved to a text file
in the following manner:

import qualified Data. Set

wordSet :: Ord a =>[a] -> Data. Set.Set a
wordSet = foldl (\s e -> Data.Set.insert e s) Data. Set.enpty

From now on, we assume that examples are written to a text file, except when the Prelude> occurs
in the example.

Word frequency lists

The word list function that we built in the previous section works is useful for various tasks, like
calculating the type-token ratio for a text. For some other tasks thisis not good enough - we want to
be able to find out how often a word was used. We can expand aword list with frequencies to make
aword frequency list.

To be able to store word frequencies, every word has to be associated with an integer. We could store
such an association as atuple. A tuple is adata type with afixed number of elements and afixed type
for an element. Examples of tuples are:

* (1,23
* ("hello","world")
* ("hello",1)

As you can see, they differ from lists in that they can have values of different types as elements.
However, if you inspect the type signatures of these tuples, you will see that the length and type for
each position is fixed:

Prel ude> :type (1,2,3)

(1,2,3) :: (Numt, Numtl, Numt2) => (t, t1, t2)
Prel ude> :type ("hello", "world")

("hello","world") :: ([Char], [Char])

Prel ude> :type ("hello", 1)

("hello",1) :: (Numt) => ([Char], t)

To store frequencies, we could use a list of tuples of the type [([Char], Int)]. The phrase "to be or
not to be" could be stored as

[("to",2),("be",2),("or",1),("not", 1)]

However, this would be even less efficient than using lists for constructing word lists. First, like
el enOr Add we would potentially have to search the complete list to locate aword. Second, wewould
haveto reconstruct thelist up to the point of the element. Intheel enOr Add function we could just give
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the list anew head, but now we would have to replace the element to update the word frequency and
add all preceding list itemsagain. Since Haskell isa'pure' language, we cannot modify existing values.

A more appropriate data type for this task is a map (not to be confused with the map function). A
map maps a key to a value. In Haskell, maps are provided in the Data.Map module. Like sets, we
can make an empty map:

Pr el ude> Dat a. Map. enpty
fromlist []

When you inspect the type signature of the empty map, you can seethat it parametrizes over two types,
atype for the key and atype for values:

Prel ude> :type Data. Map. enpty
Dat a. Map. enpty :: Data. Map. Map k a

We can construct aMap from alist of binary tuples (tuples with two elements), where the first element
of the tuple becomes the key, and the second the value:

Prel ude> Data. Map.fronList [("to",2),("be",2),("or",1),("not", 1)]
fromlist [("be",2),("not",1),("or",1),("to",2)]
Prel ude> :type Data.Map.fronList [("to",2),("be",2),("or",1),("not", 1)]
Data. Map. fronList [("to",2),("be",2),("or",1),("not", 1)]

(Numt) => Data. Map. Map [Char] t

This aso binds the types for the map: we are mapping from keys of type string to values of type t
that belongs to the t typeclass. No specific value for types is used (yet), because the numbers could
be integers or fractionals.

Thei nsert function isused to add a new mapping to the Map:

Prel ude> :{
Dat a. Map.insert "hello" 1
(Data. Map. fromList [("to",2),("be",2),("or",1),("not",1)])

o}
fromist [("be",2),("hello",1),("not",1),("or",1),("to", 2)]
If amapping with the given key already exists, the existing mapping is replaced:

Prel ude> :{
Data. Map.insert "be" 1
(Data. Map. fromList [("to",2),("be",2),("or",1),("not",1)])
o}
fromist [("be",1),("not",1),("or",1),("to",2)]

Looking up valuesis a bit peculiar. You can lookup a value with the | ookup function. However, if
you inspect the type signature, you will see that the value is not returned asis:

Prel ude> :type Data. Map. | ookup
Data. Map. | ookup :: (Ord k) => k -> Data. Map. Map k a -> Maybe a

Rather than returning avalue, it returns the value packed in some box called Maybe. Maybe aisatype
that has just two possible so-called constructors, Just a or Nothing. Y ou can put your own valuesin
aMaybe box using the Just a constructor:

Prel ude> Just 22

Just 22

Prel ude> :type Just 22

Just 22 :: (Numt) => Maybe t
Prel ude> Just [1,2,3,4,5]

Just [1,2,3,4,5]

Prel ude> Just "stay calnt

Just "stay cal nf

Prel ude> :type Just "stay cal nf
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Just "stay calnm :: Maybe [ Char]
Y ou can also make a box that contains vast emptiness with the Nothing constructor:

Pr el ude> Not hi ng

Not hi ng

Prel ude> :type Nothing
Not hing :: Maybe a

These boxesturn out to be pretty cool: you can use them to return something or nothing from functions,
without resorting to all kinds of abominations as exceptions or null pointers (if you never heard of
exceptions or pointers, do not worry, you have alife full of bliss). Since Maybeis so nice, thel ookup
function usesiit. It will return the value packed with in a Just constructor if the key occurred in the
map, or Nothing otherwise:

Prel ude> :{
Dat a. Map. | ookup "to"
(Data. Map. fronmList [("to",2),("be",2),("or",1),("not",1)])
i}
Just 2
Prel ude> :{
Dat a. Map. | ookup "wr ong"
(Data. Map. fromList [("to",2),("be",2),("or",1),("not",1)])
o}
Not hi ng

As for handling these values - we will come to that later. Mappings are deleted from a Map by key
with the del et e function. If akey did not occur in the Map, the original map is returned:

Prel ude> :{
Dat a. Map. del ete "to"
(Data. Map. fromList [("to",2),("be",2),("or",1),("not",1)])
“}
fromist [("be",2),("not",1),("or",1)]
Prel ude> :{
Dat a. Map. del ete "wr ong"
(Data. Map. fromList [("to",2),("be",2),("or",1),("not",1)])

:}
fromist [("be",2),("not",1),("or",1),("to",2)]

Finally, a Map can be converted to alist using thet oLi st function:

Prel ude> :{
Dat a. Map. t oLi st
(Data. Map. fronList [("to",2),("be",2),("or",1),("not",1)])

o}
[("be",2),("not", 1), ("or",1),("to", 2)]

Alright. Back to our task at hand: constructing a word frequency list. As with word lists, we want to
traverse a list of words, accumulating data. So, the use of f ol dl is appropriate for this task. During
each folding step, we take the Map created in aprevious step. We then lookup the value for the current
step in the Map. If it does not exist, we add it to the Map giving it afrequency of one. Otherwise, we
want to increase the frequency by one. The count EI emfunction does this;

import qualified Data.Map

countElem:: (Od k) => Data. Map.Map k Int -> k -> Data. Map. Map k Int
countEl em me = case (Data. Map. | ookup e m of

Just v -> Data.Map.insert e (v + 1) m

Not hing -> Data. Map.insert e 1 m

This function introduces the case construct. Remember that | ookup uses the nifty Maybe data type?
The case construct allows us to select an expression based on a constructor. If | ookup returned a
value using the Just constructor, the key was in the Map. In this case, we bind the value to the name
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v and add a new value for this key. This value is the old value for this key incremented by one. If a
value with the Nothing constructor was returned, the key was not in the Map. So, we will add it, and
giveit a(frequency) value of 1.

The count El emfunction works as intended:

*Mai n> foldl countEl em Data. Map. enpty ["to", "be","or","not","to", "be"]
fromist [("be",2),("not",1),("or",1),("to",2)]

While thiswas anice exercise, the Data.Map.insertWith function can drastically shorten our function.
This function uses an update function to update a value, or a specified value if the key is not present
in the Map:

*Mai n> :t Data.Map.insertWth
Dat a. Map.insertWth
Od k =>
(a->a->a) ->k ->a -> Data. Map. Map k a -> Data. Map. Map k a

The update function gets the specified value as its first argument, and the old value as its second
argument. Using i nser t W t h, we can shorten our function to:

countElem:: (Od k) => Data.Map.Map k Int -> k -> Data. Map. Map k Int
countElemme = Data. Map.insertWth (\n o ->n +0) e 1 m

If an element was not seen in the Map yet, afrequency of 1 will be inserted. If the element does occur
as akey in the map, the lambda adds one to the old frequency. With count El emin our reach, we can
definethef reqLi st function:

fregList :: (Od k) => [k] -> Data.Map. Map k Int
freqLi st = foldl countEl em Data. Map. enpty

Monads

In the next section you will see how to read real text corpora using the so-called 1O monad. Before
diving into the 10 monad, we will give a short introduction to monads. In Haskell, it happens very
often that you want to perform a series of computations on values that are wrapped using some type,
such as Maybe or alist. For instance, suppose that you have a Map that maps a customer name to a
customer number, and yet another Map that maps a customer number to alist of order numbers:

*Mai n> let custoners = Data.Map.fronlist [("Daniel de Kok", 1000),
("Harm Brouwer", 1001)]

*Mai n> let orders = Data. Map.fronlist [(1001, [128])]

Pr el ude> Data. Map. | ookup "Harm Brouwer" customers

Just 1001

Pr el ude> Data. Map. | ookup 1001 orders

Just [128]

Now, we want to write afunction that extracts alist ordersfor agiven customer, wrapped in aMaybe,
so that Nothing can be returned if the customer isnot in thelist or if the customer had no orders. Y our
first attempt will probably be along the following lines:

| ookupGOrderQ :: Data.Map. Map String | nteger ->
Dat a. Map. Map I nteger [Integer] ->
String -> Maybe [Integer]
| ookupOrder0 custoners orders custoner =
case Data. Map. | ookup custoner custoners of
Not hi ng -> Not hi ng
Just custonerld -> Data. Map. | ookup custonerld orders

This function works as intended:

*Mai n> | ookupOrder0 custonmers orders "Jack Sparrow'
Not hi ng
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*Mai n> | ookupOrder0 customers orders "Dani el de Kok"
Not hi ng

*Mai n> | ookupOrder0 customers orders "Harm Brouwer"
Just [128]

But case constructs will quickly start to stack up when more functions are called that return Maybe.
For each Maybe we follow the same procedure: if the value is Nothing we end the computation with
that value, if the value is Just x we call the next function that possibly uses x as an argument. This
is where the Monad typeclass kicks in: all data types that are of the Monad typeclass implement
the (>>=) function. This function joins computations resulting in that data type according to some
logic. For instance, the Maybe monad combines expressions that return Maybe in such away that if
one expression returns Nothing, the whole joined expression also returns Nothing, just like our case
construct in the example above. Consequently, we could rewrite the example above as:

| ookupOrderl :: Data.Map.Map String |Integer ->
Dat a. Map. Map I nteger [Integer] ->
String -> Maybe [Integer]
| ookupOrder1 custoners orders custoner =
Dat a. Map. | ookup custonmer custonmers >>= (\m-> Data. Map. | ookup m orders)

That surely shortened the function! But what does it do? Well, the function performs the following
steps:

» Data. Map. | ookup custoner custoners: Lookup cust oner incust omers.

e (>>=): If the expression on the left-hand returned Nothing, the value of the full expression, and
consequently | ookupOr der 1, isNothing. If thelookup returned avalue of type Just I nteger, extract
the Integer from the Just constructor, and pass it as the argument of the next function.

e (\m -> Data.Mp. | ookup m orders): Lookup the supplied argument in the or der s Map.
The result becomes the result of | ookupOr der 1. We had to use alambda, to make the element to
be looked up the first argument.

The type signature of (>>=) is also very illustrative:

*Mai n> :type (>>=)
(>>=) :: (Monad M =>ma ->(a->mb) ->mb

The (>>=) simply unwraps a value from the monad and feeds it to a function that returns a value
wrapped in the same monad. The ( >>=) function hasthe freedom to perform any operation (including
not calling (a-> mb)), aslong asit returns avalue of typem b.

The actua implementation of (>>=) for the Maybe monad is very simple:

k x
Not hi ng

(Just x) >>= k =
Not hing >>= _ =
That's al! If the left-hand side expression evaluates to Just X, the expression on the left hand side is
evaluated with x asits argument. If the left-hand side evaluates to Nothing, the right-end side is not
evaluated, and the whol e expression returns Nothing.

There is yet another function that is essential to monads named return, it does nothing else than
wrapping avaluein that monad. For instance, the maybeBool functionwrapsaBool valueinaMaybe
monad:

maybeBool :: Bool -> Maybe Bool
maybeBool = return

ThisismaybeBool in action:

*Mai n> maybeBool True
Just True

*Mhi n> maybeBool Fal se
Just Fal se
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The implementation of r et ur n for the Maybe monad istrivial:

return = Just

L et'sget back to our order lookup function. Y ou may have noticed that the (>>=) functionissomewhat
imperative in nature; it chains a set of expressions, where the left-hand expression is evaluated before
the right-hand. Due to this nature, Haskell has a do notation that resemblesimperative programs. This
isl ookupOr der 1 using the do-notation:

| ookupOrder2 :: Data.Map. Map String |nteger ->
Dat a. Map. Map I nteger [Integer] ->
String -> Maybe [Integer]
| ookupOrder2 custoners orders custoner = do
custonerld <- Data.Map. | ookup custoner custoners
orders <- Data. Map. | ookup custonerld orders
return orders

Y ou can see that we added the do keyword to start the do-notation. Every expression that follows can
be seen asjust one element in a sequence of (>>=) expressions. Consequently, each lineisgoverned by
the'laws of themonad. If thefirstlookupfails, nofurther evaluationisperformed, andl ookupOr der 2
will return Nothing. Otherwise, computation continues. The do-notation also alows the use of the
backward arrow (<-) this arrow extracts a value from the monad, and binds it to a variable.

We can simplify lookupOrder2 further. The last lookup already returns avalue wrapped in the Maybe
monad, there is no need to extract it using <- and wrap it again with r et ur n:

| ookupOrder :: Data.Map. Map String Integer ->
Dat a. Map. Map I nteger [Integer] ->
String -> Maybe [Integer]
| ookupOrder custoners orders custoner = do
custonerld <- Data.Map. | ookup custoner custoners
Dat a. Map. | ookup custonerld orders

Reading a text corpus

Up to this point we have been using very artificial text corpora. At most afew sentences. But you are
init for the real deadl, right? Lucky you, we will use areal (like really real) corpus starting from this
very moment. Of course, just to test functions we will start with small examples. But you will be able
to apply your functions to real data.

So-called I/O (input/output) is a delicate matter in Haskell. The reason being that, as a pure functional
language, it is not possible to modify expressions or values once they exist. Thisleadsto an admirable
quality of Haskell: given the same input, a function will always return the same output. Or in other
words, afunction does not have side-effects. Unlike most other languages, thereisno statein afunction
that can change, so the output can also not change. If afunction always evaluates to the same value
given the same input, how can you have 1/0O? For example, suppose that we open afile, and use a
function read a byte. And then we read yet another byte. The second byte may be adifferent one. The
reading function has a side-effect: it increases the position within the file.

The Haskell developers have, clever as they are, found a solution to get Pandora's box into Haskell.
I/0 in Haskell is performed in the so-called IO monad. The IO monad is not very different from the
Maybe monad, it implementsthe (>>=) and return functions as required for monads. However, there
isasubtle, but very important difference. Remember that you can extract avalue from aMaybe value
using its Just constructor?

val ue = case soneMaybe of
Just x = X

The 10 monad does not have apublic constructor, so thereisno way to pry avalue out of an 1O monad.
If you read afileasalist of Char, it resides in the IO monad. Y ou can apply any list function to this
list, however, the result of the function that is applied to alist will aso haveto reside in the |O monad.
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A value can never escape the |0 monad. And this is how impure /O is possible in Haskell without
sacrificing purity of the language: impure data stays in the 10 monad, and can never escape.

Now on to some real work. As said, functions that do 10 return a value wrapped in 10. For instance,
the put St r Ln function returns an empty tuple packed in the 1O monad:

Prel ude> :type putStrLn "hello world!"
putStrLn "hello world!'" :: 10 ()

Thisisjust anormal value, you can bind it to anamein ghci:

Prelude> let v = putStrLn "hello world!"
v i: 10()

However, if we evaluate the value in ghci, it will execute this1/0 action:

Prel ude> v
hell o worl d!

Of course, the same thing happens if we evaluate put St r Ln directly:

Prel ude> putStrLn "hello world!"
hel | o wor| d!

Now, let's get to theinteresting part: reading afile. In the files distributed with this book, you will find
thefilebr own. t xt . Thisfile containsthe Brown corpus, acorpus of written text of variouskinds. The
Brown corpusis already tokenized, which makesour lifeabit easier. Ok, first we need to open thefile
using the | O openFi | e function. openFi | e requires afilename and an I/O mode as its arguments,
and it returns a handle packed in the |IOmonad:

Prel ude> :type 10 openFile
1 O openFile
Fi | ePat h
-> GHC. 1 O | Ovbde. | Ovbde
-> |1 O GHC. | O Handl e. Types. Handl e

We use 10.ReadMode to open br own. t xt for reading:

Prelude> let h = 1O openFile "brown. txt" 10O ReadMode
Prel ude> :type h
h :: 10 GHC. | O Handl e. Types. Handl e

The handle is bound to h, but still in the 1O monad. It would be nicer if we can access that handle
directly, but we told you that a value can never escape its monad. Surprisingly, we can extract the
value from the |O monad in ghci. The reason that you can isthat ghci livesin the |O monad itself. So,
the value will still never leave 10. We can bind the value to a name (or pattern) using <-:

Prelude> h <- IO openFile "brown. txt" 1O ReadMVbde
Prel ude> :type h
h :: GHC | O Handl e. Types. Handl e

That gives us the handle, bound to h. The next function that we will use is 10.hGetContents, which
returns unread data as a String wrapped in the |O monad:

Prel ude> :type 10 hGet Contents
10 hGet Contents :: GHC | O Handl e. Types. Handle -> 1O String

Aswe mentioned earlier, Haskell is alazy language: expressions are only evaluated when necessary.
The same thing applies to I/O: the relevant contents of afile are only read once you start extracting
characters from the Sring. With some smart programming, it is not necessary for your program to
read the whole file into memory, it will allocate and deallocate chunks of the file as they are used.
Now, get the contents of the file:

Prel ude> ¢ <- 10 hGetContents h
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Prel ude> :type c

c :: String

We can apply the usual list functions to this Sring:
Prel ude> head c

T

Prel ude> length c

6157180

Since the file is sentence-splitted using newlines and tokenized using spaces, you can usethel i nes
and wor ds functions to apply sentence splitting and tokenization. For instance, the first word of the
corpusis:

Pr el ude> head (words (head (lines c)))
" The"

The frequency of the word the is nicely wrapped in a Just constructor:

Pr el ude> Dat a. Map. | ookup "the" (freqList (words c))
Just 62713

Congratulations! Thiswas your first venture into the world of corpus statistics!

Todo: Zipfian distribution.
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Chapter 3. N-grams

Introduction

In the previous chapter, we have looked at words, and the combination of words into a higher level
of meaning representation: a sentence. As you might recall being told by your high school grammar
teacher, not every random combination of words forms an grammatically acceptable sentence:

» Colorless green ideas sleep furiously
* Furiously sleep ideas green colorless
* ldeasfuriously colorless sleep green

The sentence Colorless green ideas sleep furiously (made famous by the linguist Noam Chomsky),
for instance, is grammatically perfectly acceptable, but of course entirely nonsensical (unless you
ate wrong/weird mushrooms, that is). If you compare this sentence to the other two sentences, this
grammaticality becomes evident. The sentence Furiously sleep ideas green colorlessisgrammatically
unacceptable, and so is Ideas furiously colorless sleep green: these sentences do not play by the rules
of the English language. In other words, the fact that |languages have rules constraintsthe way inwhich
words can be combined into an acceptable sentences.

Hey! That sounds good for us NLP programmers (we can aimost hear you think), language plays by
rules, computers work with rules, well, we're done, aren’t we? We'll infer a set of rules, and there!
we have ourselves language model. A model that describes how alanguage, say English, works and
behaves. Well, not so fast buster! Although we will certainly discuss our share of such rule-based
language models later on (in the chapter about parsing), the fact isthat nature is simply not so simple.
The rules by which alanguage plays are very complex, and no full set of rules to describe alanguage
has ever been proposed. Bummer, isn't it? Lucky for us, there are simpler ways to obtain alanguage
model, namely by exploiting the observation that words do not combine in a random order. That is,
we can learn alot from aword and its neighbors. Language models that exploit the ordering of words,
are called n-gram language models, in which the n represents any integer greater than zero.

N-gram models can be imagined as placing a small window over a sentence or atext, in which only n
wordsarevisible at the sametime. The simplest n-gram model istherefore aso-called unigram model.
Thisisamodel in which we only look at oneword at atime. The sentence Colorless green ideas sleep
furioudly, for instance, containsfive unigrams: “colorless’, “green”, “ideas’, “deep”, and “furiously”.

Of courseg, thisis not very informative, as these are just the words that form the sentence. In fact, N-
grams start to become interesting when nis two (abigram) or greater. Let us start with bigrams.

Bigrams

An unigram can be thought of as awindow placed over atext, such that we only look at oneword at a
time. In similar fashion, a bigram can be thought of as awindow that shows two words at atime. The
sentence Colorless green ideas sleep furiously contains four bigrams:

 Colorless, green

 green, ideas

* ideas, sleep

 deep, furiously

Tostick to our ‘window’ analogy, we could say that all bigrams of asentence can befound by placing a
window onitsfirst two words, and by moving thiswindow to theright oneword at atimein a stepwise
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manner. We then repeat this procedure, until the window covers the last two words of a sentence. In
fact, the same holds for unigrams and N-grams with n greater than two. So, say we have abody of text
represented as alist of words or tokens (whatever you prefer). For the sake of legacy, we will stick to
alist of tokens representing the sentence Colorless green ideas sleep furioudly:

Prel ude> ["Col orless", "green", "ideas", "sleep", "furiously"]
["Col orl ess","green","ideas", "sl eep", "furiously"]

Hey! That looks like... indeed, that looks like a list of unigrams! Well, that was convenient.
Unfortunately, things do not remain so simple if we move from unigrams to bigrams or some-very-
large-n-grams. Bigrams and n-grams require usto construct ‘windows' that cover more than one word
at atime. In case of bigrams, for instance, this means that we would like to obtain a list of lists of
two words (bigrams). Represented in such away, the list of bigrams in the sentence Colorless green
ideas sleep furiously would look like this:

[["Colorless","green"],["green","ideas"],["ideas", "sl eep"],["sl eep", "furiously"]]

To arrive at such alist, we could start out with alist of words (yesindeed, the unigrams), and compl ete
the following sequence of steps:

1. Place awindow on the first bigram, and add it to our bigram list
2. Move the window one word to the right
3. Repeat from the first step, until the last bigram is stored

Provided these steps, we first need a way to place a window on the first bigram, that is, we need to
isolate the first two items of the list of words. In its prelude, Haskell defines a function named take
that seems to suit our needs:

Prel ude> :type take
take :: Int ->[a] -> [a]

This function takes an Integer denoting n number of elements, and alist of some type a. Given these
arguments, it returns the first n elements of alist of as. Thus, passing it the number two and alist of
words should give us... our first bigram:

Prel ude> take 2 ["Colorless", "green", "ideas", "sleep", "furiously"]
["Col orl ess", "green"]

Great! That worked out nice! Now from here on, the ideais to add this bigram to alist, and to move
the window one word to the right, so that we obtain the second bigram. Let us first turn to the latter
(as we will get the list part for free later on). How do we move the window one word to the right?
That is, how do we extract the second and third word in the list, instead of the first and second? A
possible would be to use Haskell's !! operator:

Prelude> :t (!'!)
(') :: [a] ->Int -> a

This operator takes alist of as, and returns the nth element;

Prel ude> ["Col orl ess", "green", "ideas", "sleep", "furiously"] !! 1
"green”
Prel ude> ["Col orl ess", "green", "ideas", "sleep", "furiously"] !l 2
"i deas"

Great, this gives us the two words that make up the second bigram. Now all we have to do is stuff
them together in alist:

Prel ude> ["Col orl ess", "green", "ideas", "sleep", "furiously"] !! 1 :
["Col orl ess", "green", "ideas", "sleep", "furiously"] !'! 2 : []
["green","ideas"]
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Well, thisdoesthetrick. However, it isnot very convenient to wrap thisup in afunction, and moreover,
this approach is not very Haskellish. In fact, there is a better and more elegant solution, namely to
move thelist instead of the window. Wait! What?Y es, movethelist instead of the window. But how?
WEell, we could just look at thefirst and second word in thelist again, after getting rid of the (previous)
first word. In other words, we could look at the first two words of the tail of the list of words:

Prel ude> take 2 (tail ["Colorless", "green", "ideas", "sleep", "furiously"])

["green","ideas"]

Now that looks Haskellish! What about the next bigram? and the one after that? Well, we could apply
the same trick over and over again. We can look at the first two words of the tail of the tails of the
list of words:

Prel ude> take 2 (tail (tail ["Colorless", "green", "ideas", "sleep", "furiously"]))
["ideas", "sl eep"]

... and the tail of the tail of thetail of thelist of words:

Prel ude> take 2 (tail (tail (tail ["Colorless", "green", "ideas", "sleep", "furiously"])))

["sl eep", "furiously"]

In fact, that last step already gives us the last bigrams in the sentence Colorless green ideas sleep
furiously. Thelast step would beto throw all thesetwo word listsin alarger list, and we have ourselves
a list of bigrams. However, whereas this is manageable by hand for this particular example, think
about obtaining all the bigramsin the Brown corpusin this manner (givesyou nightmares, doesn't it?).
Indeed, we would rather like to wrap this approach up in afunction that does all the hard word for us.
Provided a list, this function should take its first two arguments, and then repetitively do this for the
tail of this, and the tail of the tail of thislist, and so forth. In other words, it should simply constantly
take the first bigram of alist, and do the same for itstail:

bigram:: [a] -> [[a]]
bi gram xs = take 2 xs : bigram (tail xs)

Wow! That almost 1ooks like black magic, doesn't it? The type signature reveals that the function
bigramtakesalist of as, and returnsalist of list of as. Thelatter could bealist of bigrams, so thislooks
promising. The function takes the first two elements of the list of as, and places them in front of the
result of applying the samefunction to thetail of thelist of as. Eehh.. what? Congratulations! Y ou have
just seen your first share of recursion magic (or madness). A recursive function isafunction that calls
itself, and whereas it might look dazzling on first sight, this function actually does nothing more than
what we have done by hand in the above. It collects the first two elements of alist, and then does the
samefor thetail of thislist. Moreover, it stuffsthe two word listsin alarger list on thefly (wetold you
the list stuff would comein for free, didn't we?). But wait, will thiswork? Well, let us put it to atest:

Prel ude> bigram["Col orl ess", "green", "ideas", "sleep", "furiously"]

[["Col orl ess","green"],["green","ideas"],["ideas", "sleep"],["sl eep","furiously"],
[“furiously"],[],*** Exception: Prelude.tail: enpty list

And the answer is... amost! The function gives us the four bigrams, but it seems to be too greedy:
it does not stop looking for bigrams after collecting the last bigram in the list of words. But did we
tell it when to stop then? Nope, we didn't. In fact, we have only specified a so-called recursive step of
our recursive function. What we missiswhat is called a stop condition (also known as a base case).
In arecursive definition, a stop condition defines when a function should stop calling itself, that is,
when our recursive problem is solved. In absence of a stop condition, a recursive function will keep
calling itself for eternity. In fact, this explains above the error, we didn't specify astop condition so the
function will keep looking for bigramsfor eternity. However, asthelist of wordsisfinite, the function
will run into trouble when trying to look for bigrams in the tail of an empty list, and thisis exactly
what the exception tells us. So, how to fix it? Well, add a stop condition that specifies that we should
stop looking for bigrams when the tail of alist contains only one item (asit is difficult to construct a
bigram out of only one word). We could do this using an if..then..el se structure:

bigram:: [a] -> [[a]]
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bigramxs = if length(xs) >= 2
then take 2 xs : bigram (tail xs)
el se []

This should solve our problems:

Prel ude> bigram["Col orl ess", "green", "ideas", "sleep", "furiously"]
[["Colorless","green"],["green","ideas"],["ideas","sl eep"],["sl eep","furiously"]]

And, indeed it does. When thereis only one word left in our list of words, the bigram function returns
an empty list, and moreover, it will stop calling itself therewith ending the recursion. So, lets see how
this works with an artificial example. First we will recursively apply the bigram function until it is
applied to alist that has less than two elements:

Prel ude> bigram[1,2, 3, 4]

bigram[1,2,3,4] =1[1,2] : bigram(tail [1,2,3,4])
bigram([2,3,4] =1[2,3] : bigram (tail [2,3,4])
bigram[3,4] =[3,4] : bigram(tail [3,4])
bigram[4] =[]

Application of the bigram function to a list with less than two elements results in an empty list.
Moreover, the bigram function will not be applied recursively again as we have reached our stop
condition. Now, the only thing that remains is to unwind the recursion. That is, we have called the
bigram function from within itself for three times, and as we have just found the result to its third and
last self call, we can now reversely construct the result of the outermost function call:

bigram([3,4] =1[3,4] : []

bigram([2,3,4] =1[2,3] : [3,4] : []
bigram[1,2,3,4] =1[1,2] : [2,3] : [3,4] : []
[[1.2].02,3],[3,4]]

Great! Are you still with us? As L. Peter Deutsch put it: "to iterate is human, to recurse divine."
Whereas recursive definitions may seem difficult on first sight, you will find they are very powerful
once you get the hang of them. In fact, they are very common in Haskell, and thiswill certainly be the
first of many to comeinthe course of thisbook. L etsstick to the bigram function alittlelonger, because
whereas the above works, it is aesthetically unpleasing. That is, we used an if..then..else structure to
define our stop condition, but Haskell providesamore elegant way to do thisthrough so-called pattern
matching. Pattern matching can be thought of as defining multiple definition of the same functions,
each tailored and honed for a specific argument pattern. Provided an argument, Haskell will then pick
the first matching definition of afunction, and return the result its application. Hence, we can define
patterns for the stop condition and recursive step as follows:

bigram:: [a] -> [[a]]
bigram([x] =[]
bigramxs = take 2 xs : bigram (tail xs)

The second line representsthe stop condition, and the third the familiar recursive step. Provided thelist
of wordsin the sentence Colorless green ideas sleep furiously, Haskell will match thisto the recursive
step, and apply this definition of the function to the list. When the recursive step calls the bigram
function with alist that contains only one word (indeed, the tail of thelist containing the last bigram),
Haskell will match this call with the stop condition. The result of this call will simply an empty list.
Letsfirst proof that thisindeed works:

Prel ude> bigram["Col orl ess", "green", "ideas", "sleep", "furiously"]

[["Col orl ess","green"],["green",

i deas"],["ideas","sleep"],["sl eep","furiously"]]
It did! To make the working of the use of pattern matching more insightful we can again write out
an artificial example in steps:

Prel ude> bigram[1, 2,3, 4]
bigram[1,2,3,4] =1[1,2] : bigram(tail [1,2,3,4])
bigram[2,3,4 =1[2,3] : bigram (tail [2,3,4])

28



N-grams

bigram[3,4] = [3,4] : bigram(tail [3,4])
bigram[4] = [
bigram[3,4] =1[3,4] : []
bigram([2,3,4] =1[2,3] : [3,4] : []
bigram[1,2,3,4] =1[1,2] : [2,3] : [3,4] : []
[[1,2],02,3],[3,4]]

fa—

Check? We are almost there now. There two things left that we should look at before we mark our
function as production ready. The first is atiny aesthetically unpleasing detail. In the pattern of our
step condition we use the variable x, whereas we do not use this variable in the body of the function.
It is therefore not necessary to bind the list element to this variable. Fortunately, Haskell provides a
pattern that matches anything, without doing binding. This pattern is represented by an underscore.
Using this underscore, we can patch up the aesthetics of our function:

bigram:: [a] -> [[a]]
bigram[_] =[]
bigramxs = take 2 xs : bigram (tail xs)

Secondly, our function failsif we apply it to an empty list:

Pr el ude> bigram[]
[[1*** Exception: Prelude.tail: enpty list

But hey! That error message looks familiar, doesn't it? Our function fails, again because we attempted
to extract abigram from the tail of an empty list. Indeed, an empty list does not match with the pattern
of our stop condition, and therefore the recursive step is applied to it. We can solve this by adding
a pattern for an empty list:

] ->[[a]]
[]
[]

take 2 xs : bigram (tail xs)

bigram:: [
bi gram []
bi gram [ _]
bi gram xs

nn i o

This new pattern basically states that the list of a bigrams of an empty word list isin turn an empty
list. This assures that our function will not fail when applied to an empty list:

Prel ude> bigram[]

[]

If you want to get really fancy, you could also use pattern matching to extract a bigram, rather than

usingt ake:

bigram :: [a] -> [[a]]

bigram (x:y:xs) = [x,y] : bigramxs
bi gr am =1

Now, we only need to account for two patterns: the first pattern matches when the list has at least two
elements. The second pattern matches the empty list and the list containing just one element.

Good, we are al set! We have our bigram function now... time for some applications of a bigram
language model!

Exercises

1. A skip-bigramisany pair of wordsin sentence order. Write afunction ski pBi gr ans that extracts
skip-bigrams from a sentence as a list of binary tuples, using explicit recursion. Running your
function on["Colorless’, "green”, "ideas', "sleep"”, "furiously"] should give the following output:

Prel ude> ski pBigrans ["Col orl ess", "green", "ideas", "sleep", "furiously"]
[("Col orl ess","green"), ("Col orl ess","ideas"), ("Col orl ess", "sl eep"),
("Col orl ess","furiously"), ("green","ideas"), ("green", "sl eep"),

("green","furiously"), ("ideas", "sleep"), ("ideas","furiously"),
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("sleep","furiously")]

A few words on Pattern Matching

Stub

Collocations

A straightforward application of bigrams is the identification of so-called collocations. Recall that
bigram language models exploit the observations that words do not simply combine in any random
order, that is, word order is constraint by grammatical structure. However, some combinations of
words are subject to an additional law of constraint. Thislaw enforces a combination of two wordsto
occur relatively more often together than in absence of each other. Such combinations are commonly
known as collocations. Depending on the corpus, examples of collocations are;

* United States
* vice president
 chief executive

Corpus linguists study such collocations to answer interesting questions about the combinatory
properties of words. An example of such a question concerns the combination of verbs and
prepositions: does the verb to govern occur more often in combination with the preposition by than
with the preposition with?.

In the present section, we will investigate collocations in the Brown corpus. But before we do so, we
first turn to the question of how to identify collocations. A simple but effective approach to collocation
identification is to compare the observed chance of observing a combination of two words to the
expected chance. How does this work? Well, say we have a 1000 word corpus in which the word
vice occurs 50 times, and the word president 100 times. In other words, the chance that a randomly
picked word isthe word viceis p(vice) = 50/1000 = 0.05. In similar fashion, the chance that randomly
picked word is the word president is p(president) = 100/1000 = 0.1. Now what would be the chance
of observing the combination vice president if the word vice and president were "unrelated"? Well,
thiswould simply be the chance of observing the word vice multiplied by the chance of observing the
word president. Thus, p(vice president) = 0.05 x 0.01 = 0.005. From our thousand word corpus, we
can extract 1000 - 1 = 999 bigrams. Assume that the bigram vice president occurs 40 times, meaning
that the chance of observing this combination in our corpusisp(vice president) =40/ 999 = 0.04. This
reveals the observed chance of observing the combination vice president is larger than the expected
chance. In fact we can quantify this difference in observed and expected chance for any two words
W1 and W2:

Equation 3.1. Difference between observed and expected chance

The observed chance of observing the combination vice president is eight times larger than the
expected chance of observing this combination. The difference between the observed and expected
chance will be large for words that occur together a lot of times, whereas it will be small for words
that also occur relatively often independent of each other.

Provided this measure of difference between the observed and expected chance, we can identify the
strongest collocations in a corpus by means of three steps:

1. Extract all the bigrams from the corpus

2. Compute the difference between the observed and expected chance for each bigram
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3. Rank the bigrams based on these differences

The bigrams with the highest difference between observed and expected chance reflect the strongest
collocations. However, the difference between observed and expected chances might easily become
very large. To condense these difference val ues, we can represent them in logarithmic space. By doing
so, we have stumbled upon avery frequent used measure of association: the so-called Pointwise Mutual
Information (PMI). The PMI value for the combination of the vice president is:

Equation 3.2. Pointwise mutual information

Provided this association measure, we can replace step two in three steps above with: compute the
PMI between the obseved and expected chance for each bigram.

Now that we know how to identify collocations, we can apply our knowledge to the Brown corpus.
First we have to read in the contents of this corpus like we learned in the previous chapter:

*Mai n> h <- IO openFile "brown. txt" | O ReadMode
*Mai n> ¢ <- 10 hGetContents h

Good! From here on, let usfirst obtain alist of bigrams for this corpus:

*Mai n> let bgs = bigrans (words c)
*Mai n> head bgs
["The", " Ful ton"]

As a sanity check, we could verify whether we indeed obtained all the bigrams in the corpus. For a
corpus of h words, we expect n-1 bigrams:

*Mai n> length (words c)
1165170

*Mai n> | ength bgs
1165169

That looks great! Next we need to determine the relative frequency of each of these bigrams in the
corpus. That is, for each bigram we need to determine the observed chance of observing it. We could
start by determining the frequency of each bigram. We can reuse the fregList function defined in the
previous chapter to so:

*Mai n> Dat a. Map. | ookup ["United","States"] (freqList bgs)
Just 392

Todo: finish this section

From bigrams to n-grams

While extracting collocations from the Brown corpus, we have seen how useful bigrams actually are.
But at this point you may be clamoring for the extraction of collocations of three or more words. For
this and many other tasks, it is useful to extract so-called n-grams for an arbitrary n. We can easily
modify our definition of bigrams to extract n-grams a specified length. Rather than alwayst akeing
two elements, we make the number of items to take an argument to the function:

ngrans :: Int ->[a] ->[[a]]
ngrans 0 _ =[]
ngrams _ [] =[]
ngrans n xs

| length ngram == n

| otherw se

wher e

ngram = take n xs

ngram: ngrams n (tail xs)

[]
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We also cannot use pattern matching to exclude the tail when it is shorter than n. Instead, we add
a guard that ends the recursion if we cannot get the proper number of elements from the list. This
function works as you would expect:

Prel ude> ngrams 3 [1..10]
[[2,2,3],[2,3,4],[3,4,5],[4,5, 6],
[5,6,7]1,[6,7,8],[7,8,9],[8,9,10]]
Prel ude> ngrams 8 [1..10]
[[1,2,3,4,5/6,7,8],[2,3,4,5,6,7,8,9],
[3,4,5,6,7,8,9,10]]

Since thisis barely worth a section, we will take this opportunity to show two other implementations
of the ngr ans function. The first will be more declarative than the definition above, the second will
make use of a monad that we have not used yet: the list monad.

A declarative definition of ngrams

Some patterns emerge in the recursive definition of ngrans that correspond to functions in the
Data.List module:

1. Every recursive call uses the tail of the list. In other words, we enumerate every tail of the list,
including the complete list. The Dat a. Li st . t ai | s function provides exactly this functionality.

2. We extract the first n elements from every tail. This is a mapping over the data that could be
performed with the map function.

3. The guards in the recursive case amount to filtering lists that do not have length n. Such filtering
can also be performed by thefi | t er function.

L et'sgo through each of these patternsto compose adeclarative definition of ngr ans. First, we extract
thetailsfrom thelist, using thet ai | s function:

Prel ude> inport Data. List

Prel ude Data.List> let sent = ["Colorless", "green", "ideas", "sleep", "furiously"]
Prel ude Data.List> tails sent

[["Col orl ess","green", "ideas", "sleep","furiously"],
["green","ideas","sleep","furiously"],["ideas", "sleep","furiously"],

["sleep","furiously"],["furiously"],[]]

This gives us a list of tails, including the complete sentence. Now, we nap t ake over each tail to
extract an n-gram. Since t ake requires two arguments, we use currying to bind the first argument.
For now. we will uset ake 2 to extract bigrams:

Prel ude Data.List> nmap (take 2) $ tails sent
[["Col orless","green"],["green","ideas"],["ideas", "sl eep"],["sl eep","furiously"],["furio

Thiscomescloseto alist of bigrams, except that we have an empty list and alist with just one member
dangling at the end. These anomalies are perfect candidates to be filtered out, so we usethefil t er
function in conjunction with the | engt h function to exclude any element that is not of the given
length. To accomplish this, we apply some currying awesomeness. Remember that we can convert
infix operatorsto prefix operators by adding parentheses:

Prelude Data.List> (==) 2 2
True
Prel ude Data.Llist> (==) 2 3
Fal se

This shows that == is just an ordinary function, that just happens to use the infix notation for
convenience. Since thisis an ordinary function, we can aso apply currying:

Prelude Data.List> let isTwo = (==) 2
Prel ude Data.List> isTwo 2
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True
Prel ude Data.List> isTwo 3
Fal se

Ok, so we want to check whether alist has two elements, so we could just apply i sTwo to the result
of thel engt h function:

Prelude Data.List> isTwo (length ["Colorless","green"])

True

Prel ude Data.List> isTwo (length [])

Fal se

Or, written as afunction definition:

hasLengthTwo | = isTwo (length I)

Since this function follows the canonical form f (g x), we can use function composition:
Prel ude Data.List> let hasLengthTwo = isTwo . length

Prel ude Data. Li st> hasLengthTwo ["Col orl ess", "green"]

True

Our filtering expression, (==) 2. length, turns out to be quite compact. Time to test thiswith our not-
yet-correct list of bigrams:

Prelude Data.List> filter ((==) 2 . length) $ map (take 2) $ tails sent
[["Col orless","green"],["green","ideas"],["ideas", "sl eep"],["sl eep","furiously"]]

And this corresponds to the output we expected. So, we can now wrap this expression in afunction,

replacing 2 by n:
ngrams' :: Int ->[b] ->[[b]]
ngrans' n = filter ((==) n . length) . map (take n) . tails

This function is equivalent to ngr ans for all given lists.

Y ou may wonder why this exercise is worthwhile. The reason isthat the declarativeness of ngr ans’
makes the function much easier to read. We can almost immediately see what this function does by
reading its body right-to-left, while the recursive definition requires a closer look. You will notice
that, as you get more familiar with Haskell, it will become easier to spot such patternsin functions.

A monadic definition of ngrams

Asdiscussed inthe previous chapter, each typethat belongsto the Monad typeclass providesthe ( >>=)
function to combine expressions resulting in that type. The list type also belongs to the monad type
class. In GHCi, you can use the :info command to list the type classes to which atype belongs:

Prelude> :i []

data [] a =[] | a: [a] -- Defined in GHC Types
instance Eq a => Eq [a] -- Defined in GHC. O asses
instance Monad [] -- Defined in GHC Base

instance Functor [] -- Defined in GHC. Base
instance Od a => Od [a] -- Defined in GHC C asses
instance Read a => Read [a] -- Defined in GHC. Read
i nstance Show a => Show [a] -- Defined in GHC. Show

The third line of the output shows that lists belong to the Monad type class. But how doesthe (>>=)
function combine expressionsresulting in alist? A quick peek at its definition for the list type reveals
this:

instance Monad [] where
m>>= k = foldr ((++) . k) [] m
[...]
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So, the join operation takes alist m, applies afunction k to each element and concatenates the results.
Of course, this concatenation implies that k itself should evaluate to a list, making the type signature
of kasfollows.k :: a -> [a]

We will illustrate this with an example. Suppose that we would want to calculate the immediate
predecessor and successor of every number in the list [0..9]. In this case, we could use the function
\x -> [x-1, x+1] inthelist monad:

Prel ude> :{

do
I <- [0..9]
ps <- (\x -> [x-1,x+2]) |
return ps

"}
[-1,2,0,3,1,4,2,5,3,6,4,7,5,8,6,9, 7, 10, 8, 11]

First, thelist isbound to |, then our predecessor/successor function is applied to |. Since we are using
this function in the context of the list monad, the function is be applied to every member of |. The
results of these applications is concatenated.

Note

Experimenting with list monads may give you results that may be surprising at first sight.
For instance:

Prel ude> :{
do
| <- [0..9]
m<- [42,11]
return m
o}
[42,11, 42,11, 42,11, 42,11, 42, 11, 42, 11, 42, 11, 42, 11, 42, 11, 42, 11]

Since[42,11] in m<-[42,11] does not use an argument, its corresponding functionis\ _ - >
[ 42, 11] . Sincef ol dr still traversesthelist bound to |, the monadic computation isequal to:

Prel ude> foldr ((++) . (\_ -> [42,11])) [] [O..9]
[42,11, 42,11, 42, 11, 42, 11, 42, 11, 42, 11, 42, 11, 42, 11, 42, 11, 42, 11]

We can also extract bigrams using the list monad. Given alist of tails, we could extract the first two
words of each tail using t ake:

Prel ude> inport Data. List
Prelude Data.List> let sent = ["Colorless", "green", "ideas", "sleep", "furiously"]
Prel ude Data. List> :{
do

t <- tails sent

| <- take 2t

return |
'}
["Col orl ess", "green","green","ideas","ideas", "sl eep", "sl eep", "furiously","furiously"]

That's close. However, since the list monad concatenates the results of every take 2 t expression, we
cannot directly identify the n-grams anymore. Thisis easily remedied by wrapping the result of t ake
inalist:

Prel ude Data. List> :{
do
t <- tails sent
| <- [take 2 t]
return |

:}
[["Colorless","green"],["green","ideas"],["ideas","sleep"],["sleep","furiously"],["furio
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Now we get the n-grams nicely as a list. However, as in previous definitions of ngr ans we have to
exclude liststhat do not have the requested number of elements. We could, aswe did previoudly, filter
out these membersusingfil ter:

Prel ude Data.List> :{
filter ((==) 2 . length) $ do
t <- tails sent
| <- [take 2 t]
return |
1
[["Colorless","green"],["green","ideas"],["ideas", "sleep"],["sl eep","furiously"]]

But that would not be avery monadic way to perform thistask. It would be niceif we could just choose
elements to our liking. Such a (monadic) choice function exists, namely Cont r ol . Monad. guar d:

Prel ude Data.List> inport Control.Mnad
Prel ude Data.List Control.Mnad> :type guard
guard :: MnadPlus m=> Bool -> m ()

guar d isafunction that takes a boolean, and returns something that isaMonadPl us. Whoa! For now,
accept that thelist type belongsto the MonadPl us type class (after importing Control.Monad). | nstead
of going into the working of MonadPI us now, we will perform abehavioral study of guar d:

Prel ude Data. List Control.Mnad> :{
do

| <- [0..9]

guard (even 1)

return |

“}
[0,2,4,6,8]

Funky huh? We used guar d to enumerate just those numbers from [0..9] that are even. Of course, we
could aswell use guar d in our bigram extraction to filter lists that are not of a certain length:

Prel ude Data. List Control.Mnad> :{
do

t <- tails sent

| <- [take 2 t]

guard (length | == 2)
return |
'}
[["Col orl ess","green"],["green","ideas"],["ideas", "sleep"],["sl eep","furiously"]]

Ain't that beautiful ? We applied aguard to pick just those elementsthat are of length 2, or asyou might
aswell say, we put aconstraint on thelist requiring elementsto be of length 2. We can easily transform
this expression to a function, by making the n-gram length and the list arguments of that function:

ngrans'' :: Int ->[a] ->[[a]]
ngrans'' n | = do
t <- tails |
| <- [take n t]
guard (length | == n)
return |

As you can conclude from the previous sections, there is often more than one way to implement a
function. In practice you will want to pick a declaration that is readable and performant. In this case,
we think that the declarative definition of ngr ans isthe most preferable.

Exercises

1. Rewrite the ski pBi gr am function discussed in the section called “Exercises’ without explicit
recursion, either by defining it more declaratively or using the list monad. Hint: make use of the
Dat a. Li st . zi p function.
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Lazy and strict evaluation

Y ou may have noticed that something curious goeson in Haskell. For instance, consider the following
GHCi session:

Prel ude> take 10 $ [0..]
[0,1,2,3,4,5,6,7,8,9]

The expression [ 0. . isthelist of numbers from zero to infinity. Obvioudly, it isimpossible to store
an infinite list in finite memory. Haskell does not apply some simpletrick, sinceit also worksin less
trivial cases. For instance:

Prelude> take 10 $ filter even [O..]
[0,2,4,6, 8,10, 12, 14, 16, 18]

This also works for your own predicates:

Prelude> let infinite n =n: infinite (n + 1)
Prelude> take 3 $ infinite O
[0,1,2,3]

In most other programming languages, this computation will never terminate, since it will go into
an infinite recursion. Haskell, however, won't. The reason is that Haskell uses lazy evaluation - an
expression is only evaluated when necessary. For instance, taking three elements from i nfinite
resultsin the following evaluations:

infinite O

0 infinite 1

O: (1: infinite 2)

0 (1: (2: infinite 3))

0 (1: (2: (3: infinite 4)))

Once t ake has consumed enough elements from i nfi ni t e, the tail of the list is the expression
i nfinite 4.Sincet ake does not need more elements, the tail is never evaluated. Lazy evaluation
allows you to do clever tricks, such as defining infinite lists. The downside is that it is often hard to
predict when an expression is evaluated, and what effect that has on performance of a program.

Todo: lazy evaluation and folds.

Suffix arrays

In this chapter, we have seen how you could extract an n-gram of a given n from a list of words,
characters, groceries, or whatever you desire. Y ou can a so store n-gram frequenciesin aMap, to build
applications that quickly need the frequency (or probability) of an n-gram in a corpus. What if you
would encounter an application where you need access to n-grams of any length? Any! From unigrams
to 'almost the length of your corpus-grams. Obviously, if your corpus contains m elements, storing
frequencies of all 1..m-grams would make your program a memory hog.

Fortunately, it turns out that there is a ssmple and smart trick to do this, using a data structure called
suffix arrays. First, we start with the corpus, and aparallel list or array where each element containsan
index that can be seen as a pointer into the corpus. The left side of figure Figure 3.1, “ Constructing a
suffix array” showstheinitial state for the phrase "to be or not to be". We then sort the array of indices
by comparing the elements they point to. For instance, we could compare the element with index 2
("or") and the element with index 3 ("not"). Since "not" is lexicographically ordered before "or", the
list of indices should be sorted such that the element holding index 3 comesbefore 2. When two indices
point to equal elements, e.g. 0 and 4 ("to"), we move on to the element that succeed both instances of
"to", respectively "be" and "be". And we continue such comparisons recursively, until wefind out that
onen-gram islexicographically sorted before the other (in this case, 4 should come before 0, since "to
be" islexicographically sorted before "to be or". The right side of figure Figure 3.1, “Constructing a
suffix array” shows how the indices will be sorted after applying this sorting methodology.
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Figure 3.1. Constructing a suffix array

to 0 to 5

T — T T — T
be 1 be 1

T T T T
or 2 or 3

E________________J T E_____________J T
not 3 not 2

T T E______________a T
to 4 to 4

T T E______________a T
be 5 be 0

T — T T — T

Unsorted indices Sorted indices

After sorting the list of indices in this manner, the index list represents an ordered list of n-grams
within the corpus. The length of the n-gram does not matter, since elements and their suffixes were
compared until one element could be sorted lexicographically before the other. This ordering also
implies that we can use a binary search to check whether an n-gram occurred in the corpus, and if so,
how often. But more on that later...

Of course, as a working programmer you can't wait to fire up your text editor to implement suffix
arrays. It turns out to be ssmpler than you might expect. But, we need to introduce another data type
first, the vector. It isadatatype that is comparable to arraysin other programming languages. V ectors
allow for random access to array elements. So, if you want to access the n-th element of a vector, it
can be accessed directly, rather than first traversing the n-1 preceding elementsasin alist. Vectorsare
provided in Haskell asapart of the vector package that can be installed using cabal. We can construct
aVector from alist and convert aVector to alist:

Prel ude> Data. Vector.fronList ["to","or","not","to", "be"]

fromList ["to","or","not","to","be"] :: Data.Vector.Vector

Prel ude> Data. Vector.toList $ Data.Vector.fronList ["to","or","not","to","be"]
["to","or","not","to", "be"]

The(!) function is used to access an el ement:

Prel ude> (Data.Vector.fronList ["to","or","not","to","be"]) Data.Vector.! 3
"t o"

There's also a safe access function, (! ?), that wraps the element in a Maybe. Nothing is returned
when you use an index that is 'outside’ the vector:

Prel ude> (Data.Vector.fronList ["to","or","not","to","be"]) Data.Vector.! 20
"*** Exception: ./Data/Vector/Generic.hs:222 ((!)): index out of bounds (20,5)
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Prel ude> (Data.Vector.froniList ["to","or","not","to","be"]) Data.Vector.!? 20
Not hi ng

Prel ude> (Data.Vector.fronList ["to","or","not","to","be"]) Data.Vector.!? 3
Just "to"

That enough for now. The primary reason why Vector isauseful type here, is because we want random
access to the corpus during the construction of the suffix array. After construction, it is also useful
for most tasks to be able to access the indices randomly. Alright, first we create a data type for the
suffix array:

import qualified Data.Vector as V

data SuffixArray a = SuffixArray (V.Vector a) (V.Vector Int)
deriving Show

It says exactly what we saw in the figure above: a suffix array consists of a data vector (in our case
a corpus) and a vector of indices, respectively V.Vector aand V.Vector Int. Idealy, we would like
to construct a suffix array from alist. However, to do this, we need a sorting function. The Data.List
module contains the sor t By function that sorts alist according to some ordering function:

*Mai n> :type Data.List.sortBy
Data.List.sortBy :: (a ->a -> Ordering) -> [a] -> [a]

So, it takes a comparison function that should compare two elements, and that returns Ordering.
Ordering is a data type that specifies... order. There are three constructors: LT, EQ, andGT, these
constructors indicate respectively that the first argument is less than, equal to, or greater than the
second argument.

We will use sort By to sort the list of indices. Since the ordering of the indices is determined by
elements of the data array, to which the indices refer, the comparison function that we provide for
sorting the index array requires access to the data array. So, our function will compare (sub)vectors,
indicated by their indices. This will work, since the Data.Vector data type is of the Ord type class,
meaning that the operators necessary for comparisons are provided. Our comparison function can be
written like this:

saConpare :: Od a => (V.Vector a -> V.Vector a -> Ordering) ->
V.Vector a -> Int -> Int -> Ordering
saConpare cnp d a b = cnp (V.drop a d) (V.drop b d)

Toallow auser of our function to impose their own sorting order (maybe the want to make areversibly
offered suffix array), we saConpar e requires acomparison function asitsfirst argument. The second
argument is the data vector, and the final two arguments are the indices to be compared. We can get
the subvectors represented by the two indices by using the Dat a. Vect or . dr op function. Suppose,
if we want the element at index two, we can just drop the first two arguments, since we start counting
at zero. We then use the provided comparison function to compare the two subvectors.

Now we can create the function that actually creates a suffix array:

import qualified Data.List as L

suffixArrayBy :: Od a => (V. Vector a -> V. Vector a -> Ordering) ->
V.Vector a -> SuffixArray a
suffixArrayBy cnp d = SuffixArray d (V.fronlist srtlndex)
where uppBound = V.length d - 1
usrtlndex = [0..uppBound]
srtlndex = L.sortBy (saConpare cnp d) usrtlndex

This function is fairly simple, first we create the unsorted list of indices and bind it to usrt I ndex.
We construct thislist by using arange. A range contains the indicated lower bound and upper bound,
and al integersin between;

*Mai n> [0..9]
[0,1,2,3,4,5,6,7,8,9,10]
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We retrieve the upper bound using the Dat a. Vector. | ength function by subtracting one,
since we are counting from zero. We then obtain the sorted index (srt!ndex) by using the
Dat a. Li st . sort By function. This function takes a comparison function asits first argument and a
list asits second argument:

*Mai n> :type Data.List.sortBy
Data.List.sortBy :: (a ->a -> Ordering) -> [a] -> [a]

We can just plug in our saConpar e function, which we pass a comparison function, and the data
vector. Finally, we use the SuffixArray constructor to construct a SuffixArray, converting the list of
indicesto avector. For convenience, we can also add a function that uses Haskell'sconpar e function
that uses the default sorting order that isimposed by the Ord typeclass:

suffixArray :: Ord a => V. Vector a -> SuffixArray a
suffi xArray = suffixArrayBy conpare

Neat! But as you have noticed by now, every serious datatype hasf r onli st andt oLi st functions,
so ours should have those aswell. f r onLi st isrealy simple; we can already construct a suffix array
from a Vector using the suf f i xArray function. So, we just need to convert alist to a Vector, and
passittosuf fi xArray:

fromlist :: Oda=>[a] -> SuffixArray a
fronmlist = suffixArray . V.fronList

Easy huh? Thet oLi st isabit moreinvolved. First we have to decide what it should actually return.
Providing the datavector asalist isnot very useful, it's probably what someone started with. Returning
alist of indicesis more useful, but then we shift the burden off retrieving the n-gramsthat every index
represents to the user of our suffix array. The most useful thing would be to return alist of all n-grams
(of any length). So, for the phrase "to be or not to be", we want to return the following elements:

. ["be']
* ["be","or","not","to","be"]
° [Ilnotll ,Iltoll,llbell]

* ["or","not","t0","be"]

[lltoll ’Ilbell]

° [Iltoll ’II bell ’ll OrII 'll not" ,"tO" ,Ilbell]

To achieve this, we need to extract the subvector for each index, in the order that the sorted vector
of indices indicates. We can then convert each subvector to alist. We can use Dat a. Vect or . f ol dr
function to traverse the vector, constructing a list for each index. We will accumulate these lists in
(yet another) list. Please welcomet oLi st :

toList :: SuffixArray a -> [[a]]
toList (SuffixArray d i) = V.foldr vecAt [] i
where vecAt idx | = V.toList (V.drop idx d) : |

ThevecAt function extracts a subvector starting at index i dx, convertsit to alist. We form a new
list, with the accumulator as the tail, and the newly constructed 'subvector list' as the head. We use
f ol dr to ensure that the list that is being constructed is in the correct order - since the accumulator
becomes the tail, af ol dl would make the first subarray the last in the list. Time to play with our
new data type a bit:

*Mai n> toList $ fronList ["to","be","or","not","to", "be"]
[["be],

["be","or","not","to", "be"],

"not","to","be"],

"OI’","I’]Ot","tO","be"],

"to","be"],

"to","be","or","not","to","be"]]

————
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Excellent, just as we want it: we get an ordered list of all n-grams in the corpus, for the maximum
possible n. We can use this function to extract all bigrams:

*Main> filter ((==2) . length) $ map (take 2) $ toList $\
fronmList ["to","be","or","not","to", "be"]

We extract the first two elements of each n-gram. This also gives us one unigram (the last token of
the corpus), so we also haveto filter thelist for lists that contain two elements.

After some celebrations and acup of tea, it istime to use suffix arraysto find the frequency of aword.
To do this, we use a binary search. For quick accessihility, we create a function comparable to the
t oLi st method, but returning a Vector of Vector, rather than alist of list:

elems :: SuffixArray a -> V.Vector (V.Vector a)
elems (SuffixArray d i) = V.map vecAt i
where vecAt idx = V.drop idx d

Note that we can use Dat a. Vect or . map in this case, since it maps a function over all elements of
vector, returning a vector:

*Mai n> :type Data.Vector. mp
Data. Vector.map :: (a -> b) -> V.Vector a -> V.Vector b

Note: if you have a computer science background, you might want to skip the next paragraphs.

To be able to count the number of occurrences of an n-gram in the suffix array, we need to locate the
n-gram in the suffix array first. We could just traverse the array from beginning to the end, comparing
each element to the n-gram that we are looking for. However, thisis not very inefficient. During every
search step, we exclude just one element. For instance, if we have the numbers 0 to 9 and have to
find the location of the number 7, the first search step would just exclude the number O, leaving eight
potential candidates (Figure 3.2, “Linear search step”).

Figure 3.2. Linear search step

However, if we know that the vector of numbers is sorted, we can devise a more intelligent strategy.
Asachild, you probably played number guessing games. In one variant of the game, you would guess
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a number, and the person knowing the correct number would shout "smaller”, "larger" or "correct".
Being asmart kid, you would probably not start guessing at 1 if you had to guess a number between 1
and 100. Usually, you'd start somewhere halfway the range (say 50), and continue halfway the 1..50
or 51..100 range if the number was smaller or greater than 50.

The same trick can be applied when searching a sorted vector. If you compare a value to the element
inthe middle, you remove cut half of the search space (if initial guesswas not correct). This procedure
is called a binary search. For instance, Figure 3.3, “Binary search step” shows the first search step
when applying a binary search to the examplein Figure 3.2, “Linear search step”.

Figure 3.3. Binary search step

The performance of binary search compared to linear search should not be underestimated: the time
of alinear search grows linearly with the number of elements (yes, we like pointing out the obvious),
whiletime of abinary search growslogarithmically. Suppose that we have a sorted vector of 1048576
elements, a linear search would at most take 1048576 steps, while a binary search takes at most 20
steps. Pretty impressive right?

On to our binary search function. bi nar ySear chByBounded finds the index of an element in a
Vector, wrapped in Maybe. If the element has multiple occurrences in the Vector, just one index is
returned. If the element is not in the Vector, Nothing is returned.

bi narySearchByBounded :: (Ord a) => (a -> a -> Ordering) -> V. Vector a ->
a->1Int ->Int -> Maybe Int
bi nar ySear chByBounded cnp v e | ower upper

1)

| Vonull v = Not hi ng
| upper < | ower = Nothing
| otherw se = case cnp e (v V.! mddle) of
LT -> bi narySearchByBounded cnp v e lower (nmddle -
EQ -> Just nmiddle
GTI' -> bi narySearchByBounded cnp v e (middle + 1) upper
where middl e = (lower + upper) “div 2

bi nar ySear chByBounded takes ahost of arguments: a comparison function, the (sorted) vector (v,
the element to search for (e), and lower (I ower ) and upper bound (upper ) indices of the search space.
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The function worksjust like we described above. First we have to find the middle of the current search
space, wedo thisby averaging the upper and lower boundsand bindingittoni ddl e. Wethen compare
the element at index ni ddl e in the vector to e . If both are equal (EQ), then we are done searching,
and return Just i ddl e asthe index. If e is smaller than (LT) the current element, we search in
the lower half of the search space (I ower ..mi ddl e-1). If e is greater than (GT) the current element,
we search in the upper half of the search space (i ddl e+1..upper). If e does not occur in the search
space, upper will become smaller than | ower when we have exhausted the search space.

Let's define two convenience functions to make binary searches a bit simpler:

bi narySear chBounded :: (Od a) => V.Vector a ->a ->1Int -> Int -> Maybe Int
bi nar ySear chBounded = bi narySear chByBounded conpare

b

narySearchBy :: (Ord a) => (a -> a -> Ordering) -> V.Vector a -> a ->
Maybe | nt

bi narySearchBy cnp v n = bi narySearchByBounded cnp v n 0 (V.length v - 1)

bi narySearch :: (Ord a) => V.Vector a -> a -> Maybe Int
bi narySearch v e = binarySearchBounded v e 0 (V.length v - 1)

bi nar ySear chBounded calls bi narySear chByBounded, using Haskell's standard compare
function. bi nar ySear chBy calls bi nar ySear chByBounded, binding the upper and lower bounds
to the lowest index of the array (0) and the highest (the size of the Vector minus one). Findly,
bi nar ySear ch combinesthefunctionality of bi nar ySear chBounded and bi nar ySear chBy, Let's
give the binary search functionality atry:

*Mai n> binarySearch (V.fronlist [1,2,3,5,7,9]) 9
Just 1
*Mai n> binarySearch (V.fronlist [1,2,3,5,7,9]) 10
Just 5
*Mai n> binarySearch (V.fronlist [1,2,3,5,7,9]) 10

Great! Let's make a step in between, returning to suffix arrays. Say that you would want to write a
cont ai ns function that returns Trueif an n-gram isin the suffix array, or False otherwise. Easy right?
Y our first attempt may be something like:

*NB| n> Iet COerS = [ntou’uben,lloru’unotu’uton,llbeu]

*Mai n> bi narySearch (elens $ fronList corpus) $ Data.Vector.fronlist ["or", "not"

Just 3
Nice, right? But try this example:

*Mai n> binarySearch (elems $ fronList corpus) $ Data.Vector.fronlist ["or","not"]
Not hi ng

Y ou can almost hear the commentator of Roger Wilco and the Time Rippersin the background, right?
Right! Of course, the element that we arelooking for contains the n-gram of the maximum length ("or
not to be"). That is why the first example worked, while the second did not. So, we have to apply the
binary search to something that only contains bigramsin this case:

*Mai n> :{

*Mai n| bi narySearch

*Mai n| (Data. Vector.map (Data. Vector.take 2) $ elens $ fronlist corpus) $
*Mai n| Dat a. Vector.fronList ["or", "not"]

*Main| :}

Just 3

That did the trick. Writing the contains function is now simple:

contains :: Od a => SuffixArray a -> V.Vector a -> Bool
contains s e = case binarySearch (restrict eLen s) e of
Just _  -> True

Not hi ng -> Fal se
where eLen = V.length e
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restrict len = V.map (V.take len) . elens

To find the frequency of an element in aVector, we have to do a bit more than locating one instance
of that element. One first intuition could be to find the element, and scan upwards and downwards to
find how many instances of the element there are in the VVector. However, there could be millions of
such elements. Doing alinear search is, again, not very efficient. So, we should apply abinary search,
but not just to find one instance of the element, but specifically the first and the last.

Such search functions are very comparable to the bi nar ySear chByBounds function that we wrote
earlier. Let's start with finding thefirst index in the V ector where a specified element occurs. Suppose
that we do a binary search again: if the element in the middle of our search space is greater than the
element, we want to continue searching in the lower half of the search space. If the element in the
middle is smaller than the element, we want to continue searching in the upper half of the search
space. If themiddleis however equal to the element, we do not stop searching, but continue searching
the lower half. We still keep the element that was equal in the search space, since it may have been
the only instance of that element. This gives us the following | ower BoundByBounds function and
corresponding helpers:

| ower BoundByBounds :: Od a => (a -> a -> Odering) -> V.Vector a -> a ->
Int -> 1Int -> Maybe Int
| ower BoundByBounds cnp v e | ower upper
| Vonull v = Nothing

| upper == lower = case cnp e (v V.! lower) of
EQ -> Just | ower
-> Not hi ng

| otherwi se = case cm; e (v V.! mddle) of
GT -> | ower BoundByBounds cnmp v e (nmiddle + 1) upper
-> | ower BoundByBounds cnp v e | ower middle

where mddle = (I_ower + upper) “div 2
| ower BoundBounds :: Ord a => V.Vector a ->a ->1Int -> Int -> Maybe Int
| ower BoundBounds = | ower BoundByBounds conpare

|l owerBoundBy :: Od a =>(a->a->Odering) -> V.Vector a -> a -> Maybe Int
| ower BoundBy cnp v e = | ower BoundByBounds cnp v e 0 (V.length v - 1)

|l owerBound :: Od a => V.Vector a -> a -> Maybe Int
| ower Bound = | ower BoundBy conpare

Searching the last index in the VV ector where the element occurs, follows acomparable procedure. We
search as normal, however if the element is equal to the middle we search the upper half of the search
space including the element that we found to be equal. Give the floor to upper BoundByBounds and
helpers:

upper BoundByBounds :: Ord a => (a -> a -> Ordering) -> V.Vector a -> a ->
Int -> Int -> Maybe Int
upper BoundByBounds cnp v e | ower upper

| Vonull v = Not hi ng

| upper <= lower = case cnp e (v V.! lower) of
EQ -> Just | ower
_ -> Nothing

| otherw se = case cnp e (v V.! mddle) of

LT -> upperBoundByBounds cnp v e lower (mddle - 1)
_-> upper BoundByBounds cnp v e m ddl e upper
where m ddl e = ((lower + upper) "div: 2) +1

upper BoundBounds :: Od a => V.Vector a ->a ->1Int ->1Int -> Maybe Int
upper BoundBounds = upper BoundByBounds conpar e

upperBoundBy :: Od a=>(a->a->Odering) -> V.Vector a -> a -> Maybe Int
upper BoundBy cnp v e = upper BoundByBounds cnp v e 0 (V.length v - 1)

upperBound :: Od a => V.Vector a -> a -> Maybe Int
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upper Bound = upper BoundBy compare

Note that we add one to the middlein this case. Thisisto avoid landing in an infinite recursion when
mi ddl e is| ower plusone, and the element is larger than or equal to the element at mi ddl e. Under
those circumstances, | ower and upper would be unchanged in the next recursion.

Great. | guess you will now be able to write that function in terms of | ower BoundByBounds and
upper BoundByBounds:

frequencyByBounds :: Ord a => (a -> a -> Ordering) -> V.Vector a -> a ->
Int -> Int -> Maybe Int
frequencyByBounds cnp v e | ower upper = do
| ower <- | ower BoundByBounds cnp v e | ower upper
upper <- upperBoundByBounds cnp v e | ower upper

return $ upper - lower + 1
frequencyBy :: Od a =>(a->a -> Odering) -> V.Vector a ->a ->
Maybe | nt

frequencyBy cnp v e = frequencyByBounds cnp v e 0 (V.length v - 1)

frequencyBounds :: Od a => V.Vector a ->a ->1Int ->Int -> Maybe Int
frequencyBounds = frequencyByBounds conpare

frequency :: Ord a => V. Vector a -> a -> Maybe Int
frequency = frequencyBy conpare

This function works as expected:

*Mai n> frequency (V.fronList [1,3,3,4,7,7,7,10]) 7
Just 3
*Mai n> frequency (V.fronlist [1,3,3,4,7,7,7,10]) 5
Not hi ng

We can use this with our suffix array now:

*Mai n> let corpus = ["to","be","or","not","to", "be"]

*Mai n> let sa = fronList corpus

*Mai n> contai nsWthFreq sa $ Data. Vector.fronlist ["not"]

Just 2

*Mai n> contai nsWthFreq sa $ Data. Vector.fronlist ["not"]

Just 1

*Mai n> containsWthFreq sa $ Data. Vector.fronlist ["jazz","is","not", "dead"]

Not hi ng

*Mai n> containsWthFreq sa $ Data.Vector.fronmlist ["it","just","snmells","funny"]
Not hi ng

Exercises

1. Write afunction nost Fr equent Ngr amwith the following type signature:

nost FrequentNgram :: Ord a => SuffixArray a -> Int -> Maybe (V. Vector a, Int)

This function extracts the most frequent n-gram from a suffix array, where the suffix array and n
are given as arguments. The function should continue a pair of the n-gram and the frequency as
atyple wrapped in Maybe. If no n-gram could be extracted (for instance, because the suffix array
contains to few elements), return Nothing.

2. Usenost Fr equent Ngr amto find the most frequent bigram and trigram in the Brown corpus.

3. frequencyByBoundsis not as efficient asit could be: it performs a search of the full Vector twice.
A more efficient solution would be to narrow down the search space until the first match is found,
and then using | ower BoundByBounds and upper BoundByBounds to search the lower and upper
half of the search space. Modify f r equencyByBounds to use this methodology.
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Markov models

At the beginning of this chapter we mentioned that n-grams can be exploited to model language. While
they may not be so apt as computational grammars, n-grams do encode some syntax albeit local. For
instance, consider the following to phrases:

* theplanwas
* * plan thewas

The first phrase is clearly grammatical, while the second is not. We could neatly encode this using
a syntax rule, but we could also count how often both combinations of words occur in a large text
corpus. Thefirst phraseis likely to occur afew times, while the second phrase is not likely to occur.
Or more formally, the probability that we encounter this plan was occurs in a random text is higher
than the probability that plan this was occurs:

Of course, we could aso try to find the most grammatical of two sentences by comparing the
probabilities of the sentences. So, if we have a sentence consisting of the words wg_,, and a sentence
consisting of the words vg_m that both aim to express the same meaning and the following is true;

We could conclude that the use of wg_n, is preferred over vg_m, Since wg_, is either more grammatical
or more fluent. So, how do we estimate the probability of such a sentence? Good question, at first
sight it seems pretty easy. We simply count how often a sentence occurs in atext corpus, and divide
it by the total number of sentencesin a corpus:

Equation 3.3. Estimating the probability of a sentence

Here C is a counter function, and N is the total number of sentences in a corpus. While thisis a
theoretically sound method for estimating the probability, it does not work in practice. As ingenious
as human language is, we can construct an infinite number of grammatical sentences. So, to be ableto
estimate the probability we would need an infinite text corpus, since not every grammatical sentence
will occur in a finite corpus. Given that we only have a finite text corpus, we would simply give a
probability of zero to many perfectly grammatical sentences. We encounter so-called data spar seness.
Thisis nasty, because it interferes with our goal to compare the quality of sentences.

Fortunately for us, some smart people have thought about this problem, and came up with a pretty
elegant solution (or “workaround' as we programmers like call it). To get to the solution, we have to
make an intermediate step. This intermediate step does not immediately solve our problem, but sets
the stage for the solution. We can decompose the probability of a sentence p(wp.n) into a series of
conditional probabilities:

Equation 3.4. The probability of a sentence asa Markov chain

Before this gets too confusing, let's write down how you would estimate the probability of the
sentence Colorless green ideas deep furiously in this manner: p(Colorless) p(green|Colorless)
p(ideas|Colorless green) p(seep|Colorless green ideas) p(furiously|Colorless green ideas sleep).

Simple huh? Now, how do we estimate such a conditional probability? Formally, thisis estimated in
the following manner:
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That is all nice and dandy, but as you may already see, this does not solve our problem with data
sparseness. For if we want to estimate p(furiously|Colorless green ideas sleep), we need counts of
Colorless green ideas sleep and Colorless green ideas sleep furiously. Even if we decompose the
probability of a sentence into conditional probabilities, we need counts for the complete sentence.

However, if welook at the conditional probability of aword, the following often holds:

Equation 3.5. Approximation using the Markov assumption

More formally, thisis a process with the Markov property: prediction of the next state (word) is only
dependent on the current state. Of course, we can easily calculate our revised conditional probability:

Equation 3.6. The conditional probability of a word using the Markov
assumption

That spell worked! We only need counts of... unigrams (1-grams) and bigrams to estimate the
conditional probability of each word. Thisis a bigramlanguage model, which we can use to estimate
to probability of a sentence:

Equation 3.7. The probability of a sentence using a bigram model

In practice it turns out that knowledge of previous states can help a bit in estimating the conditional
probability of a word. However, if we increase the context too much, we run into the same data
sparseness problems that we solved by drastically cutting the context. The consensus is that for
most applications a trigram language model provides a good trade-off between data availability and
estimator quality.

Implementation

The implementation of a bigram Markov model in Haskell should now be trivial. If we have a
frequency map of unigrams and bigrams of the type (Ord a, Integral n) => Map [&] n, we could write
afunction that calculates , or more generaly :

import qualified Data. Map as M
i mport Dat a. Maybe (fromvaybe)

pTransition :: (Ord a, Integral n, Fractional f) =>
MMp [a] n->a->a->f
pTransition ngranfFreqs state nextState = fromvaybe 0.0 $ do
stateFreq <- M| ookup [state] ngranfreqgs
transFreq <- M| ookup [state, nextState] ngranfregs
return $ (fromintegral transFreq) / (from ntegral stateFreq)

Now we write afunction that extracts all bigrams, calculates the transition probabilities and takes the
product of the transition probabilities:

pMarkov :: (Ord a, Integral n, Fractional f) =>
MMp [a] n->[a] ->f
pMar kov ngranfreqs =
product . map (\[sl1,s2] -> pTransition ngranFreqs sl1 s2) . ngrans 2

This function is straightforward, except perhaps the pr oduct function. product calculates the
product of alist:

Pr el ude> :type product
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product :: Numa => [a] -> a
Pr el ude> product [1,2, 3]
6
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Chapter 4. Distance and similarity
(proposed)
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Chapter 5. Classification

Introduction

Many natural language processing tasks require classification, you want to find out to which class a
particular instance belongs. To make this more concrete, we give three examples:

» Authorship attribution: suppose that you were given a text, and have to pick the correct author
of the text from three proposed authors.

» Part of speech tagging: in part of speech tagging, words are classified morphosyntactically. For
instance, we could classify the word 'loves' in the statement "John loves Mary" to be a verb.

* Fluency ranking: in natural language generation, we want to find out whether a sentence produced
by a generation system is fluent or not fluent.

Such classifications can be made based on specific characteristics of the instance that we want to
specify. These characteristics are called features in natural language processing jargon. Suppose that
you were asked to determine the author of atext, and know that Jack tends to write short sentences,
while Steven and Marie tend to write long sentences. Now, if you were given atext with mainly short
sentences, who would you attribute the text to? Probably Jack, right? Average sentence length is one
possible feature to classify the text by its author.

Moreformally speaking, wewant to estimate p(y[Xx) , the probability of an event (classification), given
acontext. For instance, in authorship attribution, the classification being a specific author is an event,
while the text isthe context. In part of speech tagging, the classification of aword asverb isan event,
the word and surrounding words are the context.

Inthis chapter, wewill look at linear classifiers. A linear classification can make aclassification based
on alinear combination of features. To give an example, consider Figure 5.1, “Linear and non-linear
classifiers’. Here we see two classes of objects, that can be separated using just two features (f1 and
f2). One class is tends to have high f1 values, the other high f2 values. The figure also shows two
classifiers, c1 and c2, that successfully separate both classes. ¢l is alinear classifier, asitisalinear
combination of f1 and f2. c2, on the other hand, is not a linear classifier: the effect of f1 becomes
weaker as f2 increases.
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Figure5.1. Linear and non-linear classifiers

f1

f2

How do we find such functions? Doing it manually is not practical - realistic models for natural
language processing classification use thousands to millions of features. Finding such functionsis an
art in itself, and is usually called machine learning. Machine learning methods learn such classifiers
through training material. Machine learning methods are a topic by themselves, so in this chapter we
will mainly look at the application of classifiers obtained through machine learning.

This may all seem somewhat abstract at this point, but things will get clearer as we dive into real
classifiers. The thing to remember now is that we want to attach a particular class label to instances,
based on features of that instance, and we will do this using linear classifiers.

Naive Bayes classification

Stub

Maximum entropy classification

Introduction

An important disadvantage of naive Bayes modelling is that it has strong feature independence
assumptions. Often, it is not clear whether features are dependent, or you simply do not want to care.
For instance, coming back to the task of authorship attribution. Suppose that you made a model that
uses the average sentence length as a feature amongst others. Now you got a fantastic idea, you want
to add some features modeling syntactic complexity of sentences in a text. Such features may add
new cues to the model, but syntactic complexity also has a correlation with sentence length. In such
situations, naive Bayes models may fail, since they see these features as independent contributors to
aclassification.

One class of models that do not assume independent features are maximum entropy models. We can
almost hear you think "isn't classification supposed to minimize uncertainty"? That's a very good
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guestion, that we will come to in amoment. First, we have to ask a basic question: given a collection
of training instances, what isagood model ? Think about thisfor amoment, without diving into theory
and technicalities.

The answer is pretty simple: since the training data is (supposed to be) a representative sample of
reality, agood model would predict the training data. What does it mean to predict the training data?
Y ou may remember from high school math that you could calculate the expected value of arandom
variable given a probability distribution. For instance, if you play a coin tossing game, you can
calculate the (average) profit or loss given enough tosses. Suppose that afriend has abiased coin, with
p(heads) = 0.7 and p(tails) = 0.3. Winning gives you Euro 1.50, when losing, you pay 1 Euro. The
expected outcome of choosing tailsis0.7 * -1 + 0.3 * 1.50 # -0.25. Not such agood bet, huh?

If we know the expected value from the observation of repeated coin flips (the training data), we can
make amodel that gives the same outcome. If we know the payments, finding the model analytically
istrivial. What if we do the same for features? We can calcul ate the feature value in the training data:

Equation 5.1. Calculating the empirical value of a feature

It's easier than it looks: the empirical value of a feature f; is the sum of the multiplication joint
probability of a context and an event in the training data and the value of f; for that context and event.
We can also calculate the expected value of afeature f; according to the conditional model p(y|x):

Equation 5.2. Calculating the expected value of a feature

Since , and the model only estimates the conditional probability p(y|x), the probability of the context
in the training data, , is used. To make the model predict the training data, a constraint is added for
each feature f; during the training of the model, such that:

Equation 5.3. Constraining the expected value to the empirical value

For any non-trivial model, the model that satisfies these constraints cannot be found analytically. In
fact, thereisnormally even an infinite number of models. So, then the question becomes, which model
do we use? Consider, for example, the classifiersin Figure 5.2, “Two competing models’. While both
classifiers separate instances of both classes neatly, c2 is the better classifier; it separates the classes
with awider margin than c1, and as such has more tolerance with respect to unseen instances that fall
outside the current class boundaries. For instance, if an instance has a high value for f1, and adlightly
higher value for f2, c1 attribute this instance to the other class while there is no reason to believe that
thisistrue. Or in other words, c1 has abias.
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Figure 5.2. Two competing models

f1

f2

Now theideaisclear: wewant amodel that satisfiesaset of constraints, but also hasasfew assumptions
aspossible.

Let's forget those constraints for a moment and get back to something simple, like coin flipping. We
have two possible outcomes, head and tail. If we have no assumptions about the coin being biased and
such, we (should) believe that the probability of getting head or tail is half-half. And what if we model
diceroles? If we believe that the (cube) dice is not biased and no trickery isinvolved, the probability
of each outcome should be 1/6th. In both cases, the outcomes have a uniform distribution, meaning
that every outcome is equally probable. In the uniform distribution, the probability of a particular
outcomeis , where isthe number of possible outcomes. In the uniform distribution, uncertainty is at
its maximum. If we know that p(tails) = 0.9, we know pretty certain that acoin flip will result in tails.
However, if p(tails) = 0.5, we are uncertain about the outcome. In fact, thereis no possible distribution
that has a higher uncertainty. A measure of uncertainty is entropy.

So our model should be uniform as possible, while still obeying the constraints that are imposed. We
can find the most uniform model by maximizing entropy.

More to be done...
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Chapter 7. Part of speech tagging

Introduction

In the last episode, you have seen how n-gram language models can be used to model structure of
language, purely based on words. In this chapter, we will make a further abstraction and will try to
find proper part of speech tags (also named mor phosyntactic tags) for words. Part of speech tags give
relevant information about the role of aword in its narrow context. It may also provide information
about the inflection of a word. POS tags are a valuable part of alanguage processing pipeline, they
provide useful information to other components such as a parser or a named-entity recognizer.

There is no such thing as a standard set of part of speech tags (let's call them 'POS tags from now
on). Just like programming languages, text editors, and operating systems, the tag set that people use
depends on the task at hand and taste. For our purposes, we will use the Brown tag set?,

Thisis a sentence from the Brown corpus that is annotated with tags:

AJAT similar/JJ resolution/NN passed/VBD in/IN the/AT Senate/NN by/IN a/AT vote/NN of/IN 29-5/
CD /.

The notation hereis very simple: as our previous fragments of the Brown corpus the sentenceis pre-
tokenized. However, each word is amended by a POS tag that indicate the role of the world. For
instance, the word 'a is an article, 'similar' an adjective, and 'resolution’ a singular common noun.

Corpora, such as the Brown corpus only provide POS tags for asmall amount of sentences that occur
in corpus. Being aworking programmer, you will deal with new data that does not occur in the Brown
corpus. Now, wouldn't it be nice to have a set of functions that could add POS tags to untagged data?
Software that performs thistask is called a POS tagger or morphosyntactic tagger, and thisis exactly
the thing we will build in this chapter.

Exercises

* Inthe data provided with this book, you will find the file br own- pos-trai n. t xt . Open thisfile
with atext file viewer or text editor, and look at the five first sentences. Try to find out what the
tags mean using the description of the Brown tag set.

Frequency-based tagging

In one of the simplest forms of tagging, we just assign the most frequent POS tag for atoken in the
training data to atoken in untagged data. That's right, the most frequent tag, because atoken can have
more than one tag. Consider the following two sentences:

* | wouldn't trust him.

» He put money in the family trust.

Both sentences contain the word 'trust’. However, 'trust' has different roles in different roles in both
sentences. In thefirst sentence 'trust' isaverb, in the second sentenceit isanoun. So, for many tokens
we will have the choice of multiple tags. If we tag the token with the most frequent tag, we will

frequently tag tokens incorrectly, but it isafirst step.

To ease handling of tokens and tags, we will make type aliases for tokens and tags and define a new
datatype for training instances, aptly named Trainingl nstance:

A full description of the Brown tag set can be found at: http://www.scs.leeds.ac.uk/ccal as/tagsets/brown.html
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type Token = String
type Tag = String

data Trai ni ngl nstance = Traini ngl nstance Token Tag
derivi ng Show

The Token and Tag aliases will allow us to write clean function signatures. The Traininglnstance
data type has only one constructor, Traininglnstance. The data type derives from the Show typeclass,
which allows us to get a String representation of an instance?. We can use this constructor to create
training instances:

*Mai n> Traini ngl nstance "the" "AT"
Trai ni ngl nstance "the" "AT"

*Mai n> Trai ni ngl nstance "pony" "NN'
Trai ni ngl nstance "pony" "NN'

Since our first POStagger istrained purely on tokens and tags, and requires no sentential information,
the corpus will be represented as a list of Traininglnstance. Since we can use the wor ds function to
tokenize the corpus, the task at hand is to convert alist of strings of the format "token/tag” to a list
of Traininglnstance. This is done by splitting the String on the forward slash character (/). We can
usethe br eak function to break the string on the first element for which the supplied function istrue.
For instance:

Prel ude> break (== '/') "thel AT"
("the","/AT")

This is a good start, we would only have to chop off the first character of the second element in
the tuple. However, there is another problem: although atag can never contain a slash, a token can.
Consequently, we should break the string on the last slash, rather than the first. A cheap solution to
this problem could be to reverse the string, applying br eak, and then reversing the results again. We
will take a more sophisticated route, and write our own function:

rsplit :: EQ a =>a ->[a] -> ([a], [a])

rsplit sep | =let (ps, xs, _) =rsplit_sep | in
(ps, xs)

rsplit_:: EqQq a =>a ->[a] ->([a], [a], Bool)

rsplit_ sep = foldr (splitFun sep) ([], [], False)
where splitFun sep e (px, xs, True) = (e:px, xs, True)
splitFun sep e (px, xs, False)
| e == sep = (px, xs, True)
| otherwi se = (px, e:xs, False)

The core business happensin ther spl i t _ function, it splitsalist in the part before the last instance
of sep (the prefix) and the part after (the suffix). It doesthis by folding over theinput list fromright to
left. The accumulator is atuple that holds the prefix list, the suffix list, and a Bool indicating whether
the separator was encountered. The function provided to the fold acts upon this Bool:

« If the Bool is True, the separator was seen, and the current element is added to the prefix list.

« If the Bool is False, the separator was not seen yet. If the current element is equal to the separator,
the Bool is changed to True to indicate that all remaining elements should be added to the prefix
list. Otherwise, the element is added to the suffix list.

rsplit isjust atiny wrapper around rspl it _ that returns a binary tuple with just the prefix and
suffix lists. Ther spl i t function works as intended:

*Mai n> rsplit '/' "thel AT"
("the","AT")
*Mai n> rsplit '/' "alb/ TEST"

This Stri ng representation is also used by ghci to print the value of a Traininglnstance.
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("alb","TEST")

We are now ableto get the necessary data out of a String containing atoken and atag. We can simply
construct atraining instance by converting the tuple:

toTrai ni nglnstance :: String -> Traini ngl nstance
toTraininglnstance s = let (token, tag) = rsplit '/' s in
Trai ni ngl nstance token tag

Why not see how we are doing, and get the ten first training instances of the Brown corpus?

*Mai N> h <- 10 openFile "brown-pos-train.txt" IO ReadMode
*Mai n> ¢ <- 10 hGetContents h
*Mai n> take 10 $ map toTraini ngl nstance $ words ¢
[ Trai ni ngl nstance "The" "AT", Trai ni ngl nstance "Ful ton" "NP",
Trai ni ngl nstance "County" "NN', Trai ni ngl nstance "G and" "JJ",
Trai ni ngl nstance "Jury" "NN', Trai ni ngl nstance "sai d" "VBD',
Trai ni ngl nstance "Friday" "NR', Trai ni ngl nstance "an" "AT",
Trai ni ngl nstance "investigation" "NN', Trai ni ngl nstance "of" "IN']

Alright! That's indeed our corpus in beautified format. The next step is to traverse this corpus,
registering for each word with which tag it occurred (and how often). For this we write the
t okenTagFr eq function:

inmport qualified Data.List as L
inmport qualified Data. Map as M

t okenTagFreqgs :: [Traininglnstance] -> M Map Token (M Map Tag Int)
t okenTagFreqs = L.foldl' countWord M enpty
wher e
count Wrd m (Traini ngl nstance token tag) =
MinsertWth (countTag tag) token (Msingleton tag 1) m
countTag tag _ old = MinsertWth
(\newFreq ol dFreq -> oldFreq + newFreq) tag 1 old

This function is very comparable to the count El emfunction we saw earlier, the primary difference
being that we have to handle two levels of maps. Every Token in the first Map is associated with a
value that isitself a Map that maps Tags to frequencies (Int). If we have not seen a particular Token
yet, wewill insert it to the map with the Token as the key, the value is amap with just one key/value:
the Tag associated with the token and afreguency of one. If the Token was seen before, we will update
the frequency of the associated Tag, setting it to one, if the Tag was never seen before with this token.

Let ustestt okenTagFr egs on thefirst ten training instances as well:

*Mai n> h <- 1O openFile "brown-pos-train.txt" | QO ReadMode

*Mai n> ¢ <- 10 hGetContents h

*Mai n> tokenTagFregs $ take 10 $ map toTraini ngl nstance $ words c

fromList [("County",fronmlist [("NN',1)]), ("Friday",fromist [("NR',1)]),
("Fulton",fronmList [("NP',1)]),("Gand",fronList [("JJ",1)]),
("Jury",fronList [("NN',1)]), ("The",fronList [("AT",1)]),
("an",fronList [("AT",1)]),("investigation",fronmList [("NN',1)]),
("of",fronList [("IN',1)]),("said", fronList [("VBD',1)])]

It seems to work, but we cannot be sure until we have seen duplicates and ambiguous tokens.
You may want to play a little with larger corpus samples or artificial training data to confirm that
t okenTagFr eqs works as intended.

The next thing we need for our first part of speech tagger is use the map defined by t okenTagFr eqs
to find the most frequent tag for aword. Thisis a typical mapping situation: for each key/value pair
in the Map, we want to transform its value. The value was a Map, mapping Tag to Int, and we want
the value to be a Tag, namely the most frequent Tag. There is also amap functions for Map:

*Mai n> :type Data.Map. map
Data. Map.map :: (a -> b) -> MMvap k a -> MMap k b
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Dat a. Map. map accepts some function to map every value in a Map to a new value. For getting the
most frequent Tag, we have to fold over the inner map, storing the most frequent tag and its frequency
in the accumulator. The Data.Map module providesthef ol dI W t hKey to fold over keysand values:

*Mai n> :type Data. Map. f ol dl Wt hKey
Data. Map.foldlWthKey :: (b ->k ->a ->b) ->b ->MMpka->b

This looks like the usual suspect, however, the folding function takes an additional parameter. The
folding function hasthe current accumulator, the current key, and the associated value asitsarguments.
Using these building blocks, we can construct the t okenMbst Fr eqTag function:

t okenMost FreqTag :: M Map Token (M Map Tag Int) -> M Map Token Tag
t okenMbst FreqTag = M map nost FreqTag
wher e
nost FreqTag = fst . Mfoldl WthKey naxTag ("NL", 0)
nmaxTag acc@ nmaxTag, maxFreq) tag freq
| freq > maxFreq = (tag, freq)
| otherwi se = acc

Themain function body usesnost Fr eqTag to get the most frequent tag for each token. nost Fr eqTag
folds over all tokens and frequencies of a map associated with a token. The initial value of the
accumulator is the dummy tag ‘NIL'. The maxTag function that is used in the fold will replace the
accumulator with the current tag and its frequency if its frequency is higher than the frequency of the
tag in the accumulator. Otherwise, the tag in the accumul ator is more frequent, and the accumulator is
retained. After folding, we have the pair of the most frequent tag, and its frequency. We use the f st
function to get the first element of this pair.

Y ou can craft some examplesto check whether t okenMbst Fr eqTag worksasintended. For example:

*Mai n> tokenMost FreqTag $ tokenTagFreqs [ Traini ngl nstance "a" "A",
Trai ni ngl nstance "a" "B", Traininglnstance "a" "A"]
fromist [("a","A")]

Combining t okenTagFr eqs and t okenMbst Fr eqTag we can make a simple function to train our
first tagging model from alist of Traininglnstance:

trai nFreqTagger :: [Traininglnstance] -> M Map Token Tag
trai nFreqTagger = tokenMost FreqTag . tokenTagFreqgs

Next upistheactua tagger: it simply looks up atoken, returning the most frequent tag of atoken. Since
not all tags may be known, you may want to decide how to handle unknown tags. For now, we will
just returnthe Maybe Tag type, allowing usto return Not hi ng in the case we do not know how to tag
aword. We will define the function f r eqTagWor d as a simple wrapper around Dat a. Map. | ookup:

freqTagWrd :: M Map Token Tag -> Token -> Maybe Tag
freqTagWrd mt = M| ookup wt

We can now train our model from the Brown corpus, and tag some sentences.

*Mai n> h <- 10 openFile "brown-pos-train.txt" IO ReadMbde
*Mai n> ¢ <- 10 hGetContents h

*Mai n> let nodel = trainFreqTagger $ map toTraininglnstance $ words ¢

*Mai n> map (freqTagWwerd nodel) ["The","cat","is","on","the","mat","."]

[Just "AT",Just "NN',Just "BEZ",Just "IN',Just "AT",Just "NN',Just "."]

*Mai n> map (freqTagWerd nodel) ["That's","right",",","the", "mascara",
"snake",".","Fast", "and", "bul bous",".","Al so","a","tinned", "teardrop","."]

[Just "DT+BEZ", Just "Q.",Just ",",Just "AT",Just "NN',Just "NN',Just ".",
Not hi ng, Just "CC', Not hi ng, Just ".",Just "RB",Just "AT", Not hi ng,

Just "NN', Just "."]

Isn't that NLP for the working programmer? Not only did you learn about POS tagging, you built your
own first POS tagger in just a few lines of Haskell code. In the next section we will be a bit more
scientific, and focus on evaluation of taggers.
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Evaluation

Now that you wrote your first tagger, the question is how well it work. Not only to show it off to
your colleagues (it will do relatively well), but also to be able to see how future changes impact the
performance of the tagger. To check the performance of the tagger, we will use an evaluation corpus.
Y ou should never evaluate a natural language processing component on the training data, becauseitis
easy to perform well on seen data. Suppose that you wrote a tagger that just remembered the training
corpus exactly. Thistagger would tag every word correctly, but it will behave badly on unseen data.

For evaluating our taggers, we will use another set of sentences from the Brown corpus. These
annotated sentencesareprovided inbr own- pos-t est . t xt . Sincefilehasthe sameformat asbr own-
pos-train.txt,itcanasoberead asalist of Traininglnstance.

To evaluate a POS tagger, we will write a function that takes a tagging function (Word -> Maybe
Tag) asitsfirst argument and a training corpus as its second argument. It should then return a tuple
with the total number of tokens in the corpus, the number of tokens that were tagged correctly, and
the number of tokens for which the tagger did not provide an analysis (returned Nothing). Thisisthe
eval Tagger function:

eval Tagger tagFun = L.foldl' eval (0, 0, 0)
wher e
eval (n, ¢, u) (Traininglnstance token correctTag) =
case tagFun token of
Just tag -> if tag == correctTag then
(n+1, c+1, u)
el se
(n+1, c, u)
Nothing -> (n+l, c, u+l)

The function is pretty simple, it folds over al instances in the evaluation data. The counts are
incremented in the following manner:

* |If the tagger returned atag for the current token, we have two options:

» Thetagger picked the correct tag. We increment the number of tokens and the number of correct
tags by one.

» Thetagger picked an incorrect tag. We only increment the number of tokens by one.

» Thetagger returned no tag for the current token. Weincrement the number of tokensand the number
of untagged tokens by one.

Time to evaluate your first tagger!

*Mai N> h <- 10 openFile "brown-pos-train.txt" IO ReadMbde

*Mai N> ¢ <- 10 hGetContents h

*Mai n> let nodel = trainFreqTagger $ map toTraininglnstance $ words ¢
*Mai n> i <- 10 openFile "brown-pos-test.txt" 10O ReadMbde

*Mai n> d <- 10 hGetContents i

*Mai n> eval Tagger (freqTagWrd nodel) $ map toTraininglnstance $ words d
(272901, 239230, 11536)

Those are quite impressive numbers for afirst try, 239230/ 272901 * 100% = 87.66% of the tokens
were tagged and tagged correctly. Of the remaining 12.34% of the tokens, 11536/ 272901 * 100% =
4.23% of the words were not known. This means that we tagged 239230 / (272901 - 11536) * 100%
= 91.53% of the words known to our model correctly.

To get an impression what these numbers actually mean, we will create a baseline. A baseline is a
dumb model that indicates (more or less) the range we are working in. Our baseline will simply pick
the most frequent tag for every token (as in, most frequent in the corpus, not for the token). We will
generalize the function a bit, allowing us to specify the tag to be used:
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basel i neTagger :: Tag -> Token -> Maybe Tag
basel i neTagger tag _ = Just tag

The most frequent tag in the Brown corpus is NN, the singular common noun. Let's evaluate the
baseline tagger:

*Mai n> h <- | O openFile "brown-pos-test.txt" |O ReadMode
*Mai n> ¢ <- 10 hGetContents h

*Mai n> eval Tagger (baselineTagger "NN') $ map toTraininglnstance $ words ¢
(272901, 31815, 0)

We sure do a lot better than this baseline at 31815 / 272901 * 100% = 11.66%!' What if we
implement the same heuristic for unknown words in our frequency tagger? You may expect it to
only correct a small proportion of unknown words, but trying never hurts. We add a function named
backOf f Tagger that wraps atagger, returning some default tag if the tagger failed to find atag for
atoken:

backof f Tagger :: (Token -> Maybe Tag) -> Tag -> Token -> Maybe Tag
backof f Tagger f bt t = let pick =f t in
case pick of
Just tag -> Just tag
Not hing -> Just bt

See how we can nicely cascade taggers by writing higher-order functions? We proceed to evaluate
this tagger:

*Mai N> h <- 10 openFile "brown-pos-train.txt" | QO ReadMode
*Mai n> ¢ <- 10 hGetContents h
*Mai n> let nodel = trainFreqTagger $ map toTraininglnstance $ words ¢
*Mai n> i <- 10 openFile "brown-pos-test.txt" |1Q ReadMode
*Main> d <- 10 hGetContents i
*Mhi n> eval Tagger (backoffTagger (freqTagWrd nmodel) "NN') $
map toTraini nglnstance $ words d
(272901, 241590, 0)

That did improve performance some. Of the 11536 tokens that we did not tag in the frequency-based
tagger, we now tagged 2360 tokens correctly. This means that we tagged 20.46% of the unknown
words correctly. This is ailmost double of the baseline, how is that possible? It turns out that of
some classes of tokens, such as articles, prepositions, and tokens, you will never encounter new ones
in unseen data. Unknown words are often nouns, verbs, and adjectives. Since nouns form a larger
proposition of unknown words than all words, you will also get a better performance when guessing
that aword is a singular common noun in unseen data.

Table 7.1, “Performance of the frequency tagger” summarizes the result so far. We have also added

the score of the oracle this is the performance that you would attain if the tagger was omniscient. In
thistask, the oracle performs the task perfectly, but thisis not true for every task.

Table 7.1. Performance of the frequency tagger

Tagger Accuracy (%)
Baseline 11.66
Frequency-based 87.66
Frequency-based + backoff 88.53

Oracle 100.00

Transformation-based tagging

While the frequency-tagger that you developed over the last two sections was a good first attempt at
POS tagging, the performance of taggers can be improved by taking context into account. To give an
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example, the token 'saving' is used as a verb most frequently. However, when the word is used as a
noun, this can often be derived from the context, asin the following two sentences:

1. The/AT weight/NN advantage/NN ./, plus/CC greater/JJIR durability/NN of/IN the/AT plastic/NN
unit/NN ,/, yields/'VBZ a/AT saving/NN of/IN about/RB one-fifth/NN in/IN shipping/VBG ./.

2. 1t5PP$ elimination/NN would/MD result/VVB in/IN the/AT saving/NN of/IN interest/ NN costs/
NNS ,/, heavy/JJ when/WRB short-term/NN money/NN rates/NNS are/BER high /JJ ./, and/CC
in/IN freedom/NN fromVIN dependence/NN on/IN credit/NN which/WDT is/BEZ not/* always/RB
available/JJ when/WRB needed/VBN most/RBT ./.

In both cases, saving is preceded by an article and succeeded by a preposition. The context
disambiguates what specific reading of the token 'saving' should be used.

We could manually inspect al errors in the training corpus after tagging it with the frequency-
based tagger, and write rules that correct mistaggings. This has been done in the past, and can
give a tremendous boost in performance. Unfortunately, finding such rules is very tedious work,
and specific to one language and tag set. Fortunately, [bib-brill1992] has shown that such rules can
be learnt automatically using so-called transformation-based learning. The learning procedure is
straightforward:

1. Tag every token in the training corpus using the most frequent tag for aword.
2. Create rules from rule templates that correct incorrectly tagged words.

3. Count how many corrections were made and errors were introduced when each rule is applied to
the corpus.

4. Select the best rule according to the following equation:

Equation 7.1. Transfor mation rule selection criterion

5. Goto step 2, unless athreshold has been reached (e.g. rules do not give a net improvement).
Therule templates follow avery simple format. These are two examples from Brill's paper:

1. old _tag new_tag NEXT-TAG tag

2. old_tag new_tag PREV-TAG to

Two possible rules derived from these rule templ ates are:

1. TOIN NEXT-TAGAT

2. NN VB PREV-TAGTO

Thefirst rule replacesthetag 'TO' (infinitival 'to’) by 'IN' (preposition) if the next tag is'AT' (article).
The second rule, replaces the tag 'NN' (singular common noun) to 'VB' (verb, base) if the previoustag
was 'TO' (infinitival 'to"). Asyou can immediately see, these are two very effective rules.

Sinceyou aready have afrequency-based tagger, you can aready perform thefirst step of thelearning
procedure for transformation-based tagging. What we still need are rule templates, rule extractors, and
ascoring function. For brevity, wewill only focus on three tag-based templ ates, but after implementing
the learning procedure, it should be fairly obvious how to had other contexts and integrating wordsin
templates. The templates that we will create, will take be all variations on directly surrounding tags
(previoustag, next tag, both surrounding tags). Thanksto Haskell's algebraic data types, we can easily
model these templates:

dat a Repl acement = Repl acenent Tag Tag
deriving (Eq, Od, Show)
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data Transformati onRule =
Next TagRul e Repl acenent Tag
| PrevTagRul e Repl acenent Tag
| SurroundTagRul e Repl acenent Tag Tag
deriving (Egq, Od, Show)

To confirm that these templates are indeed working as expected, we can recreate the rules that were
mentioned earlier:

*Mai n> Next TagRul e (Repl acenent "TO' "IN') "AT"
Next TagRul e (Repl acement "TO' "IN') "AT"
*Mai n> PrevTagRul e (Repl acenent "NN' "VB') "TO'
PrevTagRul e (Repl acement "NN' "VB') "TO'

Awesome! Now on to rule instantiation. We need to instantiate rules for tags that are incorrect, so
ideally we have the corpus represented as a list of binary tuples, where the first element isthe correct
tag, and the second element the tag that is currently assigned by the tagger. For instance:

[("AT","AT"), ("NN',"VB"), ("TO", "TO')]

This can ssimply be done by using Haskell's zi p function, that 'zips' together two lists into one list
of binary tuples:

*Mai n> :type zip

zip :: [a] ->[b] ->[(a, b)]

*Mai n> let correct = ["AT","NN',"TO']
*Mai n> let tagged = ["AT","VB","TO']
*Mai n> zip correct tagged
[("AT","AT"), ("NN',"VB"), ("TO',"TO")]

However, using lists is not really practical in this case. By the way they are normally traversed, the
current element is always the head, meaning that we do not readily have access to previous el ements.
But we no need to access previous elementsfor the PrevTagRule and SurroundTagRule templates. We
canwrite our own function that keepstrack of previous elements, but apackage with such functionality,
called ListZipper, is aready available. After using cabal to install the ListZipper package, you will
have accessto the Data.List.Zipper module. A Zipper can be seen asalist that can betraversed in two
directions. We can construct a Zipper from alist:

*Mai n> let taggingState = Data.List.Zpper.fronList $
zip ["AT","NN',"TO'] ["AT","VB","TO']

*Mai n> taggi ngSt ate

le [] [("AT"’"AT")’("NN""VB")’("TO""TOI)]

We can get the current element (the element the so-called cursor is pointing at) in the zipper using
Dat a. Li st. Zi pper. cursor:

*Mai n> Dat a. Li st. Zi pper.cursor taggi ngState
(" AT", " AT")

We can move the cursor to the left (point to the previous el ement) with Dat a. Li st . Zi pper. | eft,
and to the right (point to the next element) with Dat a. Li st. Zi pper. ri ght:

*Mai n> Dat a. Li st. Zi pper.right taggingState
Zip [("AT","AT")] [("NN',"VB"), ("TO',"TO")]
*Mai n> Dat a. Li st. Zi pper.cursor $ Data.List.Zipper.right taggingState
("NN', "VB")
*Mai n> Data.List.Zipper.left $ Data.List.Zpper.right $ taggingState
Zip [1 [("AT","AT"), ("NN',"VB"), ("TO',"TO")]
*Mai n> Data.List.Zpper.cursor $ Data.List.Zipper.left $
Dat a. Li st. Zi pper.right $ taggi ngState
("AT", "AT")

This allows us to do the kind of maneuvering necessary to extract rules. The rule instantiations are
modelled as functions, and are pretty simple: they just pick the information that is necessary out of
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their environment. We have to bit careful at the boundaries of the Zipper though: at the beginning
of the Zipper only NextTagRule can extract the necessary information, and at the end of the Zipper
this applies to PrevTagRule. To be able to handle such situations, we make the return type of the
instantiation functions Maybe TransformationRule. Let's go through the instantiation functions one
by one, starting withi nst Next TagRul e0 (we add the'0' suffix, sincewewill prettify these functions
later):

import qualified Data.List.Z pper as Z

i nst Next TagRul e0 :: Z. Zi pper (Tag, Tag) -> Maybe TransformationRul e
i nst Next TagRul e0 z
| Z.endp z = Nothing
| Z.endp $ Z.right z = Nothing
| otherwi se = Just $ Next TagRul e (Repl acerment incorrectTag correct Tag) nextTag
where (correctTag, incorrectTag) = Z.cursor z
nextTag = snd $ Z.cursor $ Z. right z

When instantiating arule from the current el ement in the Zipper, we have two problematic conditions
to check for. Thefirst is that the Zipper does not point to an element. This happens when we would
traverseto the right when are already at the last element of the Zipper. In the second condition, we are
actualy at the last element of the Zipper. In this situation, we cannot extract the next Tag. For both
conditions, we return Nothing. When these conditions do not hold, we can extract aNextTagRule. We
do this by defining the replacement, replacing the incorrect tag by the correct one, and extracting the
next tag. We can test this instantiation function, assuming that t aggi ngSt at e is defined as above:

*Mai n> inst Next TagRul e0 $ Data. Li st. Zi pper.right taggingState
Just (Next TagRul e (Repl acenent "VB" "NN') "TQO")

Thei nst PrevTagO0 function is almost similar, except that in the second condition returns Nothing
if the current element is the first element of the Zipper. And, of course, we extract the previous tag
rather than the next tag:

instPrevTagRul e0 :: Z. Zi pper (Tag, Tag) -> Maybe TransformationRul e
instPrevTagRul e0 z
| Z.endp z = Nothing
| Z.beginp z = Nothing
| otherwi se = Just $ PrevTagRul e (Repl acement incorrectTag correct Tag) prevTag
where (correctTag, incorrectTag) = Z.cursor z
prevTag = snd $ Z.cursor $ Z left z

Let'sdo a sanity check to be safe:

*Mai n> instPrevTagRul e0 $ Data. List.Zpper.right taggi ngState
Just (PrevTagRul e (Repl acenent "VB" "NN') "AT")

Finally, we write the inst SurroundTag0 function, which combines the functionality of
i nst Next Tag0 andi nst PrevTagO:

i nst SurroundTagRul e0 :: Z. Zipper (Tag, Tag) -> Maybe Transformati onRul e
i nst SurroundTagRul e0 z
| Z.endp z = Nothing
| Z.beginp z = Nothing
| Z.endp $ Z.right z = Nothing
| otherwi se = Just $ SurroundTagRul e (Repl acenment incorrectTag correct Tag)
prevTag next Tag
where (correctTag, incorrectTag) = Z.cursor z
prevTag = snd $ Z.cursor $ Z. left z
nextTag = snd $ Z.cursor $ Z. right z

And this a'so works as intended:

*Mai n> instSurroundTagRul e0 $ Data. List.Zi pper.right taggingState
Just (SurroundTagRul e (Repl acement "VB" "NN') "AT" "TO')
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We will make these functions simpler by making use of the Maybe monad. First, we define two
functions to get the previous and the next element of the zipper, wrapped in Maybe. To accomplish
this, we use the saf eCur sor function, which returns the element the cursor points at using Maybe.
It will return value Nothing if the cursor points beyond the last element of the zipper.

rightCursor :: Z. Zipper a -> Maybe a
rightCursor = Z safeCursor . Z.right

leftCursor :: Z Zipper a -> Maybe a
leftCursor z = if Z beginp z then
Not hi ng
el se
Z.safeCursor $ Z. left z

Theri ght Cur sor functionistrivia. Thel ef t Cur sor isabit more complicated, sincecalling| ef t
on a Zipper with a cursor pointing at the first element, will return an equivalent Zipper. So, we return
Nothing when we are pointing at the first element (and cannot move left).

In our previous implementations of the instantiation functions, we checked all failure conditions using
guards. However, once we work with expressions evaluating to Maybe, we can use the Maybe monad
instead. The Maybe monad represents computations that could fail (return Nothing), and afailure will
be propagated (the monad will end in Nothing). Ther et ur n function is used to pack the value of the
final expressionin aMaybe.

Using the Maybe monad, we can simplify the instantiation functions:

i nst Next TagRul e :: Z. Zipper (Tag, Tag) -> Maybe Transfornmati onRul e
i nst Next TagRul e z = do

(_, next) <- rightCursor z

(correct, incorrect) <- Z safeCursor z

return $ Next TagRul e (Repl acenent incorrect correct) next

instPrevTagRul e :: Z. Zipper (Tag, Tag) -> Maybe Transfornmati onRul e
instPrevTagRule z = do

(_, prev) <- leftCursor z

(correct, incorrect) <- Z safeCursor z

return $ PrevTagRul e (Repl acenent incorrect correct) prev

instSurroundTagRul e :: Z. Zi pper (Tag, Tag) -> Maybe Transfornmati onRul e
i nst SurroundTagRul e z = do

(_, next) <- rightCursor z

(_, prev) <- leftCursor z

(correct, incorrect) <- Z safeCursor z

return $ SurroundTagRul e (Repl acenent incorrect correct) prev next

With the instantiation functions set in place, we can fold over the Zipper using
Dat a. Li st . Zi pper. fol dl z' . Thisisaleft fold with astrict accumulator. Thefolding function gets
the accumulator asitsfirst argument and the current Zipper (state) as its second:

*Mai n> :type Data. List.Zipper.foldlz
Dat a. Li st. Zi pper.fol dl z'
(b ->2Z Zipper a->b) ->b ->Z Zipper a->b

Using this function, we write thei nst Rul es0 function:

instRulesO :: [(Z Zi pper (Tag, Tag) -> Maybe TransformationRule)] ->
Z. Zipper (Tag, Tag) -> S.Set TransformationRul e

instRul esO funs = Z. foldlz' appl yFuns S.enpty

where appl yFuns s z
| correct == proposed = s
| otherwise = foldl (applyFun z) s funs
where (correct, proposed) = Z. cursor z
appl yFun z s f = case f z of
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Not hing -> s
Just r -> S.insert r s

i nst Rul esO accepts a list of instantiation functions (f uns) and a zipper, and returns a Set of
instantiated rules. It folds over the zipper, applying al functions (appl yFuns) to the current element.
If the tag that is currently proposed is already correct, the Set is unchanged, because there is no
transformation to be learnt. If the proposed tag differs from the correct tag, rules are instantiated by
folding over the instantiation functions. Applying this to our little test data, shows that the function
is operating correctly:

*Mai n> instRul esO [inst Next TagRul e, instPrevTagRul e, instSurroundTagRul e]
taggi ngSt at e

fronLi st [ Next TagRul e (Repl acenent "VB" "NN') "TO',
PrevTagRul e (Repl acenent "VB" "NN') "AT",
SurroundTagRul e (Repl acenent "VB" "NN') "AT" "TO']

Now we have to massage the corpus and the proposed corpus to the correct format. The
i ni tial Lear ni ngSt at e function extractsthelist of correct tags from the corpus, and usesthe word
frequency tagger with 'NN' as the back-off for unknown wordsto get alist of proposed tags. Both lists
are then zipped and the zipped list is converted to a Zipper:

initial LearningState :: [Traininglnstance] -> Z. Zipper (Tag, Tag)
initial LearningState train = Z. fronlList $ zip (correct train) (proposed train)
wher e proposed = map tagger . trainTokens

correct = map (\(Traininglnstance _ tag) -> tag)

t agger = DM fromJust . backoff Tagger (freqTagWrd nodel) "NN'
trai nTokens = map (\(Traininglnstance token _) -> token)

nodel = trainFreqTagger train

Now we can use thisfunction to create theinitia state for the transformation-based learner, and extract
all possible transformation rules:

*Mai N> h <- 1O openFile "brown-pos-train.txt" | O ReadMode

*Mai n> ¢ <- 10 hGetContents h

*Mai n> | et proposedRul es = instRul esO [inst Next TagRul e, instPrevTagRul e, instSurroundTagRule] $
initial LearningState $ map toTraini nglnstance $ words c

*Mai n> Dat a. Set. si ze proposedRul es

18992

Good, this allows us to find all possible correction rules. We could now calculate the scores for all
rules. But the rule sel ection can be made somewhat more efficient. Each ruleinstantiation was actually
an instance of acorrect rule application. If we register the correct counts, we can start with scoring the
most promising rules first. Once the score of arule is higher than the correct count of the next rule,
we have found the most effective rule. We can modify i nst Rul es0 to do this;

instRules :: [(Z. Zi pper (Tag, Tag) -> Maybe Transformati onRule)] ->
Z. Zi pper (Tag, Tag) -> M Map Transfornmati onRul e Int
instRules funs = Z. foldlz' applyFuns M enpty
where appl yFuns m z
| correct == proposed = m
| otherwise = foldl (applyFun z) mfuns
where (correct, proposed) = Z.cursor z
applyFun z mf = case f z of
Nothing -> m
Just r -> MinsertWth' (+) r 1 m

We then use this frequency map to create alist of rules sorted by frequency:

sortRules :: M Map TransformationRule Int -> [(Transformati onRule, Int)]
sortRules = L.sortBy (\(_,a) (_,b) -> conpare b a) . Mtolist

Dat a. Li st . sort By sortsalist according to some comparison function. We use the stock conpar e
function:
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Prel ude> :type conpare

conpare :: (Ord a) => a -> a -> Odering
Prel ude> conpare 1 2

LT

Prel ude> conpare 2 2

EQ

Prel ude> conpare 2 1

Gr

The compare function returns a value of the Ordering type, returning LT, EQ, GT, depending on
whether thefirst argument issmaller than, equal to, or larger than the second argument. Insor t Rul es,
we use a lambda to get the second tuple element (representing a frequency). We aso swap the
arguments to conpar e function to get a reverse ordering, making larger elements come first.

Let's get someimmediate gratification by extracting the ten rules with the most corrections:

*Mai n> h <- 10 openFile "brown-pos-train.txt" IO ReadMbde

*Mai n> ¢ <- 10 hGetContents h

*Mai n> let proposedRul es = instRul es [instNextTagRule, instPrevTagRule, instSurroundTagRule] $
initial LearningState $ map toTrai ni nglnstance $ words ¢

*Mai n> take 10 $ sortRul es proposedRul es

[ (Next TagRul e (Repl acenent "TO'" "IN') "AT", 3471),
(PrevTagRul e (Replacement "TO' "I N') "NN', 2459),
(PrevTagRul e (Repl acement "NN' "VB') "TO', 1690),
(Next TagRul e (Repl acenent "VBN' "VBD') "AT", 1154),
(PrevTagRul e (Repl acenment "TO' "IN') "VBN', 1088),
(SurroundTagRul e (Repl acement "TO'" "IN') "NN' "AT", 1034),
(Next TagRul e (Repl acenent "TO'" "IN') "NN', 994),
(Next TagRul e (Repl acenent "NN' "VB") "AT", 846),
(PrevTagRul e (Repl acenent "TO'" "IN') "JJ", 813),
(Next TagRul e (Repl acenment "VBD' "VBN') "IN', 761)]

The next thing we need to be able to do is to evaluate a rule. However, we currently have no way
to see whether a rule applies. To this end, we write the r ul eAppl i cati on function, this function
returns the replacement tag wrapped in Maybe's Just constructor. If the rule could not be applied to
the current corpus element, Nothing is returned:

rul eApplication :: TransformationRule -> Z. Zi pper (Tag, Tag) -> Maybe Tag
rul eApplication (NextTagRul e (Repl acenent old new) next) z = do

(_, proposed) <- Z. safeCursor z

(_, nextProposed) <- rightCursor z

if proposed == ol d && nextProposed == next then Just new el se Nothing
rul eApplication (PrevTagRul e (Repl acenent old new) prev) z = do

(_, proposed) <- Z. safeCursor z

(_, prevProposed) <- leftCursor z

if proposed == old && prevProposed == prev then Just new el se Nothing
rul eApplication (SurroundTagRul e (Repl acenent old new) prev next) z = do

(_, proposed) <- Z. safeCursor z

(_, nextProposed) <- rightCursor z
(_, prevProposed) <- leftCursor z
if proposed == old && prevProposed == prev &&
next Proposed == next then Just new el se Nothing

This function closely matches the instantiation functions, except that we check whether the context
corresponds to the context specified by the rule. We can then apply arule to every element in the
Zipper, checking whether the change was correct when a Just value is returned:

scoreRule :: Transformati onRule -> Z. Zi pper (Tag, Tag) -> Int
scoreRule r z = nCorrect - nlncorrect
where (nCorrect, nlncorrect) = scoreRule_r z

scoreRule_ :: TransformationRule -> Z Zipper (Tag, Tag) -> (Int, Int)
scoreRule_r = Z. foldlz' (scoreElemr) (0, 0)
where scoreElemr s@nCorrect, nlncorrect) z =
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case rul eApplication r z of
Just tag -> if tag == correct then
(nCorrect + 1, nlncorrect)
el se
(nCorrect, nlncorrect + 1)
Nothing ->'s
where (correct, _) = Z.cursor z

The main action happens in the scor eRul e_ function. It traverses the zipper, applying the rule to
each element. If the rule applies to an element, we check whether the application corrected the tag,
and update the counts (nCor r ect and nl ncor r ect ) accordingly. If the rule does not apply, we keep
the counts as they are. scor eRul e isjust a simple wrapper around scor eRul e_, and subtracts the
number of errors introduced from the number of corrections. You can try to apply this function to
some rules, for instance the best rule of the initial ranking:

*Mai N> h <- 10O openFile "brown-pos-train.txt" | O ReadMode
*Mai n> ¢ <- 10 hGetContents h
*Mai n> let learningState = initial LearningState $ map toTraini ngl nstance $ words c
*Mai n> | et proposedRul es = instRules
[i nst Next TagRul e, instPrevTagRul e, instSurroundTagRul e] | earningState
*Mai n> head $ sortRul es proposedRul es
(Next TagRul e (Repl acenment "TO' "IN') "AT", 3471)
*Main> let (firstRule, _) = head $ sortRul es proposedRul es
*Mai n> scoreRule firstRule |earningState
3470

So, given a set of rules, we have to select the best rule. We know that we have found the best rule
when its score is higher than the number of corrections of the next rule in the sorted rule list. The
sel ect Rul e_ function does exactly this:

selectRule :: [(TransformationRule, Int)] -> Z Zipper (Tag, Tag) ->
(Transformati onRul e, Int)
selectRule ((rule, _):xs) z = selectRule_ xs z (rule, (scoreRule rule z))

selectRule_ :: [(TransformationRule, Int)] -> Z Zipper (Tag, Tag) ->
(TransformationRule, Int) -> (TransformationRule, Int)
selectRule_ [] _ best = best

selectRule_ ((rule, correct):xs) z best @bestRul e, bestScore) =
if bestScore >= correct then
best
el se
if bestScore >= score then
sel ectRule_ xs z best
el se
selectRule_ xs z (rule, score)
where score = scoreRule rule z

First we check whether the stopping condition is reached (best Score > correct). If thisis not
the case, we have to decide whether the currently best rule is better than the current rule (best Scor e
>= score). If thisisis not the case, the current rule becomes the best rule. Let us use this function
to select the best rule:

*Mai N> h <- 10O openFile "brown-pos-train.txt" | O ReadMode
*Mai n> ¢ <- 10 hGetContents h
*Mai n> let learningState = initial LearningState $ map toTraini ngl nstance $ words c
*Mai n> | et proposedRul es = instRules
[i nst Next TagRul e, instPrevTagRul e, instSurroundTagRul e] | earningState
*Mai n> sel ectRul e (sortRul es proposedRul es) |earningState
(Next TagRul e (Repl acenment "TO' "IN') "AT", 3470)

Excellent! Our learner is now almost done! Once we have selected a rule, we need to update the
training state, and then we can rinse and repeat until we are happy with thelist of rules. First, we will
make the updat eSt at e function to update the learning state:
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updateState :: Transformati onRule -> Z. Zipper (Tag, Tag) ->
Z. Zi pper (Tag, Tag)
updateState r = Z fromnli st reverse . Z. foldlz' (update r) []

where update r xs z =
case rul eApplication r z of
Just tag -> (correct, tag):xs
Not hing -> e:xs

where e@-correct, Z.cursor z

) o=
The updated state is created by copying the old state using a fold, replacing the proposed tag if a
rule is applicable (returns Just tag). We used a strict left-fold for efficiency. Since we are building
a list, the consequency is that we construct the list in reverse order. We then reverse the list, and
construct a Zipper from this list. The next function, t r ansf or mat i onRul es, constructs the list of
transformations:

transformati onRules :: [(Z. Zi pper (Tag, Tag) -> Maybe TransformationRule)] ->
Z. Zi pper (Tag, Tag) -> [TransfornationRul e]

transformati onRul es funs state = bestRul e: (transformati onRul es funs next St ate)
where (bestRule, ) = selectRule (sortRules $ instRules funs state) state
next St at e = updateState bestRule state

This function is fairly simple: during each recursion we find the next best rule, and update
the state accordingly. The rule becomes the head of the list that we are returning, and we call
transf or mat i onRul es recursively to construct the tail of the list. We have now completed our

transformation-based |earner! Time to extract some rules:

*Mai N> h <- | O openFile "brown-pos-train.txt" | O ReadMode
*Mai n> ¢ <- 10 hGetContents h
*Mai n> let learningState = initial LearningState $ map toTraini ngl nstance $ words c

*Mai n> take 10 $ transformationRul es [inst Next TagRul e,
| earni ngState

i nst PrevTagRul e, instSurroundTagRul e]

[ Next TagRul e (Repl acenent "TO' "IN') "AT",
PrevTagRul e (Repl acement "NN' "VB") "TO',
Next TagRul e (Repl acement "TO" "IN') "NP*,
PrevTagRul e (Repl acenent "VBN' "VBD') "PPS",
PrevTagRul e (Repl acement "NN' "VB") "MD",
Next TagRul e (Repl acerent "TO' "IN') "PP$",
PrevTagRul e (Repl acenment "VBN' "VBD') "NP',
PrevTagRul e (Repl acenent "PPS*' "PPO') "VB',
Next TagRul e (Repl acerent "TO" "IN') "JJ",
Next TagRul e (Repl acement "TO' "IN') "NNS"]

Since we haven't optimized our implementation for instructional purposes, extracting the ten most
effective rules can take a while. It is best to store the resulting the source file if you do not want to
repeat this step:

tenBestRul es :: [Transformati onRul e]

tenBest Rul es = [ Next TagRul e (Repl acenent "TO' "IN') "AT",
PrevTagRul e (Repl acement "NN' "VB") "TO',
Next TagRul e (Repl acement "TO" "IN') "NP",
PrevTagRul e (Repl acenent "VBN' "VBD') "PPS",
PrevTagRul e (Repl acement "NN' "VB") "MD",
Next TagRul e (Repl acerent "TO' "IN') "PP$",
PrevTagRul e (Repl acenment "VBN' "VBD') "NP',
PrevTagRul e (Repl acenment "PPS" "PPO') "VB",
Next TagRul e (Repl acerent "TO" "IN') "JJ",
Next TagRul e (Repl acement "TO' "IN') "NNS"]

The tagger itself recursively applies every rule to the proposed tags.

Exercises

1. Add two additional types of rules:
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» PrevOneOrTwoTagRule: this rule is triggered when one of the last or second to last tags
corresponds to the specified tag.

» PrevOneOrTwoTagRule: thisruleistriggered when one of the two next tags corresponds to the
specified tag.
Extract the ten best rules, adding these rule types.

2. Modify the examples so that rules can condition on words as well. Implement three rule types,
CurWordRule, PrevWordRule, NextWordRule, that condition respectively on the current, previous
and next word.

Extract the ten best rules, adding these rule types.
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