COBOL Programming
Fundamental

ISSC SH
Walker JIA

Version 1.0

2004/11

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Training Schedule

Day 1 Day 2 Day 3 Day 4
_ Simple iteration
Introduction to with the -
_ Introduction to COBOL Sequential PEREORM Conditions
Moring Files verb
COBOL Basics 1 Tables and the
Processing Arithmetic and PERFORM .
Sequential Edited - VARYING
e e Fles Pictures. ... oo
Exercise 1 Exercise 2 Exercise 3 Exercise 3
After _ (Cont.)
COBOL Basics 2
noon Designing
Programs

COBOL Programming Fundamental

© 2004 IBM Corporation

f—
—

=

2 =F ==
=
—

—_

ISSC Shanghai, AMS, GCG

:

Table of contents

.= Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

3 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL

Overview

§ COBOL design goals.
§ Structure of COBOL programs.
§ The four divisions.

5 IDENTIFICATION DIVISION, DATA DIVISION, PROCEDURE
DIVISION.

§ Sections, paragraphs, sentences and statements.

§ Example COBOL programs.

4 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
COBOL

§ COBOL is an acronym which stands for
Common Business Oriented Language.

§ The name indicates the target area of COBOL applications.
— COBOL is used for developing business, typically file-oriented,
applications.

— Itis not designed for writing systems programs. You would not
develop an operating system or a compiler using COBOL.

§ COBOL is one of the oldest computer languages in use (it
was developed around the end of the 1950s). As a result it
has some idiosyncracies which programmers may find
Irritating.

5 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
COBOL idiosyncracies

§ One of the design goals was to make the language as English-
like as possible. As a consequence

— the COBOL reserved word list is quite extensive and contains
hundreds of entries.

— COBOL uses structural concepts normally associated with English
prose such as section, paragraph, sentence and so on.
As a result COBOL programs tend to be verbose.

§ Some implementations require the program text to adhere to
certain, archaic, formatting restrictions.

§ Although modern COBOL has introduced many of the

constructs required to write well structured programs it also still
retains elements which, if used, make it difficult, and in some
cases impossible, to write good programs.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
Structure of COBOL programs

Program

Divisions

Section(s)

Paragraph(s)
|

Sentence(s)

Statement(s)

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL

The Four Divisions

§ DIVISIONS are used to identify the principal
components of the program text. There are four
DIVISIONS in all.

— IDENTIFICATION DIVISION.
— ENVIRONMENT DIVISION.
— DATA DIVISION.

— PROCEDURE DIVISION.

§ Although some of the divisions may be omitted the
sequence in which the DIVISIONS are specified is fixed
and must follow the pattern shown above.

8 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL

Functions of the four divisions

§ The IDENTIFICATION DIVISION is used to supply information
about the program to the programmer and to the compiler.

§ The ENVIRONMENT DIVISION describes to the compiler the
environment in which the program will run.

§ As the name suggests, the DATA DIVISION is used to provide the
descriptions of most of the data to be processed by the program.

§ The PROCEDURE DIVISION contains the description of the
algorithm which will manipulate the data previously described. Like
other languages COBOL provides a means for specifying
sequence, selection and iteration constructs.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
COBOL Program Text Structure

IDENTIFICATION DIVISION.
Program Details

DATA DIVISION. NOTE
Data Descriptions ETS.E?W;?@ a

‘““full-stop’is used
In every case.

PROCEDURE DIVISION.

Algorithm Description

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

11

Introduction to COBOL
IDENTIFICATION DIVISION

§ The purpose of the IDENTIFICATION DIVISION is to provide

Information about the program to the programmer and to the
compiler.

§ Most of the entries in the IDENTIFICATION DIVISION are directed
at the programmer and are treated by the compiler as comments.

§ An exception to this is the PROGRAM-ID clause. Every COBOL
program must have a PROGRAM-ID. Itis used to enable the
compiler to identify the program.

§ There are several other informational paragraphs in the

IDENTIFICATION DIVISION but we will ignore them for the
moment.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
The IDENTIFICATION DIVISION Syntax

§ The IDENTIFICATION DIVISION has the following structure
| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. Pr ogNane.
[AUTHOR. Your Nane.]

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. BMJAOL.
AUTHOR. M chael Coughl an.

§ The keywords IDENTIFICATION DIVISION represent the division
header and signal the commencement of the program text.

§ The paragraph name PROGRAM-ID is a keyword. It must be
specified immediately after the division header.

§ The program name can be up to 8 characters long.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
The DATA DIVISION

§ The DATA DIVISION is used to describe most of the data that a
program processes.

5 The DATA DIVISION is divided into two main sections;
— FILE SECTION.

— WORKING-STORAGE SECTION.

§ The FILE SECTION is used to describe most of the data that is
sent to, or comes from, the computer’s peripherals.

§ The WORKING-STORAGE SECTION is used to describe the
general variables used in the program.

13 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
DATA DIVISION Syntax

8

The DATA DIVISION has the following structure
DATA DI VISION

¢FI LE SECTI ON

g File Section entries. E
SWORKING - STORAGE SECTION .
g W5 entries. g

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. Sequence- Progr am
AUTHOR. M chael Coughl an.

DATA Dl VI SI ON.
VORKI NG STORAGE SECTI ON.

01 Nundl PIC 9 VALUE ZERCS.
01 Nun® PIC 9 VALUE ZERCS.
01 Result Pl C 99 VALUE ZERCS.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
The PROCEDURE DIVISION

§ The PROCEDURE DIVISION is where all the data described
In the DATA DIVISION is processed and produced. It is here
that the programmer describes his algorithm.

§ The PROCEDURE DIVISION is hierarchical in structure and
consists of Sections, Paragraphs, Sentences and Statements.

§ Only the Section is optional. There must be at least one

paragraph, sentence and statement in the PROCEDURE
DIVISION.

§ Inthe PROCEDURE DIVISION paragraph and section names
are chosen by the programmer. The names used should
reflect the processing being done in the paragraph or section.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL

Sections

§ A section is a block of code made up of one or more paragraphs.

§ A section begins with the section name and ends where the next
section name is encountered or where the program text ends.

§ A section name consists of a name devised by the programmer
or defined by the language followed by the word SECTION
followed by a full stop.

FILE SECTION.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL

Paragraphs

§ Each section consists of one or more paragraphs.

§ A paragraph is a block of code made up of one or more
sentences.

§ A paragraph begins with the paragraph name and ends with
the next paragraph or section name or the end of the
program text.

§ The paragraph name consists of a name devised by the
programmer or defined by the language followed by a full
stop.

PrintFinalTotals.

PROGRAM-ID.

17 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL

Sentences and Statements

§ A paragraph consists of one or more sentences.
§ A sentence consists of one or more statements and is terminated by a full
stop.
MOVE .21 TO VatRate

COMPUTE VatAmount = ProductCost * VatRate.

DISPLAY "Enter name " WITH NO ADVANCING
ACCEPT StudentName

DISPLAY "Name entered was " StudentName.

§ A statement consists of a COBOL verb and an operand or operands.
SUBTRACT Tax FROM GrossPay GIVING NetPay
READ StudentFile

AT END SET EndOfFile TO TRUE
END-READ.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to COBOL
A Full COBOL program

19

IDENTIFICATION DIVISION.
PROGRAM-ID. SAMPLEL.
AUTHOR. Michael Coughlan.

DATA DIVISION.
WORKING-STORAGE SECTION.

01 Numl PIC 9 VALUE ZEROS.
01 Num2 PIC 9 VALUE ZEROS.
01 Result PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.

CalculateResult.
ACCEPT Numl.
ACCEPT Numz2.

MULTIPLY Num1 BY Num2 GIVING Result.

DISPLAY "Resultis =", Result.
STOP RUN.

COBOL Programming Fundamental

© 2004 IBM Corporation

20

ISSC Shanghai, AMS, GCG

Introduction to COBOL
The minimum COBOL program

PROGRAM- | D. SAVPLEZ2.

PROCEDURE DI VI SI ON.

Di spl ayPr onpt .
DI SPLAY "I did it".
STOP RUN.

| DENTI FI CATI ON DI VI SI ON.

COBOL Programming Fundamental

© 2004 IBM Corporation

I
i

—

—
-
=
=
=

—

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL

-.% COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files
Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

21 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Overview

22

wn W W W Wy LW LW W LW

The COBOL coding rules.

Name construction.

Describing Data.

Data names/variables.

Cobol Data Types and data description.

The PICTURE clause.

The VALUE clause.

Literals and Figurative Constants.

Editing, compiling, linking and running COBOL programs

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
COBOL coding rules

B st S e e Y

*: Identification Area (7" byte)
A: AreaA (8t ~11™ pyte)
B: AreaB (12t ~72th byte)

§ Almost all COBOL compilers treat a line of COBOL code as if it contained
two distinct areas. These are known as;

Area A and Area B

§ When a COBOL compiler recognizes these two areas, all division, section,

paragraph names, FD entries and 01 level numbers must start in Area A. All
other sentences must start in Area B.

§ Area A is four characters wide and is followed by Area B.

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. Program

* This is a cooment. It starts
*wWwth an asterisk in colum 1

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Name Construction

§ All user defined names, such as data names, paragraph names,

section names and mnemonic names, must adhere to the following
rules;

— They must contain at least one character and not more than 30
characters.

— They must contain at least one alphabetic character and they must
not begin or end with a hyphen.

— They must be contructed from the characters A to Z, the number O to
9 and the hyphen. e.g. TotalPay, Gross-Pay,
PrintReportHeadings, Customerl0-Rec

§ All data-names should describe the data they contain.

§ All paragraph and section names should describe the function of
the paragraph or section.

24 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
Describing DATA

There are basically three kinds of data used in COBOL programs;
1. Variables.
2. Literals.
3. Figurative Constants.

Unlike other programming languages, COBOL does not support
user defined constants.

25 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Data-Names / Variables
§ Avariable is a named location in memory into which a program can put
data and from which it can retrieve data.

§ A data-name or identifier is the name used to identify the area of memory
reserved for the variable.

§ Variables must be described in terms of their type and size.

§ Every variable used in a COBOL program must have a description in the
DATA DIVISION.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Using Variables

01 StudentName Pl C X(6) VALUE SPACES.

MOVE "JOHN' TO St udent Nane.
DI SPLAY "My nane 1s ", Student Nane.

-

St udent Nane

COBOL Programming Fundamental © 2004 IBM Corporation

28

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Using Variables

[l
iU
!!JMI
11
""Hll

St udent Nane

COBOL Programming Fundamental

© 2004 IBM Corporation

29

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Using Variables

[l
iU
!!JMI
11
""Hll

St udent Nane

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
COBOL Data Types

8

COBOL is not a “typed” language and the distinction between some of
the data types available in the language is a little blurred.

For the time being we will focus on just two data types,
— numeric

— text or string

Data type is important because it determines the operations which are
valid on the type.

COBOL is not as rigorous in the application of typing rules as other
languages.

For example, some COBOL “numeric” data items may, from time to time,
have values which are not “numeric”!

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
Quick Review of “Data Typing”

§ In“typed” languages simply specifying the type of a data item provides
quite a lot of information about it.

§ The type usually determines the range of values the data item can store.

For instance a CARDINAL item can store values between 0..65,535 and an
INTEGER between -32,768..32,767

§ From the type of the item the compiler can establish how much memory to
set aside for storing its values.

§ Ifthe type is “REAL” the number of decimal places is allowed to vary

dynamically with each calculation but the amount of the memory used to
store a real number is fixed.

31 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
COBOL data description

8

Because COBOL is not typed it employs a different mechanism for
describing the characteristics of the data items in the program.

COBOL uses what could be described as a “declaration by
example” strategy.

In effect, the programmer provides the system with an example, or
template, or PICTURE of what the data item looks like.

From the “picture” the system derives the information necessary to
allocate it.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
COBOL ‘PICTURE’ Clause symbols

§ To create the required ‘picture’ the programmer uses a set of symboils.

§ The following symbols are used frequently in picture clauses;

9 (the digit nine) is used to indicate the occurrence of a digit at the corresponding
position in the picture.

X (the character X) is used to indicate the occurrence of any character from the
character set at the corresponding position in the picture

V (the character V) is used to indicate position of the decimal point in a numeric
value! It is often referred to as the “assumed decimal point” character.

S (the character S) indicates the presence of a sign and can only appear at the
beginning of a picture.

33 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
COBOL ‘PICTURE’ Clauses

§ Some examples

PICTURE 999 a three digit (+ive only) integer
PICTURE S999 a three digit (+ive/-ive) integer

PICTURE XXXX a four character text item or string
PICTURE 99V99 a +ive ‘real’ in the range 0 to 99.99
PICTURE S9V9 a +ive/-ive ‘real’ in the range ?

§ If you wish you can use the abbreviation
§ Numeric values can have a maximum of 18 (eighteen) digits (i.e. 9's).

§ The limit on string values is usually system-dependent.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Abbreviating recurring symbols

§ Recurring symbols can be specified using a ‘repeat’ factor inside round
brackets

PIC 9(6) is equivalent to PICTURE 999999

PIC 9(6)V99 is equivalent to PIC 999999Vv99
PICTURE X(10) is equivalent to PIC XXXXXXXXXX
PIC S9(4)V9(4) is equivalent to PIC S9999Vv9999
PIC 9(18) is equivalent to PIC 999999999999999999

35 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
Declaring DATA in COBOL

§ In COBOL a variable declaration consists of a line containing the following

items;
1. Alevel number.
2. A data-nameor identifier.

3. A PICTURE clause.

§ We can give a starting value to variables by means of an extension to the

picture clause called the value clause.

DATA Dl VI SI ON.

VWORKI NG STORAGE SECTI ON.

PIC 999 VALUE ZEROS.
PIC VO9 VALUE .18.
Pl C X(10) VALUE SPACES.

/\/\—\//-"'\/\/]

01 Nunml
01 VatRate
01 Student Nane
DATA
Numl VatRate StudentName
000 .18

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
COBOL Literals

§ String/Alphanumeric literals are enclosed in quotes and may consists of
alphanumeric characters

e.g. "Michael Ryan", "-123", "123.45"

§ Numeric literals may consist of numerals, the decimal point and the plus or
minus sign. Numeric literals are not enclosed in quotes.

e.g. 123, 123.45, -256, +2987

37 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Figurative Constants

§ COBOL provides its own, special constants called Figurative Constants.

SPACE or SPACES

ZERO or ZEROS or ZEROS
QUOTE or QUOTES
HIGH-VALUE or HIGH-VALUES
LOW-VALUE or LOW-VALUES
ALL literal

Max Vaue
Min Vaue
Fill With Literal

COBOL Programming Fundamental

© 2004 IBM Corporation

39

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Figurative Constants - Examples

HEEEEEE
N

COBOL Programming Fundamental

© 2004 IBM Corporation

[
I

I

I
[T
«ul|
TLL

40

ISSC Shanghai, AMS, GCG

COBOL Basics 1

Figurative Constants - Examples

HEEREEE
N

COBOL Programming Fundamental

© 2004 IBM Corporation

[
I

I

I
[T
«ul|
TLL

=i tFergis A - [24 x 80]

] [l
IPIMF) FREE) Fm0H GBS0 TRaMAl UMW ALITH)

=HIEEELIELEE = @ elel=
= 7 T L=

i M T

)

=

=t T —

gk

VIEW WDGII}EYEGBS,EDEBLGU{ELLEEQG} S 6t L - Ou001 o

004900

I

BLLS240.
FINSTEIN-Y. TANAKA.
98,/01,/21.

IBM-9121.
IBM-9121.

;;

11

i a T =
<50 luf7°— il EAIDD160 BT F°—F 23 H{EFLT YE—F-—n"—/ifZ} adm.nankoh.japan.ibm.com (38 LEL

ISSC Shanghai, AMS, GCG

COBOL Basics 1
Editing, Compiling, Running

42

/1 EV6098A JOB (F9500B, WD01X), ' EV6098' , NOTI FY=EV6098,

/1 MSGLEVEL=(1, 1),

Il CLASS=M MSGCLASS=R, USER-WWD01UJ1, PASSWORD=MON10JUN
//***
/[1* U BMCL: COWPILE AND LI NKEDIT A COBOL PROGRAM

I1*

/ /U BMCL PROC WSPC=500, NAME=TEMPNANME

I1*

I1* COWPI LE THE COBOL PROGRAM

I1*

/1 COB EXEC PGWEI GYCRCTL,

Il PARME' APOST, LI B, NOSEQ, RENT, TRUNC(BI N) , LANG(UE)

// STEPLIB DD DSN=SYSL. | GY. S| GYCOWP, DI SP=SHR

/ISYSIN DD DSN=WDO1l . DS. COBOL&SRC(&NAME) , DI SP=SHR
//SYSLIB DD DSN=WDO1l . DS. COPY©, DI SP=SHR <=== BLK 3120
/1] DD DSN=MQM SCSQCOBC, DI SP=SHR

//SYSLIN DD DSNEWDO1l. DS. UT. OBJ&SRC(&NANE) , DI SP=SHR

/ | OUTDEF OUTPUT PRMODE=SOSI 2, CHARS=(KN10, KNJE)

/1 SYSPRINT DD SYSOUT=*, OUTPUT=*. OUTDEF

/1 SYSUDUMP DD SYSOUT=*

//1SYSUTL DD SPACE=(800, (&WSPC, &ABPC), , , ROUND) , UNI T=3390
/1SYSUT2 DD SPACE=(800, (&WSPC, &ABPC), , , ROUND) , UNI T=3390

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
Editing, Compiling, Running

43

/1*

/1*

/1*

/1*

/ | LKED
/1 SYSLI B
/1

/1

/ | OBJECT
/ | CSQSTUB
/ | CEEUOPT
/ | SYSLMOD
/1 SYSLIN
/1

/1

EXEC

SECACACECACACACECAS

LINKEDIT I F THE COWPI LE
RETURN CODES ARE 4 OR LESS

PGVEHEW., PARME' XREF' , COND=(4, LT, COB)
DSN=SYS1. SCEELKED, DI SP=SHR

DSN=DSNCFD. SDSNEXI T, DI SP=SHR

DSN=DSNCFD. DSNLOAD, DI SP=SHR

DSN=WDO1I . DS. UT. OBJ&SRC, DI SP=SHR
DSN=MQM SCSQLOAD, DI SP=SHR

DSN=WDO1! . DS. LOADOO, DI SP=SHR

DSN=WDO1! . DS. UT. LOAD&SRC(&NAME) , DI SP=SHR
DSN=WDO1I . DS. UT. OBJ&SRC(&NAME) , DI SP=SHR
DSN=WDO1I . CSL1. PARMLI B(DSNELI), DI SP=SHR
DSN=WDO1I . DS. PARAMDO(CEEUCPT) , DI SP=SHR

/ | OUTDEF OUTPUT PRMODE=SOSI 2, CHARS=(KN10, KNJE)
/1 SYSPRINT DD SYSOUT=*, OUTPUT=*. OUTDEF

/1 SYSUDUMP DD SYSOUT=*

DD SPACE=(4096, (500, 500)), UNI T=3390
/1] PEND

[/ SYSUT1

[1*

[/ COVP EXEC U BMCL, SRC=00, COPY=00, NAME=BUAC25

//COB. SYSIN DD DSN=WDO1l.EV6098. COBOLOO(BUAC25)
COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 1
Editing, Compiling, Running
/| EV6098G2 JOB (F9500B, WDO1X), CFD, TI ME=1440,

/1 REG ON=8M CLASS=M MBGCLASS=R, MSGLEVEL=(1, 1),
/1 NOTI FY=EV6098, USER=WD01UJ 1, PASSWORD=MON10J UN
//JOBLIB DD DSN=VWDO1l. DS. UT. LOADOO, DI SP=SHR
/1 DD DSN=DSNCFD. DSNLOAD, DI SP=SHR
//**
/| SCR EXEC DSNDCR

DSN=WDO1! . DS. PCDERR. CHK. REPORT
s s S S c S S SO0 cE o000 500 c 0000000000 00000 0005005050050 000000000
/] * BUAC25 DUW25 CREATE
s s S S c S S SO0 cE o000 500 c 0000000000 00000 0005005050050 000000000

/] STEP160 EXEC PGMEBUAC25, COND=(4, LT)
//1DUM3 DD DSN=&&DUW 3T, DI SP=(OLD, DELETE)
/1 UAC250 DD DSN=WDO1l. DS. PCDERR. CHK. REPORT, DI SP=(, CATLG),

/1] UNI T=3390, VOL=SER=EGF001, SPACE=(CYL, (15, 15), RLSE)
/1] DCB=(RECFMEFBA, LRECL=133, BLKS| ZE=0)

/] OFSW6 DD SYSOUT=*

/1 SYSPRINT DD SYSOUT=*

/1 SYSUDUMP DD SYSOUT=*

/| SYSABOUT DD SYSOUT=*

/1 SYSOUT DD SYSOUT=*

/*

44 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

EXERCISE 1

COBOL Programming Fundamental

© 2004 IBM Corporation

f—
—

=

2 =F ==
=
—

—_

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL
COBOL Basics 1

-2 COBOL Basics 2
Introduction to Sequential Files

Processing Sequential Files
Simple iteration with the PERFORM verb

Arithmetic and Edited Pictures

Conditions
Tables and the PERFORM ... VARYING

Designing Programs

46 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2

Overview

mLevel Numbers.

mGroup and elementary data items.
mGroup item PICTURE clauses.

mThe MOVE. MOVEiIng numeric items.
mDISPLAY and ACCEPT.

47 COBOL Programming Fundamental © 2004 IBM Corporation

48

ISSC Shanghai, AMS, GCG

COBOL Basics 2

Group Items/Records

VORKI NG- STORAGE SECTI ON.

01 StudentDetails Pl C X(26).

StudentDetails

550F|

HENNESSYRM9230165LM510

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2

Group Items/Records

WORKI NG- STORAGE SECTI ON.
01 StudentDet ail s.
02 Student Name Pl C X(10).
02 Studentld PIC 9(7).
02 CourseCode Pl C X(4).
02 G ant Pl C 9(4).
02 GCender Pl C X
StudentDetalls
IHENNESSYRM923 0O16 5LM510 55OIFI
StudentName Studentid CourseCode Grant Gender

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2

Group Items/Records

02

02
02
02
02

WORKI NG- STORAGE SECTI ON.
01 StudentDetails.

St udent Namre.
03 Sur nane
O3 Initials
St udent i d
Cour seCode
G ant

Gender

PI C X(8).

Pl C XX

PIC 9(7).
C X(4).
9(4).

P
Pl C
PIC X

StudentDetails

HENNESSYVY|JRMIO 23 016 5JL M5 10 550|F

StudentName
Surname

Studentid
Initials

COBOL Programming Fundamental

CourseCode Grant Gender

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
LEVEL Numbers express DATA hierarchy

§ In COBOL, level numbers are used to decompose a structure into it's
constituent parts.

§ In this hierarchical structure the higher the level number, the lower the item
IS in the hierarchy. At the lowest level the data is completely atomic.

§ The level numbers 01 through 49 are general level numbers but there are

also special level numbers such as 66, 77 and 88.

In a hierarchical data description what is important is the relationship of the

level numbers to one another, not the actual level numbers used.

01 StudentDetail s. 01 StudentDetail s.
02 St udent Nane. 05 St udent Nane,
03 Sur nane Pl C X(8) 10 Sur nanme Pl C X(8)
03 Initials Pl C XX . 10 Initials Pl C XX
02 Studentld PIC 9(7). — 05 Studentld PIC 9(7).
02 Cour seCode Pl C X(4). 05 Cour seCode Pl C X(4).
02 G ant PIC 9(4). 05 G ant PIC 9(4).
02 Gender PI C X 05 Gender PIC X

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2

Group and elementary items

§ In COBOL the term “group item” is used to describe a data item which has

been further subdivided.

A Group item is declared using a level number and a data name. It cannot have a picture
clause.

Where a group item is the highest item in a data hierarchy it is referred to as a record and
uses the level number O1.

§ The term “elementary item” is used to describe data items which are atomic;
that is, not further subdivided.
§ An elementary item declaration consists of;

1. alevel number,
7. adata name

3. picture clause.
An elementary item must have a picture clause.

§ Every group or elementary item declaration must be followed by a full stop.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
PICTUREs for Group ltems

§ Picture clauses are NOT specified for ‘group’ data items because the
Size a group item is the sum of the sizes of its subordinate, elementary
items and its type is always assumed to be PIC X.

§ The type of a group items is always assumed to be PIC X because
group items may have several different data items and types
subordinate to them.

§ An X picture is the only one which could support such collections.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
Assignment in COBOL

8

In “strongly typed” languages like Modula-2, Pascal or ADA the
assignment operation is simple because assignment is only allowed
between data items with compatible types.

The simplicity of assignment in these languages is achieved at the “cost”
of having a large number of data types.

In COBOL there are basically only three data types,
Alphabetic (PIC A)
Alphanumeric (PIC X)
Numeric (PIC 9)

But this simplicity is achieved only at the cost of having a very complex
assignment statement.

In COBOL assignment is achieved using the MOVE verb.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
The MOVE Verb

55

} Identifier ()

MOVE]| .
i Literal %

TO{Identifier} ...

The MOVE copies data from the source identifier or literal to one or
more destination identifiers.

The source and destination identifiers can be group or elementary
data items.

When the destination item is alphanumeric or alphabetic (PIC X or
A) data is copied into the destination area from left to right with
space filling or truncation on the right.

When data is MOVEd into an item the contents of the item are
completely replaced. If the source data is too small to fill the
destination item entirely the remaining area is zero or space filled.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
MOVEing Data

01 Surnane PIC X(8).

56 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
MOVEing Data

01 Surnane PIC X(8).

57 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
MOVEing Data

01 Surnane PIC X(8).

ENEERENEE -«

58 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2

MOVEing to a numeric item
§ When the destination item is numeric, or edited numeric, then data is
aligned along the decimal point with zero filling or truncation as necessary.

S When the decimal point is not explicitly specified in either the source or

destination items, the item is treated as if it had an assumed decimal point
immediately after its rightmost character.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2

MOVEing to a numeric item

COBOL Programming Fundamental

O /010
N
1
2 14 0
N
I
314 |5 |6
N
I
71517
N
1

© 2004 IBM Corporation

1

I
<m||
([L

—
—

-

- ey o
I
=

—1

—

ISSC Shanghai, AMS, GCG

COBOL Basics 2

MOVEing to a numeric item

CountyPop

1234J=I

CountyPop 1o |1 | 2 | 4

Pricel, 1| 514 |0

Price I
31515 |2 |75

-

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
Legal MOVEs

Certain combinations of sending and receiving data types are not
permitted (even by COBOL).

MOVE COMBINATIONMS.

ALFHAMUHERIC
NUMERIC INTEGER ®<'|>\ NUMERIC IMTEGER
MUHERIC NON-INTEGER A/ ¥y MUMERIC NON—INTEGER
NUMERIC EDITED A/ y>sy NUMERIC EDITED
ALPHANUMERIC EDITED "

ALPHANUMERIC EDITED
[ALPHABETIC A

ALFHABETIC |

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
The DISPLAY Verb

DISPLAY i Identifier G & ldentifier gu
T {Literal & Literal Py

[UPON Mnemonic - Name][WITH NO ADVANCING]

§ From time to time it may be useful to display messages and data
values on the screen.

§ A simple DISPLAY statement can be used to achieve this.

§ A single DISPLAY can be used to display several data items or
literals or any combination of these.

§ The WITH NO ADVANCING clause suppresses the carriage
return/line feed.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

COBOL Basics 2
The ACCEPT verb
Format 1. ACCEPT Identifier [FROM Mnemonic - name]

IDATE v
Format 2. ACCEPT Identifier FROM }M i,
i DAY -OF - WEEK #
1TIME b
01 CurrentDate PIC 9(6).
* YYMVDD
01 Da%d Year PIC 9(5).
* YYDD
01 DayOf Week PIC 9.
* D (1=Monday)
01 Current Ti me PIC 9(8).
* HHMVESS s s = 5/100

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. Acce%OAnle spl ay.

AUTHOR. M chael ughl an.
COBOL Basics 2 WORK| NG STORAGE. SECTI ON
R ‘A 4 Displ 01 gtzudg{]t get ?i\l!as' '
uden me.
un or Accept an ISplay program 03 Surnane | C X(8)
03 Initials Pl C XX.
02 Studentld | C 9(7).
02 CourseCode Pl C X(4).
02 G ant | C 9(4).
02 Gender | C X
Ent er student details using tenplate bel ow
01 CurrentDat e.
NNNNNNNNNNSSSSSSSCCCCGGEGEGES 02 Current Year PI C 99
COUGHLANMBS9476532L.M611245M 02 Current Month Pl C 99
Name is MS COUGHLAN 02 Current Day I C 99
Date is 24 01 94 01 B)%y(] Year. o1 C 09
Today is day 024 of the year FILLER -
The tinme is 22:23 Uz MEEIIRLY e el

01 CurrentTi ne.
02 Current Hour
02 CurrentM nute

PROCEDURE DI VI SI ON. 02 FILLER
Begi n.

UUT
olele
(o] (o] (o]
—~w©OO
b- -
~

DI SPLAY "Enter student details using tenplatc wer vw .
DI SPLAY " NNNNNNNNNNSSSSSSSCCCCGEGEGEGES .
ACCEPT StudentDetails.

ACCEPT Current Date FROM DATE.

ACCEPT DayO Year FROM DAY.

ACCEPT Current Ti me FROM Tl ME.

DI SPLAY "Nane is ", Initials SPACE Surnane.

DI SPLAY "Date is " CurrentDay SPACE Current I\/bnth SPACE Current Year.

DI SPLAY "Today is day " YearDay " of the year'’
DI SPLAY "The tine is " CurrentHour ":" CurrentM nute.
STOP RUN.

65 COBOL Programming Fundamental

© 2004 IBM Corporation

f—
—

=

2 =F ==
=
—

—_

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2

--% Introduction to Sequential Files

Processing Sequential Files
Simple iteration with the PERFORM verb

Arithmetic and Edited Pictures

Conditions
Tables and the PERFORM ... VARYING

Designing Programs

66 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Overview

Files, records, fields.
The record buffer concept.

The SELECT and ASSIGN clause.

«w wu wu w

67 COBOL Programming Fundamental

OPEN, CLOSE, READ and WRITE verbs.

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
COBOL's forte

§ COBOL is generally used in situations where the volume of
data to be processed is large.

§ These systems are sometimes referred to as “data intensive”
systems.

§ Generally, large volumes of data arise not because the data is
inherently voluminous but because the same items of
information have been recorded about a great many instances
of the same object.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Files, Records, Fields

§ We use the term FIELD to describe an item of information we are
recording about an object

(e.g. StudentName, DateOfBirth, CourseCode).

§ We use the term RECORD to describe the collection of fields which
record information about an object

(e.g. a StudentRecord is a collection of fields recording information about
a student).

§ We use the term FILE to describe a collection of one or more
occurrences (instances) of a record type (template).

§ It is important to distinguish between the record occurrence (i.e. the
values of a record) and the record type (i.e. the structure of the record).
Every record in a file has a different value but the same structure,

69 COBOL Programming Fundamental © 2004 IBM Corporation

70

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Files, Records, Fields

S ITUDENTS. IDAT

__—Record Type
(Template)
(Structure)

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
How files are processed

71

8

Files are repositories of data that reside on backing storage (hard disk

or magnetic tape).

A file may consist of hundreds of thousands or even millions of

records.

Suppose we want to keep information about all the TV license holders
in the country. Suppose each record is about 150 characters/bytes
long. If we estimate the number of licenses at 1 million this gives us a

size for the file of 150 X 1,000,000 = 150 megabytes.

If we want to process a file of this size we cannot do it by loading the

whole file into the computer’'s memory at once.

Files are processed by reading them into the computer’'s memory one

record at a time.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Record Buffers

§ To process a file records are read from the file into the computer’'s
memory one record at a time.

§ The computer uses the programmers description of the record (i.e.
the record template) to set aside sufficient memory to store one
iInstance of the record.

§ Memory allocated for storing a record is usually called a “record
buffer”

§ The record buffer is the only connection between the program and
the records in the file.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Record Buffers

RecordBuffer
Declaration

73 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Implications of ‘Buffers’

§ If your program processes more than one file you will have to
describe a record buffer for each file.

§ To process all the records in an INPUT file each record instance
must be copied (read) from the file into the record buffer when
required.

§ To create an OUTPUT file containing data records each record
must be placed in the record buffer and then transferred (written) to
the file.

§ To transfer a record from an input file to an output file we will have
to
read the record into the input record buffer

transfer it to the output record buffer
write the data to the output file from the output record buffer

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS

, GCG

Introduction to Sequential Files

Creating a Student Record

Student Id.

Student Name.
Surname
Initials

Date of Birth
Y ear of Birth
Month of Birth
Day of Birth

Course Code
Value of grant
Gender

01
02
02

02

02
02
02

St udent Det ai | s.

Student | d

St udent Nanme.
03 Surname PIC X(8).
O3 Initials PIC XX

Pl C 9(

Dat e Bi rt h.

03 YOBirth Pl C 99.
03 MOBI rt h Pl C 99.
03 DOBirth Pl C 99.
CourseCode PIC X(4).

G ant PIC 9(4).
Gender PIC X

7).

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Describing the record buffer in COBOL

DATA Dl VI SI ON.
FI LE SECTI ON.
FD StudentFil e.
01 StudentDetails.
02 Studentld PIC 9(7).
02 St udent Nane.
03 Sur nane Pl C X(8).
O3 Initials Pl C XX
02 DateOrBirth.
03 YOBirth Pl C 9(2
03 MOBirth PIC 9(2
03 DABirth PIC 9(2
02 Cour seCode Pl C X(4
02 Gant PIC 9(4
02 Gender Pl C X

§ The record type/template/buffer of every file used in a program
must be described in the FILE SECTION by means of an FD (file
description) entry.

§ The FD entry consists of the letters FD and an internal file name.
COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files

The Select and Assign Clause

[ISTEP160 EXEC PGM=BUAC25,COND=(

//STUDENTSWUDENTS.DAT,I
*kkkk (

]

DISK

STUDENTS.DAT

-~

ENVI RONVENT DI VI SI ON.
| NPUT- QUTPUT SECTI ON.
FI LE- CONTRQOL.
SELECT StudentFil e
SI GN TO “ STUDENTS" .

VI SI ON.
FI LE SECTI ON.
FD StudentFil e.
01 StudentDetails.

02 Studentld PIC 9(7).
02 St udent Nane.
03 Sur nane Pl C X(8).
O3 Initials Pl C XX.
02 DateOrBirth.
03 YOBirth Pl C 9(2).
03 MBirth PIC 9(2).
03 DOBirth PIC 9(2).

*kkk*k*k k%%

§ The internal file name used in the

L \/IILI] IV VUIITITITVULULUU LU WAL w/AALU LTIl iy \UII

disk or tape) by means of the Select and Assign clause.

77 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
Select and Assign Syntax

SELECT FileNameASSIGN TO External FileReferene

SEQUENTIAL].

iLINE
[ORGANIZATION IS 7
{ RECORDY,

§ LINE SEQUENTIAL means each record is followed by the
carriage return and line feed characters.

§ RECORD SEQUENTIAL means that the file consists of a
stream of bytes. Only the fact that we know the size of
each record allows us to retrieve them.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
COBOL file handling Verbs

8

OPEN
Before your program can access the datain an input file or place datain an
output file you must make the file available to the program by OPENIng it.

READ

The READ copies a record occurrence/instance from the file and placesit in
the record buffer.

WRITE
The WRITE copies the record it finds in the record buffer to thefile.

CLOSE

Y ou must ensure that (before terminating) your program closes all thefilesiit
has opened. Failure to do so may result in data not being written to the file or
users being prevented from accessing the file.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
OPEN and CLOSE verb syntax

11INPUT i
OPEN {{ OUTPUT y InternalFi leNamey...
H EXTEND |, |O

§ When you open a file you have to indicate to the system
what how you want to use it (e.g. INPUT, OUTPUT,
EXTEND) so that the system can manage the file correctly.

§ Opening a file does not transfer any data to the record
buffer, it simply provides access.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
The READ verb

§ Once the system has opened a file and made it available to the program
it is the programmers responsibility to process it correctly.

§ Remember, the file record buffer is our only connection with the file and
it is only able to store a single record at a time.

§ To process all the records in the file we have to transfer them, one
record at a time, from the file to the buffer.

§ COBOL provides the READ verb for this purpose.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
READ verb syntax

READ InternalFi lename [NEXT |RECORD

[INTO Identifier]

AT END StatementB lock
END - READ

§ The InternalFilename specified must be a file that has been
OPENed for INPUT.

§ The NEXT RECORD clause is optional and generally not used.

§ Using INTO Identifier clause causes the data to be read into the
record buffer and then copied from there to the specified
|dentifier in one operation.

— When this option is used there will be two copies of the data. Itis
the equivalent of a READ followed by a MOVE.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
How the READ works

StudentRecord
StudentID StudentName Course.
(—19(313[4|5|6|7[F|r|a|n]|k Clulr|t]aliln LIM|O|5]1
AN
\—191|3|3(4|5|6|7|F|r|a|n]k Clufr|t]ali]|n LIM[O]|5]1
91318[3]|7|1|5|T|h|jo|m]a]|s Hlelall |y LIM|0|6]8
913(4|7(2]9]|2]|T]o|n]y Ol“|Bfr|i]aln L{M[O]|5]1
913178181 1|B]i|l]l]y Dlo|w|[n]e]|s LIM]O]2|1
EOF

PERFORM UNTIL StudentRecord = HIGH-VALUES
READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord
END-READ
END-PERFORM.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
How the READ works

StudentRecord

StudentID StudentName Course.

491318|3|7|1|5||T|h]Jo|lm|a]s Hlelal|l |y L{M|0O]|6(8
N\

913|3|4|5|6|7|F|r]a|n]|k Clufr|t]ali|n LIM|O|5]1
~—[9[3]8[3]7]a]5]T[n[o]m[a]s] [H[e[a]I]y L{m[o]6]8

91314|7[2|9]|2|T|ofn]y Ol |Bfr|i]aln L{M]O]5]1

913|7(8]|8]|1|1|B]i]l]l]y Dlo|w|n]e]s LIM]O]2|1

EOF

PERFORM UNTIL StudentRecord = HIGH-VALUES
READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord
END-READ
END-PERFORM.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
How the READ works

StudentRecord
StudentID StudentName Course.
291314(712]9|2]|(T]o|n]|y Ol [B]r]ilaln L{M|O]|5]1
913|3|4|5|6|7|F|r]a|n]|k Clujr]tfali|n LIM|O|5]1
9(3]|8[3|7[1|5[T|h|o|m|a]|s Hlela]|l |y L{M|]0|6]|8
\—J|9[3]4al7[2]9]2]T]eln]y] lo][8] [ilaln L{mlo]5]1
of3|7(8|8|1|1[B]i|l]|l]y Dlo|w|n]e]s LIM]O]2(1
EOF

PERFORM UNTIL StudentRecord = HIGH-VALUES
READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord
END-READ
END-PERFORM.

85 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
How the READ works

StudentRecord

StudentID StudentName Course.

X937 (88|11 (BJifl]|!l]y Dlo|w|n]|e]|s L{M|O]2]1
/—\ 9(3(3|4|5|6|7|F|rla|n|k Clufr]t]ali]|n LIM[O|5]1

9(318[3]|7[1]|5(T|h]jo|m|a]|s Hlelal|l |y L{M]0| 6|8
5 91314|712|9(2|T|jo|n]y Ol“IB|r|i]aln LIMIO|5]1
___1la|3|[7]|s]|s|1|1[Bli]I]1]y|] [D]o|w|n]els L|m[o]2]1

EOF

PERFORM UNTIL StudentRecord = HIGH-VALUES
READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord
END-READ
END-PERFORM.

86 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files

How the READ works
StudentRecord

StudentID StudentName Course.
JIIJIIIIIII|I|NIIIII|I(III|I|III|IIIII|III|I(I|I|II|I

HIGH-VALUES
913|3|4|5]|6|7|F]|r|a|n]|k Clu|rft]aliln L{M|O[5]1
913]18[3|7]|1|5[T|h|o|m|a]s Hlelal|l |y L{M]|0|6]|8
91314|712]|9]|2|T|o|n]|y O|“|B|r]i]aln L{M[O]|5]1
913|7(8|8|1|1[B]i|l]l]y Dfo|w|n|e]|s L{M|O]|2(1
EOF

PERFORM UNTIL StudentRecord = HIGH-VALUES
READ StudentRecords
AT END MOVE HIGH-VALUES TO StudentRecord
END-READ
END-PERFORM.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
WRITE Syntax

WRITE RecordName [FROM Identifier |

é i éLINE uuu
é | AdvanceNum & gi U
& BEFORE i) ! GML“ g
& ——— 7 ADVANCING |'Mnemon|cNa me y
e AFTER. % Z:ﬁ PAGE ! 4
e -- U
& t b

§ To WRITE data to a file move the data to the record
buffer (declared in the FD entry) and then WRITE
the contents of record buffer to the file.

88 COBOL Programming Fundamental © 2004 IBM Corporation

89

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
How the WRITE works

StudentID StudentName Course.
91313|4|5|6]|7(|F|rlaln]|k Clulr L{M|[O|5]1
9(3|3|14|5|6|7|F|rlaln|k Clulr|t M|IO|5]1

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Introduction to Sequential Files
How the WRITE works

StudentID StudentName Course.
913]8|3|7[1]|5]|T|h]Jo|m]|als Hlielall]y L{M[O]|6]8
913|3l41|5|6]|7]|F]lrlaln]k Clulr]t]ali|n L{M[O|5](1
913(8|3|7|1|5|T|h]o als Hlelal|l]y LIM(O|6|8

90 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG
| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. SegWite.

ENVI RONVENT DI VI SI ON.
| NPUT- QUTPUT SECTI ON. Sample Code
FI LE- CONTROL.
SELECT Student ASSI GN TO STUDENTS
ORGANI ZATI ON 1S LI NE SEQUENTI AL.

DATA DI VI SI ON.
FI LE SECTI ON.

FD St udent.
01 StudentDetails.
02 Studentld PI C 9(7)
02 Student Nane.
03 Sur nane Pl C X(8).
O3 Initials Pl C XX
02 DateOBirth.
03 YOBirth PIC 9(2).
03 MXBirth Plcggzg.
03 DABirth PIC 9(2).
02 Cour seCode PI C X(4).
02 G ant PIC 9(4).
02 Gender PI C X
PROCEDURE DI VI SI ON.
Begi n.

OPEN QUTPUT St udent .
DI SPLAY "Enter student details using tenplate bel ow
PERFORM Get St udent Det ai | s.
PERFORM UNTI L StudentDetail s = SPACES
WRI TE St udentDetails
PERFORM Get St udent Detai l s
END- PERFORM
CLCSE St udent .
STOP RUN.

Get St udent Det ai | s.
DI SPLAY " NNNNNNNSSSSSSSSI | YYMVDDCCCCGGEGEGES" .
ACCEPT StudentDetail s.

Enter no data to end.".

ISSC Shanghai, AMS, GCG

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. SeqRead.
AUTHOR. M chael Coughl an.

ENVI RONVENT DI VI SI ON. Sample Code

| NPUT- OUTPUT SECTI ON.
FI LE- CONTROL.
SELECT Student ASSI GN TO STUDENTS
ORGANI ZATI ON | S LI NE SEQUENTI AL.

DATA DI VI SI ON.
FI LE SECTI ON.

FD St udent.
01 StudentDetail s.
02 Studentld PI C 9(7)
02 Student Nane.
03 Sur nane Pl C X(8).
O3 Initials Pl C XX
02 DateOBirth.
03 YOBirth PIC 9(2).
03 M3ABirth Plcggzg.
03 DOBirth PIC 9(2).
02 Cour seCode PI C X(4).
02 G ant PIC 9(4).
02 Cender Pl C X
PROCEDURE DI VI S| ON.
Begi n.
OPEN | NPUT St udent
READ St udent
AT END MOVE H GH VALUES TO StudentDetail s
END- READ

PERFORM UNTI L StudentDetails = H G+ VALUES
DI SPLAY Student|d SPACE Student Nane SPACE Cour seCode
READ St udent
AT END MOVE H GH VALUES TO StudentDetail s
END- READ
END- PERFORM
CLOSE St udent
STOP RUN.

I
i

—

—
-
=
=
=

—

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL
COBOL Basics 1

COBOL Basics 2

Introduction to Sequential Files

--= Processing Sequential Files
Simple iteration with the PERFORM verb

Arithmetic and Edited Pictures

Conditions
Tables and the PERFORM ... VARYING

Designing Programs

93 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Overview
§ File organization and access methods.
§ Ordered and unordered Sequential Files.
§ Processing unordered files.
§ Processing ordered files.

94 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

$ SET SOURCEFORVAT" FREE"
| DENTI FI CATI ON DI VI SI ON.
PROGRAM- | D. SegWite.

Processing Sequential Fil@gs #ehaet Cougalan
Run of SeqWrite FNPUT. QUTPUT SECTI QN
FI' LE- CONTROL. _
SELECT StudentFile ASSIGN TO STUDENTS

Enter student details using tenplate bel ow REAN] &I BN 5 R INE 120228 o8
NNNNNNNSSSSSSSSI | YYMVDDCCCCGGEEGES DATA DI VI SI ON.
9456789 COUGHLANVE580812LM610598M FI LE SECTI ON.
NNNNNNNSSSSSSSSI | YYMVDDCOCCGRGGES FD StudentFi |l e.
01 StudentDetails.
9367892RYAN TG521210LM601222F 02 &t udentl d PIC 9(7)
NNNNNNNSSSSSSSSI | YYMVDDCCCCGGEGEGES 02 Student Nane. '
9368934W LSON HR520323LM10786M 03 Sur name PI C X(8).
NNNNNNNSSSSSSSSI | YYMVDDCCCCGREGES 05 c[))g Ig tB i alﬁ PI C XX.
i te 1 rth.
CarriageReturn 03 YOBirth PIC 9(2).
. 03 MBirth PIC 9(2).
02 82 DOBicgfjh Elg ?(421 '
ur se e .
PR(I:E_ DURE DI VI SI ON. 02 & ant PIC 94}
Begi n. 02 Gender PIC X

OPEN OQUTPUT StudentFil e
DI SPLAY "Enter student details using tenpiate pelow. Fress UK LO ena.
PERFORM Get St udent Det ai | s
PERFORM UNTI L Student Details = SPACES
VWRI TE St udentDetail s
PERFORM Get St udent Det ai | s
END- PERFORM
CLCSE StudentFile
STOP RUN.

Get St udent Det ai | s.
DI SPLAY " NNNNNNNSSSSSSSSI | YYMVDDCCCCGGEGEGES" .
ACCEPT St udent Det ai l s.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

$ SET SOURCEFORVAT" FREE'

Processing Sequential Filegpem# anavovsion
RUN OF SegRead AUTHOR ' M chael Coughl an.

ENVI RONVENT DI VI SI ON.
I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.
SELECT StudentFile ASSI GN TO STUDENTS
ORGANI ZATI ON | S LI NE SEQUENTI AL.

A\ 4

9456789 COUGHLANMS LMb1 DATA DI VI SI ON.
FD St udent B |
udent Fi | e.
9367892 RYAN TG LMcO 01 Student Details.
9368934 WLSON HR LMB1 02 Zudentid ~— PICO(7),
03 Sur nane Pl C X(8).
O3 Initials Pl C XX
02 DateOBirth.
03 YOBirth PIC 9(2).
03 DoBi 11 h Bl G 9(3
ir ;
EeRéIi:EDURE DI VI SION. 02 Cour seCode PIC X(4).
:) 02 G ant PIC 9(4).
OPEN | NPUT StudentFil e 02 Cender Pl C X

READ St udentFil e
AT END MOVE HI G+ VALUES TO Studentuwetall s
END- READ
PERFORM UNTI L StudentDetails = H G4 VALUES
DI SPLAY Studentld SPACE St udent Nane SPACE Cour seCode
READ StudentFil e
AT END MOVE HI GH- VALUES TO StudentDetail s
END- READ
END- PERFORM
CLCSE StudentFil e
STOP RUN.

96 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Organization and Access

§ Two important characteristics of files are
- DATA ORGANIZATION

— METHOD OF ACCESS

§ Data organization refers to the way the records of the file are organized on
the backing storage device.

COBOL recognizes three main file organizations;

Sequential - Records organized serially.
Relative - Relative record number based organization.
Indexed

- Index based organization.

§ The method of access refers to the way in which records are accessed.

— Afile with an organization of Indexed or Relative may
still have its records accessed sequentially.

But records in a file with an organization of Sequential can not be accessed
directly.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Seqguential Organization

§ The simplest COBOL file organization is Sequential.

§ In a Sequential file the records are arranged serially, one after
another, like cards in a dealing shoe.

§ In a Sequential file the only way to access any particular record is
to;

Start at the first record and read all the succeeding records until you
find the one you want or reach the end of the file.

§ Sequential files may be
Ordered
or
Unordered (theseshould be called Serial files)

§ The ordering of the records in a file has a significant impact on the
way in which it is processed and the processing that can be done
on it.

98 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Ordered and Unordered Files

COBOL Programming Fundamental

Ordered File Unordered File
Recor dA Recor dM
Recor dB Recor dH
Recor dG Recor dB
Recor dH Recor dN
Recor dK Recor dA
Recor dM Recor dK
Recor dN Recor dG

In an ordered file the records are sequenced on some field in the record.

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Adding records to unordered files

100

Transaction

File

Recor dF
Recor dP
Recor dW

PROGRAM

Unordered
File

FI LE SECTI ON.

TFRec

UFRec

PROCEDURE DI VI SI ON.
OPEN EXTEND UF.
OPEN | NPUT TF.

READ TF.

MOVE TFRec TO UFRec.
WRI TE UFRec.

COBOL Programming Fundamental

Recor dM
Recor dH
Recor dB
Recor dN
Recor dA
Recor dK
Recor dG

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Adding records to unordered files

Transaction Unor der ed
File PROGRAM File
Recor dF LE SECTI ON. Recor dM

RecordF
Recor dP > Recor dH
Recor dwW Recor dF — Recor dB
PROCEDURE DI VI SI ON. Recor dN
OPEN EXTEND UF.
OPEN | NPUT TF. Recor dA
READ TF. Recor dK
MOVE TFRec TO UFRec.
VR TE UFRec. Recor dG
RecordF

COBOL Programming Fundamental © 2004 IBM Corporation

1

I
<m||
([L

—
—

-

- ey o
I
=

—1

—

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Adding records to unordered files

Transaction Unordered
File File

Recor dF Recor dM
Recor dP Recor dH
Recor dW Recor dB
Recor dN
Recor dA
RESULT Recor dK
Recor dG
Recor dF
RecordP
Recor dW

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Problems with Unordered Sequential Files

§ Itis easy to add records to an unordered Sequential file.

§ Butitis not really possible to delete records from an unordered
Sequential file.

§ And it is not feasible to update records in an unordered Sequential file

103 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Problems with Unordered Sequential Files

§
§

Records in a Sequential file can not be deleted or updated “in situ”.

The only way to delete Sequential file records is to create a new file
which does not contain them.

The only way to update records in a Sequential File is to create a new
file which contains the updated records.

Because both these operations rely on record matching they do not
work for unordered Sequential files.

Why?

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Deleting records from unordered files?

Transaction File

Recor dB
Recor dM
Recor dK

Unordered File
Recor dM

DeletertE
RECONH?

Recor dH
Recor dB
Recor dN
Recor dA
Recor dK

OBOL Programming Fundamental

New File

> Recor dM

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Deletin_% records from unordered files?
ransaction File

Recor dB
Recor dM
Recor dK

New File
Recor dM

»Recor dH

DeletertE
RECONH?

Unordered File

Recor dM
Recor dH
Recor dB
Recor dN
Recor dA
Recor dK

OBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Deleting records from unordered files?

Transaction File

Recor dB
Recor dM
Recor dK

Unordered File

Recor dM
Recor dH
Recor dB
Recor dN
Recor dA
Recor dK

DeletertE
RECONH?

Programming Fundamental

Recor dM
Recor dH

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Deleting records from unordered files?

Transaction File
Recor dB

Recor dM
Recor dK

Unordered File

Recor dM
Recor dH
Recor dB

DeletertE
RECONH?

Recor dN
Recor dA
Recor dK

OBOL Programming Fundamental

New File
Recor dM

Recor dH
» Recor dN

But walit...

We should have deleted RecordM.

Too late. It's already been written to

the new file.

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Deleting records from an ordered file
Transaction File PROGRAM New File

Recor dB FI LE SECTI ON.
Recor dK
Recor dM
\/
Ordered File OPEN | NPUT TF.
OPEN | NPUT OF
READ TF.
Recor dB READ OF.
Recor dG | F TFKey NOT = OFKey
MOVE OFRec TO NFRec
Recor dH WRI TE NFRec
Recor dK READ OF
ELSE
Recor dM READ TE
Recor dN READ OF
END- | F.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Deleting records from an ordered file

_—"RecordA

Transaction File PROGRAM
/\
Recor dB/ ' '_E SeCn Ol
Recor dK
Recor dM
P
Ordered File OPEN | NPUT TF.
, OPEN | NPUT OF
Recor dA OPEN QUTPUT NF.
READ TF.
Recor dB READ OF.
Recor dG | E TFRec NOT = OFRec
R r H MOVE OFRec TO NFRec
ecord VRl TE NFRec
Recor dK READ OF
Recor dM ELSE
READ TF
Recor dN READ OF
END- | F.
110 COBOL Programming Fundamental

New File

Problem !l
How can we recognize
which record we want

to delete?
By its Key Field

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Deleting records from an ordered file
Transaction File PROGRAM New File

Recor dB FI LE SECTI ON. Recor dA
Recor dK
Recor dM
- PROCEDURE DI VI SI ON.
Ordered Fil OPEN | NPUT TF.
R . OPEN | NPUT OF
280 dg/ OPEN OUTPUT NF.
Record READ TF.
Recor dG RERDNCh
| F TFKey NOT = OFKey
Recor dH MOVE OFRec TO NFRec
S|4 VRl TE NFRec
READ OF
Recor dM ELSE
Recor dN READ TF
READ OF
END-LE

111 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Deleting records from an ordered file
Transaction File

Recor dB _4—)
/7

Recor dK
Recor dM

Ordered Fil

Recor dA
Record

Record

Recor dH
Recor dK
Recor dM
Recor dN

112

PROGRAM

L! LE SECTI ON.

PROCEDURE DI VI SI ON.
OPEN | NPUT TF.
OPEN | NPUT OF
OPEN OUTPUT NF.
READ TF.
READ CF.
| F TFKey NOT = OFKey
MOVE OFRec TO NFRec
VWRI TE NFRec
READ CF
ELSE
READ TF
READ CF

New File

Recor dA
—~ RecordG

END- | F.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Deleting records from an ordered file

Transaction File

Recor dB
Recor dK
Recor dM

Ordered File

Recor dA
Recor dB
Recor dG
Recor dH
Recor dK
Recor dM
Recor dN

113

RESULT

COBOL Programming Fundamental

New File

Recor dA
Recor dG
Recor dH
Recor dN

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Uj?dating records in an ordered file

ransaction File

PROGRAM

Recor dB
Recor dH
Recor dK

Ordered File

Recor dA
Recor dB
Recor dG
Recor dH
Recor dK
Recor dM
Recor dN

COBOL Programming Furigi®

FI LE SECTI ON.

OPEN | NPUT TF.

OPEN | NPUT OF

OPEN OUTPUT NF.
READ TF.

READ OF.

| F TFKey = OFKey
Update OFRec with TFRec
MOVE OFRec+ TO NFRec
VWRI TE NFRec
READ TF
READ OF
ELSE
MOVE OFRec TO NFRec
VWRI TE NFRec

New File

READ OF

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Updating records in an ordered file

ransaction File/_\ PROGRAM New File
E SECTI ON.
Recor dB/ - Recor dA
Recor dH
Recor dK
P
Ordered File OPEN | NPUT TF.
| OPEN | NPUT OF
Recor dA OPEN QUTPUT NF.
READ TF.
Recor dB READ OF.
Update OFRec with TFRec
Recor dH MOVE OFRec+ TO NFRec
Recor dK VRl TE NFRec
READ TF
Recor dM READ OF
ELSE
Recor dN MOVE OFRec TO NFRec
VRl TE NFRec
READ OF

COBOL Programming Fur.qi_am@tf_iiz © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Updating records in an ordered fli:!e

ROGRAM New File
Transaction File AEE Saeiien Recor dA
ecorae _—— Recor dB+
Recor dH
Recor dK
PROCEDURE DI VI SI ON,
OPEN | NPUT TF.
Ordered File OPEN | NPUT OF
OPEN QUTPUT NF.
Recor d READ TF.
READ OF.
Record | F TFKey = OFKey
Recor dG Update OFRec with TFRec
MOVE OFRec+ TO NFRec
Recor dH WRI TE NFRec
R r dK READ TF
ecord S
Recor dM ELSE
MOVE OFRec TO NFRec
FEe@rl VRl TE NFRec

COBOL Programming F= © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Updating records in an ordered fiIL%O

GRAM New File
Transaction Fili/\ Recor dB+
Recor dB/ . Recor dG

Recor dH
PROCEDURE DI VI SI ON.
Recor dK OPEN | NPUT TF.
OPEN | NPUT OF
OPEN OUTPUT NF.

Ordered File READ TF.
READ OF.

Record | F TFKey = OFKey

Record Update OFRec with TFRec
MOVE OFRec+ TO NFRec

Recor dG WRl TE NFRec

Recor dH READ TF
READ OF

Recor dK ELSE

Recor dM MOVE OFRec TO NFRec
WRI TE NFRec

Recor dN READ-OF

Programming Funl,nErerg_':ql = © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Inserting records into an ordered file

Transaction File

Recor dC
Recor dF
Recor dP

Ordered File

Recor dA
Recor dB
Recor dG
Recor dH
Recor dK
Recor dM
Recor dN

118

PROGRAM

New File

FI LE SECTI ON.
THER

(;)

NEREC
PROCEDURE DI VI SI ON.
OPEN | NPUT TF.

OPEN | NPUT OF

OPEN QUTPUT NF.

READ TF.

READ OF.

| F TFKey < OFKey
MOVE TFRec TO NFRec
WRI TE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
WRI TE NFRec
READ OF

END- | F.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Inserting records into an ordered file
Transaction File PROGRAM New File

FI LE SECTI ON.
Recor dc ‘_ /'-» Recor dA
Recor dF
Recor dP
. PROCEDURE DI VI SI ON.
Ordered File OPEN | NPUT TF.
| OPEN | NPUT OF
Recor dA OPEN QUTPUT NF.
READ TF.
Recor dB S
Recor dG | F TFKey < OFKey
Recor dH MOVE TFRec TO NFRec
VRl TE NFRec
Recor dK READ TE
Recor dM ELSE
MOVE OFRec TO NFRec
Recor dN WRI TE NFRec
READ OF
END- | E.

COBOL Programming Fundamental ' © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Inserting records into an ordered file
Transaction File PROGRAM New File

FI LE SECTI ON.
Recor dC Recor dA
Recor dF _ ~ Recor dB
Recor dP
. PROCEDURE DI VI SI ON.
Ordered Fil OPEN | NPUT TF.
OPEN | NPUT OF
Record OPEN OUTPUT NF.
READ TF.
Record S
RecordG | F TFKey < OFKey
Recor dH MOVE TFRec TO NFRec
VWRI TE NFRec
Recor dK READ TE
Recor dM ELSE
MOVE OFRec TO NFRec
Recor dN WRI TE NFRec
READ OF

END-| E.
COBOL Programming Fundamental ' © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Inserting records into an ordered file

Transaction File PROGRAM New File
Recor dC LR SECTON Recor dA
Recor dF Recor dB
Recor dP - * Recor dC

_ PROCEDURE DI VI SI ON.
Ordered File OPEN | NPUT TF.
OPEN | NPUT OF
Recor dA OPEN QUTPUT NF.
READ TF.
Recor dB =) =
Record | F TFKey < OFKey
MOVE TFRec TO NFRec
Recor dH WRI TE NFRec
Recor dK READ TF
ELSE
Recor dM MOVE OFRec TO NFRec
Recor dN WRI TE NFRec
READ OF
END-| F.

COBOL Programming Fundamentl ' © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files
Inserting records into an ordered file

Transaction File PROGRAM New File
RecordC//—\ (EE RSl Recor dA
Recor dF Recor dB
Recor dP \Recor dC

_ PROCEDURE DI VI SI ON. Recor dF
Ordered File OPEN | NPUT TF.
OPEN | NPUT OF
Recor dA OPEN OUTPUT NF.
READ TF.
Recor dB SSAD) G
Recor dG | F TFKey < OFKey
R dH MOVE TFRec TO NFRec
ecor VRl TE NFRec
Recor dK READ TF
ELSE
Recor dM MOVE OFRec TO NFRec
Recor dN VRl TE NFRec
READ OF
ND- | E.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Processing Sequential Files

Inserting records into an ordered file
Transaction File

123

Recor dC

RecordF/

RecordP

PROGRAM

-

Ordered File

Recor dA
Recor dB
Recor dG
Recor dH
Recor dK
Recor dM
Recor dN

\E‘I LE SECTI O\

PROCEDURE DI VI SI ON.
OPEN | NPUT TF.
OPEN | NPUT OF
OPEN OUTPUT NF.
READ TF.
READ OF.
| F TFKey < OFKey
MOVE TFRec TO NFRec
VWRI TE NFRec
READ TF
ELSE
MOVE OFRec TO NFRec
VWRI TE NFRec
READ OF

END- | F.

New File

Recor dA
Recor dB
Recor dC
Recor dF

™\
Recor dG

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

EXERCISE 2

COBOL Programming Fundamental

© 2004 IBM Corporation

1
I
«ul|

f—
—

=

2 =F ==
=
—

—_

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL
COBOL Basics 1
COBOL Basics 2
Introduction to Sequential Files
Processing Sequential Files

-+ Simple iteration with the PERFORM verb
Arithmetic and Edited Pictures
Conditions
Tables and the PERFORM ... VARYING
Designing Programs

125 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Overview
Non-Iteration PERFORM.

GO TO and PERFORM....THRU.
In line and out of line PERFORM.
PERFORM n TIMES.
PERFORM UNTIL.

w w w w W w

Using the PERFORM...UNTIL in processing files.

126 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb
The PERFORM Verb

lteration is an important programmlng construct. We use iteration when
we need to repeat the same instructions over and over again.

Most programming languages have several iteration keywords (e.g.
WHILE, FOR, REPEAT) which facilitate the creation different ‘types’ of
iteration structure.

COBOL only has one iteration construct; PERFORIM.

But the PERFORM has several variations.

Each variation is equivalent to one of the iteration ‘types’ available in
other languages.

This lecture concentrates on three of the PERFORM formats. The
PERFORM..VARYING, the COBOL equivalent of the FOR , will be
introduced later.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Paragraphs :- Revisited

§
§

A Paragraph is a block of code to which we have given a name.

A Paragraph Name is a programmer defined name formed using the
standard rules for programmer defined names (A-Z, 0-9, -).

A Paragraph Name is ALWAYS terminated with a ‘full-stop’.

Any number of statements and sentences may be included in a
paragraph, and the last one (at least) must be terminated with a ‘full-
stop'.

The scope of a paragraph is delimited by the occurrence of another
paragraph name or the end of the program text.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Paragraph Example

ProcessRecord.
DISPLAY StudentRecord
READ StudentFile

AT END MOVE HIGH-VALUES TO StudentRecord
END-READ.

ProduceOutput.
DISPLAY “Here is a message”.

NOTE

The scope of ‘ProcessRecord’ is delimited

by the occurrence the paragraph name
‘ProduceOutput’.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Syntax

130

e §THRU (i
PERFORM élstProc g 7 EndProqy
5 & THROUGH) o

This is the only type of PERFORM that is not an iteration construct.
It instructs the computer to transfer control to an out-of-line block of
code.

When the end of the block is reached, control reverts to the
statement (not the sentence) immediately following the

PERFORM.

1stProc and EndProc are the names of Paragraphs or Sections.
The PERFORM..THRU instructs the computer to treat the
Paragraphs or Sections from 1stProc TO EndProc as a single
block of code.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Example

Run of Perfor mFormatl

| n TopLevel. Starting to run program
>>>> Now I n OnelLevel Down

>>>>>>>> Now i n TwoLevel sDown.

>>>> Back in OneLevel Down

Back in TopLevel.

PROCEDURE DI VI SI ON.

TopLevel .
DISPLAY "In TopLevel. Starting to run program"
PERFORM OnelLevel Down

DI SPLAY "Back in TopLevel .".
STOP RUN.

TwoLevel sDown.
DI SPLAY ">>>>>>>> Now in TwoLevel sDown. "

OnelLevel Down.

DI SPLAY ">>>> Now i n OneLevel Down"
PERFORM TwoLevel sDown
DI SPLAY ">>>> Back in OneLevel Down".

131 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Example

Run of Perfor mFor matl

| n TopLevel. Starting to run program
>>>> Now i n OnelLevel Down

>>>>>>>> Now i n TwolLevel sDown.

>>>> Back in OnelLevel Down

Back i n TopLevel.

PROCEDURE DI VI SI ON.
TopLevel .
DI SPLAY "I n TopLevel. Starting to run progrant
PERFORM OnelLevelDown
DI SPLAY "Back in TopLevel .".
STOP RUN.

TwoLevel sDown.
DI SPLAY ">>>>>>>> Now i n TwoLevel sDown. "

OnelLevel Down.
DI SPLAY ">>>> Now i n OneLevel Down"

PERFORM TwolLevel sDown
DI SPLAY ">>>> Back in OneLevel Down".

132 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Example Run of PerformFor matil

133

In TopLevel. Starting to run program
>>>> Now I n OnelLevel Down

>>>>>>>> Now i n TwoLevel sDown.

>>>> Back in OnelLevel Down

Back in TopLevel.

PROCEDURE DI VI S| ON.

TopLevel .
DI SPLAY "I n TopLevel. Starting to run progrant

PERFORM OnelLevel Down
DI SPLAY "Back in TopLevel .".
STOP RUN.

TwoLevel sDown.
DI SPLAY ">>>>>>>> Now i n TwoLevel sDown. "

Cneleaevel Down,
DISPLAY ">>>> Now in OnelLevelDown"

PERFORM TwolLevel sDown
DI SPLAY ">>>> Back in OneLevel Down".

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Example Run of Perfor mFormat1

| n TopLevel. Starting to run program
>>>> Now i n OnelLevel Down

>>>>>>>> Now i n TwolLevel sDown.

>>>> Back in OnelLevel Down

Back i n TopLevel.

PROCEDURE DI VI S| ON.

TopLevel .
DI SPLAY "I n TopLevel. Starting to run progrant

PERFORM OnelLevel Down
DI SPLAY "Back in TopLevel .".
STOP RUN.

TwoLevel sDown.
DI SPLAY ">>>>>>>> Now i n TwoLevel sDown. "

Cneleaeve| Down,
DI SPLAY ">>>> Now i n OnelLevel Down"

PERFORM TwolLevelsDown
DI SPLAY ">>>> Back in OneLevel Down".

134 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Example Run of PerformFormat1

| n TopLevel. Starting to run program
>>>> Now i n OnelLevel Down

>>>>>>>> Now I n TwolLevel sDown.
>>>> Back in OnelLevel Down

Back i n TopLevel.

PROCEDURE DI VI S| ON.

TopLevel .
DI SPLAY "I n TopLevel. Starting to run progrant

PERFORM OnelLevel Down
DI SPLAY "Back in TopLevel .".
STOP RUN.

TwolLevel sCown.,
DISPLAY ">>>>>>>> Now in TwolLevelsDown."

OnelLevel Down.
DI SPLAY ">>>> Now i n OneLevel Down"

PERFORM TwolLevel sDown
DI SPLAY ">>>> Back in OneLevel Down".

135 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Example Run of PerformFormat1

| n TopLevel. Starting to run program
>>>> Now i n OnelLevel Down

>>>>>>>> Now i n TwolLevel sDown.

>>>> Back 1 n OnelLevel Down

Back i n TopLevel .

PROCEDURE DI VI S| ON.

TopLevel .
DI SPLAY "I n TopLevel. Starting to run progrant

PERFORM OnelLevel Down
DI SPLAY "Back in TopLevel .".
STOP RUN.

TwoLevel sDown.
DI SPLAY ">>>>>>>> Now i n TwoLevel sDown. "

Cnelevel Cowrn.
DI SPLAY ">>>> Now i n OnelLevel Down"
PERFORM TwolLevel sDown
DISPLAY ">>>> Back in OnelLevelDown".

136 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 1 Example

Run of Perfor mFormatl

| n TopLevel. Starting to run program
>>>> Now | h OnelLevel Down

>>>>>>>> Now i n TwoLevel sDown.

>>>> Back in OneLevel Down

Back i n ToplLevel.

PROCEDURE DI VI SI ON.
TopLevel .
DI SPLAY "I n TopLevel. Starting to run progrant
PERFORM OnelLevel Down
DISPLAY "Back in TopLevel.".
STOP RUN.

TwoLevel sDown.
DI SPLAY ">>>>>>>> Now i n TwoLevel sDown. "

OnelLevel Down.
DI SPLAY ">>>> Now i n OneLevel Down"

PERFORM TwolLevel sDown
DI SPLAY ">>>> Back in OneLevel Down".

137 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb
Why use the PERFORM Thru?

PROCEDURE DI VI SI ON.
Begi n.
PERFORM Suntal es
STOP RUN.

SunBal es.

St at enent s
St at enent s

| F NoEr r or Found

St at enent s
St at enent s

| F NoEr r or Found

St at enent s
St at enent s
St at enent s

END- | F
END- | F.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb
Go To and PERFORM THRU

PROCEDURE DI VI SI ON
Begi n.

PERFORM SunSal es THRU Sunfal esExi t
STOP RUN.

SunBal es.

St at enent s
St at enent s

| F Error Found GO TO Suntal esExi t
END-| F

St at enent s
St at enent s
St at enent s

| F Error Found GO TO Sunfsal esExi t
END- | F

St at enent s

Suntal esExi t .

EXIT

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb
Format 2 - Syntax

& ¢ THRU
PERFORM __ glstProc gj

u au

v EndProc (0

g & THROUGH) 0g
RepeatCoun t TIMES

[StatementB lock END - PERFORM]

PROCEDURE DIVISION.
Begin.

Statements

PERFORM DisplayName 4 TIMES
Statements

STOP RUN.

splayName.

DISPLAY “Tom Ryan”. O

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb
Format 2 Example Run of PerformExample2

Starting to run program
>>>>This IS an in line Perform

| DENTI FI CATI ON DI VI SI ON. zzzzms :S 22 :2 ::22 Eg”g:m
PROGRAM | D. Per f or nExanpl e2. co- s s al

HOR Fi nished in |ine Perform
AUT . M chael Coughl an. >>>> This Is an out of |ine Perform

DATA DI VI SI ON. >>>> This is an out of |ine Perform

VWORKI NG- STORAGE SECT! O\ >>>> Th! S !s an out of I!ne Per form

: >>>> This is an out of line Perform
01 Nunof Ti mes PIC 9 VALUE 5. >>>> This is an out of |line Perform

Back in Begl n. About to Stop

PROCEDURE DI VI SI ON.
Begi n.
DI SPLAY "Starting to run progrant
PERFORM 3 TI MES
DI SPLAY ">>>>This is an in |ine Perfornt
END- PERFORM
DI SPLAY "Fi ni shed in |ine Perfornt
PERFORM Qut Of Li neEG NunOf Ti nes TI MES
DI SPLAY "Back in Begin. About to Stop".
STOP RUN.

Qut O Li neEG

DI SPLAY ">>>> This is an out of |line Perforni.

COBOL Programmlng Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 3 - Syntax

142

8

é é THRU i ol é | BEFORE_ iUl
PERFORM _ &lstProc & 7 EndProc g aWITH TEST | 00
5 & THROUGH }) og & P AFTER P

UNTIL _Condition
[StatementB lock END - PERFORM |

This format is used where the WHILE or REPEAT constructs

are used in other languages.
If the WITH TEST BEFORE phrase is used the PERFORM

behaves like a WHILE loop and the condition is tested before

the loop body is entered.
If the WITH TEST AFTER phrase is used the PERFORM

behaves like a REPEAT loop and the condition is tested after

the loop body is entered.

The WITH TEST BEFORE phrase is the default and so is
rarely explicitly stated.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Format 3 - Sample

PERFORM WITH
TEST BEFORE =
WHILE ... DO

False

PERFORM WITH
TEST AFTER =
REPEAT ... UNTIL

Loop Body

test

True

Next Statement

COBOL Programming Fundamental

Loop Body

<> False
test
\Tr ue

Next Statement

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Sequential File Processing

§ In general terms, the WHILE loop is an ideal construct for
processing sequences of data items whose length is not
predefined.

§ Such sequences of values are often called “streams”.

§ Because the ‘length’ of the stream is unknown we have to be
careful how we manage the detection of the end of the stream.

§ A useful way for solving this problem uses a strategy known as
“read ahead”.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb
The READ Ahead

§ With the “read ahead” strategy we always try to stay one data item
ahead of the processing.

§ The general format of the “read ahead” algorithm is as follows;
Attempt to READ first data item

WHILE NOT EndOfStream
Process data item

Attempt to READ next data item
ENDWHILE

§ Use this to process any stream of data.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Reading a Sequential File

§ Algorithm Template
READ StudentRecords

AT END MOVE HI GH VALUES TO St udent Record
END- READ

PERFORM UNTI L St udent Record
DI SPLAY St udent Record
READ St udent Recor ds

Hl GH VALUES

END- READ

AT END MOVE HI GH VALUES TO St udent Record
END- PERFORM

§ This is an example of an algorithm which is capable of processing any
sequential file; ordered or unordered!

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Simple iteration with the PERFORM verb

Sample

RUN OF SegRead

9456789 COUGHLANMS LMp1
9367892 RYAN TG LM50
9368934 WLSON HR LM1

PROCEDURE DI VI SI ON.
Begi n.
OPEN | NPUT StudentFile

READ St udentFil e
AT END MOVE HI GH VALUES TO StudentDetail s
END- READ
PERFORM UNTI L StudentDetails = H GH VALUES
DI SPLAY Student|ld SPACE St udent Nane SPACE Cour seCode
READ StudentFil e
AT END MOVE H GH VALUES TO StudentDetail s
END- READ
END- PERFORM

CLOSE StudentFil e
STOP RUN.

147 COBOL Programming Fundamental © 2004 IBM Corporation

1

I
«ul|
[m

—
—

-

- ey o
———
=

—

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL
COBOL Basics 1

COBOL Basics 2

Introduction to Sequential Files

Processing Sequential Files
Simple iteration with the PERFORM verb

-« Arithmetic and Edited Pictures

Conditions
Tables and the PERFORM ... VARYING

Designing Programs

148 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures

Overview
ROUNDED option.

ON SIZE ERROR option.

ADD, SUBTRACT, MULTIPLY, DIVIDE and COMPUTE.
Edited PICTURE clauses.

Simple Insertion.

Special Insertion.

Fixed Insertion.

Floating Insertion.

w w w w W W W W W

Suppression and Replacement.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
Arithmetic Verb Template

11O 0
i Identifier j{ FROM | i Identifier K
VERB | 1 Vi, oo "
iLite }{BY {{ldentifier GIVING Identifier K
fINTO |
[ON SIZE ERROR StatementB lock END - VERB |

g [ROUNDED]

§ Most COBOL arithmetic verbs conform to the template above. For
example;
ADD Taki ngs TO CashTot al .
ADD Mal es TO Femal es @ VI NG Tot al St udent s.
SUBTRACT Tax FROM G ossPay.
SUBTRACT Tax FROM G ossPay d VI NG Net Pay.
DI VI DE Total BY Menbers G VI NG Menber Aver age.
DI VI DE Menbers I NTO Total G VING Menber Aver age.
MJULTI PLY 10 BY Magni t ude.
MULTI PLY Menbers BY Subs d VI NG Tot al Subs.

§ The exceptions are the COMPUTE and the DIVIDE with REMAINDER.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
The ROUNDED option

Receiving Field |Actual Result | Truncated Result | Rounded Result

PIC 9(3)V09. 123.25 123.2 123.3

PIC 9(3). 123.25 123 123

u The ROUNDED option takes effect when, after decimal point
alignment, the result calculated must be truncated on the right
hand side.

v The option adds 1 to the receiving item when the leftmost
truncated digit has an absolute value of 5 or greater.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
The ON SIZE ERROR option

Receiving Field Actual Result SIZE ERROR

PIC 9(3)V9. 245.96 Yes
PIC 9(3)V9. 1245.9 Yes
PIC 9(3). 124 No

PIC 9(3). 1246 Yes
PIC 9(3)V9 Not Rounded 124.45 Yes
PIC 9(3)V9 Rounded 124.45 NoO

PIC 9(3)V9 Rounded 3124.45 Yes

u A size error condition exists when, after decimal point alignment, the
result is truncated on either the left or the right hand side.

u If an arithmetic statement has a rounded phrase then a size error only
occurs if there is truncation on the left hand side (most significant
digits).

152 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
ADD Examples

ADD Cash TO Total.
Before 3 1000
After 3 1003
ADD Cash, 20 TO Total, Wage.
Before 3 1000 100
After 3 1023 123
ADD Cash, Total GIVING Result.
Before 3 1000 0015
After 3 L000 1003
ADD Males TO Females GIVING TotalStudents.
Before 1500 0625 1234
After 1500 0625 2125
153 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
SUBTRACT Examples

154

Before
After

Before
After

Before
After

SUBTRACT Tax FROM GrossPay, Total.

120

4000

9120

120

3880

9000

SUBTRACT _Tax, 80 FROM Total.

100

100

SUBTRACT _Tax_ FROM GrossPay GIVING NetPay.

480

300

750

1000

750

1000

0012

0250

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
MULTIPLY and DIVIDE Examples

MULTIPLY Subs BY Members GIVING TotalSubs
ON SIZE ERROR DISPLAY "TotalSubs too small"
END-MULTIPLY.
Subs Members TotalSubs
Before 15.50 100 0123.45
After 15.5(100 1550.00
MULTIPLY 10 BY Magnitude, Size.
Before 355 125
After 3550 [1250
DIVIDE Total BY Members GIVING Average ROUNDED.
Before 9234.55 100 1234.56
After 9234.55 100 92.35

155

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
The Divide Exception

| dentifi | dentifi
pivipe | Cemher U o FlAeEn U v iNG {identifier [ROUNDED]} REMAINDER _ Identifier
1 Literal g ,theraJ g

e| ON SIZE ERROR
& NOT ON SIZE ERROR g

StatementB lock END -DIVIDE

oOC\C/

Identifier (i | Identifier
BY
Literal g , Literal g

e| ON SIZE ERROR
& NOT ON SIZE ERROR g

DIVIDE l GIVING {Identifier [ROUNDED]} REMAINDER Identifier
|

StatementB lock END -DIVIDE

oOC\NC/

DIVIDE 201 BY 10 GIVING Quotient REMAINDER Remain.

Before 209 424
After 020 001

156 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
The COMPUTE
COMPUTE {ldentifier | ROUNDED]} ... = ArithmeticExpression

el ON SIZE ERROR

StatementB lock END - COM PUTEu

& NOT ON SIZE ERROR% 0
Precedence Rules.
1. *» = POWER NN
2. * = MULTIPLY X
| = DIVIDE s
3. + = ADD +
- = SUBTRACT -
Compute IrishPrice = SterlingPrice / Rate * 100.
Before 1000.50 156.25 87
After 179.59 156.25 87

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
Edited Pictures

§ Edited Pictures are PICTURE clauses which format data intended for output to
screen or printer.

§ To enable the data items to be formatted in a particular style COBOL provides
additional picture symbols supplementing the basic 9, X, A, V and S symbols.

§ The additional symbols are referred to as “Edit Symbols” and PICTURE
clauses which include edit symbols are called “Edited Pictures”.

§ The term edit is used because the edit symbols have the effect of changing, or
editing, the data inserted into the edited item.

§ Edited items can not be used as operands in a computation but they may be

used as the result or destination of a computation (i.e. to the right of the word
GIVING).

158 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
Editing Types

§ COBOL provides two basic types of editing
Insertion Editing - which modifies a value by
Including additional items.
Suppression and Replacement Editing -
which suppresses and replaces leading zeros.

§ Each type has sub-categories
Insertion editing

® Simple Insertion
® Special Insertion

® Fixed Insertion
® Floating Insertion
Suppression and Replacement

® Zero suppression and replacement with spaces
® Zero suppression and replacement with asterisks

159 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures
Editing Symbols

160

, B 0O/

Edit Symbol Editing Type \

Simple Insertion
Special Insertion
Fixed Insertion
Floating Insertion

Suppression and Replacement

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures

Simple_Insertion

161

Sending Receiving
Picture Data Picture Result

PIC 999999 | 123456 | PIC 999,999 123, 456
PIC 9(6) 000078 | PIC 9(3),9(3) 000, 078
PIC 9(6) 000078 |PIC 227,277 0 1 78 [
PIC 9(6) 000178 | PIC *** *** **k k%178
PIC 9(6) 002178 | PIC *** *** **x2 178
PIC 9(6) 120183 |PIC 99B99B99 | 12 01 83
PIC 9(6) 120183 | PIC 99/99/99 12/ 01/ 83
PIC 9(6) 001245 | PIC 990099 120045

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures

Special Insertion

Sending Receiving
Picture Data Picture Result
PIC 999Vv99 12:%45 PIC 999.99 123 45
PIC 999Vv99 023ﬁ45 PIC 999.9 023 4
PIC 999Vv99 512ﬁ34 PIC 99.99 12 34
PIC 999 45% PIC 999.99 456 00

162 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures

Fixed Insertion - Plus and Minus

Sending Receiving

Picture Data Picture Result
PIC S999 -123 PIC -999 - 123
PIC S999 -123 PIC 999- 123-
PIC S999 +123 PIC -999 123
PIC S9(5) +12345 | PIC +9(5) +12345
PIC S9(3) -123 PIC +9(3) -123
PIC S9(3) -123 PIC 999+ 123-

163 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures

Fixed Insertion - Credit, Debit, $

Sending Receiving
Picture Data Picture Result

PIC S9(4) | +1234 |PIC 9(4)CR 1234

PIC S9(4) | -1234 |PIC 9(4)CR 1234CR

PIC S9(4) | +1234 |PIC 9(4)DB 1223

PIC S9(4) -1234 PIC 9(4)DB 123412

PIC 9(4) 1234 | PIC $99999 $01234

PIC 9(4) 0000 |PIC $272777 $O O O O I

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Editeo

Floating. Insertion

Pictures

Sending Receiving
Picture Data Picture Result
PIC 9(4) 0000 | PIC $$,$$9.99 $0. 00
PIC 9(4) 0080 | PIC $%$,$$9.00 $80. 00
PIC 9(4) 0128 | PIC $$,$$9.99 $128. 00
PIC 9(5) 57397 | PIC $$,$%$9 $7. 397
PIC S9(4) - 0005 | PIC ++++9 -5
PIC S9(4) | +0080 | PIC ++++9 +80
PICS9(4) | -0080 | PIC----9 - 80
PIC S9(5) | +71234| PIC----9 71234

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Arithmetic and Edited Pictures

Suppression and Replacement

Sending Receiving
Picture Data Picture Result
PIC 9(5) 12345 | PIC ZZ,999 12, 345
PIC 9(5) 01234 | PIC 77,999 1,234
PIC 9(5) 00123 | PIC 727,999] 1123
PIC 9(5) 00012 | PIC 77,999 012
PIC 9(5) 05678 | PIC ** **9 *5, 678
PIC 9(5) 00567 | PIC ** **9 *** 567
PIC 9(5) 00000 [PIC ** *** * ok k ok ok ok

166 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

EXERCISE 3

COBOL Programming Fundamental

© 2004 IBM Corporation

f—
—

=

2 =F ==
=
—

—_

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL
COBOL Basics 1

COBOL Basics 2

Introduction to Sequential Files

Processing Sequential Files
Simple iteration with the PERFORM verb

Arithmetic and Edited Pictures

--» Conditions
Tables and the PERFORM ... VARYING

Designing Programs

168 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Overview

IF. THEN...ELSE.

Relation conditions.

Class conditions.

Sign conditions.

Complex conditions.
Implied Subjects.

Nested IFs and the END-IF.

Condition names and level 88's.

w w w w W W W W W

The SET verb.

169 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions

IF Syntax

L i StatementB lock U
IF Condition THEN i Y
i NEXT SENTENCE },

i StatementB lock
{ NEXT SENTENCE

ELSE

g[END - IF]

5 Simple Conditions
— Relation Conditions

— Class Conditions

— Sign Conditions

5 Complex Conditions
5 Condition Names

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Relation Conditions

'NOT|GREATERTHAN
'NOT|LESSTHAN

| i }INOT|[EQUALTO Fi |
Litera 71Si T - 71 Litera Y
ll',A\I'thmet'Ex of 1NOT= %lll'Al'thmet'Ex oh
Il | ressio . . Il | ressio
| pressiof i GREATERTHAN OREQUALTO! ! pressiof
|

Lo
Z:f LESSTHAN OREQUALTO

fe=

—_— e —

T e . — R p—

i Identifier U
|

i Identifier i
|

—

-c-: —] -

171 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Class Conditions

172

i NUMERIC

! ALPHABETIC
Identifier 1S[NOT] J,' ALPHABETIC - LOWER

ﬁ:ﬁ ALPHABETIC - UPPER

f UserDefine dClassName

-c—: — —:\.<\—I—: — cC:

Although COBOL data items are not ‘typed’ they do fall
into some broad categories, or classes, such a numeric
or alphanumeric, etc.

A Class Condition determines whether the value of data
item is a member of one these classes.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Sign Conditions

i POSITIVE
ArithExp IS[NOT] NEGATIVE
1 ZERO b

§ The sign condition determines whether or not the value of an

arithmetic expression is less than, greater than or equal to
zero.

§ Sign conditions are just another way of writing some of the
Relational conditions.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Complex conditions

. ND
Condition
R

— — —
—) — —
o |>

J Condition ¢ K
b b

§ Programs often require conditions which are more complex
than single value testing or determining a data class.

§ Like all other programming languages COBOL allows simple
conditions to be combined using OR and AND to form
composite conditions.

§ Like other conditions, a complex condition evaluates to true
or false.

§ A complex condition is an expression which is evaluated from
left to right unless the order of evaluation is changed by the
precedence rules or bracketing.

174 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Complex conditions have precedence rules too

175

Precedence Rules.

1. NOT = **
2. AND = *or/
OR = +or-

u Just like arithmetic expressions, complex conditions are evaluated using
precedence rules and the order of evaluation may be changed by bracketing.

u Examples

IF (Row>0) AND (Row<26) THEN
DISPLAY “On Screen”
END-IF

IF (VarA>VarC) OR (VarC=VarD) OR (VarA NOT = VarF)
DISPLAY “Done”
END-IF

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Implied Subjects

§ When a data item is involved in a relation condition with each of a number of
other items it can be tedious to have to repeat the data item for each
condition. For example,

IF TotalAmt > 10000 AND TotalAmt < 50000 THEN
IF Grade = “A” OR Grade = “B+” OR GRADE = “B” THEN
IF VarA > VarB AND VarA > VarC AND VarA > VarD

DISPLAY “VarA is the Greatest”
END-IF

§ In these situations COBOL provides an abbreviation mechanism called
Implied subjects.

§ The statements above may be re-written using implied subjects as;
IF TotalAmt > 10000 AND < 50000 THEN

IF Grade="A" OR “B+” OR “B” THEN

IF VarA > VarB AND VarC AND VarD Impl_ll_ectj IS: bjtects
DISPLAY “VarA is the Greatest’ otaiAm
END-IF Grade =
VarA >
176 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Nested IFs

177

|F (VarA < 10) AND (VarB NOT > VarC) THEN
| F VarG = 14 THEN
DI SPLAY “First”
ELSE
DI SPLAY “Second”
END- | F
ELSE
DI SPLAY “Thi rd”
END- | F

VarA VarB VarC VarG DISPLAY
3T 4 71 15 14 T First

37T 4 71 15 15 F Second
3T 4 F 3 14 Third
13F 4 7 15 14 Third

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Condition Names

H X i GRIAM ERANDN Y i Uil N4/ 41ie

Condition 1s either
TRUE or Fase

8§ Wherever a condition can occur, such as in an |IF statement or an
EVALUATE or a PERFORM..UNTIL, a CONDITION NAME (Level
88) may be used.

§ A Condition Name is essentially a BOOLEAN variable which is either
TRUE or FALSE.

§ Example.

IF StudentRecord = HIGH-VALUES THEN Action
The statement above may be replaced by the one below. The condition

name EndOfStudentFile may be used instead of the condition
StudentRecord = HIGH-VALUES.

IF EndOfStudentFile THEN Action

178 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions

Defining Condition Names
. i Litera U
. i VALUE 0 i
88 ConditionN ame { i i THROUGH U . . yK
{ VALUES); LowValue | ’ HighValue
I iTHRU § A

179

Condition Names are defined in the DATA DIVISION using the special
level number 88.

They are always associated with a data item and are defined
immediately after the definition of the data item.

A condition name takes the value TRUE or FALSE depending on the
value in its associated data item.

A Condition Name may be associated with ANY data item whether it is
a group or an elementary item.

The VALUE clause is used to identify the values which make the
Condition Name TRUE.

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Example
01 G tyCode PIC 9 VALUE 5

88 Dublin VALUE 1.
88 Linerick VALUE 2.
88 Cork VALUE 3.
88 @&l way VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.

| F Li merick

DI SPLAY "Hey, we're hone."
END- | F
| F UniversityCty

PERFORM Cal cRent Sur char ge
END- | F

COBOL Programming Fundamental

City Code \

Dublin

Limerick FALSE
Cork

Galway

Waterford
UniversityCity

FALSE

FALSE
FALSE

FALSE
FALSE

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Example
01 CityCode PIC 9 VALUE 5.
88 Dublin VALUE 1
88 Linerick VALUE 2
88 Cork VALUE 3.
88 Gal way VALUE 4.
88 Sligo VALUE 5
88 Waterford VALUE 6.
88 UniversityCity VALUE 1 THRU 4.
City Code
2
| F Li merick
DI SPLAY "Hey, we're hone."
END- | F Cork
| F UniversityGity Galway
PERFCRM Cal cRent Sur char ge Sligo
Waterford

END- | F

COBOL Programming

Fundamental

FALSE

FALSE
FALSE
FALSE
FALSE

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Example
01 G tyCode PlC 9 VALUE 5.
88 Dublin VALUE 1.
88 Linerick VALUE 2.
88 Cork VALUE 3.
88 @Gl way VALUE 4.
88 Sligo VALUE 5.
88 Waterford VALUE 6.
88 UniversityGty VALUE 1 THRU 4.
City Code
| F Li nerick E
Dublin FALSE
DI SPLAY “Hey, we're hone. " Limerick FALSE
END- | F Cork FALSE
| F UniversityCity Galway FALSE
PERFORM Cal cRent Sur char ge Sligo FALSE
END- | F UniversityCity FALSE

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Example
01 I nput Char PI C X
88 Vowel VALUE "A","E","I", "0, "U".
88 Consonant VALUE "B'" THRU "D', "F"',"G',"H
"J" THRU "N', "P'" THRU "T"
"V' THRU " Z".
88 Digit VALUE "0" THRU "9".
88 Lower Case VALUE "a" THRU "z".
88 Val i dChar VALLE "A" THRU "Z","0" THRU "9".
| F Val i dChar Input Char
DI SPLAY "I nput OK."

| F Lower Case
DI SPLAY " Not Upper Case”
END- | F
| F Vowel
Di spl ay " Vowel
END- | F

entered. "

COBOL Programming Fundamental

Consonant
Digit
LowerCase

FALSE
FALSE
FALSE

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

| F Lower Case
DI SPLAY " Not Upper Case”
END- | F
| F Vowel
Di spl ay " Vowel
END- | F

entered. "

COBOL Programming Fundamental

Conditions
Example
01 I nput Char Pl C X
88 Vowel VALUE "A","E","I","0","U".
88 Consonant VALUE "B'" THRU "D', "F","G',"H
"J" THRU "N', "P" THRU "T"
"V' THRU " Z".
88 Digit VALUE "0" THRU "9".
88 Lower Case VALUE "a" THRU "z".
88 Val i dChar VALUE "A" THRU "Z","0" THRU "9".
| F Val i dChar
DI SPLAY "I nput OK." ‘ Input Char \
END- | F

Vowel
Consonant

LowerCase

FALSE
FALSE

FALSE

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Example
01 I nput Char Pl C X
88 Vowel VALUE "A","E","I", "0, "U".
88 Consonant VALUE "B'" THRU "D', "F"',"G',"H
"J" THRU "N', "P'" THRU "T"
"V' THRU " Z".
88 Digit VALUE "0" THRU "9".
88 Lower Case VALUE "a" THRU "z".
88 Val i dChar VALUE "A" THRU "Z","0" THRU "9".
| F Val i dChar Input Char
DI SPLAY "I nput OK."
| F Lower Case

DI SPLAY " Not Upper Case”
END- | F
| F Vowel
Di spl ay " Vowel
END- | F

entered. "

185

COBOL Programming Fundamental

Vowel
Consonant
Digit

ValidChar

FALSE
FALSE
FALSE
FALSE

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Example

01 EndOFileFlag PIC 9 VALUE O.
88 EndO File VALUE 1.

EndOfFileFla

1

EndOfFile

READ | nFi | e

AT END MOVE 1 TO EndO Fi | eFl ag
END- READ
PERFORM UNTI L EndOF Fi | e

St at enent s

READ I nFil e

AT END MOVE 1 TO EndO Fi | eFl ag
END- READ

END- PERFORM

186

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Example
01 EndOFileFlag PIC 9 VALUE O. |EndOfFiIeFIag|
88 EndOFFile VALUE 1.
READ | nFi | e
AT END MOVE 1 TO EndO Fi | eFl ag
END- READ

PERFORM UNTI L EndOF Fi | e
St at enent s
READ I nFil e
AT END MOVE 1 TO EndCOfFi |l eFl ag
END- READ
END- PERFORM

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Using the SET verb

01 FILLER PIC 9 VALUE O.
88 EndOFile VALUE 1.

88 Not EndO Fil e VALUE O.

| FILLER|

EndOfFile 1

READ I nFil e

AT END SET EndOFile TO TRUE
END- READ
PERFORM UNTI L EndOF Fi | e

St at enent s

READ I nFil e

AT END SET EndO Fil e TO TRUE
END- READ

END- PERFORM

Set Not EndOFFile TO TRUE.

188

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Using the SET verb

|FILLER|
01 FILLER PIC 9 VALUE 0. I 1 ii
88 EndOFile VALUE 1.
88 Not EnNdOFFil e VALUE O.
NotEndOfFile 0
READ | nFi | e

189

AT END SET EndO Fil e TO TRUE
END- READ

PERFORM UNTI L EndO Fil e
St at enent s
READ | nFi | e

AT END SET EndO Fil e TO TRUE
END- READ

END- PERFORM
Set Not EndOFFile TO TRUE.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Using the SET verb

01 FILLER PIC 9 VALUE O.
88 EndOFile VALUE 1.

88 Not EndO Fil e VALUE O.

| FILLER|

[o]

EndOfFile 1

READ | nFi | e

AT END SET EndO'File TO TRUE
END- READ
PERFORM UNTI L EndOF Fi |l e

St at enent s

READ I nFil e

AT END SET EndO Fil e TO TRUE
END- READ

END- PERFORM
Set Not EndO Fil e TO TRUE.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
The Evaluate

i Identifier U
! ¢ Literal :
'[CondExpres sonT

ArlthExpre ssion y
ITRUE 1
1 FALSE t,

EVALUATE

>

NY
i Condition
TRUE
FALSE

i Identifier ué
NOT]. Literal |, 8 THRU
{ ArithExpre ssion b g

f—

—_—— el e = = = = = —
—_—— —'—:— —_— Nl el e D —

|
T
T
T
T
T
! WHEN
T
T
T
T
T
i
|

[WHEN OTHER StatementB lock]
END - EVALUATE

COBOL Programming Fundamental

.1 Identifier

Y &l tHroUGH Z ;

U
|
|
|
|
|
!
yK
I
|

gul
iarl
YUI

L ArithExpre ssion be

O - — \<\— — =l

StatementB lock

-o-—: — e - —:\<\—: — e] -] c:
A

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
The Evaluate

1 2 3 4 5 6 7 38 9 10

\J)

EVALUATE TRUE Position
VWHEN L-Arrow 2 THRU 10PERFORM Moveleft
WHEN R-Arrow 1 THRU 9PERFORM MoveRi ght

VWHEN L- Arrow 1 MOVE 10 TO Position

VWHEN R- Arrow 10 MOWVE 1 TO Position

VWHEN Del et eKey 1 PERFORM Cant Del et e VWHEN Char act er
ANY PERFORM | nsert Char VWHEN OTHER PERFORM Di spl ayError Message

END- EVALUATE

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Conditions
Decision Table Implementation

CGender M F M F M F M F
Age <20 <20 20-40 20-40 40> 40> 20-40 20-40 etc

Service Any Any <10 <10 <10 <10 10-20 10-20 etc
% Bonus 5 10 12 13 20 15 14 23

EVALUATE Gender TRUE TRUE
WHEN "M" Age<20 ANY MOVE 5 TO Bonus
WHEN "E" Age<20 ANY MOVE 10 TO Bonus
WHEN "M" Age>19 AND <41 Service<10 MOVE 12 TO Bonus
WHEN "E" Age>19 AND <41 Service<10 MOVE 13 TO Bonus
WHEN "M Age>40 Service<10 MOVE 20 TO Bonus
WHEN "F" Age>40 Service<10 MOVE 15 TO Bonus
WHEN "F" ANY Service>20 MOVE 25 TO Bonus

END-EVALUATE.

COBOL Programming Fundamental © 2004 IBM Corporation

1
I
«ul|

f—
—

=

2 =F ==
=
—

—_

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL

COBOL Basics 1

COBOL Basics 2

Introduction to Sequential Files
Processing Sequential Files

Simple iteration with the PERFORM verb

Arithmetic and Edited Pictures

Conditions
--= Tables and the PERFORM ... VARYING

Designing Programs

194 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

Overview

§ Introduction to tables.
§ Declaring tables.

§ Processing tables using the PERFORM..VARYING.

195 COBOL Programming Fundamental

[hm]]
I
(el
Iﬂ||I|||

]

© 2004 IBM Corporation

<m||

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

TaxTotal

PAYENuUmM (‘mmtyl\lllm

~TaxPaid

COBOL Programming Fundamental

Variable = Named location in memory

The program to

calculate the total
taxes paid for the
country is easy to

write.

BUT.

What do we do if we
want to calculate the
taxes paid in each

county?

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

Countyl County?2 County3 County4 County5
TaxTotal TaxTotal TaxTotal TaxTotal TaxTotal

B B B N =

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING
Tables/Arrays

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are
uniquely identified by that name and by their position in
the sequence.

CountyTax

" 10 —-
1 3 4 5 6
MOVE 10 TO CountyTax(5)

ADD TaxPai d TO Count yTax(Count yNum
ADD TaxPaid TO Count yTax(Count yNum + 2)

198 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING
Tables/Arrays

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are
uniquely identified by that name and by their position in
the sequence.

CountyTax

10 —

1 /2553 4 5 6

MOVE 10 TO CountyTax(5)
ADD TaxPai d TO Count yTax(CountZyNun)
ADD TaxPaid TO Count yTax(Count yNum + 2)

199 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

200

Tables and the PERFORM ... VARYING
Tables/Arrays

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are

uniquely identified by that name and by their position in
the sequence.

CountyTax
55
1 2

MOVE 10 TO CountyTax(5)
ADD TaxPai d TO Count yTax(Count yNum
ADD TaXSI;ai d TO Count yTax(Count%/Num + 2)

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

201

Tables and the PERFORM ... VARYING
Tables/Arrays

A table is a contiguous sequence of memory locations
called elements, which all have the same name, and are
uniquely identified by that name and by their position in
the sequence. The position index is called a subscript.

CountyTax

55 55 10 —
1 2 3 4 5 6

o Subscript
MOVE 10 TO CountyTax(5) l \
ADD TaxPaid TO Count yTax(CountyNum)

ADD TaxPaid TO Count yTax(CountyNum + 2)

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

CountyTax

1 2 3 4 9

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

TaxRecord.

PAYENum CountyName TaxPaid

A- 89432 CLARE 7894. 55
CountyTax

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

TaxRecord.

PAYENum CountyName TaxPaid ldx

A- 89432 CLARE 7894. 55 1

County

CARLON CAVAN CLARE CORK DONEGAL DUBLI ¢ ==
1 2 3 4 9 6

CountyTax

500.50 125.75 1000.00 74555 345.23 123.45
1 2 3

4 S 6

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

TaxRecord.

PAYENum CountyName TaxPaid ldx

A- 89432 CLARE 7894. 55 2

County

CARLOW CAVAN CLARE CORK DONEGAL DUBLI 1. ==
1 2 3 4 9 6

CountyTax

500.50 125.75 1000.00 74555 34523 123.45 ==>
1 2 3 4 S 6

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

TaxRecord.

PAYENum CountyName TaxPaid ldx

A- 89432 CLARE 7894. 55 3

County

CARLON CAVAN CLARE CORK DONEGAL DUBLI 1. =i
1 2 3 4 9 6

CountyTax

500.50 125.75 1000.00 74555 34523 123.45 =
1 2 4 O 6

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

TaxRecord.

PAYENum CountyName TaxPaid ldx

A- 89432 CLARE 7894. 55 3

County

CARLON CAVAN CLARE CORK DONEGAL DUBLI 1. =i
1 2 3 4 9 6

CountyTax

500.50 125.75 8894.55 74555 34523 123.45 =—>
1 2 4 O 6

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

Declaring Tables

000000 000000 000000 000000 000000

1 2 3 4 5
01 TaxTotal s.

02 CountyTax PIC 9(10)V99
OCCURS 26 TI MES.

or

02 CountyTax OCCURS 26 TI MES
Pl C 9(10) V99.

e.d.
MOVE ZEROS TO TaxTot al s.

MOVE 20 TO CountyTax(5).

COBOL Programming Fundamental

000000
6

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

Group Items as Elements
TaxTotals

25

67 >
1 2

000000 000000

CountyTax PayerCount
01 TaxTot al S_CountyTaxDetalls

02 CountyTaxDetails OCCURS 26 TI MES.

03 CountyTax Pl C 9(10) V99.
03 Payer Count PIC 9(7).

MOVE 25 TO Payer Count (2).
MOVE 67 TO CountyTax(5).
MOVE ZEROS TO Count yTaxDetail s(3).

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING
PERFORM..VARYING Syntax

é é] THRU au i BEFORE uu
PERFORM glstProc gaf EndProc UU eW|TH TEST |' U
é & THROUGH ?Z/) ag e TAFTER %

) | Identifier 2 []
g FROM | IndexName 2y
{ Literal b

i ldentiferl

VARYING
1 IndexNamel

e .
| dentifier 30\ 11 Conditiont
=1 Literal ye—

| Identifier 5 [J
FROM | IndexName 4y
1 Literal b

i Identifier 4 {
%IndexNameB %

>
T
m
Py
x

| Identifier 61
IOCTETE 08 UNTIL Condition2
1 Literal % -

[StatementB lock END - PERFORM]

(D:(D> (D> (D> (D> (D> (D> (D~
oco\.o\.o\nonononc

COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

211

Tables and the PERFORM ... VARYING

Move 1 to ldx1

True
l[dx1 =3

False
Loop Body

Inc Idx1

| COBOL Programming Fundamental

Next Statement

ldx1

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

Move 1 to ldx1

True

False

Loop Body
Inc Idx1

| COBOL Programming Fundamental

Next Statement

ldx1

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

213

Tables and the PERFORM ... VARYING

Move 1 to ldx1

l[dx1 =3 LTLE
False

Next Statement

Loop Body
Inc ldx1

| COBOL Programming Fundamental

ldx1

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM

Move 1 to ldx1

)\ True
l[dx1 =3

... VARYING

False

Loop Body

Inc ldx1

| COBOL Programming Fundamental

Next Statement

ldx 1

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

Move 1 to ldx1

True

False

Loop Body

Inc Idx1

| COBOL Programming Fundamental

Next Statement

ldx 1

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Tables and the PERFORM ... VARYING

Move 1 to ldx1 ldx1
2
- >
True
ldx1 = 3 — Next Statement

/
False

! 1

Loop Body ?
Inc ldx1

| COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

217

Tables and the PERFORM

Move 1 to ldx1

True
l[dx1 =3

... VARYING

False

Loop Body

Inc ldx1

| COBOL Programming Fundamental

Next Statement

ldx1

N =

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

PARS

Tables and the PERFORM ... VARYING

Move 1 to ldx1

True

False

Loop Body

Inc Idx1

| COBOL Programming Fundamental

Next Statement

ldx1

1
2

Exit value =3

© 2004 IBM Corporation

I
i

—

—
-
=
=
=

—

:

ISSC Shanghai, AMS, GCG

Table of contents

Introduction to COBOL
COBOL Basics 1

COBOL Basics 2

Introduction to Sequential Files

Processing Sequential Files
Simple iteration with the PERFORM verb

Arithmetic and Edited Pictures

Conditions
Tables and the PERFORM ... VARYING

--2» Designing Programs

219 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs

Overview
§ Why we use COBOL.
§ The problem of program maintenance.
§ How Cobol programs should be written.
§ Efficiency vs Clarity.
§ Producing a good design.
§ Introduction to design notations.
§ Guidelines for writing Cobol programs.

220 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs

COBOL

COBOL is an acronym standing for Common Business Oriented
Language.

COBOL programs are (mostly) written for the vertical market.
COBOL programs tend to be long lived.

Because of this longevity ease of program maintenance is an
important consideration.

Why is program maintenance important?

COBOL Programming Fundamental © 2004 IBM Corporation

222

ISSC Shanghai, AMS, GCG

Designing Programs
Cost of a system over its entire

Design 9%

Maintenance
67%

life

Testing
15%

Zelkowitz
ACM 1978
p202

Maintenance Costs are only as low as this because many systems become so
unmaintainable early in their lives that they have to be SCRAPPED !!

- B. Boehm

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Program Maintenance

§ Program maintenance is an umbrella term that covers;
1. Changing the program to fix bugs that appear in the system.
2. Changing the program to reflect changes in the environment.

3. Changing the program to reflect changes in the users perception of the
requirements.

4. Changing the program to include extensions to the user requirements (i.e.
new requirements).

§ What do these all have in common?

CHANGING THE PROGRAM.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
How should write your programs?

§ You should write your programs with the expectation that they
will have to be changed.

§ This means that you should;

write programs that are easy to read.

write programs that are easy to understand.

write programs that are easy to change.

§ You should write your programs as you would like them written if
you had to maintain them.

224 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Efficiency vs Clarity

§ Many programmers are overly concerned about making their
programs as efficient as possible (in terms of the speed of execution
or the amount of memory used).

§ But the proper concern of a programmer, and patrticularly a COBOL
programmer, is not this kind of efficiency, it is clarity.

§ As arule 70% of the work of the program will be done in 10% of the
code.

§ Itis therefore a pointless exercise to try to optimize the whole
program, especially if this has to be done at the expense of clarity.

§ Write your program as clearly as possible and then, if its too slow,
identify the 10% of the code where the work is being done and
optimize it.

225 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
When shouldn’t we design our programs?

§ We shouldn’t design our programs, when we want to create programs that
do not work.

§ We shouldn’t design when we want to produce programs that do not solve
the problem specified.

§ When we want to create programs that;
get the wrong inputs,
or perform the wrong transformations on them
or produce the wrong outputs
then we shouldn’t bother to design our programs.

§ But if we want to create programs that work, we cannot avoid design.

§ The only question is;
will it be a good design or a bad design

226 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Producing a Good Design

227

§
§

The first step to producing a good design is to design consciously.

Subconscious design means that design is done while constructing

the program. This never leads to good results.

Conscious design starts by separating the design task from the task

of program construction.

Design, consists of devising a solution to the problem specified.

Construction, consists of taking the design and encoding the solution

using a particular programming language.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Why separate design from construction?

§ Separating program design from program construction makes both tasks
easier.

§ Designing before construction, allows us to plan our solution to the
problem - instead of stumbling from one incorrect solution to another.

§ Good program structure results from planing and design. It is unlikely to
result from ad hoc tinkering.

§ Designing helps us to get an overview of the problem and to think about
the solution without getting bogged down by the details of construction.

§ It helps us to iron out problems with the specification and to discover any
bugs in our solution before we commit it to code (see next slide).

§ Design allows us to develop portable solutions

228 COBOL Programming Fundamental © 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Relative cost of fixing a bug

In Production
X832

In

Construction
W A0)

Figures from IBM in Santa Clara.
229

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Design Notations

§ A number of notations have been suggested to assist the programmer with
the task of program design.
§ Some notations are textual and others graphical.

§ Some notations can actually assist in the design process.

§ While others merely articulate the design.

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Flowcharts as design tools

231

FL OWCHART. OPEN FILES

SET BECEIPTS COUNT TO ZERD
SET PAYMENTS COUNT TO ZERO
SET RECORD COUNT TO ZEROD

BREAD BECORD FROM CUSTOMER FILE
- - - |

END-OF-FILE

RECEIPT

PAYMENT
ADD BRECEIPT TO BALANCE SUBTRACT PAYMENT FROM BALANCE
ADD 1 TO RECEIPTS COUNT ADD 1 TO PAYMENTS COUNT
i +

WRITE NEW BALAMCE TO CUSTOMER FILE]
ADD 1 TO RECORD COUNT

READ RECORD FROM CUSTOMER FILE

WRITE RECEIPTS COUNT TOTAL
WRITE PAYMENTS COUNT TOTAL

WRITE RECORD COUNT TOTAL
CLOSE FILES

STOP PROCESSING

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs
Structured Flowcharts as design tools

A Nassi-Shneiderman Diagram.

OPEN FILES

SET RECEIPTS COUNT TO ZERO
SET PAYMENTS COUNT TO ZERO
oET RECORD COUNT TO ZERO

READ RECORD FROM CUSTOMER FILE
WHILE NOT END-OF-FILE

RECORD TYPE ?
RECEIPT PAYMENT
ADD RECEIPT TO BALANCE | SUBTBACT PAYMENT FROM BALANCE

ADD 1 TO RECEIPTS COUNT| ADD 1 TO PAYMENTS COUNT
WRITE NEW BALANCE TO CUSTOMER FILE

ADD 1 TO RECORD COUNT

READ RECORD FROM CUSTOMER FILE
WRITE RECEIPTS COUNT TOTAL

WRITE PAYMENTS COUNT TOTAL

WRITE RECORD COUNT TOTAL
CLOSE FILES

a 0P PROCESSING

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

Designing Programs

Structured English

ACK]

For each transaction record do the following
IF the record is a receipt then

add 1 to the ReceiptsCount

add the Amount to the Balance
otherwise

add 1 to the PaymentsCount

subtract the Amount from the Balance
EndIF

add 1 to the RecordCount
Write the Balance to the CustomerFile

When the file has been processed
Output the ReceiptsCount

the PaymentsCount
and the RecordCount

COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

[
Uiy
[
il
|

Designing Programs
The Jackson Method

234 COBOL Programming Fundamental

© 2004 IBM Corporation

ISSC Shanghai, AMS, GCG

[l
iU
[
"‘“II"
[T

Designing Programs
Warnier-Orr Diagrams

235

COBOL Programming Fundamental

© 2004 IBM Corporation

Any Existing Process Could Be Improved!

Thank you very much!

2004/11 © 2004 IBM Corporation

