
Practical Guide
to Pandas for
Data Science

A STEP-BY-STEP GUIDE

@RAMCHANDRAPADWAL



Introduction to Pandas 
1.1 What is Pandas? 
1.2 Why Use Pandas?

Installing and Importing Pandas
2.1 Installation via Anaconda 
2.2 Installation via pip
2.3 Importing Pandas

Data Structures in Pandas 
3.1 Series 
3.2 DataFrame 
3.3 Panel

Reading and Writing Data 
4.1 Reading CSV Files 
4.2 Writing CSV Files 
4.3 Reading Excel Files 
4.4 Writing Excel Files

Data Manipulation 
5.1 Indexing and Selection 
5.2 Filtering Data 
5.3 Sorting Data 
5.4 Aggregating Data 
5.5 Handling Missing Data

Data Cleaning 
6.1 Removing Duplicates 
6.2 Renaming Columns 
6.3 Handling Null Values 
6.4 Changing Data Types

Data Visualization 
7.1 Line Plots 
7.2 Bar Plots 
7.3 Scatter Plots 
7.4 Histograms 
7.5 Box Plots

Time Series Analysis 
8.1 Creating Time Series Data 
8.2 Resampling and Frequency Conversion 
8.3 Shifting and Lagging 
8.4 Rolling Window Functions

Conclusion

Table of Contents

@RAMCHANDRAPADWAL



Introduction to
Pandas 

CHAPTER N.1

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Easy handling of structured data: Pandas provides
powerful data structures, such as Series and DataFrame,
that allow for easy manipulation and analysis of structured
data.
Data alignment and integration: Pandas can handle data
from various sources and align them based on common
indices or column names, making it easy to integrate data
from different sources.
Efficient data manipulation: Pandas provides vectorized
operations and optimized algorithms, which significantly
speed up data manipulation tasks compared to traditional
Python methods.
Missing data handling: Pandas offers flexible tools for
handling missing data, allowing users to either drop or fill in
missing values.
Data visualization: Pandas integrates well with popular
data visualization libraries, such as Matplotlib and Seaborn,
enabling the creation of insightful visualizations.

Pandas offers several advantages for data scientists:

Pandas is an open-source library in Python that provides data
manipulation and analysis tools. It is built on top of NumPy and
provides easy-to-use data structures and data analysis
functions. Pandas is widely used in the field of data science for
tasks such as data cleaning, data transformation, data
visualization, and data analysis.

1.1 WHAT IS PANDAS?

1.2 WHY USE PANDAS?

@RAMCHANDRAPADWAL



Installing and
Importing Pandas

CHAPTER N.2

@RAMCHANDRAPADWAL

A Step-by-Step Guide



Open the command prompt or terminal.
Type the command: pip install pandas and press Enter.

If you have Python installed, you can use pip to install Pandas
by following these steps:

Open the Anaconda Navigator or Anaconda Prompt.
Create a new environment (optional but recommended).
Select the desired environment and click on "Open
Terminal" or open the Anaconda Prompt.
Type the command: conda install pandas and press Enter.

If you have Anaconda installed, you can install Pandas by
following these steps:

2.1 Installation via Anaconda

2.2 Installation via pip

@RAMCHANDRAPADWAL

2.3 Importing Pandas 

After installing Pandas, you need to import it into your Python
environment before using it in your code. Import Pandas with
the following statement:

The commonly used alias "pd" makes it easier to refer to
Pandas functions and objects.



Data Structures in
Pandas

CHAPTER N.3

A Step-by-Step Guide

@RAMCHANDRAPADWAL



A Series is a one-dimensional labeled array that can hold any
data type. It is similar to a column in a spreadsheet or a one-
dimensional NumPy array. You can create a Series using the
pd.Series() function.

3.1 Series

OUTPUT:

@RAMCHANDRAPADWAL

A Data Frame is a two-dimensional labeled data structure with
columns of potentially different data types. It is similar to a
table in a relational database or a spreadsheet. You can create
a DataFrame using the pd.DataFrame() function.

3.2 DataFrame



A Panel is a three-dimensional data structure that can hold
multiple DataFrames. It is less commonly used compared to
Series and DataFrame. You can create a Panel using the
pd.Panel() function.

3.3 Panel

@RAMCHANDRAPADWAL

OUTPUT:

OUTPUT:



Reading and
Writing Data

CHAPTER N.4

A Step-by-Step Guide

@RAMCHANDRAPADWAL



You can save a DataFrame to a CSV file using the pd.to_csv()
function.

CSV (Comma-Separated Values) files are a common file
format for storing tabular data. Pandas provides the
pd.read_csv() function to read CSV files into a DataFrame.

4.1 Reading CSV Files 

@RAMCHANDRAPADWAL

4.2 Writing CSV Files

Pandas also supports reading data from Excel files. You can
use the pd.read_excel() function to read Excel files into a
DataFrame.

4.3 Reading Excel Files



To write a DataFrame to an Excel file, you can use the
pd.to_excel() function.

4.4 Writing Excel Files

@RAMCHANDRAPADWAL



Data Manipulation
CHAPTER N.5

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Selecting Columns: You can select one or more columns
from a DataFrame using the column names.

Pandas provides powerful indexing and selection capabilities.
You can access and manipulate data in a DataFrame using
various indexing techniques.

5.1 ndexing and Selection

@RAMCHANDRAPADWAL

Selecting Rows: You can select rows based on conditions
or by their position.



Pandas allows you to sort data based on one or more
columns.

You can filter data in a DataFrame based on specific
conditions.

5.2 Filtering Data

@RAMCHANDRAPADWAL

5.3 Sorting Data

You can perform aggregation operations on your data, such as
calculating sums, means, or counts.

5.4 Aggregating Data



Pandas provides various methods to handle missing data, such
as dropping or filling missing values.

5.5 Handling Missing Data

@RAMCHANDRAPADWAL



Data Cleaning
CHAPTER N.6

A Step-by-Step Guide

@RAMCHANDRAPADWAL



You can rename columns in a DataFrame using the rename()
method.

You can remove duplicate rows from a DataFrame using the
duplicated() and drop_duplicates() methods.

6.1 Removing Duplicates

@RAMCHANDRAPADWAL

6.2 Renaming Columns

Pandas provides methods to handle null values, such as
isnull(), notnull(), and dropna().

6.3 Handling Null Values



You can change the data type of columns in a DataFrame
using the astype() method.

6.4 Changing Data Types

@RAMCHANDRAPADWAL



Data Visualization
CHAPTER N.7

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Bar plots are useful for comparing categorical data.

You can create line plots using Pandas and visualize trends in
your data.

7.1 Line Plots

@RAMCHANDRAPADWAL

7.2 Bar Plots

Scatter plots are useful for visualizing the relationship between
two variables.

7.3 Scatter Plots



Box plots display the distribution of a variable across different
categories.

Histograms help visualize the distribution of a single variable.

7.4 Histograms

@RAMCHANDRAPADWAL

7.5 Box Plots



Time Series
Analysis

CHAPTER N.8

A Step-by-Step Guide

@RAMCHANDRAPADWAL



Pandas offers resampling functions to change the frequency
of time series data.

Pandas provides functions to create time series data, such as
date_range() and to_datetime().

8.1 Creating Time Series Data

@RAMCHANDRAPADWAL

8.2 Resampling and Frequency Conversion

You can shift or lag time series data using the shift() method.

8.3 Shifting and Lagging



Pandas provides rolling window functions for calculating
statistics over a specified window.

8.4 Rolling Window Functions

@RAMCHANDRAPADWAL



Conclusion

@RAMCHANDRAPADWAL

This practical guide has introduced you to the key features of
Pandas for data science. You learned about installing Pandas,
importing it into your Python environment, and working with its
data structures, such as Series, DataFrame, and Panel. You
also explored various data manipulation techniques, data
cleaning methods, data visualization options, and time series
analysis capabilities in Pandas. With this knowledge, you can
start using Pandas effectively for your data science projects.


