AAAAAAAAAAAAAAAAA

Practical Guide
TO Panaas for
Data Sclience

[Y | | A | Y B

Table of Contents

Introduction to Pandas

o 1.1 What is Pandas”?

o 1.2 Why Use Pandas?
Installing and Importing Pandas
o 2.7 Installation via Anaconda
o 2.2 Installation via pip

o 2.3 Importing Pandas

Data Structures in Pandas

o 3.1 Series

o 3.2 DataFrame

o 3.3 Panel

Reading and Writing Data

o 4.1 Reading CSV Files

o 4.2 Writing CSV Files

o 4.3 Reading Excel Files

o 4.4 Writing Excel Files

Data Manipulation

o 5.7 Indexing and Selection

o 5.2 Filtering Data

o 5.3 Sorting Data

o 5.4 Aggregating Data

o 5.5 Handling Missing Data
Data Cleaning

o 6.1 Removing Duplicates

o 6.2 Renaming Columns

o 6.3 Handling Null Values

o 6.4 Changing Data Types
Data Visualization

o /.1 Line Plots

7.2 Bar Plots

7.3 Scatter Plots

/.4 Histograms

o /.5 Box Plots

Time Series Analysis

o 8.1 Creating Time Series Data
o 8.2 Resampling and Frequency Conversion
o 8.3 Shifting and Lagging

o 8.4 Rolling Window Functions
Conclusion

(o]

(o]

[e]

@RAMCHANDRAPADWAL

AAAAAAAAAAAAAAAAA

INntroduction to
Pandas

11 WHAT IS PANDAS?

Pandas is an open-source library in Python that provides data
manipulation and analysis tools. It is built on top of NumPy and
provides easy-to-use data structures and data analysis
functions. Pandas is widely used in the field of data science for
tasks such as data cleaning, data transformation, data
visualization, and data analysis.

1.2 WHY USE PANDAS?

Pandas offers several advantages for data scientists:

« Easy handling of structured data: Pandas provides
powerful data structures, such as Series and DataFrame,
that allow for easy manipulation and analysis of structured
data.

e Data alignment and integration: Pandas can handle data
from various sources and align them based on common
indices or column names, making it easy to integrate data
from different sources.

o Efficient data manipulation: Pandas provides vectorized
operations and optimized algorithms, which significantly
speed up data manipulation tasks compared to traditional
Python methods.

 Missing data handling: Pandas offers flexible tools for
handling missing data, allowing users to either drop or fill in
missing values.

o Data visualization: Pandas integrates well with popular
data visualization libraries, such as Matplotlib and Seaborn,
enabling the creation of insightful visualizations.

@RAMCHANDRAPADWAL

AAAAAAAAAAAAAAAAA

CCCCCCCC

instauing ana
Importing Pandas

2.1 Installation via Anaconda

If you have Anaconda installed, you can install Pandas by
following these steps:
e Open the Anaconda Navigator or Anaconda Prompt.
e Create a new environment (optional but recommended).
e Select the desired environment and click on "Open
Terminal" or open the Anaconda Prompt.
e Type the command: conda install pandas and press Enter.

2.2 Installation via pip

If you have Python installed, you can use pip to install Pandas
by following these steps:

e Open the command prompt or terminal.

e Type the command: pip install pandas and press Enter.

2.3 Importing Pandas

After installing Pandas, you need to import it into your Python
environment before using it in your code. Import Pandas with
the following statement:

The commonly used alias "pd" makes it easier to refer to
Pandas functions and objects.

@RAMCHANDRAPADWAL

AAAAAAAAAAAAAAAAA

Data Structures In
Pandas

3.1Series

A Series is a one-dimensional labeled array that can hold any
data type. It is similar to a column in a spreadsheet or a one-
dimensional NumPy array. You can create a Series using the
pd.Series() function.

series = pd.Series(data)

print(series)

OUTPUT:

3.2 DataFrame

A Data Frame is a two-dimensional labeled data structure with
columns of potentially different data types. It is similar to a
table in a relational database or a spreadsheet. You can create
a DataFrame using the pd.DataFrame() function.

df = pd.DataFrame(data)
print(df)

@RAMCHANDRAPADWAL

OUTPUT:

Name Age City

John New York
Jane London

Mike ; Paris

3.3 Panel

A Panel is a three-dimensional data structure that can hold
multiple DataFrames. It is less commonly used compared to
Series and DataFrame. You can create a Panel using the
pd.Panel() function.

import pandas as pd

import numpy as np

Creating a Panel from a three-dimensional NumPy array
data = np.random.rand(3, 4, 5)
panel = pd.Panel(data)

print(panel)

OUTPUT:

(items) x 4 (major_axis) x (minoxr_axis)
Ttems axis: to

Major_axis axis:

Minor_axis axis:

@RAMCHANDRAPADWAL

AAAAAAAAAAAAAAAAA

CCCCCCCC

i?eading and
Writing Data

41Reading CSV Files

CSV (Comma-Separated Values) files are a common file
format for storing tabular data. Pandas provides the
pd.read_csv() function to read CSV files into a DataFrame.

import pandas as pd

Reading a C5V file into a

df = pd.read_csv(
print(df)

4.2 \Nriting CSV Files

You can save a DataFrame to a CSV file using the pd.to_csvl()
function.

import pandas as pd

Writing a DataFrame to a CSV fil

df.to_csv('output.csv', index=False)

4.3 Reading Excel Files

Pandas also supports reading data from Excel files. You can
use the pd.read_excel() function to read Excel files into a
DataFrame.

import pandas as pd

Reading an Excel file into a DataFrame

df = pd.read_excel('data.xlsx')
print(df)

@RAMCHANDRAPADWAL

4.4 \\riting Excel Files

To write a DataFrame to an Excel file, you can use the
pd.to_excel() function.

import pandas as pd

Writing a DataFrame to an Excel file

df.to_excel('output.xlsx', index=False)

@RAMCHANDRAPADWAL

AAAAAAAAAAAAAAAAA

Data Manipulation

5.1ndexing and Selection

Pandas provides powerful indexing and selection capabilities.
You can access and manipulate data in a DataFrame using
various indexing techniques.

e Selecting Columns: You can select one or more columns
from a DataFrame using the column names.

import pandas as pd

ing a single column

col = df[n_N]

Selecting multiple columns
cols = df[[" nl',

o Selecting Rows: You can select rows based on conditions
or by their position.

selected_rows

selected_rows df.iloc[2:

@RAMCHANDRAPADWAL

5.2 Filtering Data

You can filter data in a DataFrame based on specific
conditions.

import pandas as pd

Filtering data based on a c

filtered_data = df[df['(

5.3 Sorting Data

Pandas allows you to sort data based on one or more
columns.

ort pandas as

Sorting data based on a single

sorted_data df.sort_wvalues('Col

Sorting data based on multiple columns

sorted_data = df.sort_values(['Columnl’,

5.4 Aggregating Data

You can perform aggregation operations on your data, such as
calculating sums, means, or counts.

import pandas as pd

column

column_sum = df['Column Name'].sum()

Calculating the mean of a column

column_mean = df['Column Name'].mean()

Counting the number of occurrences in a column

column_count = df['Column Name'].value_counts()

@RAMCHANDRAPADWAL

5.5 Handling Missing Data

Pandas provides various methods to handle missing data, such
as dropping or filling missing values.

import pandas as

Dropping rows \

clean_data = df.dropna()

Filling missing values with

filled_data = df.fillna(0)

Filling missing values with the mean of the column

mean_filled_data = df.fillna(df.mean())

@RAMCHANDRAPADWAL

AAAAAAAAAAAAAAAAA

CHAPTER N.6

Data Cleaning

)

6.1 Removing Duplicates

You can remove duplicate rows from a DataFrame using the
duplicated() and drop_duplicates() methods.

import pandas as

Checking for duplica

duplicate_rows = df.duplicated()

Dropping duplicate rows

clean_data = df.drop_duplicates()

6.2 Renaming Columns

You can rename columns in a DataFrame using the renamel)
method.

ort pandas as pd

Renaming columns

df.rename(columns={" |_Name': 'New_Name'}, inplace=True)

6.3 Handling Null Values

Pandas provides methods to handle null values, such as
isnull(), notnull(), and dropnal).

import pandas as pd

hecking for null wvalues

null_wvalues = df.isnull()

Dropping rows with null values

clean_data = df.dropna()

@RAMCHANDRAPADWAL
/

_—

6.4 Changing Data Types

You can change the data type of columns in a DataFrame
using the astype() method.

Name'].astype(int)

@RAMCHANDRAPADWAL
/

AAAAAAAAAAAAAAAAA

Data Visualization

71Line Plots

You can create line plots using Pandas and visualize trends in
your data.

pandas as pd

rt matplotlib.pyplot as plt

Creating a line plot
df.plot(x=
plt.title(
plt.show()

7.2 Bar Plots

Bar plots are useful for comparing categorical data.

rt pandas as pd
import matplotlib.pyplot as plt

Creating a bar plot
df.plot(kind=
plt.title(

plt.show()

7.3 Scatter Plots

Scatter plots are useful for visualizing the relationship between
two variables.

rt pandas as pd

vt matplotlib.pyplot as

df.plot(kind=

plt.title(
plt.show()

@RAMCHANDRAPADWAL

=

/7.4 Histograms

Histograms help visualize the distribution of a single variable.

rt matplotlib.pyplot as plt

] a histogram
"].plot(kind=
plt.title(')
plt.show()

7.5 Box Plots

Box plots display the distribution of a variable across different
categories.

rt pandas as pd
matplotlib.pyplot as plt

df.boxplot(column="\
plt.title(
plt.show()

@RAMCHANDRAPADWAL

=

AAAAAAAAAAAAAAAAA

CCCCCCCC

'S'I"lme Series
Analysis

)

8.1 Creating Time Series Data

Pandas provides functions to create time series data, such as
date_range() and to_datetime().

8.2 Resampling and Frequency Conversion

Pandas offers resampling functions to change the frequency
of time series data.

} Resampling a time series to a lower frequenc
weekly _data = df.resample('W').mean()

8.3 Shifting and Lagging

You can shift or lag time series data using the shift() method.

ort pandas as pd

Shifting time series data by a specified number of periods

shifted_data = df[1.shift(1)

@RAMCHANDRAPADWAL
4/”’————__——*

)

8.4 Rolling Window Functions

Pandas provides rolling window functions for calculating
statistics over a specified window.

ort pandas as pd

Calculating the rolling mean over a window of size 3

rolling_mean = df["1.rolling(window=23) .mean()

@RAMCHANDRAPADWAL
/

@RAMCHANDRAPADWAL

Conclusion

This practical guide has introduced you to the key features of
Pandas for data science. You learned about installing Pandas,
importing it into your Python environment, and working with its
data structures, such as Series, DataFrame, and Panel. You
also explored various data manipulation techniques, data
cleaning methods, data visualization options, and time series
analysis capabilities in Pandas. With this knowledge, you can
start using Pandas effectively for your data science projects.

