Reinforcement Learning
with Python

With Code Examples

save for later

Introduction to
Reinforcement Learning

Reinforcement Learning (RL) is a type of machine
learning where an agent learns to make decisions by
interacting with an environment. The agent receives
rewards or penalties based on its actions, aiming to
maximize cumulative rewards over time. This
process mimics how humans and animals learn
through trial and error.

import gym
import numpy as np

env = gym.make('CartPole-v1')
n_episodes = 1000
max_steps = 500

for episode in range(n_episodes):
state = env.reset()
for step in range(max_steps):
action = env.action_space.sample()
next_state, reward, done, _ = env.step(action)
if done:
break
print(f"Episode {episode + 1} completed in {step + 1} steps")

Swipe next —>

follow for more

Key Components of
Reinforcement Learning

The main components of RL are the agent,
environment, state, action, and reward. The agent is
the learner that interacts with the environment. The
environment is the world in which the agent
operates. The state represents the current situation
of the agent in the environment. Actions are the
decisions the agent can make, and rewards provide
feedback on the quality of those actions.

Swipe next —>

Example

class Agent:
def __init__(self, action_space):
self.action_space = action_space

def choose_action(self, state):
return self.action_space.sample()

Environment:
ef init__(self):
self.state = ©

def step(self, action):
if action == 1:
self.state += 1
else:
self.state —= 1
reward = 1 if self.state == 5 else @
done = abs(self.state) >= 5
return self.state, reward, done

agent = Agent(gym.spaces.Discrete(2))
env = Environment()

state = env.state

for _ in range(10):
action = agent.choose_action(state)
next_state, reward, done = env.step(action)

print(f"State: {state}, Action: {action}, Next State:

:.II)
state = next_state
if done:

break

save for later

>}, Reward:

Swipe next —>

The RL Process S s

The RL process is a continuous cycle of interaction
between the agent and the environment. The agent
observes the current state, chooses an action, and
receives a reward and the next state from the
environment. This cycle repeats until a terminal state
is reached or a maximum number of steps is
completed.

import random

class SimpleAgent:
def __init__(self, n_actions):

self.n_actions = n_actions

def choose_action(self, state):

return random.randint(@, self.n_actions - 1)

class SimpleEnvironment:
def __init__(self):

self.state = @

def step(self, action):
self.state += action - 1
reward = —abs(self.state)
done = abs(self.state) >= 5
return self.state, reward, done

agent = SimpleAgent(3)
env = SimpleEnvironment()

state = env.state
total_reward = @

for _ in range(20):
action = agent.choose_action(state)
next_state, reward, done = env.step(action)
total_reward += reward
print(f"State: state}, Action: {action}, Next State: {next_state}, Reward:
yard}")
state = next_state
if done:

break

print(f"Total Reward: {total_reward}"

Swipe next —>

follow for more

Markov Decision Processes

(MDPs)

Markov Decision Processes provide a mathematical
framework for modeling decision-making in RL. An
MDP consists of a set of states, actions, transition
probabilities, and rewards. The Markov property
states that the next state depends only on the current
state and action, not on the history of previous states
and actions.

import numpy as np

class SimpleMDP:
def __init__(self, n_states, n_actions):
self.n_states = n_states
self.n_actions = n_actions
self.transition_probs = np.random.rand(n_states, n_actions, n_states)
self.transition_probs /= self.transition_probs.sum(axis=2, keepdims=True)
self.rewards = np.random.randn(n_states, n_actions, n_states)

def step(self, state, action):
next_state = np.random.choice(self.n_states, p=self.transition_probs[state,
actionl)
reward = self.rewards[state, action, next_statel
return next_state, reward

mdp = SimpleMDP(5, 3)
state = 0

for _ in range(10):
action = np.random.randint(mdp.n_actions)

next_state, reward = mdp.step(state, action)

print(f"State: {state}, Action: {action}, Next State: {next tate}, Reward:
foe 2 1)

state = next_state

Swipe next —>

gaLearmnﬂ : AValue="""""
sed RL Algorithm

Q-Learning is a popular value-based RL algorithm
that learns to estimate the quality of actions in
different states. It maintains a Q-table that stores the
expected cumulative reward for each state-action
pair. The agent uses this table to make decisions,
balancing exploration and exploitation.

import numpy as np

ss QLearningAgent:
def __init__(self, n_states, n_actions, learning_rate=0.1,
discount_factor=0.95, epsilon=0.1):
self.q_table = np.zeros((n_states, n_actions))
self.lr = learning_rate
self.gamma = discount_factor
self.epsilon = epsilon

choose_action(self, state):
if np.random.random() < self.epsilon:
return np.random.randint(self.q_table.shape[1])
turn np.argmax(self.q_table[statel)

update(self, state, action, reward, next_state):

best_next_action = np.argmax(self.q_table[next_statel])

td_target = reward + self.gamma * self.q_table[next_state,
best_next_action]

td_error = td_target - self.qg_table[state, action]

self.q_table[state, action] += self.lr * td_error

agent = QLearningAgent(5, 3)
state = 0
for _ range(1000):
action = agent.choose_action(state)
next_state = np.random.randint(5)
reward = np.random.randn()
agent.update(state, action, reward, next_state)
state = next_state

print("Final Q-table:")
print(agent.qg_table)

Swipe next —>

save for later

Policy Gradient Methods

Policy gradient methods are another class of RL
algorithms that directly learn the policy without
maintaining a value function. These methods
optimize the policy by estimating the gradient of the
expected cumulative reward with respect to the
policy parameters. REINFORCE is a simple policy
gradient algorithm.

import numpy as np

class REINFORCEAgent:
def __init__(self, n_states, n_actions, learning_rate=0.01):

self.n_actions = n_actions
self.lr = learning_rate
self.theta = np.zeros((n_states, n_actions))

ief softmax(self, x):
exp_x = np.exp(x - np.max(x))
return exp_x / exp_x.sum()

def choose_action(self, state):
probs = self.softmax(self.thetalstatel)
return np.random.choice(self.n_actions, p=probs)

ief update(self, episode):
for t, (state, action, reward) in enumerate(episode):

G = sum([r for (_, _, r) in episodel[t:]1])
probs = self.softmax(self.thetalstate])
grad = np.zeros_like(self.thetal[state])
grad[action] = 1
grad —= probs
self.thetalstate] += self.lr x G * grad

agent = REINFORCEAgent(5, 3)
episode = [(@, 1, 1), (2, @, -1),
agent.update(episode)

print("Updated policy parameters:"
print(agent.theta)

Swipe next —>

follow for more

Deep Q-Networks (DQN)

Deep Q-Networks combine Q-learning with deep
neural networks to handle high-dimensional state
spaces. DQNs use a neural network to approximate
the Q-function, allowing them to generalize across
similar states and handle complex environments like

Atari games.

Swipe next —>

Exa i pl e save for later

torch

torch.nn as nn
torch.optim as optim
numpy np

DQN(nn.Module):
def ini (self, input_dim, output_
super(DQN, self).__init__()
self.fcl = nn.Linear(input_dim,
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, output_dim)

forward(self, x):

self.fcl(x))
self.fc2(x))
(x)

torch.relu

(
torch.relu(
>)

'n self.fc3

DQNAgent:
lef il (self, state_dim, action_dim, learning_rate=0.001, gamma=0.99,
epsilon
ork = DQN(s dim, action_dim)
target_network = DQN(state_dim, action_dim)
target_network.load_state_dict(self.q_network.state_dict())
optimizer = optim.Adam(self.q_network.parameters(), lr=learning_rate)
.gamma = gamma
epsilon = epsilon

n(self, state):
np.random.random() < self.epsilon:
t np.random.randint(self.q_network.fc3.out_features)
torch.no_grad():
values = self.q_network(torch.FloatTensor(state))
urn q_values.argmax().item()

self, state, action, reward, next_state, done):
state = torch.FloatTensor(state)
next_state = torch.FloatTensor(next_state)
g_values = self.q_network(state)
next_q_values = self.target_network(next_state)
g_value = g_values[action]
next_qg_value = next_q_values.max()
expected_q_value = reward + self.gamma % next_qg_value * (1 - done)

loss = nn.MSELoss()(q_value, expected_qg_value.detach())
self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()

update_t t_network(self):
self.target_network.load_state_dict(self.q_network.state_dict())

agent = DQNAgent(4, 2)

state = np.random.rand(4)

action = agent.choose_action(state)
next_state = np.random.rand(4)
reward = 1

done = Fal

agent.update(state, action, reward, next_state, done) swipe next)

save for later

Actor-Critic Methods

Actor-Critic methods combine the strengths of both
value-based and policy-based approaches. They
use two networks: an actor that learns the policy, and
a critic that estimates the value function. This

combination often leads to more stable and efficient
learning.

Swipe next —>

follow for more

torch

torch.nn

torch.optim as optim
numpy as np

ActorCritic(nn.Module):
init__(self, input_dim, n_actions):
super(ActorCritic, self).__init__()
self.fcl = n near(input_dim, 64)
self.fc2 = nn.Linear(64,)
self.actor = nn.Li (64, n_actions)

self.critic = nn.Linear(64, 1)

(self, x
torch.relu(self.fcl(x))
torch.relu(self.fc2(x))

turn self.actor(x), self.critic(x)

iticAgent:
init__(self, state_dim, action_dim, learning_r 3 , gamma
self.ac_network = ActorCritic(state_dim, action_dim)
self.optimizer = optim.Adam(self.ac_network.parameters(), lr=learning_rate)
self.gamma = gamma

n(self, state):
state = torch.FloatTensor(state)
actor_output, _ = self.ac_network(state)
action_probs = torch.softmax(actor_output, dim=-1)
action_dist = torch.distributions.Categorical(action_probs)
action = action_dist.sample()
return action.item()

update(f, state, action, reward, next_state, done):
state = torch.FloatTensor(state)

next_state = to sor(next_state)

actor_ou t rit value = self.ac_ne k(state)
_, next_critic_value = self.ac_network(next_state)

delta = reward + self.gamma * next_critic_value * | - done) - critic_

actor_loss = —-torch.log(torch.softmax(acto 1)[action]) *
delta.detach()

critic_loss = delta.pow(2

loss = actor_loss + critic_l
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()

agent = ActorCriticAgent(4,
state = np.random.rand(4)
action = agent.choose_action(state)
next_state = np.random.rand(
vard = 1
done = 11se
agent.update(state, action, reward, next_state, done)

Exa m Ple follow for more

numpy as np

ExplorationAgent:
f __init__(self, n_actions, method='epsilon_greedy'):
self.n_actions = n_actions

self.method = method

self.q_values = np.zeros(n_actions)
self.action_counts = np.zeros(n_actions)
self.total_steps = 0

self.epsilon = 0.1

self.temperature =

choose_action(self):
self.total_steps += 1
if self.method == 'epsilon_greedy':
if np.random.random() < self.epsilon:
eturn np.random.randint(self.n_actions)
return np.argmax(self.qg_values)
if self.method == 'softmax':
probs = np.exp(self.q_values / self.temperature)
probs /= np.sum(probs)
return np.random.choice(self.n_actions, p=probs)
elif self.method == 'ucb':
ucb_values = self.q_values + np.sqrt(2 * np.log(self.total_steps) /
(self.action_counts + 1e-5))
return np.argmax(ucb_values)

f update(self, action, reward):
self.action_counts[action] += 1
self.q_values[action] += (reward - self.qg_values[action]) /
self.action_counts[action]

method="'softmax')

agent = ExplorationAgent(5,
rewards = [0, 0.2, 0.5, 0.1, 1.0]

for _ in range(1000):
action = agent.choose_action()
reward = rewards[action]
agent.update(action, reward)

print("Final Q-values:", agent.q_values)

Swipe next —>

save for later

Exploration vs. Exploitation

The exploration-exploitation dilemma is a
fundamental challenge in RL. Exploration involves
trying new actions to gather information about the
environment, while exploitation means using known
information to maximize rewards. Balancing these
aspects is crucial for effective learning. Common
strategies include epsilon-greedy, softmax
exploration, and upper confidence bound (UCB)
algorithms.

Swipe next —>

save for later

Function Approximation
inRL

Function approximation allows RL algorithms to
handle large or continuous state spaces by
generalizing from observed states to unseen ones.
This is typically achieved using neural networks or

other parametric models to represent value functions
or policies.

Swipe next —>

Exa m Ple follow for more

numpy as

torch

torch.nn as nn
torch.optim as optim

class ValueNetwork(nn.Module):
def __init__(self, input_dim, hidden_dim):
super(ValueNetwork, self).__init__()

self.fcl = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, 1)

forward(self, x):
X = torch.relu(self.fcl(x))
return self.fc2(x)

s FunctionApproximationAgent:
def __init__(self, state_dim, learning_rate=0.01):
self.value_network = ValueNetwork(state_dim, 64)

self.optimizer = optim.Adam(self.value_network.parameters()
lr=learning_rate)

f estimate_value(self, state):
state_tensor = torch.FloatTensor(state)
return self.value_network(state_tensor).item()

update(self, state, target_value):

state_tensor = torch.FloatTensor(state)

predicted_value = self.value_network(state_tensor)

loss = nn.MSELoss() (predicted_value, torch.FloatTensor([target_valuel))
self.optimizer.zero_grad()

loss.backward()

self.optimizer.step()

agent = FunctionApproximationAgent(4)
state = np.random.rand(4)
target_value = 10.0

in range(1000):
agent.update(state, target_value)

print("Estimated value:", agent.estimate_value(state))

Swipe next —>

MU Iti 'Agent save for later

Reinforcement Learning

Multi-Agent Reinforcement Learning (MARL)
extends RL to environments with multiple agents.
These agents can be cooperative, competitive, or a
mix of both. MARL introduces new challenges such
as non-stationarity, coordination, and credit
assignment.

import numpy as np

lass SimpleMARL:
def __init__(self, n_agents, n_actions):
self.n_agents = n_agents
self.n_actions = n_actions
self.q_values = np.zeros((n_agents, n_actions))

>f choose_actions(self, epsilon=0.1):
actions = []
for agent in range(self.n_agents):
if np.random.random() < epsilon:
actions.append(np.random.randint(self.n_actions))
else:
actions.append(np.argmax(self.q_values[agent]))
return actions

of update(self, actions, rewards, learning_rate=0.1):
for agent in range(self.n_agents):

self.q_values[agent, actions[agent]] += learning_rate * (rewards[agent]
self.qg_values[agent, actions[agent]])

marl = SimpleMARL(2, 3)

for _ in range(1000):
actions = marl.choose_actions()
rewards = np.random.rand(2)
marl.update(actions, rewards)

print("Final Q-values:")
print(marl.q_values)

Swipe next —>

follow for more

Hierarchical .
Reinforcement Learning

Hierarchical Reinforcement Learning (HRL)
decomposes complex tasks into simpler subtasks,
allowing agents to learn and operate at multiple
levels of abstraction. This approach can significantly
speed up learning and improve generalization in
complex environments.

import numpy as np

HierarchicalAgent:

__init__(self, n_high_level_actions, n_low_level_actions):

self.high_level_policy = np.zeros(n_high_level_actions)
self.low_level_policies = [np.zeros(n_low_level_actions) for _
range(n_high_level_actions)]

lef choose_high_level_action(self, epsilon=0.1):
if np.random.random() < epsilon:
return np.random.randint(len(self.high_level_policy))
return np.argmax(self.high_level_policy)

def choose_low_level_action(self, high_level_action, epsilon=0.1):
if np.random.random() < epsilon:
return
np.random.randint(len(self.low_level_policies[high_level_actionl]))
return np.argmax(self.low_level_policies[high_level_action])

def update(self, high_level_action, low_level_action, reward,
learning_rate=0.1):
self.high_level_policy[high_level_action] += learning_rate * (reward -
self.high_level_policyl[high_level_actionl])
self.low_level policies[high_level_action][low_level_action] +=
learning_rate * (reward - self.low_level_policies[high_level_action]
[low_level_action])

agent = HierarchicalAgent(3, 4)

for _ in range(1000):
high_action = agent.choose_high_level_action()
low_action = agent.choose_low_level_action(high_action)
reward = np.random.rand()
agent.update(high_action, low_action, reward)

print("High-level policy:", agent.high_level_policy)
print("Low-level policies:", agent.low_level_policies)

Swipe next —>

follow for more

Hierarchical .
Reinforcement Learning

Hierarchical Reinforcement Learning (HRL)
decomposes complex tasks into simpler subtasks,
allowing agents to learn and operate at multiple
levels of abstraction. This approach can significantly
speed up learning and improve generalization in
complex environments.

import numpy as np

HierarchicalAgent:

__init__(self, n_high_level_actions, n_low_level_actions):

self.high_level_policy = np.zeros(n_high_level_actions)
self.low_level_policies = [np.zeros(n_low_level_actions) for _
range(n_high_level_actions)]

lef choose_high_level_action(self, epsilon=0.1):
if np.random.random() < epsilon:
return np.random.randint(len(self.high_level_policy))
return np.argmax(self.high_level_policy)

def choose_low_level_action(self, high_level_action, epsilon=0.1):
if np.random.random() < epsilon:
return
np.random.randint(len(self.low_level_policies[high_level_actionl]))
return np.argmax(self.low_level_policies[high_level_action])

def update(self, high_level_action, low_level_action, reward,
learning_rate=0.1):
self.high_level_policy[high_level_action] += learning_rate * (reward -
self.high_level_policyl[high_level_actionl])
self.low_level policies[high_level_action][low_level_action] +=
learning_rate * (reward - self.low_level_policies[high_level_action]
[low_level_action])

agent = HierarchicalAgent(3, 4)

for _ in range(1000):
high_action = agent.choose_high_level_action()
low_action = agent.choose_low_level_action(high_action)
reward = np.random.rand()
agent.update(high_action, low_action, reward)

print("High-level policy:", agent.high_level_policy)
print("Low-level policies:", agent.low_level_policies)

Swipe next —>

Inverse

save for later

Reinforcement Learning

Inverse Reinforcement Learning (IRL) aims to
recover the reward function of an agent given its
observed behavior. This is useful in scenarios where
the reward function is unknown or difficult to specify,
such as in robotic imitation learning or autonomous

driving.

import numpy as np

SimpleIRL:

e f

__init__(self, n_states, n_actions):
self.n_states = n_states

self.n_actions = n_actions

self.reward_weights = np.random.rand(n_states)

self.feature_counts = np.zeros(n_states)

estimate_reward(self, state):
-eturn self.reward_weights[state]

update(self, expert_trajectory, learning_rate=0.01):

expert_counts = np.zeros(self.n_states)
for state, _ in expert_trajectory:
expert_counts[state] += 1

grad = expert_counts - self.feature_counts
self.reward_weights += learning_rate * grad

self.feature_counts = np.zeros(self.n_states)
for state, _ in expert_trajectory:
self.feature_counts[state] += 1

irl = SimpleIRL(5, 2)

expert_trajectory = [(@, 1), (1,

for _ in range(100):
irl.update(expert_trajectory)

print("Estimated reward weights:", irl.reward_weights)

Swipe next —>

follow for more

Real-life Applications of
Reinforcement Learning

Reinforcement Learning has found applications in
various domains, demonstrating its versatility and
power. Two prominent examples are:
1.Game Playing: RL has achieved superhuman
performance in complex games like Go
(AlphaGo) and Dota 2. These successes
showcase RL's ability to learn intricate strategies
in high-dimensional state spaces.
2.Robotics: RL enables robots to learn complex
motor skills through trial and error, such as
grasping objects or walking. This approach
allows robots to adapt to new environments and
tasks without explicit programming.

Swipe next —>

save for later

Example

import numpy as np

class SimpleRobot:
def __init__(self, n_joints, n_actions):
self.n_joints = n_joints
self.n_actions = n_actions
self.q_table = np.zeros((n_joints, n_actions))

" choose_action(self, joint, epsilon=0.1):
if np.random.random() < epsilon:
return np.random.randint(self.n_actions)
return np.argmax(self.q_table[joint])

def update(self, joint, action, reward, learning_rate=0.1):

self.g_table[joint, action] += learning_rate * (reward -
self.q_table[joint, action])

robot = SimpleRobot(3, 4)

for episode in range(1000):
total_reward = ©
for joint in range(robot.n_joints):
action = robot.choose_action(joint)
reward = np.random.randn()
robot.update(joint, action, reward)
total_reward += reward

if episode % 100
print(f"Episode {episode}, Total Reward:

print("Final Q-table:")
print(robot.q_table)

Swipe next —>

follow for more

Additional Resources

For those interested in diving deeper into
Reinforcement Learning, here are some valuable
resources:
1."Reinforcement Learning: An Introduction” by
Richard S. Sutton and Andrew G. Barto (2nd
Edition, 2018) ArXiv link:
https://arxiv.org/abs/1603.02199
2."Deep Reinforcement Learning: An Overview" by
Yuxi Li (2017) ArXiv link:
https://arxiv.org/abs/1701.07274
3."A Survey of Deep Reinforcement Learning in
Video Games" by Kai Arulkumaran et al. (2019)
ArXiv link: https://arxiv.org/abs/1912.10944
4.0penAl Gym: A toolkit for developing and
comparing reinforcement learning algorithms
GitHub repository:
https://github.com/openai/gym
5.DeepMind's educational resources on RL.:
https://deepmind.com/learning-resources/-
introduction-reinforcement-learning-david-silver

