
How to Think Like a Computer Scientist

C Version

Allen B. Downey
C-Version by Thomas Scheffler

Version 1.09
January 5th, 2018

2

Copyright (C) 1999 Allen B. Downey

This book is an Open Source Textbook (OST). Permission is granted to repro-
duce, store or transmit the text of this book by any means, electrical, mechan-
ical, or biological, in accordance with the terms of the GNU General Public
License as published by the Free Software Foundation (version 2).

This book is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

The original form of this book is LaTeX source code. Compiling this LaTeX
source has the effect of generating a device-independent representation of a
textbook, which can be converted to other formats and printed. All intermediate
representations (including DVI and Postscript), and all printed copies of the
textbook are also covered by the GNU General Public License.

The LaTeX source for this book, and more information about the Open Source
Textbook project, is available from

http://www.cs.colby.edu/~downey/ost

or by writing to Allen B. Downey, 5850 Mayflower Hill, Waterville, ME 04901.

The GNU General Public License is available from www.gnu.org or by writing
to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

This book was typeset by the author using LaTeX and dvips, which are both
free, open-source programs.

Contents

1 The way of the program 1

1.1 What is a programming language? 1

1.2 What is a program? . 3

1.3 What is debugging? . 3

1.3.1 Compile-time errors . 4

1.3.2 Run-time errors . 4

1.3.3 Logic errors and semantics 4

1.3.4 Experimental debugging 5

1.4 Formal and natural languages . 5

1.5 The first program . 7

1.6 Glossary . 8

1.7 Exercises . 10

2 Variables and types 13

2.1 More output . 13

2.2 Values . 14

2.3 Variables . 15

2.4 Assignment . 16

2.5 Outputting variables . 17

2.6 Keywords . 18

2.7 Operators . 18

2.8 Order of operations . 19

2.9 Operators for characters . 20

ii Contents

2.10 Composition . 20

2.11 Glossary . 21

2.12 Exercises . 22

3 Function 25

3.1 Floating-point . 25

3.2 Constants . 26

3.3 Converting from double to int 27

3.4 Math functions . 27

3.5 Composition . 28

3.6 Adding new functions . 29

3.7 Definitions and uses . 31

3.8 Programs with multiple functions 31

3.9 Parameters and arguments . 32

3.10 Parameters and variables are local 33

3.11 Functions with multiple parameters 34

3.12 Functions with results . 34

3.13 Glossary . 35

3.14 Exercises . 35

4 Conditionals and recursion 39

4.1 Conditional execution . 39

4.2 The modulus operator . 40

4.3 Alternative execution . 40

4.4 Chained conditionals . 41

4.5 Nested conditionals . 41

4.6 The return statement . 42

4.7 Recursion . 43

4.8 Infinite recursion . 45

4.9 Stack diagrams for recursive functions 45

4.10 Glossary . 46

4.11 Exercises . 46

Contents iii

5 Fruitful functions 49

5.1 Return values . 49

5.2 Program development . 51

5.3 Composition . 53

5.4 Boolean values . 54

5.5 Boolean variables . 55

5.6 Logical operators . 55

5.7 Bool functions . 56

5.8 Returning from main() . 57

5.9 Glossary . 57

5.10 Exercises . 58

6 Iteration 63

6.1 Multiple assignment . 63

6.2 Iteration . 64

6.3 The while statement . 64

6.4 Tables . 66

6.5 Two-dimensional tables . 68

6.6 Encapsulation and generalization 68

6.7 Functions . 70

6.8 More encapsulation . 70

6.9 Local variables . 70

6.10 More generalization . 71

6.11 Glossary . 73

6.12 Exercises . 74

7 Arrays 77

7.1 Increment and decrement operators 78

7.2 Accessing elements . 78

7.3 Copying arrays . 79

7.4 for loops . 80

iv Contents

7.5 Array length . 81

7.6 Random numbers . 81

7.7 Statistics . 83

7.8 Array of random numbers . 83

7.9 Passing an array to a function . 84

7.10 Counting . 84

7.11 Checking the other values . 85

7.12 A histogram . 86

7.13 A single-pass solution . 87

7.14 Random seeds . 88

7.15 Glossary . 88

7.16 Exercises . 89

8 Strings and things 91

8.1 Containers for strings . 91

8.2 String variables . 91

8.3 Extracting characters from a string 92

8.4 Length . 93

8.5 Traversal . 93

8.6 Finding a character in a string 94

8.7 Pointers and Addresses . 95

8.8 String concatenation . 96

8.9 Assigning new values to string variables 96

8.10 strings are not comparable . 97

8.11 Character classification . 98

8.12 Getting user input . 99

8.13 Glossary . 101

8.14 Exercises . 101

Contents v

9 Structures 103

9.1 Compound values . 103

9.2 Point objects . 103

9.3 Accessing member variables . 104

9.4 Operations on structures . 105

9.5 Structures as parameters . 105

9.6 Call by value . 106

9.7 Call by reference . 106

9.8 Rectangles . 108

9.9 Structures as return types . 109

9.10 Passing other types by reference 110

9.11 Glossary . 110

9.12 Exercises . 111

A Coding Style 113

A.1 A short guide on style . 113

A.2 Naming conventions and capitalization rules 114

A.3 Bracing style . 115

A.4 Layout . 116

B ASCII-Table 117

vi Contents

Chapter 1

The way of the program

The goal of this book, and this class, is to teach you to think like a computer
scientist. I like the way computer scientists think because they combine some of
the best features of Mathematics, Engineering, and Natural Science. Like math-
ematicians, computer scientists use formal languages to denote ideas (specifi-
cally computations). Like engineers, they design things, assembling components
into systems and evaluating tradeoffs among alternatives. Like scientists, they
observe the behavior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem-solving.
By that I mean the ability to formulate problems, think creatively about solu-
tions, and express a solution clearly and accurately. As it turns out, the process
of learning to program is an excellent opportunity to practice problem-solving
skills. That’s why this chapter is called “The way of the program.”

On one level, you will be learning to program, which is a useful skill by itself.
On another level you will use programming as a means to an end. As we go
along, that end will become clearer.

1.1 What is a programming language?
The programming language you will be learning is C, which was developed in
the early 1970s by Dennis M. Ritchie at the Bell Laboratories. C is an example
of a high-level language; other high-level languages you might have heard of
are Pascal, C++ and Java.

As you might infer from the name “high-level language,” there are also low-level
languages, sometimes referred to as machine language or assembly language.
Loosely-speaking, computers can only execute programs written in low-level
languages. Thus, programs written in a high-level language have to be trans-
lated before they can run. This translation takes some time, which is a small
disadvantage of high-level languages.

2 The way of the program

But the advantages are enormous. First, it is much easier to program in a high-
level language; by “easier” I mean that the program takes less time to write, it’s
shorter and easier to read, and it’s more likely to be correct. Secondly, high-
level languages are portable, meaning that they can run on different kinds of
computers with few or no modifications. Low-level programs can only run on
one kind of computer, and have to be rewritten to run on another.

Due to these advantages, almost all programs are written in high-level languages.
Low-level languages are only used for a few special applications.

There are two ways to translate a program; interpreting or compiling. An
interpreter is a program that reads a high-level program and does what it says.
In effect, it translates the program line-by-line, alternately reading lines and
carrying out commands.

interpreter

source

code

The interpreter

reads the

source code...

... and the result

appears on

the screen.

A compiler is a program that reads a high-level program and translates it all at
once, before executing any of the commands. Often you compile the program
as a separate step, and then execute the compiled code later. In this case, the
high-level program is called the source code, and the translated program is
called the object code or the executable.

As an example, suppose you write a program in C. You might use a text editor to
write the program (a text editor is a simple word processor). When the program
is finished, you might save it in a file named program.c, where “program” is an
arbitrary name you make up, and the suffix .c is a convention that indicates
that the file contains C source code.

Then, depending on what your programming environment is like, you might
leave the text editor and run the compiler. The compiler would read your
source code, translate it, and create a new file named program.o to contain the
object code, or program.exe to contain the executable.

object

code executor

The compiler

reads the

source code...

... and generates

object code.

You execute the

program (one way

or another)...

... and the result

appears on

the screen.

source

code compiler

The next step is to run the program, which requires some kind of executor. The

1.2 What is a program? 3

role of the executor is to load the program (copy it from disk into memory) and
make the computer start executing the program.

Although this process may seem complicated, in most programming environ-
ments (sometimes called development environments), these steps are automated
for you. Usually you will only have to write a program and press a button or
type a single command to compile and run it. On the other hand, it is useful
to know what the steps are that are happening in the background, so that if
something goes wrong you can figure out what it is.

1.2 What is a program?
A program is a sequence of instructions that specifies how to perform a com-
putation. The computation might be something mathematical, like solving a
system of equations or finding the roots of a polynomial, but it can also be
a symbolic computation, like searching and replacing text in a document or
(strangely enough) compiling a program.

The instructions, which we will call statements, look different in different
programming languages, but there are a few basic operations most languages
can perform:

input: Get data from the keyboard, or a file, or some other device.

output: Display data on the screen or send data to a file or other device.

math: Perform basic mathematical operations like addition and multiplication.

testing: Check for certain conditions and execute the appropriate sequence of
statements.

repetition: Perform some action repeatedly, usually with some variation.

That’s pretty much all there is to it. Every program you’ve ever used, no matter
how complicated, is made up of statements that perform these operations. Thus,
one way to describe programming is the process of breaking a large, complex task
up into smaller and smaller subtasks until eventually the subtasks are simple
enough to be performed with one of these basic operations.

1.3 What is debugging?
Programming is a complex process, and since it is done by human beings, it often
leads to errors. For whimsical reasons, programming errors are called bugs and
the process of tracking them down and correcting them is called debugging.

There are a few different kinds of errors that can occur in a program, and it is
useful to distinguish between them in order to track them down more quickly.

4 The way of the program

1.3.1 Compile-time errors

The compiler can only translate a program if the program is syntactically cor-
rect; otherwise, the compilation fails and you will not be able to run your
program. Syntax refers to the structure of your program and the rules about
that structure.

For example, in English, a sentence must begin with a capital letter and end
with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is
why we can read the poetry of e e cummings without spewing error messages.

Compilers are not so forgiving. If there is a single syntax error anywhere in
your program, the compiler will print an error message and quit, and you will
not be able to run your program.

To make matters worse, there are more syntax rules in C than there are in
English, and the error messages you get from the compiler are often not very
helpful. During the first few weeks of your programming career, you will prob-
ably spend a lot of time tracking down syntax errors. As you gain experience,
though, you will make fewer errors and find them faster.

1.3.2 Run-time errors

The second type of error is a run-time error, so-called because the error does
not appear until you run the program.

C is not a safe language, such as Java, where run-time errors are rare. Program-
ming in C allows you to get very close to the actual computing hardware. Most
run-time errors C occur because the language provides no protection against
the accessing or overwriting of data in memory.

For the simple sorts of programs we will be writing for the next few weeks,
run-time errors are rare, so it might be a little while before you encounter one.

1.3.3 Logic errors and semantics

The third type of error is the logical or semantic error. If there is a logical
error in your program, it will compile and run successfully, in the sense that
the computer will not generate any error messages, but it will not do the right
thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to
write. The meaning of the program (its semantics) is wrong. Identifying logical
errors can be tricky, since it requires you to work backwards by looking at the
output of the program and trying to figure out what it is doing.

1.4 Formal and natural languages 5

1.3.4 Experimental debugging

One of the most important skills you will acquire in this class is debugging.
Although it can be frustrating, debugging is one of the most intellectually rich,
challenging, and interesting parts of programming.

In some ways debugging is like detective work. You are confronted with clues
and you have to infer the processes and events that lead to the results you see.

Debugging is also like an experimental science. Once you have an idea what
is going wrong, you modify your program and try again. If your hypothesis
was correct, then you can predict the result of the modification, and you take
a step closer to a working program. If your hypothesis was wrong, you have to
come up with a new one. As Sherlock Holmes pointed out, “When you have
eliminated the impossible, whatever remains, however improbable, must be the
truth.” (from A. Conan Doyle’s The Sign of Four).

For some people, programming and debugging are the same thing. That is,
programming is the process of gradually debugging a program until it does what
you want. The idea is that you should always start with a working program
that does something, and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that contains thousands of lines of
code, but it started out as a simple program Linus Torvalds used to explore
the Intel 80386 chip. According to Larry Greenfield, “One of Linus’s earlier
projects was a program that would switch between printing AAAA and BBBB.
This later evolved to Linux” (from The Linux Users’ Guide Beta Version 1).

In later chapters I will make more suggestions about debugging and other pro-
gramming practices.

1.4 Formal and natural languages
Natural languages are the languages that people speak, like English, Spanish,
and French. They were not designed by people (although people try to impose
some order on them); they evolved naturally.

Formal languages are languages that are designed by people for specific appli-
cations. For example, the notation that mathematicians use is a formal language
that is particularly good at denoting relationships among numbers and symbols.
Chemists use a formal language to represent the chemical structure of molecules.
And most importantly:

Programming languages are formal languages that have
been designed to express computations.

As I mentioned before, formal languages tend to have strict rules about syntax.
For example, 3 + 3 = 6 is a syntactically correct mathematical statement, but

6 The way of the program

3 = +6$ is not. Also, H2O is a syntactically correct chemical name, but 2Zz is
not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens
are the basic elements of the language, like words and numbers and chemical
elements. One of the problems with 3=+6$ is that $ is not a legal token in
mathematics (at least as far as I know). Similarly, 2Zz is not legal because
there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structure of a statement; that is,
the way the tokens are arranged. The statement 3=+6$ is structurally illegal,
because you can’t have a plus sign immediately after an equals sign. Similarly,
molecular formulas have to have subscripts after the element name, not before.

When you read a sentence in English or a statement in a formal language, you
have to figure out what the structure of the sentence is (although in a natural
language you do this unconsciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell,” you understand
that “the other shoe” is the subject and “fell” is the verb. Once you have parsed
a sentence, you can figure out what it means, that is, the semantics of the
sentence. Assuming that you know what a shoe is, and what it means to fall,
you will understand the general implication of this sentence.

Although formal and natural languages have many features in common—tokens,
structure, syntax and semantics—there are many differences.

ambiguity: Natural languages are full of ambiguity, which people deal with
by using contextual clues and other information. Formal languages are
designed to be nearly or completely unambiguous, which means that any
statement has exactly one meaning, regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstand-
ings, natural languages employ lots of redundancy. As a result, they are
often verbose. Formal languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The
other shoe fell,” there is probably no shoe and nothing falling. Formal
languages mean exactly what they say.

People who grow up speaking a natural language (everyone) often have a hard
time adjusting to formal languages. In some ways the difference between formal
and natural language is like the difference between poetry and prose, but more
so:

Poetry: Words are used for their sounds as well as for their meaning, and the
whole poem together creates an effect or emotional response. Ambiguity
is not only common but often deliberate.

Prose: The literal meaning of words is more important and the structure con-
tributes more meaning. Prose is more amenable to analysis than poetry,
but still often ambiguous.

1.5 The first program 7

Programs: The meaning of a computer program is unambiguous and literal,
and can be understood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages).
First, remember that formal languages are much more dense than natural lan-
guages, so it takes longer to read them. Also, the structure is very important, so
it is usually not a good idea to read from top to bottom, left to right. Instead,
learn to parse the program in your head, identifying the tokens and interpret-
ing the structure. Finally, remember that the details matter. Little things like
spelling errors and bad punctuation, which you can get away with in natural
languages, can make a big difference in a formal language.

1.5 The first program
Traditionally the first program people write in a new language is called “Hello,
World.” because all it does is display the words “Hello, World.” In C, this
program looks like this:

#include <stdio.h>
#include <stdlib.h>

/* main: generate some simple output */

int main(void)
{

printf("Hello, World.\n");
return(EXIT_SUCCESS);

}

Some people judge the quality of a programming language by the simplicity of
the “Hello, World.” program. By this standard, C does reasonably well. Even
so, this simple program contains several features that are hard to explain to
beginning programmers. For now, we will ignore some of them, like the first
two lines.

The third line begins with /* and ends with */, which indicates that it is a
comment. A comment is a bit of English text that you can put in the middle
of a program, usually to explain what the program does. When the compiler
sees a /*, it ignores everything from there until it finds the corresponding */.

In the forth line, you notice the word main. main is a special name that indicates
the place in the program where execution begins. When the program runs, it
starts by executing the first statement in main() and it continues, in order,
until it gets to the last statement, and then it quits.

There is no limit to the number of statements that can be in main(), but the
example contains only two. The first is an output statement, meaning that

8 The way of the program

it displays or prints a message on the screen. The second statement tells the
operating system that our program executed successfully.

The statement that prints things on the screen is printf(), and the characters
between the quotation marks will get printed. Notice the \n after the last
character. This is a special character called newline that is appended at the
end of a line of text and causes the cursor to move to the next line of the display.
The next time you output something, the new text appears on the next line. At
the end of the statement there is a semicolon (;), which is required at the end
of every statement.

There are a few other things you should notice about the syntax of this program.
First, C uses curly-brackets ({ and }) to group things together. In this case, the
output statement is enclosed in curly-brackets, indicating that it is inside the
definition of main(). Also, notice that the statement is indented, which helps
to show visually which lines are inside the definition.

At this point it would be a good idea to sit down in front of a computer and
compile and run this program. The details of how to do that depend on your
programming environment, this book assumes that you know how to do it.

As I mentioned, the C compiler is very pedantic with syntax. If you make
any errors when you type in the program, chances are that it will not compile
successfully. For example, if you misspell stdio.h, you might get an error
message like the following:

hello_world.c:1:19: error: sdtio.h: No such file or directory
There is a lot of information on this line, but it is presented in a dense format
that is not easy to interpret. A more friendly compiler might say something
like:

“On line 1 of the source code file named hello_world.c, you tried to
include a header file named sdtio.h. I didn’t find anything with that
name, but I did find something named stdio.h. Is that what you
meant, by any chance?”

Unfortunately, few compilers are so accomodating. The compiler is not really
very smart, and in most cases the error message you get will be only a hint
about what is wrong. It will take some time for you to learn to interpret
different compiler messages.

Nevertheless, the compiler can be a useful tool for learning the syntax rules
of a language. Starting with a working program (like hello_world.c), modify
it in various ways and see what happens. If you get an error message, try to
remember what the message says and what caused it, so if you see it again in
the future you will know what it means.

1.6 Glossary
problem-solving: The process of formulating a problem, finding a solution,

and expressing the solution.

1.6 Glossary 9

high-level language: A programming language like C that is designed to be
easy for humans to read and write.

low-level language: A programming language that is designed to be easy for
a computer to execute. Also called “machine language” or “assembly
language.”

formal language: Any of the languages people have designed for specific pur-
poses, like representing mathematical ideas or computer programs. All
programming languages are formal languages.

natural language: Any of the languages people speak that have evolved nat-
urally.

portability: A property of a program that can run on more than one kind of
computer.

interpret: To execute a program in a high-level language by translating it one
line at a time.

compile: To translate a program in a high-level language into a low-level lan-
guage, all at once, in preparation for later execution.

source code: A program in a high-level language, before being compiled.

object code: The output of the compiler, after translating the program.

executable: Another name for object code that is ready to be executed.

statement: A part of a program that specifies an action that will be performed
when the program runs. A print statement causes output to be displayed
on the screen.

comment: A part of a program that contains information about the program,
but that has no effect when the program runs.

algorithm: A general process for solving a category of problems.

bug: An error in a program.

syntax: The structure of a program.

semantics: The meaning of a program.

parse: To examine a program and analyze the syntactic structure.

syntax error: An error in a program that makes it impossible to parse (and
therefore impossible to compile).

logical error: An error in a program that makes it do something other than
what the programmer intended.

debugging: The process of finding and removing any of the three kinds of
errors.

10 The way of the program

1.7 Exercises
Exercise 1.1

Computer scientists have the annoying habit of using common English words to mean
something different from their common English meaning. For example, in English, a
statement and a comment are pretty much the same thing, but when we are talking
about a program, they are very different.

The glossary at the end of each chapter is intended to highlight words and phrases
that have special meanings in computer science. When you see familiar words, don’t
assume that you know what they mean!

a. In computer jargon, what’s the difference between a statement and a comment?
b. What does it mean to say that a program is portable?
c. What is an executable?

Exercise 1.2

Before you do anything else, find out how to compile and run a C program in your
environment. Some environments provide sample programs similar to the example in
Section 1.5.

a. Type in the “Hello World” program, then compile and run it.
b. Add a second print statement that prints a second message after the “Hello

World.”. Something witty like, “How are you?” Compile and run the program
again.

c. Add a comment line to the program (anywhere) and recompile it. Run the pro-
gram again. The new comment should not affect the execution of the program.

This exercise may seem trivial, but it is the starting place for many of the programs
we will work with. In order to debug with confidence, you have to have confidence
in your programming environment. In some environments, it is easy to lose track of
which program is executing, and you might find yourself trying to debug one program
while you are accidentally executing another. Adding (and changing) print statements
is a simple way to establish the connection between the program you are looking at
and the output when the program runs.

Exercise 1.3

It is a good idea to commit as many errors as you can think of, so that you see what
error messages the compiler produces. Sometimes the compiler will tell you exactly
what is wrong, and all you have to do is fix it. Sometimes, though, the compiler will
produce wildly misleading messages. You will develop a sense for when you can trust
the compiler and when you have to figure things out yourself.

a. Remove the closing curly-bracket (}).
b. Remove the opening curly-bracket ({).
c. Remove the int before main.

1.7 Exercises 11

d. Instead of main, write mian.
e. Remove the closing */ from a comment.
f. Replace printf with pintf.
g. Delete one of the parentheses: (or). Add an extra one.
h. Delete the semicolon after the return statement.

12 The way of the program

Chapter 2

Variables and types

2.1 More output
As I mentioned in the last chapter, you can put as many statements as you want
in main(). For example, to output more than one line:

#include <stdio.h>
#include <stdlib.h>

/* main: generate some simple output */

int main (void)
{

printf ("Hello World.\n"); /* output one line */
printf ("How are you?\n"); /* output another line */
return (EXIT_SUCCESS);

}

As you can see, it is legal to put comments at the end of a line, as well as on a
line by themselves.

The phrases that appear in quotation marks are called strings, because they
are made up of a sequence (string) of letters. Actually, strings can contain any
combination of letters, numbers, punctuation marks, and other special charac-
ters.

Often it is useful to display the output from multiple output statements all on
one line. You can do this by leaving out the \n from the first printf:

int main (void)
{

printf ("Goodbye, ");
printf ("cruel world!\n");

14 Variables and types

return (EXIT_SUCCESS);
}

In this case the output appears on a single line as Goodbye, cruel world!.
Notice that there is a space between the word “Goodbye,” and the second quo-
tation mark. This space appears in the output, so it affects the behavior of the
program.

Spaces that appear outside of quotation marks generally do not affect the be-
havior of the program. For example, I could have written:

int main(void)
{
printf("Goodbye, ");
printf("cruel world!\n");
return(EXIT_SUCCESS);
}

This program would compile and run just as well as the original. The breaks
at the ends of lines (newlines) do not affect the program’s behavior either, so I
could have written:

int main(void){printf("Goodbye, ");printf("cruel world!\n");
return(EXIT_SUCCESS);}

That would work, too, although you have probably noticed that the program is
getting harder and harder to read. Newlines and spaces are useful for organizing
your program visually, making it easier to read the program and locate syntax
errors.

2.2 Values
Computer programs operate on values stored in computer memory. A value
—like a letter or a number— is one of the fundamental things that a program
manipulates. The only values we have manipulated so far are the strings we have
been outputting, like "Hello, world.". You (and the compiler) can identify
these string values because they are enclosed in quotation marks.

There are different kinds of values, including integers and characters. It is im-
portant for the program to know exactly what kind of value is manipulated
because not all manipulations will make sense on all values. We therefore dis-
tinguish between different types of values.

An integer is a whole number like 1 or 17. You can output integer values in a
similar way as you output strings:

printf("%i\n", 17);

When we look at the printf() statement more closely, we notice that the
value we are outputting no longer appears inside the quotes, but behind them
separated by comma. The string is still there, but now contains a %i instead
of any text. The %i a placeholder that tells the printf() command to print

2.3 Variables 15

an integer value. Several such placeholders exist for different data types and
formatting options of the output. We will see the next one just now.

A character value is a letter or digit or punctuation mark enclosed in single
quotes, like ’a’ or ’5’. You can output character values in a similar way:

printf("%c\n", ’}’);

This example outputs a single closing curly-bracket on a line by itself. It uses
the %c placeholder to signify the output of a character value.

It is easy to confuse different types of values, like "5", ’5’ and 5, but if you pay
attention to the punctuation, it should be clear that the first is a string, the
second is a character and the third is an integer. The reason this distinction is
important should become clear soon.

2.3 Variables
One of the most powerful features of a programming language is the ability to
manipulate values through the use of variables. So far the values that we have
used in our statements where fixed to what was written in the statement. Now
we will use a variable as a named location that stores a value.

Just as there are different types of values (integer, character, etc.), there are
different types of variables. When you create a new variable, you have to declare
what type it is. For example, the character type in C is called char. The
following statement creates a new variable named fred that has type char.

char fred;

This kind of statement is called a declaration.

The type of a variable determines what kind of values it can store. A char
variable can contain characters, and it should come as no surprise that int
variables can store integers.

Contrary to other programming languages, C does not have a dedicated variable
type for the storage of string values. We will see in a later chapter how string
values are stored in C.

To create an integer variable, the syntax is
int bob;

where bob is the arbitrary name you choose to identify the variable. In general,
you will want to make up variable names that indicate what you plan to do with
the variable. For example, if you saw these variable declarations:

char first_letter;
char last_letter;
int hour, minute;

you could probably make a good guess at what values would be stored in them.
This example also demonstrates the syntax for declaring multiple variables with
the same type: hour and minute are both integers (int type).

16 Variables and types

ATTENTION: The older C89 standard allows variable declarations only at the
beginning of a block of code. It is therefore necessary to put variable declarations
before any other statements, even if the variable itself is only needed much later
in your program.

2.4 Assignment
Now that we have created some variables, we would like to store values in them.
We do that with an assignment statement.

first_letter = ’a’; /* give first_letter the value ’a’ */
hour = 11; /* assign the value 11 to hour */
minute = 59; /* set minute to 59 */

This example shows three assignments, and the comments show three different
ways people sometimes talk about assignment statements. The vocabulary can
be confusing here, but the idea is straightforward:

• When you declare a variable, you create a named storage location.

• When you make an assignment to a variable, you give it a value.

A common way to represent variables on paper is to draw a box with the name of
the variable on the outside and the value of the variable on the inside. This kind
of figure is called a state diagram because is shows what state each variable
is in (you can think of it as the variable’s “state of mind”). This diagram shows
the effect of the three assignment statements:

first_letter hour minute

a 11 59

When we assign values to variables, we have to make sure that the assigned
value correspondents to the type of the variable. In C a variable has to have
the same type as the value you assign. For example, you cannot store a string
in an int variable. The following statement generates a compiler warning:

int hour;
hour = "Hello."; /* WRONG !! */

This rule is sometimes a source of confusion, because there are many ways that
you can convert values from one type to another, and C sometimes converts
things automatically. But for now you should remember that as a general rule
variables and values have the same type, and we’ll talk about special cases later.

Another source of confusion is that some strings look like integers, but they are
not. For example, the string "123", which is made up of the characters 1, 2 and
3, is not the same thing as the number 123. This assignment is illegal:

minute = "59"; /* WRONG!! */

2.5 Outputting variables 17

2.5 Outputting variables
You can output the value of a variable using the same commands we used to
output simple values.

int hour, minute;
char colon;

hour = 11;
minute = 59;
colon = ’:’;

printf ("The current time is ");
printf ("%i", hour);
printf ("%c", colon);
printf ("%i", minute);
printf ("\n");

This program creates two integer variables named hour and minute, and a
character variable named colon. It assigns appropriate values to each of the
variables and then uses a series of output statements to generate the following:

The current time is 11:59

When we talk about “outputting a variable,” we mean outputting the value of
the variable. The name of a variable only has significance for the programmer.
The compiled program no longer contains a human readable reference to the
variable name in your program.

The printf() command is capable of outputting several variables in a single
statement. To do this, we need to put placeholders in the so called format
string, that indicate the position where the variable value will be put. The
variables will be inserted in the order of their appearance in the statement. It
is important to observe the right order and type for the variables.

By using a single output statement, we can make the previous program more
concise:

int hour, minute;
char colon;

hour = 11;
minute = 59;
colon = ’:’;

printf ("The current time is %i%c%i\n", hour, colon, minute);

On one line, this program outputs a string, two integers and a character. Very
impressive!

18 Variables and types

2.6 Keywords

A few sections ago, I said that you can make up any name you want for your
variables, but that’s not quite true. There are certain words that are reserved in
C because they are used by the compiler to parse the structure of your program,
and if you use them as variable names, it will get confused. These words, called
keywords, include int, char, void and many more.

Reserved keywords in the C language

auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

inline
int
long
register
restrict
return
short
signed

sizeof
static
struct
switch
typedef
union
unsigned
void

volatile
while
_Bool
_Complex
_Imaginary

The complete list of keywords is included in the C Standard, which is the official
language definition adopted by the the International Organization for Standard-
ization (ISO) on September 1, 1998.

Rather than memorize the list, I would suggest that you take advantage of a
feature provided in many development environments: code highlighting. As
you type, different parts of your program should appear in different colors. For
example, keywords might be blue, strings red, and other code black. If you
type a variable name and it turns blue, watch out! You might get some strange
behavior from the compiler.

2.7 Operators

Operators are special symbols that are used to represent simple computations
like addition and multiplication. Most of the operators in C do exactly what
you would expect them to do, because they are common mathematical symbols.
For example, the operator for adding two integers is +.

The following are all legal C expressions whose meaning is more or less obvious:

1+1 hour-1 hour*60+minute minute/60

Expressions can contain both variables names and values. In each case the
name of the variable is replaced with its value before the computation is per-
formed.

Addition, subtraction and multiplication all do what you expect, but you might
be surprised by division. For example, the following program:

2.8 Order of operations 19

int hour, minute;
hour = 11;
minute = 59;
printf ("Number of minutes since midnight: %i\n", hour*60 + minute);
printf ("Fraction of the hour that has passed: %i\n", minute/60);

would generate the following output:
Number of minutes since midnight: 719
Fraction of the hour that has passed: 0

The first line is what we expected, but the second line is odd. The value of the
variable minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for
the discrepancy is that C is performing integer division.

When both of the operands are integers (operands are the things operators
operate on), the result must also be an integer, and by definition integer division
always rounds down, even in cases like this where the next integer is so close.

A possible alternative in this case is to calculate a percentage rather than a
fraction:

printf ("Percentage of the hour that has passed: ");
printf ("%i\n", minute*100/60);

The result is:
Percentage of the hour that has passed: 98

Again the result is rounded down, but at least now the answer is approximately
correct. In order to get an even more accurate answer, we could use a different
type of variable, called floating-point, that is capable of storing fractional values.
We’ll get to that in the next chapter.

2.8 Order of operations
When more than one operator appears in an expression the order of evaluation
depends on the rules of precedence. A complete explanation of precedence
can get complicated, but just to get you started:

• Multiplication and division happen before addition and subtraction. So
2*3-1 yields 5, not 4, and 2/3-1 yields -1, not 1.

• If the operators have the same precedence they are evaluated from left
to right. So in the expression minute*100/60, the multiplication happens
first, yielding 5900/60, which in turn yields 98. If the operations had gone
from right to left, the result would be 59*1 which is 59, which is wrong.

• Any time you want to override the rules of precedence (or you are not sure
what they are) you can use parentheses. Expressions in parentheses are
evaluated first, so 2*(3-1) is 4. You can also use parentheses to make an
expression easier to read, as in (minute*100)/60, even though it doesn’t
change the result.

20 Variables and types

2.9 Operators for characters
Interestingly, the same mathematical operations that work on integers also work
on characters. For example,

char letter;
letter = ’a’ + 1;
printf ("%c\n", letter);

outputs the letter b. Although it is syntactically legal to multiply characters, it
is almost never useful to do it.

Earlier I said that you can only assign integer values to integer variables and
character values to character variables, but that is not completely true. In some
cases, C converts automatically between types. For example, the following is
legal.

int number;
number = ’a’;
printf ("%i\n", number);

The result is 97, which is the number that is used internally by C to represent the
letter ’a’. However, it is generally a good idea to treat characters as characters,
and integers as integers, and only convert from one to the other if there is a
good reason.

Automatic type conversion is an example of a common problem in designing a
programming language, which is that there is a conflict between formalism,
which is the requirement that formal languages should have simple rules with
few exceptions, and convenience, which is the requirement that programming
languages be easy to use in practice.

More often than not, convenience wins, which is usually good for expert pro-
grammers, who are spared from rigorous but unwieldy formalism, but bad for
beginning programmers, who are often baffled by the complexity of the rules
and the number of exceptions. In this book I have tried to simplify things by
emphasizing the rules and omitting many of the exceptions.

2.10 Composition
So far we have looked at the elements of a programming language—variables,
expressions, and statements—in isolation, without talking about how to combine
them.

One of the most useful features of programming languages is their ability to
take small building blocks and compose them. For example, we know how to
multiply integers and we know how to output values; it turns out we can do
both at the same time:

printf ("%i\n", 17 * 3);

2.11 Glossary 21

Actually, I shouldn’t say “at the same time,” since in reality the multiplication
has to happen before the output, but the point is that any expression, involving
numbers, characters, and variables, can be used inside an output statement.
We’ve already seen one example:

printf ("%i\n", hour * 60 + minute);

You can also put arbitrary expressions on the right-hand side of an assignment
statement:

int percentage;
percentage = (minute * 100) / 60;

This ability may not seem so impressive now, but we will see other examples
where composition makes it possible to express complex computations neatly
and concisely.

WARNING: There are limits on where you can use certain expressions; most
notably, the left-hand side of an assignment statement has to be a variable name,
not an expression. That’s because the left side indicates the storage location
where the result will go. Expressions do not represent storage locations, only
values. So the following is illegal: minute + 1 = hour;.

2.11 Glossary
variable: A named storage location for values. All variables have a type, which

determines which values it can store.

value: A letter, or number, or other thing that can be stored in a variable.

type: The meaning of values. The types we have seen so far are integers (int
in C) and characters (char in C).

keyword: A reserved word that is used by the compiler to parse programs.
Examples we have seen include int, void and char.

statement: A line of code that represents a command or action. So far, the
statements we have seen are declarations, assignments, and output state-
ments.

declaration: A statement that creates a new variable and determines its type.

assignment: A statement that assigns a value to a variable.

expression: A combination of variables, operators and values that represents
a single result value. Expressions also have types, as determined by their
operators and operands.

operator: A special symbol that represents a simple computation like addition
or multiplication.

operand: One of the values on which an operator operates.

22 Variables and types

precedence: The order in which operations are evaluated.

composition: The ability to combine simple expressions and statements into
compound statements and expressions in order to represent complex com-
putations concisely.

2.12 Exercises
Exercise 2.1

a. Create a new program named MyDate.c. Copy or type in something like the
"Hello, World" program and make sure you can compile and run it.

b. Following the example in Section 2.5, write a program that creates variables
named day, month and year What type is each variable?
Assign values to those variables that represent today’s date.

c. Print the value of each variable on a line by itself. This is an intermediate step
that is useful for checking that everything is working so far.

d. Modify the program so that it prints the date in standard American form:
mm/dd/yyyy.

e. Modify the program again so that the total output is:

American format:
3/18/2009
European format:
18.3.2009

The point of this exercise is to use the output function printf to display values
with different types, and to practice developing programs gradually by adding a few
statements at a time.

Exercise 2.2

a. Create a new program called MyTime.c. From now on, I won’t remind you to
start with a small, working program, but you should.

b. Following the example in Section 2.7, create variables named hour, minute and
second, and assign them values that are roughly the current time. Use a 24-hour
clock, so that at 2pm the value of hour is 14.

c. Make the program calculate and print the number of seconds since midnight.

d. Make the program calculate and print the number of seconds remaining in the
day.

e. Make the program calculate and print the percentage of the day that has passed.

f. Change the values of hour, minute and second to reflect the current time (I
assume that some time has elapsed), and check to make sure that the program
works correctly with different values.

2.12 Exercises 23

The point of this exercise is to use some of the arithmetic operations, and to start
thinking about compound entities like the time of day that are represented with mul-
tiple values. Also, you might run into problems computing percentages with ints,
which is the motivation for floating point numbers in the next chapter.

HINT: you may want to use additional variables to hold values temporarily during the
computation. Variables like this, that are used in a computation but never printed,
are sometimes called intermediate or temporary variables.

24 Variables and types

Chapter 3

Function

3.1 Floating-point
In the last chapter we had some problems dealing with numbers that were not
integers. We worked around the problem by measuring percentages instead of
fractions, but a more general solution is to use floating-point numbers, which
can represent fractions as well as integers. In C, there are two floating-point
types, called float and double. In this book we will use doubles exclusively.

You can create floating-point variables and assign values to them using the same
syntax we used for the other types. For example:

double pi;
pi = 3.14159;

It is also legal to declare a variable and assign a value to it at the same time:

int x = 1;
char first_char = "a";
double pi = 3.14159;

In fact, this syntax is quite common. A combined declaration and assignment
is sometimes called an initialization.

Although floating-point numbers are useful, they are often a source of confusion
because there seems to be an overlap between integers and floating-point num-
bers. For example, if you have the value 1, is that an integer, a floating-point
number, or both?

Strictly speaking, C distinguishes the integer value 1 from the floating-point
value 1.0, even though they seem to be the same number. They belong to
different types, and strictly speaking, you are not allowed to make assignments
between types. For example, the following is illegal:

int x = 1.1;

26 Function

Because the variable on the left is an int and the value on the right is a double.
But it is easy to forget this rule, especially because there are places where C
automatically converts from one type to another. For example,

double y = 1;

should technically not be legal, but C allows it by converting the int to a
double automatically. This is convenient for the programmer, but it can cause
problems; for example:

double y = 1 / 3;

You might expect the variable y to be given the value 0.333333, which is a legal
floating-point value, but in fact it will get the value 0.0. The reason is that
the expression on the right appears to be the ratio of two integers, so C does
integer division, which yields the integer value 0. Converted to floating-point,
the result is 0.0.

One way to solve this problem (once you figure out what it is) is to make the
right-hand side a floating-point expression:

double y = 1.0 / 3.0;

This sets y to 0.333333, as expected.

All the operations we have seen—addition, subtraction, multiplication, and
division—work on floating-point values, although you might be interested to
know that the underlying mechanism is completely different. In fact, most pro-
cessors have special hardware just for performing floating-point operations.

3.2 Constants

In the previous section we have assigned the value 3.14159 to a floating point
variable. An important thing to remember about variables is, that they can hold
– as their name implies – different values at different points in your program.
For example, we could assign the value 3.14159 to the variable pi now and
assign some other value to it later on:

double pi = 3.14159;
...
pi = 10.999; /* probably a logical error in your program */

The second value is probably not what you intended when you first created the
named storage location pi . The value for π is constant and does not change
over time. Using the storage location pi to hold arbitrary other values can cause
some very hard to find bugs in your program.

C allows you to specify the static nature of storage locations through the use of
the keyword const. It must be used in conjunction with the required type of
the constant. A value will be assigned at initialisation but can never be changed
again during the runtime of the program.

3.3 Converting from double to int 27

const double PI = 3.14159;
printf ("Pi: %f\n", PI);
...

PI = 10.999; /* wrong, error caught by the compiler */
It is no longer possible to change the value for PI once it has been initialised,
but other than this we can use it just like a variable.

In order to visually separate constants from variables we will use all uppercase
letters in their names.

3.3 Converting from double to int
As I mentioned, C converts ints to doubles automatically if necessary, because
no information is lost in the translation. On the other hand, going from a double
to an int requires rounding off. C doesn’t perform this operation automatically,
in order to make sure that you, as the programmer, are aware of the loss of the
fractional part of the number.

The simplest way to convert a floating-point value to an integer is to use a
typecast. Typecasting is so called because it allows you to take a value that
belongs to one type and “cast” it into another type (in the sense of molding or
reforming, not throwing).

The syntax for typecasting requires the explicit specification of the target type,
set in parenthesis before the expression (Type). For example:

const double PI = 3.14159;
int x = (int) PI;

The (int) operator casts the value of PI into an integer, so x gets the value
3. Converting to an integer always rounds down, even if the fraction part is
0.99999999.

For every type in C, there is a corresponding operator that typecasts its argu-
ment to the appropriate type.

3.4 Math functions
In mathematics, you have probably seen functions like sin and log, and you have
learned to evaluate expressions like sin(π/2) and log(1/x). First, you evaluate
the expression in parentheses, which is called the argument of the function.
For example, π/2 is approximately 1.571, and 1/x is 0.1 (if x happens to be 10).

Then you can evaluate the function itself, either by looking it up in a table or
by performing various computations. The sin of 1.571 is 1, and the log of 0.1 is
-1 (assuming that log indicates the logarithm base 10).

This process can be applied repeatedly to evaluate more complicated expressions
like log(1/ sin(π/2)). First we evaluate the argument of the innermost function,
then evaluate the function, and so on.

28 Function

C provides a set of built-in functions that includes most of the mathematical
operations you can think of. The math functions are invoked using a syntax
that is similar to mathematical notation:

double log = log (17.0);
double angle = 1.5;
double height = sin (angle);

The first example sets log to the logarithm of 17, base e. There is also a function
called log10 that takes logarithms base 10.

The second example finds the sine of the value of the variable angle. C assumes
that the values you use with sin and the other trigonometric functions (cos,
tan) are in radians. To convert from degrees to radians, you can divide by 360
and multiply by 2π.

If you don’t happen to know π to 15 digits, you can calculate it using the acos
function. The arccosine (or inverse cosine) of -1 is π, because the cosine of π is
-1.

const double PI = acos(-1.0);
double degrees = 90;
double angle = degrees * 2 * PI / 360.0;

Before you can use any of the math functions, you have to include the math
header file. Header files contain information the compiler needs about func-
tions that are defined outside your program. For example, in the “Hello, world!”
program we included a header file named stdio.h using an include statement:
#include <stdio.h>
stdio.h contains information about input and output (I/O) functions available
in C.

Similarly, the math header file contains information about the math functions.
You can include it at the beginning of your program along with stdio.h:
#include <math.h>

3.5 Composition
Just as with mathematical functions, C functions can be composed, meaning
that you use one expression as part of another. For example, you can use any
expression as an argument to a function:

double x = cos (angle + PI/2);
This statement takes the value of PI, divides it by two and adds the result to
the value of angle. The sum is then passed as an argument to the cos function.

You can also take the result of one function and pass it as an argument to
another:

double x = exp (log (10.0));
This statement finds the log base e of 10 and then raises e to that power. The
result gets assigned to x; I hope you know what it is.

3.6 Adding new functions 29

3.6 Adding new functions
So far we have only been using the functions that are built into C, but it is
also possible to add new functions. Actually, we have already seen one function
definition: main(). The function named main() is special because it indicates
where the execution of the program begins, but the syntax for main() is the
same as for any other function definition:

void NAME (LIST OF PARAMETERS)
{

STATEMENTS
}

You can make up any name you want for your function, except that you can’t
call it main or any other C keyword. The list of parameters specifies what
information, if any, you have to provide in order to use (or call) the new function.

main() doesn’t take any parameters, as indicated by the parentheses containing
the keyword (void) in it’s definition. The first couple of functions we are going
to write also have no parameters, so the syntax looks like this:

void PrintNewLine (void)
{

printf ("\n");
}

This function is named PrintNewLine(). It contains only a single statement,
which outputs a newline character. Notice that we start the function name
with an uppercase letter. The following words of the function name are also
capitalized. We will use this convention for the naming of functions consistently
throughout the book.

In main() we can call this new function using syntax that is similar to the way
we call the built-in C commands:

int main (void)
{

printf ("First Line.\n");
PrintNewLine ();
printf ("Second Line.\n");
return EXIT_SUCCESS;

}

The output of this program is:

First line.

Second line.

Notice the extra space between the two lines. What if we wanted more space
between the lines? We could call the same function repeatedly:

int main (void)
{

printf ("First Line.\n");

30 Function

NewLine ();
NewLine ();
NewLine ();
printf ("Second Line.\n");

}

Or we could write a new function, named PrintThreeLines(), that prints three
new lines:

void PrintThreeLines (void)
{

PrintNewLine (); PrintNewLine (); PrintNewLine ();
}

int main (void)
{

printf ("First Line.\n");
PrintThreeLines ();
printf ("Second Line.\n");
return EXIT_SUCCESS;

}

You should notice a few things about this program:

• You can call the same procedure repeatedly. In fact, it is quite common
and useful to do so.

• You can have one function call another function. In this case, main()
calls PrintThreeLines() and PrintThreeLines() calls PrintNewLine().
Again, this is common and useful.

• In PrintThreeLines() I wrote three statements all on the same line,
which is syntactically legal (remember that spaces and new lines usually
don’t change the meaning of a program). On the other hand, it is usually a
better idea to put each statement on a line by itself, to make your program
easy to read. I sometimes break that rule in this book to save space.

So far, it may not be clear why it is worth the trouble to create all these new
functions. Actually, there are a lot of reasons, but this example only demon-
strates two:

1. Creating a new function gives you an opportunity to give a name to a group
of statements. Functions can simplify a program by hiding a complex
computation behind a single command, and by using English words in
place of arcane code. Which is clearer, PrintNewLine() or printf("\n")?

2. Creating a new function can make a program smaller by eliminating repet-
itive code. For example, a short way to print nine consecutive new lines
is to call PrintThreeLines() three times. How would you print 27 new
lines?

3.7 Definitions and uses 31

3.7 Definitions and uses
Pulling together all the code fragments from the previous section, the whole
program looks like this:

#include <stdio.h>
#include <stdlib.h>

void PrintNewLine (void)
{

printf ("\n");
}

void PrintThreeLines (void)
{

PrintNewLine (); PrintNewLine (); PrintNewLine ();
}

int main (void)
{

printf ("First Line.\n");
PrintThreeLines ();
printf ("Second Line.\n");
return EXIT_SUCCESS;

}

This program contains three function definitions: PrintNewLine(),
PrintThreeLine(), and main().

Inside the definition of main(), there is a statement that uses or calls
PrintThreeLine(). Similarly, PrintThreeLine() calls PrintNewLine() three
times. Notice that the definition of each function appears above the place where
it is used.

This is necessary in C; the definition of a function must appear before (above)
the first use of the function. You should try compiling this program with the
functions in a different order and see what error messages you get.

3.8 Programs with multiple functions
When you look at the C source code that contains several functions, it is tempt-
ing to read it from top to bottom, but that is likely to be confusing, because
that is not the order of execution of the program.

Execution always begins at the first statement of main(), regardless of where it
is in the program (often it is at the bottom). Statements are executed one at a
time, in order, until you reach a function call. Function calls are like a detour
in the flow of execution. Instead of going to the next statement, you go to the

32 Function

first line of the called function, execute all the statements there, and then come
back and pick up again where you left off.

That sounds simple enough, except that you have to remember that one function
can call another. Thus, while we are in the middle of main(), we might have
to go off and execute the statements in PrintThreeLines(). But while we are
executing PrintThreeLines(), we get interrupted three times to go off and
execute PrintNewLine().

Fortunately, C is adept at keeping track of where it is, so each time
PrintNewLine() completes, the program picks up where it left off in
PrintThreeLine(), and eventually gets back to main() so the program can
terminate.

What’s the moral of this sordid tale? When you read a program, don’t read
from top to bottom. Instead, follow the flow of execution.

3.9 Parameters and arguments
Some of the built-in functions we have used have parameters, which are values
that you provide to let the function do its job. For example, if you want to find
the sine of a number, you have to indicate what the number is. Thus, sin()
takes a double value as a parameter.

Some functions take more than one parameter, like pow(), which takes two
doubles, the base and the exponent.

Notice that in each of these cases we have to specify not only how many pa-
rameters there are, but also what type they are. So it shouldn’t surprise you
that when you write a function definition, the parameter list indicates the type
of each parameter. For example:

void PrintTwice (char phil)
{

printf("%c%c\n", phil, phil);
}

This function takes a single parameter, named phil, that has type char. What-
ever that parameter is (and at this point we have no idea what it is), it gets
printed twice, followed by a newline. I chose the name phil to suggest that
the name you give a parameter is up to you, but in general you want to choose
something more illustrative than phil.

In order to call this function, we have to provide a char. For example, we might
have a main() function like this:

int main (void)
{

PrintTwice (’a’);
return EXIT_SUCCESS;

}

3.10 Parameters and variables are local 33

The char value you provide is called an argument, and we say that the ar-
gument is passed to the function. In this case the value ’a’ is passed as an
argument to PrintTwice() where it will get printed twice.

Alternatively, if we had a char variable, we could use it as an argument instead:
int main ()
{

char argument = ’b’;
PrintTwice (argument);
return EXIT_SUCCESS;

}

Notice something very important here: the name of the variable we pass as an
argument (argument) has nothing to do with the name of the parameter (phil).
Let me say that again:

The name of the variable we pass as an argument has noth-
ing to do with the name of the parameter.

They can be the same or they can be different, but it is important to realize
that they are not the same thing, except that they happen to have the same
value (in this case the character ’b’).

The value you provide as an argument must have the same type as the pa-
rameter of the function you call. This rule is important, but it is sometimes
confusing because C sometimes converts arguments from one type to another
automatically. For now you should learn the general rule, and we will deal with
exceptions later.

3.10 Parameters and variables are local
Parameters and variables only exist inside their own functions. Within the
confines of main(), there is no such thing as phil. If you try to use it, the
compiler will complain. Similarly, inside PrintTwice() there is no such thing
as argument.

Variables like this are said to be local. In order to keep track of parameters
and local variables, it is useful to draw a stack diagram. Like state diagrams,
stack diagrams show the value of each variable, but the variables are contained
in larger boxes that indicate which function they belong to.

For example, the stack diagram for PrintTwice() looks like this:

 argument 'B'

 phil 'B'

main()

PrintTwice()

34 Function

Whenever a function is called, it creates a new instance of that function. Each
instance of a function contains the parameters and local variables for that func-
tion. In the diagram an instance of a function is represented by a box with the
name of the function on the outside and the variables and parameters inside.

In the example, main() has one local variable, argument, and no parameters.
PrintTwice() has no local variables and one parameter, named phil.

3.11 Functions with multiple parameters
The syntax for declaring and invoking functions with multiple parameters is a
common source of errors. First, remember that you have to declare the type of
every parameter. For example

void PrintTime (int hour, int minute)
{

printf ("%i", hour);
printf (":");
printf ("%i", minute);

}

It might be tempting to write (int hour, minute), but that format is only
legal for variable declarations, not for parameters.

Another common source of confusion is that you do not have to declare the
types of arguments. The following is wrong!

int hour = 11;
int minute = 59;
PrintTime (int hour, int minute); /* WRONG! */

In this case, the compiler can tell the type of hour and minute by looking at
their declarations. It is unnecessary and illegal to include the type when you
pass them as arguments. The correct syntax is PrintTime (hour, minute);.

3.12 Functions with results
You might have noticed by now that some of the functions we are using, like
the math functions, yield results. Other functions, like PrintNewLine, perform
an action but don’t return a value. That raises some questions:

• What happens if you call a function and you don’t do anything with the
result (i.e. you don’t assign it to a variable or use it as part of a larger
expression)?

• What happens if you use a function without a result as part of an expres-
sion, like PrintNewLine() + 7?

• Can we write functions that yield results, or are we stuck with things like
PrintNewLine() and PrintTwice()?

3.13 Glossary 35

The answer to the third question is “yes, you can write functions that return
values,” and we’ll do it in a couple of chapters. I will leave it up to you to answer
the other two questions by trying them out. Any time you have a question about
what is legal or illegal in C, a good way to find out is to ask the compiler.

3.13 Glossary
constant: A named storage location similar to a variable, that can not be

changed once it has been initialised.

floating-point: A type of variable (or value) that can contain fractions as well
as integers. There are a few floating-point types in C; the one we use in
this book is double.

initialization: A statement that declares a new variable and assigns a value
to it at the same time.

function: A named sequence of statements that performs some useful function.
Functions may or may not take parameters, and may or may not produce
a result.

parameter: A piece of information you provide in order to call a function.
Parameters are like variables in the sense that they contain values and
have types.

argument: A value that you provide when you call a function. This value must
have the same type as the corresponding parameter.

call: Cause a function to be executed.

3.14 Exercises
Exercise 3.1

The point of this exercise is to practice reading code and to make sure that you
understand the flow of execution through a program with multiple functions.

a. What is the output of the following program? Be precise about where there are
spaces and where there are newlines.
HINT: Start by describing in words what Ping() and Baffle() do when they
are invoked.
#include <stdio.h>
#include <stdlib.h>

void Ping ()
{

printf (".\n");
}

36 Function

void Baffle ()
{

printf ("wug");
Ping ();

}

void Zoop ()
{

Baffle ();
printf ("You wugga ");
Baffle ();

}

int main (void)
{

printf ("No, I ");
Zoop ();
printf ("I ");
Baffle ();
return EXIT_SUCCESS;

}

b. Draw a stack diagram that shows the state of the program the first time Ping()
is invoked.

Exercise 3.2 The point of this exercise is to make sure you understand how to
write and invoke functions that take parameters.

a. Write the first line of a function named Zool() that takes three parameters: an
int and two char.

b. Write a line of code that invokes Zool(), passing as arguments the value 11, the
letter a, and the letter z.

Exercise 3.3

The purpose of this exercise is to take code from a previous exercise and encapsulate
it in a function that takes parameters. You should start with a working solution to
exercise

a. Write a function called PrintDateAmerican() that takes the day, month and
year as parameters and that prints them in American format.

b. Test your function by invoking it from main() and passing appropriate argu-
ments. The output should look something like this (except that the date might
be different):

3/29/2009

c. Once you have debugged PrintDateAmerican(), write another function called
PrintDateEuropean() that prints the date in European format.

3.14 Exercises 37

Exercise 3.4

Many computations can be expressed concisely using the “multadd” operation, which
takes three operands and computes a*b + c. Some processors even provide a hardware
implementation of this operation for floating-point numbers.

a. Create a new program called Multadd.c.
b. Write a function called Multadd() that takes three doubles as parameters and

that prints their multadditionization.
c. Write a main() function that tests Multadd() by invoking it with a few simple

parameters, like 1.0, 2.0, 3.0, and then prints the result, which should be
5.0.

d. Also in main(), use Multadd() to compute the following value:

sin π
4 + cos π

4
2

e. Write a function called Yikes() that takes a double as a parameter and that
uses Multadd() to calculate and print

xe−x +
√

1 − e−x

HINT: the Math function for raising e to a power is double exp(double x);.

In the last part, you get a chance to write a function that invokes a function you
wrote. Whenever you do that, it is a good idea to test the first function carefully
before you start working on the second. Otherwise, you might find yourself debugging
two functions at the same time, which can be very difficult.

One of the purposes of this exercise is to practice pattern-matching: the ability to
recognize a specific problem as an instance of a general category of problems.

38 Function

Chapter 4

Conditionals and recursion

4.1 Conditional execution
In order to write useful programs, we almost always need the ability to check
certain conditions and change the behavior of the program accordingly. Condi-
tional statements give us this ability. The simplest form is the if statement:

if (x > 0)
{

printf ("x is positive\n");
}

The expression in parentheses is called the condition. If it is true, then the
statements in brackets get executed. If the condition is not true, nothing hap-
pens.

The condition can contain any of the comparison operators:
x == y /* x equals y */
x != y /* x is not equal to y */
x > y /* x is greater than y */
x < y /* x is less than y */
x >= y /* x is greater than or equal to y */
x <= y /* x is less than or equal to y */

Although these operations are probably familiar to you, the syntax C uses is a
little different from mathematical symbols like =, 6= and ≤. A common error
is to use a single = instead of a double ==. Remember that = is the assignment
operator, and == is a comparison operator. Also, there is no such thing as =<
or =>.

The two sides of a condition operator have to be the same type. You can only
compare ints to ints and doubles to doubles. Unfortunately, at this point
you can’t compare strings at all! There is a way to compare strings, but we
won’t get to it for a couple of chapters.

40 Conditionals and recursion

4.2 The modulus operator
The modulus operator works on integers (and integer expressions) and yields the
remainder when the first operand is divided by the second. In C, the modulus
operator is a percent sign, %. The syntax is exactly the same as for other
operators:

int quotient = 7 / 3;
int remainder = 7 % 3;

The first operator, integer division, yields 2. The second operator yields 1.
Thus, 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you
can check whether one number is divisible by another: if x % y is zero, then x
is divisible by y.

Also, you can use the modulus operator to extract the rightmost digit or digits
from a number. For example, x % 10 yields the rightmost digit of x (in base
10). Similarly x % 100 yields the last two digits.

4.3 Alternative execution
A second form of conditional execution is alternative execution, in which there
are two possibilities, and the condition determines which one gets executed. The
syntax looks like:

if (x%2 == 0)
{

printf ("x is even\n");
}
else
{

printf ("x is odd\n");
}

If the remainder when x is divided by 2 is zero, then we know that x is even,
and this code displays a message to that effect. If the condition is false, the
second set of statements is executed. Since the condition must be true or false,
exactly one of the alternatives will be executed.

As an aside, if you think you might want to check the parity (evenness or
oddness) of numbers often, you might want to “wrap” this code up in a function,
as follows:

void PrintParity (int x)
{

if (x%2 == 0)
{

printf ("x is even\n");
}

4.4 Chained conditionals 41

else
{

printf ("x is odd\n");
}

}

Now you have a function named PrintParity() that will display an appropriate
message for any integer you care to provide. In main() you would call this
function as follows:

PrintParity (17);

Always remember that when you call a function, you do not have to declare the
types of the arguments you provide. C can figure out what type they are. You
should resist the temptation to write things like:

int number = 17;
PrintParity (int number); /* WRONG!!! */

4.4 Chained conditionals
Sometimes you want to check for a number of related conditions and choose one
of several actions. One way to do this is by chaining a series of ifs and elses:

if (x > 0)
{

printf ("x is positive\n");
}
else if (x < 0)
{

printf ("x is negative\n");
}
else
{

printf ("x is zero\n");
}

These chains can be as long as you want, although they can be difficult to read
if they get out of hand. One way to make them easier to read is to use standard
indentation, as demonstrated in these examples. If you keep all the statements
and squiggly-braces lined up, you are less likely to make syntax errors and you
can find them more quickly if you do.

4.5 Nested conditionals
In addition to chaining, you can also nest one conditional within another. We
could have written the previous example as:

if (x == 0)
{

42 Conditionals and recursion

printf ("x is zero\n");
}
else
{

if (x > 0)
{

printf ("x is positive\n");
}
else
{

printf ("x is negative\n");
}

}

There is now an outer conditional that contains two branches. The first branch
contains a simple output statement, but the second branch contains another if
statement, which has two branches of its own. Fortunately, those two branches
are both output statements, although they could have been conditional state-
ments as well.

Notice again that indentation helps make the structure apparent, but neverthe-
less, nested conditionals get difficult to read very quickly. In general, it is a
good idea to avoid them when you can.

On the other hand, this kind of nested structure is common, and we will see
it again, so you better get used to it.

4.6 The return statement
The return statement allows you to terminate the execution of a function before
you reach the end. One reason to use it is if you detect an error condition:

#include <math.h>

void PrintLogarithm (double x)
{

if (x <= 0.0)
{

printf ("Positive numbers only, please.\n");
return;

}

double result = log (x);
printf ("The log of x is %f\n", result);

}

This defines a function named PrintLogarithm() that takes a double named
x as a parameter. The first thing it does is check whether x is less than or equal
to zero, in which case it displays an error message and then uses return to exit

4.7 Recursion 43

the function. The flow of execution immediately returns to the caller and the
remaining lines of the function are not executed.

I used a floating-point value on the right side of the condition because there is
a floating-point variable on the left.

Remember that any time you want to use one a function from the math library,
you have to include the header file math.h.

4.7 Recursion
I mentioned in the last chapter that it is legal for one function to call another,
and we have seen several examples of that. I neglected to mention that it is
also legal for a function to call itself. It may not be obvious why that is a good
thing, but it turns out to be one of the most magical and interesting things a
program can do.

For example, look at the following function:
void Countdown (int n)
{

if (n == 0)
{

printf ("Blastoff!");
}
else
{

printf ("%i", n);
Countdown (n-1);

}
}

The name of the function is Countdown() and it takes a single integer as a
parameter. If the parameter is zero, it outputs the word “Blastoff.” Otherwise,
it outputs the parameter and then calls a function named Countdown()—itself—
passing n-1 as an argument.

What happens if we call this function like this:
int main (void)
{

Countdown (3);
return EXIT_SUCCESS;

}

The execution of Countdown() begins with n=3, and since n is not zero, it
outputs the value 3, and then calls itself...

The execution of Countdown() begins with n=2, and since n is not
zero, it outputs the value 2, and then calls itself...

44 Conditionals and recursion

The execution of Countdown() begins with n=1, and since
n is not zero, it outputs the value 1, and then calls itself...

The execution of Countdown() begins with n=0,
and since n is zero, it outputs the word “Blastoff!”
and then returns.

The Countdown that got n=1 returns.

The Countdown that got n=2 returns.

The Countdown that got n=3 returns.

And then you’re back in main() (what a trip). So the total output looks like:

3
2
1
Blastoff!

As a second example, let’s look again at the functions PrintNewLine() and
PrintThreeLines().

void PrintNewLine ()
{

printf ("\n");
}

void PrintThreeLines ()
{

PrintNewLine (); PrintNewLine (); PrintNewLine ();
}

Although these work, they would not be much help if I wanted to output 2
newlines, or 106. A better alternative would be

void PrintLines (int n)
{

if (n > 0)
{

printf ("\n");
PrintLines (n-1);

}
}

This program is similar to Countdown; as long as n is greater than zero, it
outputs one newline, and then calls itself to output n-1 additional newlines.
Thus, the total number of newlines is 1 + (n-1), which usually comes out to
roughly n.

The process of a function calling itself is called recursion, and such functions
are said to be recursive.

4.8 Infinite recursion 45

4.8 Infinite recursion
In the examples in the previous section, notice that each time the functions
get called recursively, the argument gets smaller by one, so eventually it gets
to zero. When the argument is zero, the function returns immediately, without
making any recursive calls. This case—when the function completes without
making a recursive call—is called the base case.

If a recursion never reaches a base case, it will go on making recursive calls
forever and the program will never terminate. This is known as infinite re-
cursion, and it is generally not considered a good idea.

In most programming environments, a program with an infinite recursion will
not really run forever. Eventually, something will break and the program will
report an error. This is the first example we have seen of a run-time error (an
error that does not appear until you run the program).

You should write a small program that recurses forever and run it to see what
happens.

4.9 Stack diagrams for recursive functions
In the previous chapter we used a stack diagram to represent the state of a
program during a function call. The same kind of diagram can make it easier
to interpret a recursive function.

Remember that every time a function gets called it creates a new instance that
contains the function’s local variables and parameters.

This figure shows a stack diagram for Countdown, called with n = 3:

 n 3

main()

Countdown()

 n 2Countdown()

 n 1Countdown()

 n 0Countdown()

There is one instance of main() and four instances of Countdown(), each with
a different value for the parameter n. The bottom of the stack, Countdown()

46 Conditionals and recursion

with n=0 is the base case. It does not make a recursive call, so there are no
more instances of Countdown().

The instance of main() is empty because main() does not have any parameters
or local variables. As an exercise, draw a stack diagram for PrintLines(),
invoked with the parameter n=4.

4.10 Glossary
modulus: An operator that works on integers and yields the remainder when

one number is divided by another. In C it is denoted with a percent sign
(%).

conditional: A block of statements that may or may not be executed depend-
ing on some condition.

chaining: A way of joining several conditional statements in sequence.

nesting: Putting a conditional statement inside one or both branches of an-
other conditional statement.

recursion: The process of calling the same function you are currently execut-
ing.

infinite recursion: A function that calls itself recursively without every reach-
ing the base case. Eventually an infinite recursion will cause a run-time
error.

4.11 Exercises
Exercise 4.1 This exercise reviews the flow of execution through a program with
multiple methods. Read the following code and answer the questions below.

#include <stdio.h>
#include <stdlib.h>

void Zippo (int quince, int flag);

void Baffle (int output)
{

printf ("%i\n",output);
Zippo (12, -5);

}

void Zippo (int quince, int flag)
{

if (flag < 0)
{

printf ("%i zoop\n", quince);

4.11 Exercises 47

}
else
{

printf ("rattle ");
Baffle (quince);
printf ("boo-wa-ha-ha\n");

}
}

int main (void)
{

Zippo (5, 13);
return EXIT_SUCCESS;

}

a. Write the number 1 next to the first statement of this program that will be
executed. Be careful to distinguish things that are statements from things that
are not.

b. Write the number 2 next to the second statement, and so on until the end of
the program. If a statement is executed more than once, it might end up with
more than one number next to it.

c. What is the value of the parameter blimp when baffle() gets invoked?
d. What is the output of this program?

Exercise 4.2 The first verse of the song “99 Bottles of Beer” is:

99 bottles of beer on the wall, 99 bottles of beer, ya’ take one down, ya’
pass it around, 98 bottles of beer on the wall.

Subsequent verses are identical except that the number of bottles gets smaller by one
in each verse, until the last verse:

No bottles of beer on the wall, no bottles of beer, ya’ can’t take one down,
ya’ can’t pass it around, ’cause there are no more bottles of beer on the
wall!

And then the song (finally) ends.

Write a program that prints the entire lyrics of “99 Bottles of Beer.” Your program
should include a recursive method that does the hard part, but you also might want
to write additional methods to separate the major functions of the program.

As you are developing your code, you will probably want to test it with a small number
of verses, like “3 Bottles of Beer.”

The purpose of this exercise is to take a problem and break it into smaller problems,
and to solve the smaller problems by writing simple, easily-debugged methods.

Exercise 4.3 You can use the getchar() function in C to get character input from
the user through the keyboard. This function stops the execution of the program and
waits for the input from the user.

48 Conditionals and recursion

The getchar() function has the type int and does not require an argument. It returns
the ASCII-Code (cf. Appendix B) of the key that has been pressed on the keyboard.

a. Write a program, that asks the user to input a digit between 0 and 9.
b. Test the input from the user and display an error message if the returned value

is not a digit. The program should then be terminated. If the test is successful,
the program should print the input value on the computer screen.

Exercise 4.4 Fermat’s Last Theorem says that there are no integers a, b, and c
such that

an + bn = cn

except in the case when n = 2.

Write a function named checkFermat() that takes four integers as parameters—a, b,
c and n—and that checks to see if Fermat’s theorem holds. If n is greater than 2 and
it turns out to be true that an + bn = cn, the program should print “Holy smokes,
Fermat was wrong!” Otherwise the program should print “No, that doesn’t work.”

You should assume that there is a function named raiseToPow() that takes two inte-
gers as arguments and that raises the first argument to the power of the second. For
example:

int x = raiseToPow (2, 3);

would assign the value 8 to x, because 23 = 8.

Chapter 5

Fruitful functions

5.1 Return values
Some of the built-in functions we have used, like the math functions, have
produced results. That is, the effect of calling the function is to generate a new
value, which we usually assign to a variable or use as part of an expression. For
example:

double e = exp (1.0);
double height = radius * sin (angle);

But so far all the functions we have written have been void functions; that is,
functions that return no value. When you call a void function, it is typically on
a line by itself, with no assignment:

PrintLines (3);
Countdown (n-1);

In this chapter, we are going to write functions that return things, which I will
refer to as fruitful functions, for want of a better name. The first example is
area, which takes a double as a parameter, and returns the area of a circle with
the given radius:

double Area (double radius)
{

double pi = acos (-1.0);
double area = pi * radius * radius;
return area;

}

The first thing you should notice is that the beginning of the function definition
is different. Instead of void, which indicates a void function, we see double,
which indicates that the return value from this function will have type double.

Also, notice that the last line is an alternate form of the return statement that
includes a return value. This statement means, “return immediately from this

50 Fruitful functions

function and use the following expression as a return value.” The expression you
provide can be arbitrarily complicated, so we could have written this function
more concisely:

double Area (double radius)
{

return acos(-1.0) * radius * radius;
}

On the other hand, temporary variables like area often make debugging easier.
In either case, the type of the expression in the return statement must match
the return type of the function. In other words, when you declare that the return
type is double, you are making a promise that this function will eventually
produce a double. If you try to return with no expression, or an expression
with the wrong type, the compiler will take you to task.

Sometimes it is useful to have multiple return statements, one in each branch
of a conditional:

double AbsoluteValue (double x)
{

if (x < 0)
{

return -x;
}
else
{

return x;
}

}

Since these returns statements are in an alternative conditional, only one will
be executed. Although it is legal to have more than one return statement in a
function, you should keep in mind that as soon as one is executed, the function
terminates without executing any subsequent statements.

Code that appears after a return statement, or any place else where it can
never be executed, is called dead code. Some compilers warn you if part of
your code is dead.

If you put return statements inside a conditional, then you have to guarantee
that every possible path through the program hits a return statement. For
example:

double AbsoluteValue (double x)
{

if (x < 0)
{

return -x;
}
else if (x > 0)
{

5.2 Program development 51

return x;
} /* WRONG!! */

}

This program is not correct because if x happens to be 0, then neither condition
will be true and the function will end without hitting a return statement. Un-
fortunately, many C compilers do not catch this error. As a result, the program
may compile and run, but the return value when x==0 could be anything, and
will probably be different in different environments.

By now you are probably sick of seeing compiler errors, but as you gain more
experience, you will realize that the only thing worse than getting a compiler
error is not getting a compiler error when your program is wrong.

Here’s the kind of thing that’s likely to happen: you test AbsoluteValue() with
several values of x and it seems to work correctly. Then you give your program to
someone else and they run it in another environment. It fails in some mysterious
way, and it takes days of debugging to discover that the problem is an incorrect
implementation of AbsoluteValue(). If only the compiler had warned you!

From now on, if the compiler points out an error in your program, you should
not blame the compiler. Rather, you should thank the compiler for finding your
error and sparing you days of debugging. Some compilers have an option that
tells them to be extra strict and report all the errors they can find. You should
turn this option on all the time.

As an aside, you should know that there is a function in the math library called
fabs() that calculates the absolute value of a double – correctly.

5.2 Program development
At this point you should be able to look at complete C functions and tell what
they do. But it may not be clear yet how to go about writing them. I am going
to suggest one technique that I call incremental development.

As an example, imagine you want to find the distance between two points, given
by the coordinates (x1, y1) and (x2, y2). By the usual definition,

distance =
√

(x2 − x1)2 + (y2 − y1)2 (5.1)

The first step is to consider what a Distance function should look like in C. In
other words, what are the inputs (parameters) and what is the output (return
value).

In this case, the two points are the parameters, and it is natural to represent
them using four doubles. The return value is the distance, which will have type
double.

Already we can write an outline of the function:

52 Fruitful functions

double Distance (double x1, double y1, double x2, double y2)
{

return 0.0;
}

The return statement is a placekeeper so that the function will compile and
return something, even though it is not the right answer. At this stage the
function doesn’t do anything useful, but it is worthwhile to try compiling it so
we can identify any syntax errors before we make it more complicated.

In order to test the new function, we have to call it with sample values. Some-
where in main() I would add:

double dist = Distance (1.0, 2.0, 4.0, 6.0);
printf ("%f\n" dist);

I chose these values so that the horizontal distance is 3 and the vertical distance
is 4; that way, the result will be 5 (the hypotenuse of a 3-4-5 triangle). When
you are testing a function, it is useful to know the right answer.

Once we have checked the syntax of the function definition, we can start adding
lines of code one at a time. After each incremental change, we recompile and
run the program. That way, at any point we know exactly where the error must
be—in the last line we added.

The next step in the computation is to find the differences x2 − x1 and y2 − y1.
I will store those values in temporary variables named dx and dy.

double Distance (double x1, double y1, double x2, double y2)
{

double dx = x2 - x1;
double dy = y2 - y1;
printf ("dx is %f\n", dx);
printf ("dy is %f\n", dy;
return 0.0;

}

I added output statements that will let me check the intermediate values before
proceeding. As I mentioned, I already know that they should be 3.0 and 4.0.

When the function is finished I will remove the output statements. Code like
that is called scaffolding, because it is helpful for building the program, but
it is not part of the final product. Sometimes it is a good idea to keep the
scaffolding around, but comment it out, just in case you need it later.

The next step in the development is to square dx and dy. We could use the
pow() function, but it is simpler and faster to just multiply each term by itself.

double Distance (double x1, double y1, double x2, double y2)
{

double dx = x2 - x1;
double dy = y2 - y1;
double dsquared = dx*dx + dy*dy;
printf ("d_squared is %f\n", dsquared);

5.3 Composition 53

return 0.0;
}

Again, I would compile and run the program at this stage and check the inter-
mediate value (which should be 25.0).

Finally, we can use the sqrt() function to compute and return the result.
double Distance (double x1, double y1, double x2, double y2)
{

double dx = x2 - x1;
double dy = y2 - y1;
double dsquared = dx*dx + dy*dy;
double result = sqrt (dsquared);
return result;

}

Then in main(), we should output and check the value of the result.

As you gain more experience programming, you might find yourself writing
and debugging more than one line at a time. Nevertheless, this incremental
development process can save you a lot of debugging time.

The key aspects of the process are:

• Start with a working program and make small, incremental changes. At
any point, if there is an error, you will know exactly where it is.

• Use temporary variables to hold intermediate values so you can output
and check them.

• Once the program is working, you might want to remove some of the
scaffolding or consolidate multiple statements into compound expressions,
but only if it does not make the program difficult to read.

5.3 Composition
As you should expect by now, once you define a new function, you can use it as
part of an expression, and you can build new functions using existing functions.
For example, what if someone gave you two points, the center of the circle and
a point on the perimeter, and asked for the area of the circle?

Let’s say the center point is stored in the variables xc and yc, and the perimeter
point is in xp and yp. The first step is to find the radius of the circle, which is the
distance between the two points. Fortunately, we have a function, Distance(),
that does that.

double radius = Distance (xc, yc, xp, yp);

The second step is to find the area of a circle with that radius, and return it.
double result = Area (radius);
return result;

54 Fruitful functions

Wrapping that all up in a function, we get:
double AreaFromPoints (double xc, double yc, double xp, double yp)
{

double radius = Distance (xc, yc, xp, yp);
double result = Area (radius);
return result;

}

The temporary variables radius and area are useful for development and de-
bugging, but once the program is working we can make it more concise by
composing the function calls:

double AreaFromPoints (double xc, double yc, double xp, double yp)
{

return Area (Distance (xc, yc, xp, yp));
}

5.4 Boolean values
The types we have seen so far can hold very large values. There are a lot of
integers in the world, and even more floating-point numbers. By comparison, the
set of characters is pretty small. Well, many computing languages implement
an even more fundamental type that is even smaller. It is called _Bool, and
the only values in it are true and false.

Unfortunately, earlier versions of the C standard did not implement boolean
as a separate type, but instead used the integer values 0 and 1 to represent
truth values. By convention 0 represents false and 1 represents true. Strictly
speaking C interpretes any integer value different from 0 as true. This can be a
source of error if you are testing a value to be true by comparing it with 1.

Without thinking about it, we have been using boolean values in the last of
chapter. The condition inside an if statement is a boolean expression. Also,
the result of a comparison operator is a boolean value. For example:

if (x == 5)
{

/* do something*/
}

The operator == compares two integers and produces a boolean value.

Pre C99 has no keywords for the expression of true or false. A lot of programs
instead are using C preprocessor definitions anywhere a boolean expression is
called for. For example,

#define FALSE 0
#define TRUE 1
...

if (TRUE)
{

5.5 Boolean variables 55

/* will be always executed */
}

is a standard idiom for a loop that should run forever (or until it reaches a
return or break statement).

5.5 Boolean variables
Since boolean values are not supported directly in C, we can not declare variables
of the type boolean. Instead, programmers typically use the short datatype in
combination with preprocessor definitions to store truth values.

#define FALSE 0
#define TRUE 1
...

short fred;
fred = TRUE;
short testResult = FALSE;

The first line is a simple variable declaration; the second line is an assignment,
and the third line is a combination of a declaration and as assignment, called
an initialization.

As I mentioned, the result of a comparison operator is a boolean, so you can
store it in a variable

short evenFlag = (n%2 == 0); /* true if n is even */
short positiveFlag = (x > 0); /* true if x is positive */

and then use it as part of a conditional statement later
if (evenFlag)
{

printf("n was even when I checked it");
}

A variable used in this way is called a flag, since it flags the presence or absence
of some condition.

5.6 Logical operators
There are three logical operators in C: AND, OR and NOT, which are denoted
by the symbols &&, || and !. The semantics (meaning) of these operators is
similar to their meaning in English. For example x > 0 && x < 10 is true only
if x is greater than zero AND less than 10.

evenFlag || n%3 == 0 is true if either of the conditions is true, that is, if
evenFlag is true OR the number is divisible by 3.

Finally, the NOT operator has the effect of negating or inverting a bool ex-
pression, so !evenFlag is true if evenFlag is false; that is, if the number is
odd.

56 Fruitful functions

Logical operators often provide a way to simplify nested conditional statements.
For example, how would you write the following code using a single conditional?

if (x > 0)
{

if (x < 10)
{

printf ("x is a positive single digit.\n");
}

}

5.7 Bool functions

It is sometimes appropriate for functions to return boolean values just like any
other return type. This is is especially convenient for hiding complicated tests
inside functions. For example:

int IsSingleDigit (int x)
{

if (x >= 0 && x < 10)
{

return TRUE;
}
else
{

return FALSE;
}

}

The name of this function is IsSingleDigit(). It is common to give such test
functions names that sound like yes/no questions. The return type is int, which
means that again we need to follow the agreement that 0 represents false and
1 represents true. Every return statement has to follow this convention, again,
we are using preprocessor definitions.

The code itself is straightforward, although it is a bit longer than it needs to be.
Remember that the expression x >= 0 && x < 10 is evaluated to a boolean
value, so there is nothing wrong with returning it directly, and avoiding the if
statement altogether:

int IsSingleDigit (int x)
{

return (x >= 0 && x < 10);
}

In main() you can call this function in the usual ways:

printf("%i\n", IsSingleDigit (2));
short bigFlag = !IsSingleDigit (17);

5.8 Returning from main() 57

The first line outputs the value true because 2 is a single-digit number. Unfor-
tunately, when C outputs boolean values, it does not display the words TRUE
and FALSE, but rather the integers 1 and 0.

The second line assigns the value true to bigFlag only if 17 is not a positive
single-digit number.

The most common use of boolean functions is inside conditional statements
if (IsSingleDigit (x))
{

printf("x is little\n");
}
else
{

printf("x is big\n");
}

5.8 Returning from main()

Now that we know functions that return values, we can look more closely at the
return value of the main() function. It’s supposed to return an integer:

int main (void)

The usual return value from main() is 0, which indicates that the program
succeeded at whatever it was supposed to to. If something goes wrong, it is
common to return -1, or some other value that indicates what kind of error
occurred.

C provides two predefined constants EXIT_SUCCESS and EXIT_FAILURE

int main (void)
{

return EXIT_SUCCESS; /*program terminated successfully*/
}

Of course, you might wonder who this value gets returned to, since we never
call main() ourselves. It turns out that when the operating system executes a
program, it starts by calling main() in pretty much the same way it calls all the
other functions.

There are even some parameters that can be passed to main() by the system,
but we are not going to deal with them for a little while, so we define main()
as having no parameters: int main (void).

5.9 Glossary
return type: The type of value a function returns.

return value: The value provided as the result of a function call.

58 Fruitful functions

dead code: Part of a program that can never be executed, often because it
appears after a return statement.

scaffolding: Code that is used during program development but is not part of
the final version.

void: A special return type that indicates a void function; that is, one that
does not return a value.

boolean: A value or variable that can take on one of two states, often called
true and false. In C, boolean values are mainly stored in variables of
type short and preprocessor statements are used to define the states.

flag: A variable that records a condition or status information.

comparison operator: An operator that compares two values and produces
a boolean that indicates the relationship between the operands.

logical operator: An operator that combines boolean values in order to test
compound conditions.

5.10 Exercises
Exercise 5.1 If you are given three sticks, you may or may not be able to arrange
them in a triangle. For example, if one of the sticks is 12 inches long and the other
two are one inch long, it is clear that you will not be able to get the short sticks to
meet in the middle. For any three lengths, there is a simple test to see if it is possible
to form a triangle:

“If any of the three lengths is greater than the sum of the other two,
then you cannot form a triangle. Otherwise, you can.”

Write a function named IsTriangle() that it takes three integers as arguments, and
that returns either TRUE or FALSE, depending on whether you can or cannot form a
triangle from sticks with the given lengths.

The point of this exercise is to use conditional statements to write a function that
returns a value.

Exercise 5.2 What is the output of the following program?

The purpose of this exercise is to make sure you understand logical operators and the
flow of execution through fruitful methods.
#define TRUE 1
#define FALSE 0

short IsHoopy (int x)
{

short hoopyFlag;
if (x%2 == 0)
{

5.10 Exercises 59

hoopyFlag = TRUE;
}
else
{

hoopyFlag = FALSE;
}
return hoopyFlag;

}

short IsFrabjuous (int x)
{

short frabjuousFlag;
if (x > 0)
{

frabjuousFlag = TRUE;
}
else
{

frabjuousFlag = FALSE;
}
return frabjuousFlag;

}

int main (void)
{

short flag1 = IsHoopy (202);
short flag2 = IsFrabjuous (202);
printf ("%i\n", flag1);
printf ("%i\n", flag2);
if (flag1 && flag2)
{

printf ("ping!\n");
}
if (flag1 || flag2)
{

printf ("pong!\n");
}
return EXIT_SUCCESS;

}

Exercise 5.3

a. Create a new program called Sum.c, and type in the following two functions.
int FunctionOne (int m, int n)
{

if (m == n)
{

return n;
}

60 Fruitful functions

else
{

return m + FunctionOne (m+1, n);
}

}

int FunctionTwo (int m, int n)
{

if (m == n)
{

return n;
}
else
{

return n * FunctionTwo (m, n-1);
}

}

b. Write a few lines in main() to test these functions. Invoke them a couple of
times, with a few different values, and see what you get. By some combination
of testing and examination of the code, figure out what these functions do, and
give them more meaningful names. Add comments that describe their function
abstractly.

c. Add a prinf statement to the beginning of both functions so that they print their
arguments each time they are invoked. This is a useful technique for debugging
recursive programs, since it demonstrates the flow of execution.

Exercise 5.4 Write a recursive function called Power() that takes a double x and
an integer n and that returns xn.

Hint: a recursive definition of this operation is Power (x, n) = x * Power (x, n-1).
Also, remember that anything raised to the zeroeth power is 1.

Exercise 5.5

(This exercise is based on page 44 of Ableson and Sussman’s Structure and Interpre-
tation of Computer Programs.)

The following algorithm is known as Euclid’s Algorithm because it appears in Euclid’s
Elements (Book 7, ca. 300 B.C.). It may be the oldest nontrivial algorithm.

The algorithm is based on the observation that, if r is the remainder when a is divided
by b, then the common divisors of a and b are the same as the common divisors of b
and r. Thus we can use the equation

gcd(a, b) = gcd(b, r)

to successively reduce the problem of computing a GCD to the problem of computing
the GCD of smaller and smaller pairs of integers. For example,

gcd(36, 20) = gcd(20, 16) = gcd(16, 4) = gcd(4, 0) = 4

5.10 Exercises 61

implies that the GCD of 36 and 20 is 4. It can be shown that for any two starting
numbers, this repeated reduction eventually produces a pair where the second number
is 0. Then the GCD is the other number in the pair.

Write a function called gcd that takes two integer parameters and that uses Euclid’s
algorithm to compute and return the greatest common divisor of the two numbers.

Exercise 5.6 The distance between two points (x1, y1) and (x2, y2) is

Distance =
√

(x2 − x1)2 + (y2 − y1)2

Please write a function named Distance() that takes four doubles as parameters—x1,
y1, x2 and y2—and that prints the distance between the points.

You should assume that there is a function named SumSquares() that calculates and
returns the sum of the squares of its arguments. For example:

double x = SumSquares (3.0, 4.0);

would assign the value 25.0 to x.

The point of this exercise is to write a new function that uses an existing one. You
should write only one function: Distance(). You should not write SumSquares() or
main() and you should not invoke Distance().

Exercise 5.7 The point of this exercise is to practice the syntax of fruitful functions.

a. Use your existing solution to Exercise 3.4 and make sure you can still compile
and run it.

b. Transform Multadd() into a fruitful function, so that instead of printing a result,
it returns it.

c. Everywhere in the program that Multadd() gets invoked, change the invocation
so that it stores the result in a variable and/or prints the result.

d. Transform Yikes() in the same way.

62 Fruitful functions

Chapter 6

Iteration

6.1 Multiple assignment

I haven’t said much about it, but it is legal in C to make more than one assign-
ment to the same variable. The effect of the second assignment is to replace the
old value of the variable with a new value.

int fred = 5;
printf ("%i", fred);
fred = 7;
printf ("%i", fred);

The output of this program is 57, because the first time we print fred his value
is 5, and the second time his value is 7.

This kind of multiple assignment is the reason I described variables as a
container for values. When you assign a value to a variable, you change the
contents of the container, as shown in the figure:

fred 5

fred 75

int fred = 5;

fred = 7;

When there are multiple assignments to a variable, it is especially important to
distinguish between an assignment statement and a statement of equality. Be-
cause C uses the = symbol for assignment, it is tempting to interpret a statement
like a = b as a statement of equality. It is not!

First of all, equality is commutative, and assignment is not. For example, in
mathematics if a = 7 then 7 = a. But in C the statement a = 7; is legal, and
7 = a; is not.

64 Iteration

Furthermore, in mathematics, a statement of equality is true for all time. If
a = b now, then a will always equal b. In C, an assignment statement can make
two variables equal, but they don’t have to stay that way!

int a = 5;
int b = a; /* a and b are now equal */
a = 3; /* a and b are no longer equal */

The third line changes the value of a but it does not change the value of b,
and so they are no longer equal. In many programming languages an alternate
symbol is used for assignment, such as <- or :=, in order to avoid confusion.

Although multiple assignment is frequently useful, you should use it with cau-
tion. If the values of variables are changing constantly in different parts of the
program, it can make the code difficult to read and debug.

6.2 Iteration
One of the things computers are often used for is the automation of repetitive
tasks. Repeating identical or similar tasks without making errors is something
that computers do well and people do poorly.

In section 4.7 we have seen programs that use recursion to perform repetition,
such as PrintLines() and Countdown(). I now want to introduce a new type
of repetition, that is called iteration, and C provides several language features
that make it easier to write repetetive programs.

The two features we are going to look at are the while statement and the for
statement.

6.3 The while statement
Using a while statement, we can rewrite Countdown():

void Countdown (int n)
{

while (n > 0)
{

printf ("%i\n", n);
n = n-1;

}
printf ("Blastoff!\n");

}

You can almost read a while statement as if it were English. What this means
is, “While n is greater than zero, continue displaying the value of n and then
reducing the value of n by 1. When you get to zero, output the word ‘Blastoff!”’

More formally, the flow of execution for a while statement is as follows:

6.3 The while statement 65

1. Evaluate the condition in parentheses, yielding true or false.

2. If the condition is false, exit the while statement and continue execution
at the next statement.

3. If the condition is true, execute each of the statements between the curly-
brackets, and then go back to step 1.

This type of flow is called a loop because the third step loops back around to
the top. Notice that if the condition is false the first time through the loop, the
statements inside the loop are never executed. The statements inside the loop
are called the body of the loop.

The body of the loop should change the value of one or more variables so that,
eventually, the condition becomes false and the loop terminates. Otherwise the
loop will repeat forever, which is called an infinite loop. An endless source
of amusement for computer scientists is the observation that the directions on
shampoo, “Lather, rinse, repeat,” are an infinite loop.

In the case of Countdown(), we can prove that the loop will terminate because
we know that the value of n is finite, and we can see that the value of n gets
smaller each time through the loop (each iteration), so eventually we have to
get to zero. In other cases it is not so easy to tell:

void Sequence (int n)
{

while (n != 1)
{

printf ("%i\n", n);
if (n%2 == 0) /* n is even */
{

n = n / 2;
}
else /* n is odd */
{

n = n*3 + 1;
}

}
}

The condition for this loop is n != 1, so the loop will continue until n is 1,
which will make the condition false.

At each iteration, the program outputs the value of n and then checks whether
it is even or odd. If it is even, the value of n is divided by two. If it is odd, the
value is replaced by 3n + 1. For example, if the starting value (the argument
passed to Sequence) is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof
that n will ever reach 1, or that the program will terminate. For some particular
values of n, we can prove termination. For example, if the starting value is a

66 Iteration

power of two, then the value of n will be even every time through the loop, until
we get to 1. The previous example ends with such a sequence, starting with 16.

Particular values aside, the interesting question is whether we can prove that
this program terminates for all values of n. So far, no one has been able to
prove it or disprove it!

6.4 Tables
One of the things loops are good for is generating tabular data. For example,
before computers were readily available, people had to calculate logarithms,
sines and cosines, and other common mathematical functions by hand. To
make that easier, there were books containing long tables where you could find
the values of various functions. Creating these tables was slow and boring, and
the result tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This
is great! We can use the computers to generate the tables, so there will be no
errors.” That turned out to be true (mostly), but shortsighted. Soon thereafter
computers and calculators were so pervasive that the tables became obsolete.

Well, almost. It turns out that for some operations, computers use tables of
values to get an approximate answer, and then perform computations to improve
the approximation. In some cases, there have been errors in the underlying
tables, most famously in the table the original Intel Pentium used to perform
floating-point division.

Although a “log table” is not as useful as it once was, it still makes a good
example of iteration. The following program outputs a sequence of values in the
left column and their logarithms in the right column:

double x = 1.0;
while (x < 10.0)
{

printf ("%.0f\t%f\n", x ,log(x));
x = x + 1.0;

}

The sequence \t represents a tab character. The sequence \n represents a
newline character. They are so called escape sequences which are used to encode
non-printable ASCII-characters. Escape sequences can be included anywhere in
a string, although in these examples the sequence is the whole string.

A tab character causes the cursor to shift to the right until it reaches one of
the tab stops, which are normally every eight characters. As we will see in a
minute, tabs are useful for making columns of text line up. A newline character
causes the cursor to move on to the next line.

The output of this program is:

6.4 Tables 67

1 0.000000
2 0.693147
3 1.098612
4 1.386294
5 1.609438
6 1.791759
7 1.945910
8 2.079442
9 2.197225

If these values seem odd, remember that the log() function uses base e. Since
powers of two are so important in computer science, we often want to find
logarithms with respect to base 2. To do that, we can use the following formula:

log2 x = logex

loge2
Changing the output statement to

printf ("%.0f\t%f\n", x, log(x) / log(2.0));
yields:

1 0.000000
2 1.000000
3 1.584963
4 2.000000
5 2.321928
6 2.584963
7 2.807355
8 3.000000
9 3.169925

We can see that 1, 2, 4 and 8 are powers of two, because their logarithms base
2 are round numbers. If we wanted to find the logarithms of other powers of
two, we could modify the program like this:

double x = 1.0;
while (x < 100.0)
{

printf ("%.0f\t%.0f\n", x, log(x) / log(2.0));
x = x * 2.0;

}
Now instead of adding something to x each time through the loop, which yields
an arithmetic sequence, we multiply x by something, yielding a geometric
sequence. The result is:

1 0
2 1
4 2
8 3
16 4
32 5
64 6

68 Iteration

Because we are using tab characters between the columns, the position of the
second column does not depend on the number of digits in the first column.

Log tables may not be useful any more, but for computer scientists, knowing
the powers of two is! As an exercise, modify this program so that it outputs the
powers of two up to 65536 (that’s 216). Print it out and memorize it.

6.5 Two-dimensional tables
A two-dimensional table is a table where you choose a row and a column and
read the value at the intersection. A multiplication table is a good example.
Let’s say you wanted to print a multiplication table for the values from 1 to 6.

A good way to start is to write a simple loop that prints the multiples of 2, all
on one line.

int i = 1;
while (i <= 6)
{

printf("%i ", i*2);
i = i + 1;

}
printf("\n");

The first line initializes a variable named i, which is going to act as a counter,
or loop variable. As the loop executes, the value of i increases from 1 to 6,
and then when i is 7, the loop terminates. Each time through the loop, we
print the value 2*i followed by three spaces. By omitting the \n from the first
output statement, we get all the output on a single line.

The output of this program is:
2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

6.6 Encapsulation and generalization
Encapsulation usually means taking a piece of code and wrapping it up in a
function, allowing you to take advantage of all the things functions are good for.
We have seen two examples of encapsulation, when we wrote PrintParity() in
Section 4.3 and IsSingleDigit() in Section 5.7.

Generalization means taking something specific, like printing multiples of 2, and
making it more general, like printing the multiples of any integer.

Here’s a function that encapsulates the loop from the previous section and
generalizes it to print multiples of n.

6.6 Encapsulation and generalization 69

void PrintMultiples (int n)
{

int i = 1;
while (i <= 6)
{

printf("%i ", i*n);
i = i + 1;

}
printf("\n");

}

To encapsulate, all I had to do was add the first line, which declares the name,
parameter, and return type. To generalize, all I had to do was replace the value
2 with the parameter n.

If we call this function with the argument 2, we get the same output as before.
With argument 3, the output is:

3 6 9 12 15 18

and with argument 4, the output is

4 8 12 16 20 24

By now you can probably guess how we are going to print a multiplication table:
we’ll call PrintMultiples() repeatedly with different arguments. In fact, we
are going to use another loop to iterate through the rows.

int i = 1;
while (i <= 6)
{

PrintMultiples (i);
i = i + 1;

}

First of all, notice how similar this loop is to the one inside PrintMultiples().
I only replaced the call of the printf() function with the call of the
PrintMultiples() function.

The output of this program is

1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

which is a (slightly sloppy) multiplication table. If the sloppiness bothers you,
try replacing the spaces between columns with tab characters and see what you
get.

70 Iteration

6.7 Functions
In the last section I mentioned “all the things functions are good for.” About
this time, you might be wondering what exactly those things are. Here are some
of the reasons functions are useful:

• By giving a name to a sequence of statements, you make your program
easier to read and debug.

• Dividing a long program into functions allows you to separate parts of the
program, debug them in isolation, and then compose them into a whole.

• Functions facilitate both recursion and iteration.

• Well-designed functions are often useful for many programs. Once you
write and debug one, you can reuse it.

6.8 More encapsulation
To demonstrate encapsulation again, I’ll take the code from the previous section
and wrap it up in a function:

void PrintMultTable ()
{

int i = 1;
while (i <= 6)
{

PrintMultiples (i);
i = i + 1;

}
}

The process I am demonstrating is a common development plan. You develop
code gradually by adding lines to main() or someplace else, and then when you
get it working, you extract it and wrap it up in a function.

The reason this is useful is that you sometimes don’t know when you start
writing exactly how to divide the program into functions. This approach lets
you design as you go along.

6.9 Local variables
About this time, you might be wondering how we can use the same variable i
in both PrintMultiples() and PrintMultTable(). Didn’t I say that you can
only declare a variable once? And doesn’t it cause problems when one of the
functions changes the value of the variable?

The answer to both questions is “no,” because the i in PrintMultiples() and
the i in PrintMultTable() are not the same variable. They have the same

6.10 More generalization 71

name, but they do not refer to the same storage location, and changing the
value of one of them has no effect on the other.

Remember that variables that are declared inside a function definition are local.
You cannot access a local variable from outside its “home” function, and you
are free to have multiple variables with the same name, as long as they are not
in the same function.

The stack diagram for this program shows clearly that the two variables named
i are not in the same storage location. They can have different values, and
changing one does not affect the other.

 i 1

main()

PrintMultTable()

 n iPrintMultiples() 31

Notice that the value of the parameter n in PrintMultiples() has to be the
same as the value of i in PrintMultTable(). On the other hand, the value of
i in PrintMultiples() goes from 1 up to 6. In the diagram, it happens to be
3. The next time through the loop it will be 4.

It is often a good idea to use different variable names in different functions, to
avoid confusion, but there are good reasons to reuse names. For example, it is
common to use the names i, j and k as loop variables. If you avoid using them
in one function just because you used them somewhere else, you will probably
make the program harder to read.

6.10 More generalization
As another example of generalization, imagine you wanted a program that would
print a multiplication table of any size, not just the 6x6 table. You could add a
parameter to PrintMultTable():

void PrintMultTable (int high)
{

int i = 1;
while (i <= high)
{

PrintMultiples (i);
i = i + 1;

}
}

72 Iteration

I replaced the value 6 with the parameter high. If I call PrintMultTable()
with the argument 7, I get:

1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36
7 14 21 28 35 42

which is fine, except that I probably want the table to be square (same num-
ber of rows and columns), which means I have to add another parameter to
PrintMultiples(), to specify how many columns the table should have.

Just to be annoying, I will also call this parameter high, demonstrating that
different functions can have parameters with the same name (just like local
variables):

void PrintMultiples (int n, int high)
{

int i = 1;
while (i <= high)
{

printf ("%i ", n*i);
i = i + 1;

}
printf ("\n");

}

void PrintMultTable (int high)
{

int i = 1;
while (i <= high)
{

PrintMultiples (i, high);
i = i + 1;

}
}

Notice that when I added a new parameter, I had to change the first line of
the function, and I also had to change the place where the function is called in
PrintMultTable(). As expected, this program generates a square 7x7 table:

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

6.11 Glossary 73

When you generalize a function appropriately, you often find that the resulting
program has capabilities you did not intend. For example, you might notice
that the multiplication table is symmetric, because ab = ba, so all the entries in
the table appear twice. You could save ink by printing only half the table. To
do that, you only have to change one line of PrintMultTable(). Change

PrintMultiples (i, high);
to

PrintMultiples (i, i);
and you get:

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49

I’ll leave it up to you to figure out how it works.

6.11 Glossary
loop: A statement that executes repeatedly while a condition is true or until

some condition is satisfied.

infinite loop: A loop whose condition is always true.

body: The statements inside the loop.

iteration: One pass through (execution of) the body of the loop, including the
evaluation of the condition.

tab: A special character, written as \t in C, that causes the cursor to move to
the next tab stop on the current line.

encapsulate: To divide a large complex program into components (like func-
tions) and isolate the components from each other (for example, by using
local variables).

local variable: A variable that is declared inside a function and that exists
only within that function. Local variables cannot be accessed from outside
their home function, and do not interfere with any other functions.

generalize: To replace something unnecessarily specific (like a constant value)
with something appropriately general (like a variable or parameter). Gen-
eralization makes code more versatile, more likely to be reused, and some-
times even easier to write.

development plan: A process for developing a program. In this chapter, I
demonstrated a style of development based on developing code to do sim-
ple, specific things, and then encapsulating and generalizing.

74 Iteration

6.12 Exercises
Exercise 6.1

void Loop(int n)
{

int i = n;
while (i > 1)
{

printf ("%i\n",i);
if (i%2 == 0)
{

i = i/2;
}
else
{

i = i+1;
}

}
}

int main (void)
{

Loop(10);
return EXIT_SUCCESS;

}

a. Draw a table that shows the value of the variables i and n during the execution
of the program. The table should contain one column for each variable and one
line for each iteration.

b. What is the output of this program?

Exercise 6.2 In Exercise 5.4 we wrote a recursive version of Power(), which takes
a double x and an integer n and returns xn. Now write an iterative function to perform
the same calculation.

Exercise 6.3 Let’s say you are given a number, a, and you want to find its square
root. One way to do that is to start with a very rough guess about the answer, x0,
and then improve the guess using the following formula:

x1 = (x0 + a/x0)/2

For example, if we want to find the square root of 9, and we start with x0 = 6, then
x1 = (6 + 9/6)/2 = 15/4 = 3.75, which is closer.

We can repeat the procedure, using x1 to calculate x2, and so on. In this case,
x2 = 3.075 and x3 = 3.00091. So that is converging very quickly on the right answer
(which is 3).

Write a function called SquareRoot that takes a double as a parameter and that
returns an approximation of the square root of the parameter, using this algorithm.
You may not use the sqrt() function from the math.h library.

6.12 Exercises 75

As your initial guess, you should use a/2. Your function should iterate until it gets two
consecutive estimates that differ by less than 0.0001; in other words, until the absolute
value of xn − xn−1 is less than 0.0001. You can use the built-in fabs() function from
the math.h library to calculate the absolute value.

Exercise 6.4 One way to evaluate e−x2
is to use the infinite series expansion

e−x2
= 1 − 2x + 3x2/2! − 4x3/3! + 5x4/4! − ...

In other words, we need to add up a series of terms where the ith term is equal to
(−1)i(i+1)xi/i!. Write a function named Gauss() that takes x and n as arguments and
that returns the sum of the first n terms of the series. You should not use factorial()
or pow().

76 Iteration

Chapter 7

Arrays

A array is a set of values where each value is identified and referenced by a
number (called an index). The nice thing about arrays is that they can be made
up of any type of element, including basic types like ints and doubles, but all
the values in an array have to have the same type.

When you declare an array, you have to determine the number of elements in
the array. Otherwise the declaration looks similar to other variable types:

int c[4];
double values[10];

Syntactically, array variables look like other C variables except that they are
followed by [NUMBER_OF_ELEMENTS], the number of elements in the array en-
closed in square brackets. The first line in our example, int c[4]; is of the
type "array of integers" and creates a array of four integers named c. The second
line, double values[10]; has the type "array of doubles" and creates an array
of 10 doubles.

C allows you to to initialize the element values of an array immediately after
you have declared it. The values for the individual elements must be enclosed
in curly brakets {} and separated by comma, as in the following example:

int c[4] = {0, 0, 0, 0};

This statement creates an array of four elements and initializes all of them to
zero. This syntax is only legal at initialisation time. Later in your program you
can only assign values for the array element by element.

The following figure shows how arrays are represented in state diagrams:

c 0 0 0 0
c[0] c[1] c[2] c[3]

The large numbers inside the boxes are the values of the elements in the
array. The small numbers outside the boxes are the indices used to identify each

78 Arrays

box. When you allocate a new array, without initializing, the arrays elements
typically contain arbitrary values and you must initialise them to a meaningful
value before using them.

7.1 Increment and decrement operators
Incrementing and decrementing are such common operations that C provides
special operators for them. The ++ operator adds one to the current value of an
int, char or double, and -- subtracts one.

Technically, it is legal to increment a variable and use it in an expression at the
same time. For example, you might see something like:

printf ("%i\n ", i++);

Looking at this, it is not clear whether the increment will take effect before or
after the value is displayed. Because expressions like this tend to be confusing,
I would discourage you from using them. In fact, to discourage you even more,
I’m not going to tell you what the result is. If you really want to know, you can
try it.

Using the increment operators, we can rewrite the PrintMultTable() from
Section 6.10:

void PrintMultTable(int high)
{

int i = 1;
while (i <= high)
{

PrintMultiples(i);
i++;

}
}

It is a common error to write something like:
index = index++; /* WRONG!! */

Unfortunately, this is syntactically legal, so the compiler will not warn you. The
effect of this statement is to leave the value of index unchanged. This is often
a difficult bug to track down.

Remember, you can write index = index + 1;, or you can write index++;,
but you shouldn’t mix them.

7.2 Accessing elements
The [] operator allows us to read and write the individual elements of an array.
The indices start at zero, so c[0] refers to the first element of the array, and
c[1] refers to the second element. You can use the [] operator anywhere in an
expression:

7.3 Copying arrays 79

c[0] = 7;
c[1] = c[0] * 2;
c[2]++;
c[3] -= 60;

All of these are legal assignment statements. Here is the effect of this code
fragment:

c 7 14 1 -60
c[0] c[1] c[2] c[3]

By now you should have noticed that the four elements of this array are num-
bered from 0 to 3, which means that there is no element with the index 4.

Nevertheless, it is a common error to go beyond the bounds of an array. In safer
languages such as Java, this will cause an error and most likely the program
quits. C does not check array boundaries, so your program can go on accessing
memory locations beyond the array itself, as if they where part of the array.
This is most likely wrong and can cause very severe bugs in your program.

It is necessary that you, as a programmer, make sure that
your code correctly observes array boundaries!

You can use any expression as an index, as long as it has type int. One of the
most common ways to index an array is with a loop variable. For example:

int i = 0;
while (i < 4)
{

printf ("%i\n", c[i]);
i++;

}

This is a standard while loop that counts from 0 up to 4, and when the loop
variable i is 4, the condition fails and the loop terminates. Thus, the body of
the loop is only executed when i is 0, 1, 2 and 3.

Each time through the loop we use i as an index into the array, printing the
ith element. This type of array traversal is very common. Arrays and loops go
together like fava beans and a nice Chianti.

7.3 Copying arrays
Arrays can be a very convenient solution for a number of problems, like storing
and processing large sets of data.

However, there is very little that C does automatically for you. For example
you can not set all the elements of an array at the same time and you can not
assign one array to the other, even if they are identical in type and number of
elements.

80 Arrays

double a[3] = {1.0, 1.0, 1.0};
double b[3];

a = 0.0; /* Wrong! */
b = a; /* Wrong! */

In order to set all of the elements of an array to some value, you must do so
element by element. To copy the contents of one array to another, you must
again do so, by copying each element from one array to the other.

int i = 0;
while (i < 3)
{

b[i] = a[i];
i++;

}

7.4 for loops
The loops we have written so far have a number of elements in common. All of
them start by initializing a variable; they have a test, or condition, that depends
on that variable; and inside the loop they do something to that variable, like
increment it.

This type of loop is so common that there is an alternate loop statement, called
for, that expresses it more concisely. The general syntax looks like this:

for (INITIALIZER; CONDITION; INCREMENTOR)
{

BODY
}

This statement is exactly equivalent to
INITIALIZER;
while (CONDITION)
{

BODY
INCREMENTOR

}

except that it is more concise and, since it puts all the loop-related statements
in one place, it is easier to read. For example:

int i;
for (i = 0; i < 4; i++)
{

printf("%i\n", c[i]);
}

is equivalent to

7.5 Array length 81

int i = 0;
while (i < 4)
{

printf("%i\n", c[i]);
i++;

}

7.5 Array length
C does not provide us with a convenient way to determine the actual length of
an array. Knowing the size of an array would be convenient when we are looping
through all elements of the array and need to stop with the last element.

In order to determine the array length we could use the sizeof() operator,
that calculates the size of data types in bytes. Most data types in C use more
than one byte to store their values, therefore it becomes necessary to divide the
byte-count for the array by the byte-count for a single element to establish the
number of elements in the array.

sizeof(ARRAY)/sizeof(ARRAY_ELEMENT)

It is a good idea to use this value as the upper bound of a loop, rather than
a constant. That way, if the size of the array changes, you won’t have to go
through the program changing all the loops; they will work correctly for any
size array.

int i, length;
length = sizeof (c) / sizeof (c[0]);

for (i = 0; i < length; i++)
{

printf("%i\n", c[i]);
}

The last time the body of the loop gets executed, the value of i is length - 1,
which is the index of the last element. When i is equal to length, the condition
fails and the body is not executed, which is a good thing, since it would access
a memory location that is not part of the array.

7.6 Random numbers
Most computer programs do the same thing every time they are executed, so
they are said to be deterministic. Usually, determinism is a good thing, since
we expect the same calculation to yield the same result. For some applications,
though, we would like the computer to be unpredictable. Games are an obvious
example.

Making a program truly nondeterministic turns out to be not so easy, but
there are ways to make it at least seem nondeterministic. One of them is to

82 Arrays

generate pseudorandom numbers and use them to determine the outcome of the
program. Pseudorandom numbers are not truly random in the mathematical
sense, but for our purposes, they will do.

C provides a function called rand() that generates pseudorandom numbers. It
is declared in the header file stdlib.h, which contains a variety of “standard
library” functions, hence the name.

The return value from rand() is an integer between 0 and RAND_MAX, where
RAND_MAX is a large number (about 2 billion on my computer) also defined in the
header file. Each time you call rand() you get a different randomly-generated
number. To see a sample, run this loop:

for (i = 0; i < 4; i++)
{

int x = rand();
printf("%i\n", x);

}

On my machine I got the following output:

1804289383
846930886
1681692777
1714636915

You will probably get something similar, but different, on yours.

Of course, we don’t always want to work with gigantic integers. More often we
want to generate integers between 0 and some upper bound. A simple way to
do that is with the modulus operator. For example:

int x = rand ();
int y = x % upperBound;

Since y is the remainder when x is divided by upperBound, the only possible
values for y are between 0 and upperBound - 1, including both end points.
Keep in mind, though, that y will never be equal to upperBound.

It is also frequently useful to generate random floating-point values. A common
way to do that is by dividing by RAND_MAX. For example:

int x = rand ();
double y = (double) x / RAND_MAX;

This code sets y to a random value between 0.0 and 1.0, including both end
points. As an exercise, you might want to think about how to generate a
random floating-point value in a given range; for example, between 100.0 and
200.0.

7.7 Statistics 83

7.7 Statistics
The numbers generated by rand() are supposed to be distributed uniformly.
That means that each value in the range should be equally likely. If we count
the number of times each value appears, it should be roughly the same for all
values, provided that we generate a large number of values.

In the next few sections, we will write programs that generate a sequence of
random numbers and check whether this property holds true.

7.8 Array of random numbers
The first step is to generate a large number of random values and store them
in a array. By “large number,” of course, I mean 20. It’s always a good idea to
start with a manageable number, to help with debugging, and then increase it
later.

The following function takes three arguments, an array of integers, the size of
the array and an upper bound for the random values. It fills the array of ints
with random values between 0 and upperBound-1.

void RandomizeArray (int array[], int length, int upperBound)
{

int i;
for (i = 0; i < length; i++)
{

array[i] = rand() % upperBound;
}

}

The return type is void, which means that this function does not return any
value to the calling function. To test this function, it is convenient to have a
function that outputs the contents of a array.

void PrintArray (int array[], int length)
{

int i;
for (i = 0; i < length; i++)
{

printf ("%i ", array[i]);
}

}

The following code generates an array filled with random values and outputs it:
int r_array[20];
int upperBound = 10;
int length = sizeof(r_array) / sizeof(r_array[0]);

RandomizeArray (r_array, length, upperBound);
PrintArray (r_array, length);

84 Arrays

On my machine the output is:
3 6 7 5 3 5 6 2 9 1 2 7 0 9 3 6 0 6 2 6
which is pretty random-looking. Your results may differ.

If these numbers are really random, we expect each digit to appear the same
number of times—twice each. In fact, the number 6 appears five times, and the
numbers 4 and 8 never appear at all.

Do these results mean the values are not really uniform? It’s hard to tell. With
so few values, the chances are slim that we would get exactly what we expect.
But as the number of values increases, the outcome should be more predictable.

To test this theory, we’ll write some programs that count the number of times
each value appears, and then see what happens when we increase the number
of elements in our array.

7.9 Passing an array to a function
You probably have noticed that our RandomizeArray() function looked a bit
unusual. We pass an array to this function and expect to get a a random-
ized array back. Nevertheless, we have declared it to be a void function, and
miraculously the function appears to have altered the array.

This behaviour goes against everything what I have said about the use of vari-
ables in functions so far. C typically uses the so called call-by-value evaluation
of expressions. If you pass a value to a function it gets copied from the calling
function to a variable in the called function. The same is true if the function
returns a value. Changes to the internal variable in the called function do not
affect the external values of the calling function.

When we pass an array to a function this behaviour changes to something called
call-by-reference evaluation. C does not copy the array to an internal array
– it rather generates a reference to the original array and any operation in the
called function directly affects the original array. This is also the reason why
we do not have to return anything from our function. The changes have already
taken place.

Call by reference also makes it necessary to supply the length of the array to
the called function, since invoking the sizeof operator in the called function
would determine the size of the reference and not the original array.

We will further discuss call by reference and call by value in Section 8.7, Sec-
tion 9.6 and 9.7.

7.10 Counting
A good approach to problems like this is to think of simple functions that are
easy to write, and that might turn out to be useful. Then you can combine
them into a solution. This approach is sometimes called bottom-up design.

7.11 Checking the other values 85

Of course, it is not easy to know ahead of time which functions are likely to be
useful, but as you gain experience you will have a better idea. Also, it is not
always obvious what sort of things are easy to write, but a good approach is to
look for subproblems that fit a pattern you have seen before.

In our current example we want to examine a potentially large set of elements
and count the number of times a certain value appears. You can think of this
program as an example of a pattern called “traverse and count.” The elements
of this pattern are:

• A set or container that can be traversed, like a string or a array.

• A test that you can apply to each element in the container.

• A counter that keeps track of how many elements pass the test.

In this case, I have a function in mind called HowMany() that counts the number
of elements in a array that are equal to a given value. The parameters are the
array, the length of the array and the integer value we are looking for. The
return value is the number of times the value appears.

int HowMany (int array[], int length, int value)
{

int i;
int count = 0;

for (i=0; i < length; i++)
{

if (array[i] == value) count++;
}

return count;
}

7.11 Checking the other values
HowMany() only counts the occurrences of a particular value, and we are inter-
ested in seeing how many times each value appears. We can solve that problem
with a loop:

int i;
int r_array[20];
int upperBound = 10;
int length = sizeof(r_array) / sizeof(r_array[0]);

RandomizeArray(r_array, length, upperBound);

printf ("value\tHowMany\n");
for (i = 0; i < upperBound; i++)
{

86 Arrays

printf("%i\t%i\n", i, HowMany(r_array, length, i));
}

This code uses the loop variable as an argument to HowMany(), in order to check
each value between 0 and 9, in order. The result is:
value HowMany
0 2
1 1
2 3
3 3
4 0
5 2
6 5
7 2
8 0
9 2

Again, it is hard to tell if the digits are really appearing equally often. If we
increase the size of the array to 100,000 we get the following:
value HowMany
0 10130
1 10072
2 9990
3 9842
4 10174
5 9930
6 10059
7 9954
8 9891
9 9958

In each case, the number of appearances is within about 1% of the expected
value (10,000), so we conclude that the random numbers are probably uniform.

7.12 A histogram
It is often useful to take the data from the previous tables and store them for
later access, rather than just print them. What we need is a way to store 10
integers. We could create 10 integer variables with names like howManyOnes,
howManyTwos, etc. But that would require a lot of typing, and it would be a
real pain later if we decided to change the range of values.

A better solution is to use a array with length 10. That way we can create all
ten storage locations at once and we can access them using indices, rather than
ten different names. Here’s how:

int i;
int upperBound = 10;
int r_array[100000];

7.13 A single-pass solution 87

int histogram[upperBound];
int r_array_length = sizeof(r_array) / sizeof(r_array[0]);

RandomizeArray(r_array, r_array_length, upperBound);

for (i = 0; i < upperBound; i++)
{

int count = HowMany(r_array, length, i);
histogram[i] = count;

}

I called the array histogram because that’s a statistical term for a array of
numbers that counts the number of appearances of a range of values.

The tricky thing here is that I am using the loop variable in two different ways.
First, it is an argument to HowMany(), specifying which value I am interested
in. Second, it is an index into the histogram, specifying which location I should
store the result in.

7.13 A single-pass solution

Although this code works, it is not as efficient as it could be. Every time it calls
HowMany(), it traverses the entire array. In this example we have to traverse
the array ten times!

It would be better to make a single pass through the array. For each value in
the array we could find the corresponding counter and increment it. In other
words, we can use the value from the array as an index into the histogram.
Here’s what that looks like:

int upperBound = 10;
int histogram[upperBound] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

for (i = 0; i < r_array_length; i++)
{

int index = r_array[i];
histogram[index]++;

}

The second line initializes the elements of the histogram to zeroes. That way,
when we use the increment operator (++) inside the loop, we know we are starting
from zero. Forgetting to initialize counters is a common error.

As an exercise, encapsulate this code in a function called Histogram() that
takes an array and the range of values in the array (in this case 0 through 10)
as two parameters min and max. You should pass a second array to the function
where a histogram of the values in the array can be stored.

88 Arrays

7.14 Random seeds
If you have run the code in this chapter a few times, you might have noticed
that you are getting the same “random” values every time. That’s not very
random!

One of the properties of pseudorandom number generators is that if they start
from the same place they will generate the same sequence of values. The starting
place is called a seed; by default, C uses the same seed every time you run the
program.

While you are debugging, it is often helpful to see the same sequence over and
over. That way, when you make a change to the program you can compare the
output before and after the change.

If you want to choose a different seed for the random number generator, you
can use the srand() function. It takes a single argument, which is an integer
between 0 and RAND_MAX.

For many applications, like games, you want to see a different random sequence
every time the program runs. A common way to do that is to use a library
function like time() to generate something reasonably unpredictable and unre-
peatable, like the number of seconds since January 1970, and use that number as
a seed. The details of how to do that depend on your development environment.

7.15 Glossary
array: A named collection of values, where all the values have the same type,

and each value is identified by an index.

element: One of the values in a array. The [] operator selects elements of a
array.

index: An integer variable or value used to indicate an element of a array.

increment: Increase the value of a variable by one. The increment operator in
C is ++.

decrement: Decrease the value of a variable by one. The decrement operator
in C is --.

deterministic: A program that does the same thing every time it is run.

pseudorandom: A sequence of numbers that appear to be random, but which
are actually the product of a deterministic computation.

seed: A value used to initialize a random number sequence. Using the same
seed should yield the same sequence of values.

bottom-up design: A method of program development that starts by writing
small, useful functions and then assembling them into larger solutions.

histogram: A array of integers where each integer counts the number of values
that fall into a certain range.

7.16 Exercises 89

7.16 Exercises
Exercise 7.1

A friend of yours shows you the following method and explains that if number is any
two-digit number, the program will output the number backwards. He claims that if
number is 17, the method will output 71.

Is he right? If not, explain what the program actually does and modify it so that it
does the right thing.

#include <stdio.h>
#include<stdlib.h>

int main (void)
{

int number = 71;
int lastDigit = number%10;
int firstDigit = number/10;
printf("%i",lastDigit + firstDigit);
return EXIT_SUCCESS;

}

Exercise 7.2 Write a function that takes an array of integers, the length of the
array and an integer named target as arguments.

The function should search through the provided array and should return the first
index where target appears in the array, if it does. If target is not in the array
the function should return an invalid index value to indicate an error condition (e.g.
-1).

Exercise 7.3

One not-very-efficient way to sort the elements of an array is to find the largest element
and swap it with the first element, then find the second-largest element and swap it
with the second, and so on.

a. Write a function called IndexOfMaxInRange() that takes an array of integers,
finds the largest element in the given range, and returns its index.

b. Write a function called SwapElement() that takes an array of integers and two
indices, and that swaps the elements at the given indices.

c. Write a function called SortArray() that takes an array of integers and that
uses IndexOfMaxInRange() and SwapElement() to sort the array from largest
to smallest.

90 Arrays

Chapter 8

Strings and things

8.1 Containers for strings

We have seen four types of values—characters, integers, floating-point numbers
and strings—but only three types of variables—char, int and double. So far
we have no way to store a string in a variable or perform operations on strings.

This chapter is going to rectify this situation and I can now tell you that strings
in C are stored as an array of characters terminated by the character \0.

By now this explanation should make sense to you and you probably understand
why we had to learn quite a bit about the working of the language before we
could turn our attention towards string variables.

In the previous chapter we have seen that operations on arrays have only mini-
mal support from the C language itself and we had to program extra functions
by ourselves. Fortunately things are a little bit easier when we manipulate these
special types of arrays - called strings. There exist a number of library func-
tions in string.h that make string handling a bit easier than operations on
pure arrays.

Nevertheless string operations in C are still a lot more cumbersome than their
equivalence in other programing languages and can be a potential source of
errors in your programs, if not handled carefully.

8.2 String variables

You can create a string variable as an array of characters in the following way:

char first[] = "Hello, ";
char second[] = "world.";

92 Strings and things

The first line creates an string and assigns it the string value "Hello." In
the second line we declare a second string variable. Remember, the combined
declaration and assignment is called initialization.

Initialisation time is the only time you can assign a value to a string directly
(just as with arrays in general). The initialisation parameters are passed in the
form of a string constant enclosed in quotation marks (". . . ").

Notice the difference in syntax for the initialisation of arrays and strings. If you
like you can also initialize the string in the normal array syntax, although this
looks a little odd and is not very convenient to type.

char first[] = {’H’,’e’,’l’,’l’,’o’,’,’,’ ’,’\0’};

There is no need to supply an array size when you are initialising the string
variable at declaration time. The compiler compute the necessary array size to
store the supplied string.

Remember what we said about the nature of a string variable. It is an array
of characters plus a marker that shows where our string ends: the termination
character \0.

Normally you do not have to supply this termination character. The compiler
understands our code and insertes it automatically. However, in the example
above, we treated our string exactly like an array and in this case we have to
insert the termination character ourselves.

When we are using a string variable to store different sting values during the
lifetime of our program we have to declare a size big enough for the largest
sequence of characters that we are going to store. We also have to make our
string variable exactly one character longer than the text we are going to store,
because of the necessary termination character.

We can output strings in the usual way using the printf() function:
printf("%s", first);

8.3 Extracting characters from a string
Strings are called “strings” because they are made up of a sequence, or string, of
characters. The first operation we are going to perform on a string is to extract
one of the characters. C uses an index in square brackets ([and]) for this
operation:

char fruit[] = "banana";
char letter = fruit[1];
printf ("%c\n", letter);

The expression fruit[1] indicates that I want character number 1 from the
string named fruit. The result is stored in a char named letter. When I
output the value of letter, I get a surprise:

a

8.4 Length 93

a is not the first letter of "banana". Unless you are a computer scientist. For
perverse reasons, computer scientists always start counting from zero. The 0th
letter (“zeroeth”) of "banana" is b. The 1th letter (“oneth”) is a and the 2th
(“twoeth”) letter is n.

If you want the zereoth letter of a string, you have to put zero in the square
brackets:

char letter = fruit[0];

8.4 Length
To find the length of a string (the number of characters this string contains), we
can use the strlen() function. The function is called using the string variable
as an argument:

#include <string.h>
int main(void)
{

int length;
char fruit[] = "banana";

length = strlen(fruit);
return EXIT_SUCCESS;

}

The return value of strlen() in this case is 6. We assign this value to the
integer length for further use.

In order to compile this code, you need to include the header file for the
string.h library. This library provides a number of useful functions for oper-
ations on strings. You should familiarize yourself with these functions because
they can help you to solve your programming problems faster.

To find the last letter of a string, you might be tempted to try something like
int length = strlen(fruit);
char last = fruit[length]; /* WRONG!! */

That won’t work. The reason is that fruit is still an array and there is no
letter at the array index fruit[6] in "banana". Since we started counting at
0, the 6 letters are numbered from 0 to 5. To get the last character, you have
to subtract 1 from length.

int length = strlen(fruit);
char last = fruit[length-1];

8.5 Traversal
A common thing to do with a string is start at the beginning, select each char-
acter in turn, do something to it, and continue until the end. This pattern of

94 Strings and things

processing is called a traversal. A natural way to encode a traversal is with a
while statement:

int index = 0;
while (index < strlen(fruit))
{

char letter = fruit[index];
printf("%c\n" , letter);
index = index + 1;

}

This loop traverses the string and outputs each letter on a line by itself. Notice
that the condition is index < strlen(fruit), which means that when index
is equal to the length of the string, the condition is false and the body of the
loop is not executed. The last character we access is the one with the index
strlen(fruit)-1.

The name of the loop variable is index. An index is a variable or value used
to specify one member of an ordered set, in this case the set of characters in the
string. The index indicates (hence the name) which one you want. The set has
to be ordered so that each letter has an index and each index refers to a single
character.

As an exercise, write a function that takes a string as an argument and that
outputs the letters backwards, all on one line.

8.6 Finding a character in a string

If we are looking for a letter in a string, we have to search through the string
and detect the position where this letter occurs in the string. Here is an imple-
mentation of this function:

int LocateCharacter(char *s, char c)
{

int i = 0;
while (i < strlen(s))
{

if (s[i] == c) return i;
i = i + 1;

}
return -1;

}

We have to pass the string as the first argument, the other argument is the
character we are looking for. Our function returns the index of the first occur-
rence of the letter, or -1 if the letter is not contained in the string.

8.7 Pointers and Addresses 95

8.7 Pointers and Addresses
When we look at the definition of the LocateCharacter() function you may
notice the following construct char *s which looks unfamiliar.

Remember, when we discussed how we had to pass an array to a function, back
in Section 7.9, we said that instead of copying the array, we only pass a reference
to the function. Back then, we did not say exactly what this reference was.

C is one of the very few high-level programming languages that let you directly
manipulate objects in the computer memory. In order to do this direct manip-
ulation, we need to know the location of the object in memory: it’s address.
Adresses can be stored in variables of a special type. These variables that point
to other objects in memory (such as variables, arrays and strings) are therefore
called pointer variables.

A pointer references the memory location of an object and can be defined like
this:

int *i_p;

This declaration looks similar to our earlier declarations, with one difference:
the asterisk in front of the name. We have given this pointer the type int. The
type specification has nothing to do with the pointer itself, but rather defines
which object this pointer is supposed to reference (in this case an integer).
This allows the compiler to do some type checking on, what would otherwise
be, an anonymous reference.

A pointer all by itself is rather meaningless, we also need an object that this
pointer is referencing:

int number = 5;
int *i_p;

This code-fragment defines an int variable and a pointer. We can use the
"address-of" operator & to assign the memory location or address of our variable
to the pointer.

i_p = &number;

Pointer i_p now references integer variable number. We can verify this using
the "content-of" operator *.

printf("%i\n", *i_p);

This prints 5, which happens to be the content of the memory location at our
pointer reference.

With pointers we can directly manipulate memory locations:
*i_p = *i_p + 2;
printf("%i\n", number);

Our variable number now has the value 7 and we begin to understand how our
LocateCharacter() function can directly access the values of string variables
through the use of a char pointer.

96 Strings and things

Pointers are widely used in many C programs and we have only touched the
surface of the topic. They can be immensely useful and efficient, however they
can also be a potential source of problems when not used appropriately. For this
reason not many programming languages support direct memory manipulation.

8.8 String concatenation
In Section 8.6 we have seen how we could implement a search function that finds
a character in a string.

One useful operation on strings is string concatenation. To concatenate means
to join the two operands end to end. For example: shoe and maker becomes
shoemaker.

Fortunately, we do not have to program all the necessary functions in C our-
selves. The string.h library already provides several functions that we can
invoke on strings.

We can use the library function strncat() to concatenate strings in C.
char fruit[20] = "banana";
char bakedGood[] = " nut bread";
strncat(fruit, bakedGood, 10);
printf ("%s\n", fruit);

The output of this program is banana nut bread.

When we are using library functions it is important to completely understand all
the necessary arguments and to have a complete understanding of the working
of the function.

The strncat() does not take the two strings, joins them together and produces
a new combined string. It rather copies the content from the second argument
into the first.

We therefore have to make sure that our first string is long enough to also hold
the second string. We do this by defining the maximum capacity for string
fruit to be 19 characters + 1 termination character (char fruit[20]). The
third argument of strncat() specifies the number of characters that will be
copied from the second into the first string.

8.9 Assigning new values to string variables
So far we have seen how to initialise a string variable at declaration time. As
with arrays in general, it is not legal to assign values directly to strings, because
it is not possible to assign a value to an entire array.

fruit = "orange"; /* Wrong: Cannot assign directly! */

In order to assign a new value to an existing string variable we have to use the
strncpy() function. For example,

8.10 strings are not comparable 97

char greeting[15];
strncpy (greeting, "Hello, world!", 13);

copies 13 characters from the of the second argument string to the first argument
string.

This works, but not quite as expected. The strncpy() function copies exactly
13 characters from the second argument string into the first argument string.
And what happens to our string termination character \0?

It is not copied automatically. We need to change our copy statement to copy
also the invisible 14th character at the end of the string:

strncpy (greeting, "Hello, world!", 14);

However, if we only copy parts of the second string into the first we need to
explicitly set the n+1th character in the greeting[15] string to \0 afterwards.

strncpy (greeting, "Hello, world!", 5); /*only Hello is copied*/
greeting[5] = ’\0’;

Attention! In the last two sections we have used the strncpy() and the
strncat() function that require you to explicitly supply the number of charac-
ters that will get copied or attached to the first argument string.

The string.h library also defines the strcpy() and the strcat() functions
that have no explicit bound on the number of characters that are copied.

The usage of these functions is strongly discouraged! Their use has lead to a vast
number of security problems with C programs. Remember, C does not check
array boundaries and will continue copying characters into computer memory
even past the length of the variable.

8.10 strings are not comparable
All the comparison operators that work on ints and doubles do work on
strings. For example, if you write the following code to determine if two
strings are equal:

if (word == "banana") /* Wrong! */

This test will always fail.

You have to use the strcmp() function to compare two strings with each other.
The function returns 0 if the two strings are identical, a negative value if the
first string is ’alphabetically less’ than the second (would be listed first in a
dictionary) or a positive value if the second string is ’greater’.

Please notice, this return value is not the standard true/false result, where the
return value 0 is interpreted as ’false’.

The strcmp() function is useful for putting words in alphabetical order.

98 Strings and things

if (strcmp(word, "banana") < 0)
{

printf("Your word, %s, comes before banana.\n", word);
}
else if (strcmp(word, "banana") > 0)
{

printf("Your word, %s, comes after banana.\n", word);
}
else
{

printf ("Yes, we have no bananas!\n");
}

You should be aware, though, that the strcmp() function does not handle upper
and lower case letters the same way that people do. All the upper case letters
come before all the lower case letters. As a result,
Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard
format, like all lower-case, before performing the comparison. The next sections
explains how.

8.11 Character classification
It is often useful to examine a character and test whether it is upper or lower
case, or whether it is a character or a digit. C provides a library of functions
that perform this kind of character classification. In order to use these functions,
you have to include the header file ctype.h.

char letter = ’a’;
if (isalpha(letter))
{

printf("The character %c is a letter.", letter);
}

The return value from isalpha() is an integer that is 0 if the argument is not
a letter, and some non-zero value if it is.

It is legal to use this kind of integer in a conditional, as shown in the example.
The value 0 is treated as false, and all non-zero values are treated as true.

Other character classification functions include isdigit(), which identifies the
digits 0 through 9, and isspace(), which identifies all kinds of “white” space,
including spaces, tabs, newlines, and a few others. There are also isupper()
and islower(), which distinguish upper and lower case letters.

Finally, there are two functions that convert letters from one case to the other,
called toupper() and tolower(). Both take a single character as an argument
and return a (possibly converted) character.

8.12 Getting user input 99

char letter = ’a’;
letter = toupper (letter);
printf("%c\n", letter);

The output of this code is A.

As an exercise, use the character classification and conversion library to write
functions named StringToUpper() and StringToLower() that take a single
string as a parameter, and that modify the string by converting all the letters
to upper or lower case. The return type should be void.

8.12 Getting user input
The programs we have written so far are pretty predictable; they do the same
thing every time they run. Most of the time, though, we want programs that
take input from the user and respond accordingly.

There are many ways to get input, including keyboard input, mouse movements
and button clicks, as well as more exotic mechanisms like voice control and
retinal scanning. In this text we will consider only keyboard input.

In the header file stdio.h, C defines a function named scanf() that handles
input in much the same way that printf() handles output. We can use the
following code to get an integer value from the user:

int x;
scanf("%i", &x);

The scanf() function causes the program to stop executing and wait for the
user to type something. If the user types a valid integer, the program converts
it into an integer value and stores it in x.

If the user types something other than an integer, C doesn’t report an error, or
anything sensible like that. Instead, the scanf() function returns and leaves
the value in x unchanged.

Fortunately, there is a way to check and see if an input statement succeeds.
The scanf() function returns the number of items that have been successfully
read. This number will be 1 when the last input statement succeeded. If not,
we know that some previous operation failed, and also that the next operation
will fail.

Getting input from the user might look like this:
int main (void)
{

int success, x;

/* prompt the user for input */
printf ("Enter an integer: \n");

/* get input */

100 Strings and things

success = scanf("%i", &x);

/* check and see if the input statement succeeded */
if (success == 1)
{

/* print the value we got from the user */
printf ("Your input: %i\n", x);
return EXIT_SUCCESS;

}
printf("That was not an integer.\n");
return EXIT_FAILURE;

}

There is another potential pitfall connected with the scanf() function. Your
program code might want to insist that the user types a valid integer, because
this value is needed later on. In this case you might want to repeat the input
statement in order to get a valid user input:

if (success != 1)
{

while (success != 1)
{

printf("That was not a number. Please try again:\n");
success = scanf("%i", &x);

}
}

Unfortunately this code leads into an endless loop. You probably ask yourself,
why? The input from the keyboard is delivered to your program by the oper-
ating system, in something called an input buffer. A successful read operation
automatically empties this buffer. However, if the scanf() function fails, like in
our example, the buffer does not get emptied and the next scanf() operation
re-reads the old value - you see the problem?

We need to empty the input buffer, before we can attempt to read the next input
from the user. Since there is no standard way to do this, we will introduce our
own code that reads and empties the buffer using the getchar() function. It
run through a while-loop until there are no more characters left in the buffer
(notice the construction of this loop, where all the operations are executed in
the test condition):

char ch; /* helper variable stores discarded chars*/
while (success != 1)
{

printf("That isn’t a number. Please try again:\n");
/* now we empty the input buffer*/
while ((ch = getchar()) != ’\n’ && ch != EOF);
success = scanf("%i", &x);

}

8.13 Glossary 101

The scanf() function can also be used to input a string:
char name[80] ;

printf ("What is your name?");
scanf ("%s", name);
printf ("%s", name);

Again, we have to make sure our string variable is large enough to contain
the complete user input. Notice the difference in the argument of the scanf()
function when we are reading an integer or a string. The function requires a
pointer to the variable where the input value will be stored. If we are reading
an integer we need to use the address operator & with the variable name. In
the case of a string we simply provide the variable name.

Also notice, that the scanf() function only takes the first word of the input,
and leaves the rest for the next input statement. So, if you run this program
and type your full name, it will only output your first name.

8.13 Glossary
index: A variable or value used to select one of the members of an ordered set,

like a character from a string.

traverse: To iterate through all the elements of a set performing a similar
operation on each.

counter: A variable used to count something, usually initialized to zero and
then incremented.

concatenate: To join two operands end-to-end.

pointer: A reference to an object in computer memory.

address: The exact storage location of objects in memory.

8.14 Exercises
Exercise 8.1 A word is said to be “abecedarian” if the letters in the word appear
in alphabetical order. For example, the following are all 6-letter English abecedarian
words.

abdest, acknow, acorsy, adempt, adipsy, agnosy, befist, behint, beknow,
bijoux, biopsy, cestuy, chintz, deflux, dehors, dehort, deinos, diluvy,
dimpsy

a. Describe an algorithm for checking whether a given word (String) is abecedarian,
assuming that the word contains only lower-case letters. Your algorithm can be
iterative or recursive.

b. Implement your algorithm in a function called IsAbecedarian().

102 Strings and things

Exercise 8.2 Write a function called LetterHist() that takes a String as a
parameter and that returns a histogram of the letters in the String. The zeroeth
element of the histogram should contain the number of a’s in the String (upper and
lower case); the 25th element should contain the number of z’s. Your solution should
only traverse the String once.

Exercise 8.3 A word is said to be a “doubloon” if every letter that appears in the
word appears exactly twice. For example, the following are all the doubloons I found
in my dictionary.

Abba, Anna, appall, appearer, appeases, arraigning, beriberi, bilabial,
boob, Caucasus, coco, Dada, deed, Emmett, Hannah, horseshoer, in-
testines, Isis, mama, Mimi, murmur, noon, Otto, papa, peep, reappear,
redder, sees, Shanghaiings, Toto

Write a function called IsDoubloon() that returns TRUE if the given word is a doubloon
and FALSE otherwise.

Exercise 8.4

The Captain Crunch decoder ring works by taking each letter in a string and adding
13 to it. For example, ’a’ becomes ’n’ and ’b’ becomes ’o’. The letters “wrap around”
at the end, so ’z’ becomes ’m’.

a. Write a function that takes a String and that returns a new String containing the
encoded version. You should assume that the String contains upper and lower
case letters, and spaces, but no other punctuation. Lower case letters should
be tranformed into other lower case letters; upper into upper. You should not
encode the spaces.

b. Generalize the Captain Crunch method so that instead of adding 13 to the
letters, it adds any given amount. Now you should be able to encode things by
adding 13 and decode them by adding -13. Try it.

Exercise 8.5 In Scrabble each player has a set of tiles with letters on them, and
the object of the game is to use those letters to spell words. The scoring system is
complicated, but as a rough guide longer words are often worth more than shorter
words.

Imagine you are given your set of tiles as a String, like "qijibo" and you are given
another String to test, like "jib". Write a function called TestWord() that takes these
two Strings and returns true if the set of tiles can be used to spell the word. You might
have more than one tile with the same letter, but you can only use each tile once.

Exercise 8.6 In real Scrabble, there are some blank tiles that can be used as wild
cards; that is, a blank tile can be used to represent any letter.

Think of an algorithm for TestWord() that deals with wild cards. Don’t get bogged
down in details of implementation like how to represent wild cards. Just describe the
algorithm, using English, pseudocode, or C.

Chapter 9

Structures

9.1 Compound values
Most of the data types we have been working with represent a single value—an
integer, a floating-point number, a character value. Strings are different in the
sense that they are made up of smaller pieces, the characters. Thus, strings are
an example of a compound type.

Depending on what we are doing, we may want to treat a compound type
as a single thing (or object), or we may want to access its parts (or member
variables). This ambiguity is useful.

It is also useful to be able to create your own compound values. C provides a
mechanism for doing that: structures.

9.2 Point objects
As a simple example of a compound structure, consider the concept of a math-
ematical point. At one level, a point is two numbers (coordinates) that we
treat collectively as a single object. In mathematical notation, points are often
written in parentheses, with a comma separating the coordinates. For example,
(0, 0) indicates the origin, and (x, y) indicates the point x units to the right and
y units up from the origin.

A natural way to represent a point in C is with two doubles. The question,
then, is how to group these two values into a compound object, or structure.
The answer is a struct definition:

typedef struct
{

double x;
double y;

} Point_t;

104 Structures

struct definitions appear outside of any function definition, usually at the be-
ginning of the program (after the include statements).

This definition indicates that there are two elements in this structure, named x
and y. These elements are called the members or fields of a structure.

It is a common error to leave off the semi-colon at the end of a structure defini-
tion. It might seem odd to put a semi-colon after curly-brackets, but you’ll get
used to it.

Once you have defined the new structure, you can create variables with that
type:

Point_t blank;
blank.x = 3.0;
blank.y = 4.0;

The first line is a conventional variable declaration: blank has type Point_t.
The next two lines initialize the fields of the structure. The “dot notation” used
here is called the field selection operator and allows to access the structure
fields.

The result of these assignments is shown in the following state diagram:

x: 3

y: 4
blank

As usual, the name of the variable blank appears outside the box and its value
appears inside the box. In this case, that value is a compound object with two
named member variables.

9.3 Accessing member variables
You can read the values of an member variable using the same syntax we used
to write them:

double x = blank.x;

The expression blank.x means “go to the object named blank and get the value
of x.” In this case we assign that value to a local variable named x. Notice that
there is no conflict between the local variable named x and the member variable
named x. The purpose of dot notation is to identify which variable you are
referring to unambiguously.

You can use dot notation as part of any C expression, so the following are legal.
printf ("%0.1f, %0.1f\n", blank.x, blank.y);
double distance = blank.x * blank.x + blank.y * blank.y;

The first line outputs 3, 4; the second line calculates the value 25.

9.4 Operations on structures 105

9.4 Operations on structures
Most of the operators we have been using on other types, like mathematical
operators (+, %, etc.) and comparison operators (==, >, etc.), do not work on
structures.

On the other hand, the assignment operator does work for structures. It can be
used in two ways: to initialize the member variables of a structure or to copy
the member variables from one structure to another. An initialization looks like
this:

Point_t blank = { 3.0, 4.0 };

The values in squiggly braces get assigned to the member variables of the struc-
ture one by one, in order. So in this case, x gets the first value and y gets the
second.

Unfortunately, this syntax can be used only in an initialization, not in an as-
signment statement. So the following is illegal:

Point_t blank;
blank = { 3.0, 4.0 }; /* WRONG !! */

You might wonder why this perfectly reasonable statement should be illegal;
I’m not sure, but I think the problem is that the compiler doesn’t know what
type the right hand side should be. You must specify the type of the assignment
by adding a typecast:

Point_t blank;
blank = (Point_t){ 3.0, 4.0 };

That works.

It is legal to assign one structure to another. For example:
Point_t p1 = { 3.0, 4.0 };
Point_t p2 = p1;
printf ("%f, %f\n", p2.x, p2.y);

The output of this program is 3, 4.

9.5 Structures as parameters
You can pass structures as parameters in the usual way. For example,

void PrintPoint (Point_t point)
{

printf ("(%0.1f, %0.1f)\n", point.x, point.y);
}

PrintPoint() takes a point as an argument and outputs it in the standard
format. If you call PrintPoint(blank), it will output (3.0, 4.0).

As a second example, we can rewrite the ComputeDistance() function from
Section 5.2 so that it takes two Points as parameters instead of four doubles.

106 Structures

double ComputeDistance (Point_t p1, Point_t p2)
{

double dx = p2.x - p1.x;
double dy = p2.y - p1.y;
return sqrt (dx*dx + dy*dy);

}

9.6 Call by value
When you pass a structure as an argument, remember that the argument and
the parameter are not the same variable. Instead, there are two variables (one
in the caller and one in the callee) that have the same value, at least initially.
For example, when we call PrintPoint(), the stack diagram looks like this:

x: 3

main()

PrintPoint()

y: 4
blank

x: 3

y: 4
point

If PrintPoint() happened to change one of the member variables of point, it
would have no effect on blank. Of course, there is no reason for PrintPoint() to
modify its parameter, so this isolation between the two functions is appropriate.

This kind of parameter-passing is called “pass by value” because it is the value
of the structure (or other type) that gets passed to the function.

9.7 Call by reference
An alternative parameter-passing mechanism that is available in C is called
“pass by reference.” By now we already know that C uses pointers as references.
This mechanism makes it possible to pass a structure to a procedure and modify
it directly.

For example, you can reflect a point around the 45-degree line by swap-
ping the two coordinates. The most obvious (but incorrect) way to write a
ReflectPoint() function is something like this:

void ReflectPoint (Point_t point) /* Does not work! */
{

double temp = point.x;

9.7 Call by reference 107

point.x = point.y;
point.y = temp;

}
This won’t work, because the changes we make in ReflectPoint() will have no
effect on the caller.

Instead, we have to specify that we want to pass the parameter by reference.
Our function now has a struct pointer argument Point_t *ptr.

void ReflectPoint (Point_t *ptr)
{

double temp = ptr->x;
ptr->x = ptr->y;
ptr->y = temp;

}
When we are accessing the struct member variables through a pointer we can
no longer use the "field-selection-operator" (.). Instead we need to use the
"pointing-to" operator (->).

We pass a reference of our struct parameter by adding the "address-of" operator
(&) to the structure variable when we call the function:

PrintPoint (blank);
ReflectPoint (&blank);
PrintPoint (blank);

The output of this program is as expected:
(3.0, 4.0)
(4.0, 3.0)

Here’s how we would draw a stack diagram for this program:

x: 3 4

main()

ReflectPoint()

y: 4 3
blank

 ptr

The parameter ptr is a reference to the structure named blank. The usual
representation for a reference is a dot with an arrow that points to whatever
the reference refers to.

The important thing to see in this diagram is that any changes that
ReflectPoint() makes through ptr will also affect blank.

Passing structures by reference is more versatile than passing by value, because
the callee can modify the structure. It is also faster, because the system does not

108 Structures

have to copy the whole structure. On the other hand, it is less safe, since it is
harder to keep track of what gets modified where. Nevertheless, in C programs,
almost all structures are passed by reference almost all the time. In this book
I will follow that convention.

9.8 Rectangles
Now let’s say that we want to create a structure to represent a rectangle. The
question is, what information do I have to provide in order to specify a rectangle?
To keep things simple let’s assume that the rectangle will be oriented vertically
or horizontally, never at an angle.

There are a few possibilities: I could specify the center of the rectangle (two
coordinates) and its size (width and height), or I could specify one of the corners
and the size, or I could specify two opposing corners.

The most common choice in existing programs is to specify the upper left corner
of the rectangle and the size. To do that in C, we will define a structure that
contains a Point_t and two doubles.

typedef struct
{

Point_t corner;
double width, height;

} Rectangle_t;

Notice that one structure can contain another. In fact, this sort of thing is quite
common. Of course, this means that in order to create a Rectangle_t, we have
to create a Point_t first:

Point_t corner = { 0.0, 0.0 };
Rectangle_t box = { corner, 100.0, 200.0 };

This code creates a new Rectangle_t structure and initializes the member
variables. The figure shows the effect of this assignment.

x: 3

y: 4
point

box 100

height

width

200

We can access the width and height in the usual way:
box.width += 50.0;
printf("%f\n", box.width);

9.9 Structures as return types 109

In order to access the member variables of corner, we can use a temporary
variable:

Point_t temp = box.corner;
double x = temp.x;

Alternatively, we can compose the two statements:
double x = box.corner.x;

It makes the most sense to read this statement from right to left: “Extract x
from the corner of the box, and assign it to the local variable x.”

While we are on the subject of composition, I should point out that you can, in
fact, create the Point and the Rectangle at the same time:

Rectangle_t box = { { 0.0, 0.0 }, 100.0, 200.0 };
The innermost squiggly braces are the coordinates of the corner point; together
they make up the first of the three values that go into the new Rectangle. This
statement is an example of nested structure.

9.9 Structures as return types
You can write functions that return structures. For example, FindCenter() has
a Rectangle_t parameter and returns a Point_t that contains the coordinates
of the center of the rectangle:

Point_t FindCenter (Rectangle_t box)
{

double x = box.corner.x + box.width/2;
double y = box.corner.y + box.height/2;
Point_t result = {x, y};
return result;

}
To call this function, we have to pass a Rectangle_t as an argument (notice
that it is being passed by value), and assign the return value to a Point_t
variable:

Rectangle_t box = { {0.0, 0.0}, 100, 200 };
Point_t center = FindCenter (box);
PrintPoint (center);

The output of this program is (50, 100).

We could have passed the structure as a reference to the function. In this case
our function would look like this:

Point_t FindCenter (Rectangle_t *box)
{

double x = box->corner.x + box->width/2;
double y = box->corner.y + box->height/2;
Point_t result = {x, y};
return result;

}

110 Structures

Notice, how we had to change the access to the members of the structure,
since box is now a pointer. We would also have to change the function call for
FindCenter():

Point_t center = FindCenter (&box);

9.10 Passing other types by reference
It’s not just structures that can be passed by reference. All the other types we’ve
seen can, too. For example, to swap two integers, we could write something like:

void Swap (int *x, int *y)
{

int temp = *x;
*x = *y;
*y = temp;

}

We would call this function in the usual way:
int i = 7;
int j = 9;
printf (" i=%i, j=%i\n", i, j);
Swap (&i, &j);
printf (" i=%i, j=%i\n", i, j);

The output of this program shows that the variable values have been swapped.
Draw a stack diagram for this program to convince yourself this is true. If the
parameters x and y were declared as regular integer variables (without the s),
Swap() would not work. It would modify x and y and have no effect on i and
j.

When people start passing things like integers by reference, they often try to
use an expression as a reference argument. For example:

int i = 7;
int j = 9;
Swap (&i, &j+1); /* WRONG!! */

Presumably the programmer wanted to increase the value of j by 1 before it is
passed to the function. This does not work as expected, because the expression
j+1 now is interpreted a pointer value and in now pointing to a memory location
beyond the variable j. It is a little tricky to figure out exactly what kinds of
expressions make sense to be passed by reference. For now a good rule of thumb
is that reference arguments have to be variables.

9.11 Glossary
structure: A collection of data grouped together and treated as a single object.

member variable: One of the named pieces of data that make up a structure.

9.12 Exercises 111

reference: A value that indicates or refers to a variable or structure. In a state
diagram, a reference appears as an arrow.

pass by value: A method of parameter-passing in which the value provided as
an argument is copied into the corresponding parameter, but the param-
eter and the argument occupy distinct locations.

pass by reference: A method of parameter-passing in which the parameter is
a reference to the argument variable. Changes to the parameter also affect
the argument variable.

9.12 Exercises
Exercise 9.1

Section 9.5 defines the function PrintPoint(). The argument of this function is passed
along as a value (call-by-value).

a. Change the definition of this function, so that it only passes a reference of the
structure to the function for printing (call-by-reference).

b. Test the new function with different values and document the results.

Exercise 9.2

Most computer games can capture our interest only when their actions are non-
predictable, otherwise they become boring quickly. Section 7.6 tells us how to generate
random numbers in in C.

Write a simple game, where the computer chooses an arbitrary number in the range
between 1 and 20. You will then be asked to guess the number chosen by the Computer.

To give you a hint the computer should answer your guess in the following way: in
case your guess was lower than the number of the computer, the output should be:
My number is larger!
If you guess was higher than the number of the computer, the output should read:
My number is smaller!

It is necessary to seed the random number generator when you start your program (cf.
Section 7.14. You could use the time() function for this. It returns the actual time
measured in seconds since 1971.

srand(time(NULL)); /*Initialisation of the random number generator*/

When you found the right answer, the computer should congratulate you. The program
should also display the number of tries that where needed in order to guess the number.

The program should also keep the a ‘High-Score’, that gets updated once our number of
trials is lower than any previous try. The High-Score (the number of minimal guesses)
should be stored in a struct, together with the name of the player.

The High-Score() function should ask for your name and store it, when your current
number of tries is lower than the previous High-Score value.

112 Structures

The program then gives you the chance to play again or stop the game by pressing ’q’
on the keyboard.

Appendix A

Coding Style

A.1 A short guide on style

In the last few sections, I used the phrase “by convention” several times to indi-
cate design decisions that are arbitrary in the sense that there are no significant
reasons to do things one way or another, but dictated by convention.

In these cases, it is to your advantage to be familiar with convention and use it,
since it will make your programs easier for others to understand. At the same
time, it is important to distinguish between (at least) three kinds of rules:

Divine law: This is my phrase to indicate a rule that is true because of some
underlying principle of logic or mathematics, and that is true in any pro-
gramming language (or other formal system). For example, there is no
way to specify the location and size of a bounding box using fewer than
four pieces of information. Another example is that adding integers is
commutative. That’s part of the definition of addition and has nothing to
do with C.

Rules of C: These are the syntactic and semantic rules of C that you cannot
violate, because the resulting program will not compile or run. Some are
arbitrary; for example, the fact that the = symbol represents assignment
and not equality. Others reflect underlying limitations of the compila-
tion or execution process. For example, you have to specify the types of
parameters, but not arguments.

Style and convention: There are a lot of rules that are not enforced by the
compiler, but that are essential for writing programs that are correct, that
you can debug and modify, and that others can read. Examples include
indentation and the placement of squiggly braces, as well as conventions
for naming variables, functions and types.

114 Coding Style

In this section I will briefly summarize the coding style used within this book. It
follows loosely the "Nasa C Style Guide" 1 and its main intent is on readability
rather than saving space or typing effort.

Since C has such a long history of usage, many different coding styles have been
developed and used. It is important that you can read them and follow one
particular scheme in all your code. This makes it much more accessible should
you find yourself in a position where you have to share your work with other
people or have to access code written by your younger self - many years ago...

A.2 Naming conventions and capitalization
rules

As a general rule, you should always choose meaningful names for your identi-
fiers. Ideally the name of a variable or function already explains its behaviour
or use.

It may be more typing effort to use a function named FindSubString() rather
than FndSStr(). However, the former is almost self describing and might save
you a lot in debugging-time.

Don’t use single letter variable names!

Similarly to functions, you should give your variables names that speak for
themselves and make clear what values will be stored by this variable. There
are few noticeable exceptions to this rule: People use i, j and k as counter
variables in loops and for spacial coordinates people use x, y and z. Use these
conventions if they suit you. Don’t try to invent new conventions all by yourself.

The following capitalization style shold be used for the different elements in your
program. The consistent use of one style gives the programmer and the reader
of the source code a quick way to determine the meaning of different items in
your program:

variableNames: variable names always start with lower-case, multiple words
are separated by capitalizing the first letter.

CONSTANTS: use all upper case letters. In order to avoid name space
collisions it might be necessary to use a prefix such as MY_CONSTANT.

FunctionNames: start always with upper case and should possibly contain a
verb describing the function. Names for functions that test values should
start with ’Is’ or ’Are’.

UserDefinedTypes_t: always end in ’_t’. Type names names must be capi-
talised in order to avoid conflict with POSIX names.

pointerNames_p: in order to visually separate pointer variables from ordi-
nary variables you should consider ending pointers with ’_p’.

1www.scribd.com/doc/6878959/NASA-C-programming-guide

A.3 Bracing style 115

A.3 Bracing style
There exist different bracing or indent styles that serve the goal to make your
code more readable through the use of a consistent indentation for control block
structures. The styles differ in the way the braces are indented with the rest
of the control block. This book uses the BSD/Allman Style because its is the
most readable of the four. It needs more horizontal space than the K&R Style
but it makes it very easy to track opening and closing braces.

When you are writing programs, make sure that you are using one style con-
sistently. In larger projects all contributors should agree on the style they are
using. Modern programming environments like Eclipse support you through the
automatic enforcement of a single style.
/*Whitesmiths Style*/

if (condition)
{
statement1;
statement2;
}

Is named after Whitesmiths C, an early commercial C compiler that used this
style in its examples. Some people refer to it as the One True Brace Style.

/*GNU Style*/
if (condition)

{
statement1;
statement2;

}

Indents are always four spaces per level, with the braces halfway between the
outer and inner indent levels.

/*K&R/Kernel Style*/
if (condition) {

statement1;
statement2;

}

This style is named after the programming examples in the book The C Program-
ming Language by Brian W. Kernighan and Dennis Ritchie (the C inventors).

The K&R style is the style that is hardest to read. The opening brace happens
to be at the far right side of the control statement and can be hard to find.
The braces therefore have different indentation levels. Nevertheless, many C
programs use this style. So you should be able to read it.

/*BSD/Allman Style*/
if (condition)

116 Coding Style

{
statement1;
statement2;

}

This style is used for all the examples in this book.

A.4 Layout
Block comments should be used at the top of your file, before all function decla-
rations, to explain the purpose of the program and give additional information.

You should also use a similar documentation style before every relevant function
in your program.

/*
* File: test.c
* Author: Peter Programmer
* Date: May, 29th, 2009
*
* Purpose: to demonstrate good programming
* practise
* /

#include <stdlib.h>

/*
* main function, does not use arguments
*/

int main (void)
{

return EXIT_SUCCESS;
}

Appendix B

ASCII-Table
Dec Hex Oct Character Dec Hex Oct Character
0 0x00 000 NUL 32 0x20 040 SP
1 0x01 001 SOH 33 0x21 041 !
2 0x02 002 STX 34 0x22 042 "’
3 0x03 003 ETX 35 0x23 043 #
4 0x04 004 EOT 36 0x24 044 $
5 0x05 005 ENQ 37 0x25 045 %
6 0x06 006 ACK 38 0x26 046 &
7 0x07 007 BEL 39 0x27 047 ’
8 0x08 010 BS 40 0x28 050 (
9 0x09 011 TAB 41 0x29 051)
10 0x0A 012 LF 42 0x2A 052 *
11 0x0B 013 VT 43 0x2B 053 +
12 0x0C 014 FF 44 0x2C 054 ,
13 0x0D 015 CR 45 0x2D 055 -
14 0x0E 016 SO 46 0x2E 056 .
15 0x0F 017 SI 47 0x2F 057 /
16 0x10 020 DLE 48 0x30 060 0
17 0x11 021 DC1 49 0x31 061 1
18 0x12 022 DC2 50 0x32 062 2
19 0x13 023 DC3 51 0x33 063 3
20 0x14 024 DC4 52 0x34 064 4
21 0x15 025 NAK 53 0x35 065 5
22 0x16 026 SYN 54 0x36 066 6
23 0x17 027 ETB 55 0x37 067 7
24 0x18 030 CAN 56 0x38 070 8
25 0x19 031 EM 57 0x39 071 9
26 0x1A 032 SUB 58 0x3A 072 :
27 0x1B 033 ESC 59 0x3B 073 ;
28 0x1C 034 FS 60 0x3C 074 "<
29 0x1D 035 GS 61 0x3D 075 =
30 0x1E 036 RS 62 0x3E 076 ">
31 0x1F 037 US 63 0x3F 077 ?

118 ASCII-Table

Dec Hex Oct Character Dec Hex Oct Character
64 0x40 100 @ 96 0x60 140 ‘
65 0x41 101 A 97 0x61 141 a
66 0x42 102 B 98 0x62 142 b
67 0x43 103 C 99 0x63 143 c
68 0x44 104 D 100 0x64 144 d
69 0x45 105 E 101 0x65 145 e
70 0x46 106 F 102 0x66 146 f
71 0x47 107 G 103 0x67 147 g
72 0x48 110 H 104 0x68 150 h
73 0x49 111 I 105 0x69 151 i
74 0x4A 112 J 106 0x6A 152 j
75 0x4B 113 K 107 0x6B 153 k
76 0x4C 114 L 108 0x6C 154 l
77 0x4D 115 M 109 0x6D 155 m
78 0x4E 116 N 110 0x6E 156 n
79 0x4F 117 O 111 0x6F 157 o
80 0x50 120 P 112 0x70 160 p
81 0x51 121 Q 113 0x71 161 q
82 0x52 122 R 114 0x72 162 r
83 0x53 123 S 115 0x73 163 s
84 0x54 124 T 116 0x74 164 t
85 0x55 125 U 117 0x75 165 u
86 0x56 126 V 118 0x76 166 v
87 0x57 127 W 119 0x77 167 w
88 0x58 130 X 120 0x78 170 x
89 0x59 131 Y 121 0x79 171 y
90 0x5A 132 Z 122 0x7A 172 z
91 0x5B 133 [123 0x7B 173 {
92 0x5C 134 \ 124 0x7C 174 |
93 0x5D 135] 125 0x7D 175 }
94 0x5E 136 ˆ 126 0x7E 176 "
95 0x5F 137 _ 127 0x7F 177 DEL

Index

<ctype.h>, 98
<math.h>, 28
<stdio.h>, 28
<stdlib.h>, 82
<string.h>, 91, 93

absolute value, 51
address, 95, 101
ambiguity, 6
argument, 27, 32, 35
arithmetic

floating-point, 26
integer, 19

array, 88
copying, 79
element, 78
length, 81

array parameters, 84
arrays, 77
assigning

string, 96
assignment, 16, 22, 63

body, 73
loop, 65

bool, 56, 58
boolean, 54
bottom-up design, 85
bug, 3

call, 35
call by reference, 84, 106, 110
call by value, 84, 106
character operator, 20
Chianti, 79
coding style, 113
comment, 7, 9
comparison

operator, 39

string, 97
comparison operator, 54
compile, 2, 9
compile-time error, 4, 51
composition, 20, 22, 28, 53, 109
concatenate, 101
conditional, 39, 46

alternative, 40
chained, 41, 46
nested, 41, 46

constant values, 26
constants, 26
counter, 84, 101

dead code, 50, 58
debugging, 3, 9, 51
declaration, 15, 104
decrement, 78, 101
deterministic, 81, 88
diagram

stack, 45, 71
state, 45

distribution, 83
division

floating-point, 66
integer, 19

double (floating-point), 25
Doyle, Arthur Conan, 5

element, 78, 88
encapsulation, 68, 70, 73
error, 9

compile-time, 4, 51
logic, 4
run-time, 4

expression, 18, 20, 22, 27, 28, 79

fava beans, 79
flag, 55

120 Index

floating-point, 35
floating-point number, 25
for, 80
formal language, 5, 9
fruitful function, 34, 49
function, 35, 70

bool, 56
definition, 29
fruitful, 34, 49
main, 29
math, 27
multiple parameter, 34
void, 49

generalization, 68, 71, 73

header file, 28
ctype.h, 98
math.h, 28
stdio.h, 28
stdlib.h, 82
string.h, 91, 93

hello world, 7
high-level language, 1, 9
histogram, 86–88
Holmes, Sherlock, 5

increment, 78, 101
incremental development, 51
index, 79, 88, 94, 101
infinite loop, 65, 73
infinite recursion, 45, 46
initialization, 25, 35, 55
input

flushing the buffer, 100
keyboard, 99

input buffer
flushing the buffer, 100

integer division, 19
interpret, 2, 9
iteration, 64, 73

keyword, 18, 22

language
formal, 5
high-level, 1
low-level, 1

natural, 5
programming, 1
safe, 4

length
array, 81
string, 93

Linux, 5
literalness, 6
local variable, 71, 73
logarithm, 66
logic error, 4
logical operator, 55
loop, 65, 73, 79

body, 65
counting, 84
for, 80
infinite, 65, 73

loop variable, 68, 71, 79, 94
low-level language, 1, 9

main, 29
math function, 27

acos(), 49
exp(), 49
fabs(), 51
sin(), 49

mean, 83
member variable, 111
modulus, 40, 46
multiple assignment, 63

natural language, 5, 9
nested structure, 42, 55, 109
newline, 13, 44
nondeterministic, 81

operand, 19, 22
operator, 18, 22

character, 20
comparison, 39, 54
conditional, 58
decrement, 78
increment, 78
logical, 55, 58
modulus, 40
sizeof, 81

order of operations, 19
output, 13

Index 121

parameter, 32, 35, 105
multiple, 34

parameter passing, 106, 110
parse, 6, 9
pass by reference, 111
pass by value, 111
pattern

counter, 85
pi, 49
poetry, 6
Point, 103
pointer, 95, 101
portable, 1
precedence, 19
printf(), 7, 99
problem-solving, 9
program development, 51, 73

bottom-up, 85
encapsulation, 70

programming language, 1
prose, 6
pseudorandom, 88

random, 88
random number, 81
Rectangle, 108
recursion, 43, 46

infinite, 45, 46
recursive, 44
redundancy, 6
reference, 104, 106, 110, 111
return, 42, 49, 109
return type, 58
return value, 49, 58
rounding, 27
run-time error, 4, 45, 79

safe language, 4
scaffolding, 52, 58
scanf(), 99
seed, 88
semantics, 4, 9, 55
sizeof, 81
stack, 45
stack diagram, 45, 71
state, 104
state diagram, 104

statement, 3, 9, 22
assignment, 16, 63
comment, 7
conditional, 39
declaration, 15, 104
for, 80
initialization, 55
output, 13
printf, 7
return, 42, 49, 109
while, 64

statistics, 83
String, 13
string, 96, 97

length, 93
struct, 103

as parameter, 105
as return type, 109
member variable, 104
operations, 105
Point, 103
Rectangle, 108

structure, 111
style, 113
syntax, 4, 9

tab, 73
table, 66

two-dimensional, 68
temporary variable, 50
traverse, 93, 101

counting, 84
type, 14, 22

bool, 55
array, 77
double, 25
int, 19
String, 13

typecasting, 27, 105

value, 14, 15, 22
boolean, 54

variable, 15, 22
local, 71, 73
loop, 68, 71, 79, 94
temporary, 50

void, 49, 58

122 Index

while statement, 64

	The way of the program
	What is a programming language?
	What is a program?
	What is debugging?
	Compile-time errors
	Run-time errors
	Logic errors and semantics
	Experimental debugging

	Formal and natural languages
	The first program
	Glossary
	Exercises

	Variables and types
	More output
	Values
	Variables
	Assignment
	Outputting variables
	Keywords
	Operators
	Order of operations
	Operators for characters
	Composition
	Glossary
	Exercises

	Function
	Floating-point
	Constants
	Converting from double to int
	Math functions
	Composition
	Adding new functions
	Definitions and uses
	Programs with multiple functions
	Parameters and arguments
	Parameters and variables are local
	Functions with multiple parameters
	Functions with results
	Glossary
	Exercises

	Conditionals and recursion
	Conditional execution
	The modulus operator
	Alternative execution
	Chained conditionals
	Nested conditionals
	The return statement
	Recursion
	Infinite recursion
	Stack diagrams for recursive functions
	Glossary
	Exercises

	Fruitful functions
	Return values
	Program development
	Composition
	Boolean values
	Boolean variables
	Logical operators
	Bool functions
	Returning from main()
	Glossary
	Exercises

	Iteration
	Multiple assignment
	Iteration
	The while statement
	Tables
	Two-dimensional tables
	Encapsulation and generalization
	Functions
	More encapsulation
	Local variables
	More generalization
	Glossary
	Exercises

	Arrays
	Increment and decrement operators
	Accessing elements
	Copying arrays
	for loops
	Array length
	Random numbers
	Statistics
	Array of random numbers
	Passing an array to a function
	Counting
	Checking the other values
	A histogram
	A single-pass solution
	Random seeds
	Glossary
	Exercises

	Strings and things
	Containers for strings
	String variables
	Extracting characters from a string
	Length
	Traversal
	Finding a character in a string
	Pointers and Addresses
	String concatenation
	Assigning new values to string variables
	strings are not comparable
	Character classification
	Getting user input
	Glossary
	Exercises

	Structures
	Compound values
	Point objects
	Accessing member variables
	Operations on structures
	Structures as parameters
	Call by value
	Call by reference
	Rectangles
	Structures as return types
	Passing other types by reference
	Glossary
	Exercises

	Coding Style
	A short guide on style
	Naming conventions and capitalization rules
	Bracing style
	Layout

	ASCII-Table

