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Preface to the Series

Perspectives in Mathematical Logic
(Edited by the Q-group for " Mathematische Logik" of the
Heidelberger Akademie der Wissenschaften)

On Perspectives. Mathematical logic arose from a concern with the nature and the
limits of rational or mathematical thought, and from a desire to systematize the modes
of its expression. The pioneering investigations were diverse and largely autonomous.
As time passed, and more particularly in the last two decades, interconnections
between different lines of research and links with other branches of mathematics
proliferated. The subject is now both rich and varied. It is the aim of the series to
provide, as it were, maps or guides to this complex terrain. We shall not aim at
encyclopaedic coverage; nor do we wish to prescribe, like Euclid, a definitive version of
the elements of the subject. We are not committed to any particular philosophical
programme. Nevertheless we have tried by critical discussion to ensure that each book
represents a coherent line of thought, and that, by developing certain themes, it will be
of greater interest than a mere assemblage of results and techniques.

The books in the series differ in level: some are introductory, some highly
specialized. They also differ in scope: some offer a wide view of an area, others present
a single line of thought. Each book is, at its own level, reasonably self-contained.
Although no book depends on another as prerequisite, we have encouraged authors to
fit their book in with other planned volumes, sometimes deliberately seeking coverage
of the same material from different points of view. We have tried to attain a reasonable
degree of uniformity of notation and arrangement. However, the books in the series
are written by individual authors, not by the group. Plans for books are discussed and
argued about at length. Later, encouragement is given and revisions suggested. But it
is the authors who do the work; if, as we hope, the series proves of value, the credit will
be theirs.

History of the Q-Group. During 1968 the idea of an integrated series of monographs
on mathematical logic was first mooted. Various discussions led to a meeting at
Oberwolfach in the spring of 1969. Here the founding members of the group (R. O.
Gandy, A. Levy, G. H. Muller, G. E. Sacks, D. S. Scott) discussed the project in
earnest and decided to go ahead with it. Professor F. K. Schmidt and Professor Hans
Hermes gave us encouragement and support. Later Hans Hermes joined the group. To
begin with all was fluid. How ambitious should we be ? Should we write the books
ourselves? How long would it take? Plans for author less books were promoted,
savaged and scrapped. Gradually there emerged a form and a method. At the end of an
infinite discussion we found our name, and that of the series. We established our centre
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vi Preface to the Series

in Heidelberg. We agreed to meet twice a year together with authors, consultants and
assistants, generally in Oberwolfach. We soon found the value of collaboration: on the
one hand the permanence of the founding group gave coherence to the over-all plans;
on the other hand the stimulus of new contributors kept the project alive and flexible.
Above all, we found how intensive discussion could modify the authors' ideas and our
own. Often the battle ended with a detailed plan for a better book which the author was
keen to write and which would indeed contribute a perspective.

Oberwolfach, September 1975

Acknowledgements. In starting our enterprise we essentially were relying on the
personal confidence and understanding of Professor Martin Earner of the
Mathematisches Forschungsinstitut Oberwolfach, Dr. Klaus Peters of Springer-
Verlag and Dipl.-Ing. Penschuck of the Stiftung Volkswagenwerk. Through the
Stiftung Volkswagenwerk we received a generous grant (1970-1973) as an initial
help which made our existence as a working group possible.

Since 1974 the Heidelberger Akademie der Wissenschaften (Mathematisch-
Naturwissenschaftliche Klasse) has incorporated our enterprise into its general
scientific program. The initiative for this step was taken by the late Professor F. K.
Schmidt and the former President of the Academy, Professor W. Doerr.

Through all the years, the Academy has supported our research project, especially
our meetings and the continuous work on the Logic Bibliography, in an outstandingly
generous way. We could always rely on their readiness to provide help wherever it was
needed.

Assistance in many various respects was provided by Drs. U. Feigner and K.
Gloede (till 1975) and Drs. D. Schmidt and H. Zeitler (till 1979). Last but not least,
our indefatigable secretary Elfriede Ihrig was and is essential in running our
enterprise.

We thank all those concerned.

Heidelberg, September 1982 R. O. Gandy H. Hermes
A. Levy G. H. Muller
G. E. Sacks D. S. Scott
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Preface

The subject matter of this book constitutes a merging of several directions of
work in general model theory over the last 25 years. Three main lines can be
distinguished: first, that initiated by Andrzej Mostowski on cardinality quantifiers
in the late 1950s; second, the work of Alfred Tarski, his colleagues and students on
infinitary languages into the mid-1960s; and, finally, that stemming from the
results of Per Lindstrom on generalized quantifiers and abstract characterizations
of first-order logic in the late 1960s. The subject ofabstract model theory blossomed
from that as a unified and illuminating framework in which to organize, compare,
and seek out the properties of the many stronger logics which had then come to be
recognized.

Interest in abstract model theory and extended logics was intense in the early
1970s, particularly as a result of the work of Jon Barwise on infinitary admissible
languages. Where the previous developments had largely connected up model
theory with set theory, this added ideas from extended recursion theory in an
essential way, e.g., to yield successful infinitary generalizations of the compactness
theorem. It also turned out that proof theory—including such consequences as
the interpolation and definability theorems—could be successfully generalized to
these languages. Thus, one was here witness to an exciting confluence of all the
main branches of mathematical logic. These successes led to promising research
programs for further interactive development, but the hopes they raised, especially
with respect to the treatment of uncountable languages, were not realized. A
number of us (including Barwise and myself) who had been involved at that
stage of the subject turned to other interests in the latter part of the 1970s and
gave little attention to its ongoing progress. As it happens, all through that period
(at least) the set-theoretic and model-theoretic aspects of the subject were con-
tinuing to develop at a rapid rate. Looking again at the field in 1980 we found a
body of work that was quite staggering.

The re-examination of the area at that time had come in response to repeated
urging by the editors of the Q-group (particularly by Gert Muller) for Barwise
and/or me to write a volume for the series on the general subject of model-theoretic
logics. This might have been conceivable in the early 1970s, but owing to the
intervening growth in the field, it was clearly beyond us eight years later. On the
one hand, the field seemed to be in such a state of advanced and intense develop-
ment that the idea of writing a relatively finished text did not seem appropriate—
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viii Preface

even if undertaken by someone working directly in the subject. On the other hand,
it became more and more apparent that unless some effort were made to provide
an exposition of the field as currently understood, many potential researchers
would simply be left behind.

An alternative idea then presented itself: namely, to knit together a number of
individual contributions which would provide substantial coverage of the field and
would constitute an introduction to the main ideas, examples, and results of the
literature. Barwise and I made this proposal with some trepidation at the meeting
of the Q-group in Patras in August, 1980. We wanted it clearly understood that we
were not suggesting writing a "handbook," each part of which would be reporting
on a relatively finished or settled topic. Rather, we wanted to present a picture of a
rapidly evolving subject, in which much that has been accomplished so far must be
digested if one is to contribute to further progress. The aim of the project would be
to give an entry into the field for anyone sufficiently equipped in general model
theory and set theory, and thereby to bring them closer to the frontiers of research.
This proposal, together with our preliminary table of contents and suggested list
of individual authors of chapters, was agreed to enthusiastically by the editors of
the Q-group. As it happened, a number of those we had suggested as prospective
authors were attending the Patras Logic Symposium. We quickly gathered from
them enough expressions of willingness to participate so that the viability of the
project could be assured.

Thanks to the support of the Q-Group and the financial generosity of the
Heidelberger Akademie der Wissenschaften, the organization of work on this
book was able to proceed in a unique cooperative way. Almost all the authors and
editors met together as a group on two occasions, first in Freiburg during the
period 21-27 June 1981 and then at Stanford during the period 28 March-4 April
1982. At the first of these meetings, authors brought plans, outlines and, in many
instances, first drafts of their chapters. These materials were explained, discussed,
and circulated. In effect, this constituted a very high-level interchange on matters
of substance, style, approach, and exposition. (It emerged that three additional
chapters were needed to round out the coverage for which, fortunately, authors
could be secured.) The participants found the Freiburg meeting extremely ex-
citing and stimulating, and left with high confidence in the success of the project.
Afterward, preparation continued at a quicker pace than originally expected. At
the second meeting in Stanford, authors brought semi-final drafts of their chapters,
and continued the process established in Freiburg. Then each chapter was cir-
culated in the summer of 1982 to two other authors and/or editors for reading,
detailed comments and suggestions. On the basis of these comments, chapters were
brought to final form and submitted to the editors by early 1983. Soon after, a
small working editorial group (meeting at Stanford) organized the manuscript
in final form, touching up and smoothing out the chapters, preparing explanatory
introductions on the various parts and completing the work on a unified biblio-
graphy. In doing so, no effort was made to impose uniformity of style or thought.
The aim was to bring out the individual contributions in the best and most under-
standable and useful form possible.
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Preface ix

The book is divided into six parts (A-F), each consisting of two to four chapters.
Part A provides an introduction to the subject as a whole as well as to the basic
theory and examples. In particular, Chapter I, by Barwise, presents a general
discussion of the background and aims of our subject. Each part is preceded by a
detailed introduction summarizing its contents. From that material the reader
will learn which chapters can be read for general purposes and which for more
special research interests, together with the background required in each case. It
will be seen that many of the chapters can be read independently and that moving
back and forth between them can be rewarding. Parts B-F of the book take up,
in turn: finitary languages with additional quantifiers, infinitary languages,
second-order logic, logics of topology and analysis, and advanced topics in
abstract model theory.

An explanation is needed for the form of the bibliography for this book. As
the chapters were being written, it soon became apparent that the individual bibli-
ographies would be a valuable source of references and history taken in combi-
nation. Scott volunteered to oversee the collection of the materials to make a
single, unified listing. What has been incorporated are all the contributions from
the authors (with many additions and corrections which they sent in), an early
bibliography started by Barwise, and many selections from the Omega Logic
Bibliography at Heidelberg. At the start no one had any idea that the listing
would have 1,261 items—or how vexing it would be to run down certain items.
Fortunately, after coming to Carnegie-Mellon University in 1981, Scott was able
to arrange that the bibliography be put on the computer, which was also used to
make camera-ready copy; otherwise, without computer aids, a task of this size
would have been virtually impossible. In the event, this project turned out to be
more labor intensive than had been anticipated; it could not have been carried
out without the full collaboration of Charles McCarty and John Horty, who spent
many hours over many months checking sources, working in the library, typing
into terminals, and proofreading many versions. The compilers were also aided
by many other people at CMU: W. L. Scherlis and Roberto Minio gave us constant
help with the TEX type-setting system, and Todd Knoblock, Lars W. Ericson,
and John Aronis at various times served as programmers on the project; without
their expertise and help on many small problems, nothing could have been done.
Marko Petkovsek also very ably assisted with the final proofreading. The editors
would thus like to take the opportunity to convey their warm thanks to all these
people for their efforts, to the Computer-Science Department of Carnegie-Mellon
University for the support of McCarty and Horty and the programmers and
particularly for the generous use of their facilities, and to the authors, who helped
assemble and check details of the bibliography. Alas, as it stands the bibliography
is not complete historically, but, even so, the editors and compliers hope it will
materially aid future students and researchers in learning about this work and
continuing the investigations.

In addition to a unified bibliography, the idea of having a unified open prob-
lem section had also been given serious consideration. However, it was finally
decided that such problems are best appreciated in the specific contexts in which
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X Preface

they arise, and that no general rule need be followed as to their location in the
individual chapters.

We also wish to express our thanks to the students Ian Mason and Sergio
Fajardo, who read and made useful comments on various chapters; to Priscilla
Feigen and Isolde Field, for their great assistance in many ways during and after
the meetings at Stanford; likewise to Elfriede Ihrig for assistance at Freiburg and
Heidelberg; to the secretarial staffs of the many institutions represented by the
editors and authors of this book who helped in its preparation; to the University
of Freiburg and Stanford University for providing us with facilities for our
meetings; to the publisher, Springer-Verlag, and particularly the assistance of
its editors; and finally (once more) to the Heidelberger Akademie der Wissen-
schaften, without whose support nothing like the present volume would have
been possible.

Stanford, 1 March 1983 Solomon Feferman
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Part A

Introduction, Basic Theory
and Examples

This part of the book provides a basic setting for the chapters that follow, by
isolating examples and concepts that have emerged as central and by presenting
some of the more basic methods and results. Chapter I discusses how the subject
of model-theoretic logics got started, both the parts that have to do with extended
logics, and the part having to do with abstract model theory. The chapter pre-
supposes familiarity with only the most basic parts of first-order model theory,
its syntax and semantics.

In Chapter II the basic concept of a logic is presented, with many examples,
as well as the concepts of elementary and projective class and compactness,
Lowenheim-Skolem and definability properties. The notion of one logic being
stronger than another is introduced and studied. Examples discussed include
higher-order logics, logics with cardinality and cofinality quantifiers, infinitary
logics and other logics with generalized quantifiers and logical operations.

Given any particular logic j£f one central problem is that of understanding
when two structures are J£f-equivalent, that is, satisfy the same if-sentences.
Among the basic results of Chapter II is a characterization of if-equivalence
in terms of partial isomorphisms, for a wide range of if. Here we have a good
example of a method borrowed from first-order logic which really comes into its
own only in the more general setting. Another important method presented in
Chapter II is the use of projective classes (PC) for establishing countable compact-
ness and recursive axiomatizability for a host of logics.

Chapter III begins with an exposition of Lindstrom's theorem, which shows
that first-order logic is the strongest logic (of ordinary structures) which satisfies
the compactness and Lowenheim-Skolem properties. First-order logic is also
shown to be maximal with respect to other combinations of familiar properties.
The methods used are those of partial isomorphisms and projective classes.

Lindstrom's theorem has become a paradigm for characterizing other logics.
Among those discussed in Chapter III are certain infinitary logics and logics with
added quantifiers. Chapter III ends with an abstract characterization theorem
which covers Lindstrom's theorem as well as logics for other types of structures,
like topological structures. This connects with work in Chapter XV.

These chapters are meant to be accessible to anyone with a knowledge of basic
model theory for first-order logic. They provide the reader with the basic notions
and viewpoint needed to appreciate what follows.
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Chapter I

Model-Theoretic Logics: Background and Aims

by J. BARWISE

Two aspects to the study of model-theoretic logics are represented in this volume.
First, there is the isolation and study of specific model-theoretic languages, or
logics as they are called here, for the study of various mathematical properties.
Second, there is the investigation into relations between these logics. These two
parts of the subject are called extended model theory and abstract model theory,
respectively, and are the two subjects of the two main sections of this chapter.

In writing this chapter I hope to give a perspective from which to view the
study of model-theoretic logics. First (in Section 1.2) I will contrast the view of
logic implicit in this endeavor with what I call the first-order thesis, a view of logic
and mathematics which claims that logic is first-order logic. Then (in the rest of
Sections 1 and 2) I will discuss some of the motivation, ideas, aims, and precon-
ceptions of early workers in the subject. The first is needed to appreciate the most
basic definitions. The second is needed to judge the progress made against those
early hopes and preconceptions. Where it is natural, I will point ahead to later
chapters, but more specific introductions to the chapters will be found at the
beginning of each part of the book.

1. Logics Embodying Mathematical
Concepts

In extended model theory one asks, "What is the logic of specific mathematical
concepts?" More explicitly, given a particular mathematical property (like being
a finite, infinite, countable, uncountable, or open set, or being a well-ordering or
a continuous function, or having probability greater than some real number r),
what is the logic implicit in the mathematician's use of the property? What sorts
of mathematical structures isolate the property most naturally? What sorts of
languages best mirror the mathematician's talk about the property? What forms
of reasoning about it are legitimate? Which other properties are implicit in it or
are presupposed by it?
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4 I. Model-Theoretic Logics: Background and Aims

7.7. Logic, Structures and Logics

A word of explanation is in order about the way we are using the words "logic",
"structure" and "logics" here. For the person in the street, logic is the study of
valid forms of reasoning, from the most mundane uses in our day-to-day lives to
the most sophisticated uses in science and mathematics. If you and I are discussing
some topic, like fixing the roof, a law of genetics, or the solution to some partial
differential equation, and I say "The logic of that escapes me", what I mean is
that I do not see how the conclusion you have come to follows from our shared
assumptions and concepts, including the conception of the task at hand. How
does it follow from the properties of roofs, or the laws of genetics that we both
accept, or the concepts involved in differential equations? When I talk of logic as
I have above, I am referring to this common sense, person-in-the-street notion.

On the common sense view of logic, all the concepts we use to cope with and
organize our world have their own logic. As logicians, we are perfectly entitled to
delve into their logic. However, as mathematical logicians, or metamathematicians,
our interest is more specialized. What we seek to understand is the logic of precise
mathematical concepts. Extended model theory makes a frontal attack on this
problem by, where appropriate, building "logics" to get answers to some of the
questions listed above.

We assume that the reader of this volume is familiar with first-order logic, its
syntax, semantics and basic model theory, because first-order logic is the inspira-
tion for extended model theory. The basic idea of model theory, first-order and
beyond, is that one can profit by paying attention to the relationship between
some mathematical structures and some collection of expressions of a language
used to describe properties of such structures. The basic notion is that of satis-
faction: 9Ji1= 0 if the expression cj) is true of, or satisfied by, the structure 9K.
First-order logic considers mathematical structures of a particularly algebraic
sort, domains of individuals with arbitrary sets and functions to serve as inter-
pretations for various predicate and function symbols. It allows expressions that
build in the concepts and, or, not, every and some, and concepts that can be ex-
pressed in terms of them, but nothing else.

First-order model theory is the study of the semantics of this language, and
it has become a very sophisticated branch of mathematics, full of its own concepts
and theorems, some of extraordinary beauty and complexity. These theorems give
insight into and enrichment for those parts of mathematics that happen to fit the
shoe of first-order logic. This includes a fairly extensive part of modern algebra.
The book Chang and Keisler [1973] provides an excellent introduction to the
model theory of first-order logic. In extended model theory, we take the basic
idea and expand it in various ways, by allowing richer mathematical structures or
richer expressive power in the language, or both.

As used in this book, then, a logic consists of a collection of mathematical
structures, a collection of formal expressions, and a relation of satisfaction between
the two. We are primarily interested in logics where the class of structures are
those where some important mathematical property is built in, and where the
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1. Logics Embodying Mathematical Concepts 5

language gives us a convenient way of formalizing the mathematician's talk about
the property. We might say, then, that a logic is something we construct to study
the logic of some part of mathematics.

7.2. The First-Order Thesis

If first-order logic is the inspiration for much of extended model theory, it is also
its nemesis. The common sense, mathematician-in-the-street view of logic implicit
in this subject is at variance with what we teach our students in basic logic courses.
There we attempt to draw a line between "logical concepts", as embodied in the
so-called "logical constants", and all the rest of the concepts of mathematics. In
extended model theory we do not so much question the placement of this line,
as question whether there is such a line, or whether all mathematical concepts
have their own logic, something that can be investigated by the tools of mathe-
matics.

To give ourselves a foil, let us call the view that attempts to define logic as the
logic implicit in the "logical constants" the first-order thesis. (Among the numerous
past and present adherents to this thesis there is a slight disagreement as to whether
identity should be counted as a "logical constant".) Another way to state this
view is to claim that logic is first-order logic, so that anything that cannot be
defined in first-order logic is outside the domain of logic.

The reasons for the widespread, often uncritical, acceptance of the first-order
thesis are numerous. Partly it grew out of interest in and hopes for Hilbert's
program. Partly is was spawned by the great success in the formalization of parts
of mathematics in first-order theories like Zermelo-Fraenkel set theory. And
partly, it grew out of a pervasive nominalism in the philosophy of science in the
mid-twentieth century, led by Quine, among others. As late as 1953, well after the
Godel incompleteness theorems, Quine wrote in his book From a Logical Point
of View.

The bulk of logical reasoning takes place on a level which does not presuppose
abstract entities. Such reasoning proceeds mostly by quantification theory, the laws of
which can be represented through schemata involving no quantification over class
variables. Much of what is commonly formulated in terms of classes, relations, and even
number, can easily be reformulated schematically within quantification theory plus
perhaps identity theory. Quine [1953, p. 116].

As logicians we do our subject a disservice by convincing others that logic is
first-order logic and then convincing them that almost none of the concepts of
modern mathematics can really be captured in first-order logic. Paging through
any modern mathematics book, one comes across concept after concept that
cannot be expressed in first-order logic. Concepts from set-theory (like infinite set,
countable set), from analysis (like set of measure 0 or having the Baire property),
from topology (like open set and continuous function), and from probability theory
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6 I. Model-Theoretic Logics: Background and Aims

(like random variable and having probability greater than some real number r), are
central notions in mathematics which, on the mathematician-in-the-street view,
have their own logic. Yet none of them fit within the domain of first-order logic.
In some cases the basic presuppositions of first-order logic about the kinds of
mathematical structures one is studying are inappropriate (as the examples from
topology or analysis show). In other cases, the structures dealt with are of the
sort studied in first-order logic, but the concepts themselves cannot be defined in
terms of the "logical constants." For example, by the Lowenheim-Skolem
theorem, any countable set of first-order sentences which is true in some structure
is true in some countable structure. This shows that the complementary concepts
of countable and uncountable cannot be defined in first-order logic. The compact-
ness theorem, stated below, shows that the concepts of finite and infinite cannot
be captured in first-order logic.

Extended model theory adds a new dimension and new tools to the study of
the logic of mathematics. The first-order thesis, by contrast, confuses the subject
matter of logic with one of its tools. First-order logic is just an artificial language
constructed to help investigate logic, much as the telescope is a tool constructed
to help study heavenly bodies. From the perspective of the mathematician in the
street, the first-order thesis is like the claim that astronomy is the study of the
telescope. Extended model theory attempts to take the experience gained in first-
order model theory and apply it in ever broader contexts, by allowing richer
structures and richer ways of building expressions. It attempts to build languages
similar to the first-order predicate calculus to study concepts that are banned
from logic by the first-order thesis.

It is not always straightforward to come up with the best language to
capture a given concept. For example, the "best" one for studying the concepts
of finite and infinite is not at all the one that first came to mind, as we shall see.
Similarly, finding the "best" logic of topological structures was a process of
successive approximations. In both cases the class of structures is clear: ordinary
structures in the first case, topological structures in the second; but the choice of
just the right language is difficult. In other cases, even finding just the right collec-
tion of structures has been problematic. Finding natural logics takes trial, error
and experience. Part of the accumulated experience is discussed in the section
on abstract model theory, below.

1.3. The Completeness Problem

Similarly, there is nothing straightforward about knowing the best questions to
ask about a given logic. They will depend, in general, on the concepts it captures.
But one question always suggests itself just by virtue of being a study of logic,
the completeness problem: is there any kind of completeness theorem that goes
with the logic, analogous to the completeness theorem for first-order logic?
That is, given a logic 5£, is there an effective list of axioms that are valid in all
structures of the logic and a list of valid rules of inference that, together with
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1. Logics Embodying Mathematical Concepts 7

the axioms, generate all valid theorems of the logic, i.e., the set of sentences that
hold in all its structures?

Using the language of recursion theory, the completeness problem can be
phrased quite abstractly (or crudely, depending on one's point of view). For if
it has a positive solution, then the set of valid sentences is recursively enumerable.
And, conversely, if the set of valid sentences is recursively enumerable, then in
principle we can find such a completeness theorem. However, this does not give
one a simple set of axioms and rules of inference which generate the valid sen-
tences. Thus, up to aesthetic considerations, the first question about a logic J£?
that we usually ask is: Is the set of valid sentences recursively ennumerable? This
is sometimes called "abstract completeness."

The completeness problem ties up with the first-order thesis and an even
older view of logic, where it was seen as the study of axioms and rules of inference.
Of the logics studied here, some have a completeness theorem, some don't. If one
thinks of logic as limited to the study of axioms and rules of inference, then logics
without an abstract completeness theorem will not seem part of logic. But if you
think of logic as the mathematician in the street, then the logic in a given concept
is what it is, and if there is no set of rules which generate all the valid sentences,
well, that is just a fact about the complexity of the concept that has to be lived
with. It is this latter point of view that is implicit in the study of model-theoretic
logics.

1.4. Compactness

A major theme in the early days of extended model theory was the search for
compact logics, logics which satisfied the following (1) or (2), or some appropriate
analogue of them where the concept of finite is replaced by a different notion of
small.

(1) (Strong Compactness Property.) If T is any set of sentences of the logic,
and if every finite subset of T has a model (i.e., is true in some structure
of the logic) then T has a model.

(2) (Countable Compactness Property.) Same as (1), but only for countable
sets T.

There are two reasons for interest in these results. One is closely related to
the completeness problem. Usually a completeness theorem establishes that if 4>
is a logical consequence of some set (or perhaps countable set) T of assumptions,
then it is derivable from some finite subset of T. In particular, if T is inconsistent
and so has no models whatsoever, then some contradictory sentence is a con-
sequence of T, in which case some finite subset of T will be inconsistent. That is,
usually (1) or (2) fall out of a completeness theorem, if there is one.

Secondly, in first-order model theory, the compactness theorem is a ubiquitous
tool, applied at almost every turn. It was natural that it should have been deemed
a crucial property for a logic to have, if one wanted to exploit experience gained
in first-order model theory.
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8 I. Model-Theoretic Logics: Background and Aims

For some logics, like the infinitary logics discussed below, it was realized that
finite was the wrong property, because proofs themselves could have infinitely
many hypotheses, so various analogues of compactness were sought where finite
was replaced by some other notion of small set. First attempts were in terms of
cardinality. Later, and more successful attempts brought in notions of small
from generalized recursion theory.

7.5. Mostowskfs Proposal and Generalized Quantifiers

One of the first explicit proposals for studying extensions of first-order logic by
the methods of model theory came in Mostowski [1957]. His idea was that since
various concepts like finitely many and countably many are not definable in
first-order logic but are important in modern mathematics, we should add quan-
tifiers embodying such concepts directly. He suggested having a new syntactic
rule:

if cj)(x) is a formula, so is Qx<fi(x\

where x is not free in the new formula. This formation rule is added in such a way
that it can be iterated along with "and", "or", "not", "everything" and "some-
thing". The meaning of Q depends on a new semantic rule. In fact, given any
cardinal number Ka one has a logic i ? (2J defined by giving the semantics:

Jt t=aQx(j)(x) iff there are at least Ka elements
b such that Jt\=a<j)(b).

In words, Qx(f)(x) is true just in case there are at least Ka elements b such that (j){b)
is true. The logics JSf(Qa) all have the very same syntax but have different semantics
assigning different meanings to the quantifier symbol Q.

The logic if (Qo) builds in the finite/infinite distinction missing from first-order
logic. It is a notion at the heart of much mathematics, especially in modern alge-
bra. Using it one can define notions like torsion group, finitely generated group,
finite-dimensional vector space, and one can define the natural numbers.

The logic J^iQi) on the other hand, builds in the countable/uncountable
distinction missing from first-order logic, but it does not include if (Qo). Using it
one can define notions like countably generated groups, uncountable structures,
and the like.

One of the first surprises in extended model theory was the extent to which
ifCQi) is better behaved than the logic if(20)- For example, while there is no
completeness theorem for i?(20) there is one for <£(Q^). Vaught [1964] proved a
"two-cardinal theorem" of first-order model theory which had as a corollary an
abstract completeness theorem for i?(Qi). The problem of finding a concrete
completeness theorem for S£{Q^) was left open until a very elegant complete set
of axioms and rules was found by Keisler [1970]. Similarly, Fuhrken [1965] used
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1. Logics Embodying Mathematical Concepts 9

the proof of Vaught's two-cardinal theorem to show that if(2i) is countably
compact; if (Qo) is not. This is also an immediate consequence of Keisler's com-
pleteness theorem. To prove his result, Keisler had to develop much more refined
techniques of building uncountable models than had been available before,
techniques which have been incorporated into the heart of the subject. They are
discussed in Kaufmann's chapter in Part B.

A great deal of effort has gone into studying the logics if(QJ in general, and
especially 3?{Qi\ as well as closely related logics. But cardinality is only one
rather crude distinction between sets. Mostowski's idea of imposing various
properties on definable sets has had a liberating effect on logic and has been ex-
tended in many different directions. Quantifiers based on measure theory, on
probability and on other measures of size have been studied, for example.
Lindstrom [1966a] proposed a very general definition of a quantifier, so that one
could use practically any class K of structures to define a new quantifier QK that
captures membership in that class. The notion of a Lindstrom quantifier is de-
fined in Chapter II. Adding quantifiers to first-order logic is a central theme of
extended model theory, and provides the focus of Part B of this book.

Most work in extended model theory assumes that one wants to study logics
that are stronger than first-order logic, stronger in the sense of containing first-
order logic. However, in investigating the logic of probability spaces, Keisler
realized that to get the right logic, one wants to have all definable sets measurable,
and that these measurability considerations dictate that the logic is strictly in-
comparable with first-order logic, since one cannot in general assume closure
under the ordinary quantifiers "everything" and "something". Instead one has
quantifiers of the form

(Px > r)0(x)

meaning that the probability of <f> is at least r. But this logic has a rather weak
expressive power unless one takes advantage of countable additivity by allowing
infinitary propositional operations, as had already been studied in the more
classical setting. (See the next subsection.) Besides the interesting applications,
such logics give us a new kind of testing ground for our basic ideas about what a
logic is and what, if anything, is so special about first-order logic.

7.6. Infinitary Logics

The logic if (Qo) embodying the finite/infinite distinction turned out to have less
than satisfactory properties. A number of logics more or less equivalent to if (Qo)
(e.g. weak second-order logic, that allows quantification over finite sets, and
co-logic, that allows quantification directly over the natural numbers) were worked
on until they were gradually replaced by the study of logics with infinitely long
formulas.
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10 I. Model-Theoretic Logics: Background and Aims

Actually, the investigation of such languages is older than that dealing with
generalized quantifiers (see Zermelo [1931], Novikoff [1939, 1943], Bochvar
[1940]), but had fallen on hard times until the late 1950's and early 1960's, when
work of Tarski, Henkin, Karp, Scott, Lopez-Escobar, Hanf, and Keisler revitalized
the subject. Part C of this book is devoted to infinitary languages and their ap-
plications.

Early work on infinitary logics dealt with certain languages <£K A which were
generated by allowing conjunctions and disjunctions of size less than K and
homogeneous strings of quantifiers of length less than L The early work looked
for analogues of the compactness, completeness and Lowenheim-Skolem theo-
rems. Initial results were discouraging, in that compactness was found to exist
only under the rarest of circumstances. Indeed, work of Hanf [1964] showed that
it required strong new set-theoretical assumptions to prove that there were any
logics JSf Kf k that were compact in the hoped-for sense, of being K-compact, where
"finite" is replaced by "size less than K" in the statement of compactness.

Completeness results were a little easier to come by. Building on work of
Scott and Tarski [1958], Karp [1964] gave a completeness theorem for the logic
^COKO' Notice, though, that since the syntactic expressions are infinite, the re-
cursion-theoretic formulation in terms of recursively ennumerable sets had to be
abandoned—or better—generalized. What one wanted was a recursion theory
over infinitary objects to capture the sense in which one notion of proof might
be seen as appropriately effective, another not. Such generalized recursion theories
were being developed at about this time (by Takeuti, Levy and Machover, Kripke,
Kreisel and Sacks, and Platek) for independent reasons, but then led to a fruitful
interaction with the work on infinitary logics.

One of the reasons for favoring an infinitary language over <&(Q0) had to do
with the failure of the Craig interpolation theorem and its consequence, the Beth
definability theorem. (The latter says that any notion that is implicitly definable
in first-order logic is also explicitly definable in first-order logic.) Mostowski
[1968] showed that there is a principled reason for the failure of these results in
logics like J£(Q0), weak second-order logic, and co-logic. What he showed was
that any logic where the syntax is finite but where the notion of finite is definable
has sets that are implicitly definable but not explicitly definable. Hence the ob-
vious analogues of the Beth and Craig results fail. More to the point, though, his
results show that such logics fail to capture all that is implicit in the logic of
finiteness.

The moral is that if you want a logic where the notions of finite and infinite
are expressible, and if you want it to be closed under implicit definability, then
the syntax is going to have to be infinitary—in some sense. This is not the original
motivation for the study of infinitely long formulas, but it is a sound one. The logic
^COKO studied by Karp, Scott, Lopez-Escobar is a different way of building the
notion of finite into a logic, one that does satisfy the obvious analogues of the
Beth and Craig theorems, as shown in Lopez-Escobar [1965b]. It allows arbitrary
countable conjunctions and disjunctions of formulas to be formulas. The logic

0) is a "sublogic", since "there exist infinitely many" can be defined by the
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following countable conjunction:

/ \ V x j .... x n 3y((t>(y) A y ^ x 1 A - - - A y ^ x B ) .
n>0

Lopez-Escobar gave a completeness proof for a Gentzen-style system for S£^^
from which he was able to derive an interpolation theorem, and an analogue of
the Beth definability theorem.

One of the notions that has emerged as central to logic is that of an inductive
definition, i.e., one of the form: the smallest relation R satisfying some closure
condition. The notion comes up in the very definition of the syntax and semantics
of specific logics, in recursion theory, and in various other branches of mathe-
matics. It is only natural that logicians would look for logics where such implicit
forms of definability were made explicit. Infinitely long formulas emerged again
in this connection. Moschovakis [1972] showed that any inductive definition
could be made explicit by using a formula with an infinite string of alternating
quantifiers:

Vxx 3 ^ . . . Vxn 3yn.../\ </>M(xi> y±, • • •, *„, )>„)•
n

This generalized a theorem of Svenonius [1965] about PC-classes on countable
models. Various suggestions for logics admitting such infinite alternating strings
have been forthcoming. The most useful now appears to be the Vaught formulas
built into the logic J5f studied in Kolaitis's chapter. Such infinite strings also have
connections with work in game theory, higher recursion theory and descriptive
set theory.

7.7. Second-Order Logic

Actually, there was another extension of first-order logic that was around for a
long time before Mostowski's suggestion. Everyday mathematical experience
shows us that the concepts of arbitrary set and function are important and power-
ful. Notions like finite, infinite, countable, uncountable, well-ordering, the natural
and real numbers, are all definable in terms of these notions. Second-order logic
is the extension of first-order logic where these concepts are built in by allowing
quantifiers not just over individuals in the domain 9W, but also over subsets of that
domain and over relations and functions on the domain.

Judged by the standards of first-order logic, the model theory of second-order
logic was deemed unmanageable. None of the basic theorems of first-order logic
extended to second order logic. There were no completeness, compactness, inter-
polation or Lowenheim-Skolem theorems. For many years the model-theory of
second-order logic was thus largely ignored. In fact, in the early days of extended
model theory, many of us saw ourselves as chipping away manageable fragments
of second-order logic. However, the way we judged what it was to be a manageable
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12 I. Model-Theoretic Logics: Background and Aims

theory was by comparing it to first-order model theory. In retrospect, this seems
unimaginative, since there has turned out to be quite a rich model theory for
second-order logic, once the right questions started being asked.

Second-order logic permits quantification over arbitrary functions on the
domain of discourse as well as quantification over the elements in the domain of
discourse. Since sets and relations can be represented by their characteristic
functions, second-order logic embodies quantification over arbitrary sets and
relations, as well. There is an obvious equivalence between functions and relations,
but allowing quantification only over sets turns out to be weaker than full
second-order logic. It is called "monadic" second-order logic, and it is much
more expressive than first-order logic while being manageable enough to provide
many interesting decidability and undecidability results. Some of these are dis-
cussed in Gurevich's chapter. For example, he discusses a classification of ordered
abelian groups by means of properties definable in the monadic second-order
logic of such groups. He also presents a proof of the famous result due to Rabin
on the decidability of the monadic theory of the infinite binary tree.

Shelah [1973c] investigated what other types of restricted second-order quan-
tifiers there were, besides the restriction to monadic quantification, but where the
restrictions considered had to be first-order definable. He proved a striking and
difficult result: there are only four first-order definable second-order quantifiers.
Baldwin's chapter takes advantage of more recent work in model theory to give a
simplified presentation of the result. The structural results implicit in the proof of
the four definable second-order quantifiers theorem emphasize the importance of
studying three theories in monadic logic: (i) the monadic theory of order, (ii) the
monadic theory of the tree A-60, and (iii) the monadic theory of the tree X<<a.

Both Baldwin's and Gurevich's chapters emphasize the importance for
monadic logic of a basic result for first-order logic which does extend to this
situation: the Feferman-Vaught theorem.

1.8. Applications to Mathematics

There are many kinds of applications of logic to mathematics. The most striking
(at least the ones that strike most people) are those where some specific theorem or
method from logic gives an outright solution to some open question in mathe-
matics. Eklof surveys a number of applications of this sort, of infinitary logics
within algebra. Keisler's chapter contains some applications of this sort to
probability theory.

A second kind of application of logic is in the realm of independence results
where it is shown that certain problems cannot be settled on the basis of the first-
order axioms of set-theory. These results are really about the limitations of first-
order logic, and so are outside the scope of this book, except to the extent that
they have an impact on extended model theory itself. (See Section 2.6 below.)

Most important in the long run, it seems, is where logic contributes to mathe-
matics by leading to the formation of concepts that allow the right questions to
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be asked and answered. A simple example of this sort stems from "back and forth
arguments" and leads to the concept of partially isomorphic structures, which
plays such an important role in extended model theory. For example, there is a
classical theorem of Erdos, Gillman and Henriksen; two real-closed fields of
order type rjl and cardinality Xx are isomorphic. However, this way of stating
the theorem makes it vacuous unless the continuum hypothesis is true, since
without this hypothesis there are no fields which satisfy both hypotheses. But if
one looks at the proof, there is obviously something going on that is quite in-
dependent of the size of the continuum, something that needs a new concept to
express. This concept has emerged in the study of logic, first in the work of Ehren-
feucht and Fraisse in first-order logic, and then coming into its own with the study
of infinitary logic. And so in his chapter Dickmann shows that the theorem can
be reformulated using partial isomorphisms as: Any two real-closed fields of
order-type rjl9 of any cardinality whatsoever, are strongly partially isomorphic.
There are similar results in the theory of abelian torsion groups which place
Ulm's theorem in its natural setting.

Notice the shift of perspective here. While we started with the idea of taking
concepts that were already explicit in mathematics and studying their logic, we
now see the possibility of exploring concepts that are only implicit in existing
mathematics, making them explicit, and using them to go back and re-examine
and enrich mathematics itself. Isolating the notions of inductive definability
implicit in so much of mathematics is another example mentioned above. The
results mentioned from Keisler's and Gurevich's chapters are also of this nature,
bringing in new concepts with which the right questions can be asked and answered.
Similarly, much of Shelah's work in extended model theory can be seen in this
light, taking some important construction from mathematics or logic and building
the construction into a new logic. Extended model theory provides a framework
within which to understand existing mathematics and push it forward with new
concepts and tools.

2. Abstract Model Theory

Once there are lots of similar structures around one begins to study the relation-
ships that exist between them. And so it is with extended model theory. Once
there are lots of logics around, one begins to study their interrelationships. This
part of the subject is known as abstract model theory.

2.1. Lindstrorris Theorem

One of the first equations that must be settled is, just what makes a logic natural?
What are the guiding principles which help one find interesting and useful logics?!?
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14 I. Model-Theoretic Logics: Background and Aims

Here the experience built up with many examples suggests three principles:

(1) build into the semantics natural and important notions from some par-
ticular domain of mathematical activity;

(2) keep the semantics constrained so that it embodies just those notions
one intends to study, and notions implicit in them; and

(3) find a syntax in which the basic notions of the logic find natural expression.

It was obvious from the start that there is a trade-off in the construction of
logics. You can't build in some concept that goes beyond first-order logic without
paying the piper. For example, if some particular theorem about first-order model
theory shows that adding a new quantifier is a genuine strengthening of first-order
logic, then the obvious analogue of that theorem will fail for the new logic. For
example, the countable compactness of first-order logic has as an easy corollary
that the quantifier "there exists at most finitely many" is not definable therein.
It follows from the proof that &(Q0) and S£ mxiO are not countably compact.
Similarly, the Lowenheim-Skolem theorem (if a countable set of sentences has a
model, it has one that is at most countable) has as a corollary that "there exist
uncountably many" is not definable in first-order logic. Hence the analogous
statement will fail for the logic Z£(Qi).

There is an important theorem lurking here, one discovered by Lindstrom
[1969]; it is a result that opened up a new aspect to the study of logic. What
Lindstrom showed is that what we have just observed in these two cases is in fact
quite general. Any attempt to build a logic that is more expressive than first-order
logic will fail to satisfy the obvious analogue of either the countable compactness
theorem or the Lowenheim-Skolem theorem. Or, to state it more positively,
first-order logic can be characterized as the strongest logic satisfying the following
two properties:

(1) (Countable Compactness Property.) If a countable set of sentences has no
model then some finite subset has no model; and

(2) (Lowenheim Property.) If a sentence has an infinite model, it has a count-
able model.

is countably compact; i?WlC0 satisfies the Lowenheim property. This
striking result has led to much important research after lying largely unnoticed
for several years. It was the rediscovery of the result and its widespread circulation
in Friedman [1970a] that in many ways woke logicians to the potential in abstract
model theory. A proof of Lindstrom's theorem is contained in Chapter III.

Characterizing a given logic if as the strongest logic with some property
presupposes an understanding of just what a logic is. What kinds of syntactic and
semantic closure conditions does one build into the notion of a logic? Obviously
the more one builds in, the fewer logics there are and so the weaker a characteriza-
tion theorem becomes. On the other hand, for the other aims of extended model
theory, one wants a notion that captures the important examples and systematizes
the common assumptions.

Lindstrom and Friedman managed to side-step this problem. To get around
the difficulties of saying just what a logic is, they dealt entirely with classes of
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2. Abstract Model Theory 15

structures and closure conditions on these classes, thinking of the classes definable
in some logic. That is, they avoided the problem of formulating a notion of a
logic in terms of syntax, semantics, and satisfaction, and dealt purely with their
semantic side. From the point of view of logic, this is at best a stop-gap measure,
to be replaced by an analysis of just what makes up a logic. But the task of coming
up with a general definition of just what constitutes a logic has been a large one,
one that may still be not entirely settled. The one given in this book has emerged
as fairly stable over time, and most useful for a variety of investigations.

2.2. Characterization Theorems

The compactness and Lowenheim-Skolem theorems are two of the most striking
results in first-order model theory—and probably the most frequently used tools
of the first-order model-theorist. This made Lindstrom's characterization theorem
of first-order logic somewhat disheartening, initially at least, since it says that the
model-theorist interested in extensions of first-order logic is going to have to give
up at least one of his most cherished tools. Luckily, however, there had already
been enough success in the model theory of if x, if(Qi), ifWlC0, and some other
logics to whet the appetites of those interested in extensions of first-order logic
and to convince them that there was room to maneuver around the failures of
these results. And there was enough intrinsic interest in these logics that workers
attempted to find Lindstrom-style characterization theorems for them.

There have been some successes finding such characterizations, but they have
been few and far between. What there are can be found in the chapters by Flum
and Vaananen. But there are still no satisfactory characterizations of ^^^ or
if ((2i). Indeed, search for such results has led to the study of even stronger logics
that are based on the same sorts of mathematical concepts, but there is no satis-
factory characterization of these stronger logics either.

23. Uses of Abstract Model Theory

Abstract model theory has turned out to have more to say about the relations
between various properties of logics than about the characterization of logics by
their properties. In general, abstraction can serve many different masters. It can
be used to systematize a body of examples, notions and results, and in this or-
ganization, help us to understand more explicitly what we already know. This
usually leads to the emergence of new concepts for unifying properties of the
material, concepts which are overlooked in specific cases. And new problems and
theorems that can be formulated in terms of the new concepts that emerge.

Studying only the model theory of first-order logic would be analogous to the
study of real analysis never knowing of any but the polynomial functions: core
concepts like continuity, differentiability, analyticity, and their relations would
remain at best vaguely perceived. It is only in the study of more general functions
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16 I. Model-Theoretic Logics: Background and Aims

that one sees the importance of these notions, and their different roles, even for
the simple case.

One of the aims of abstract model theory is develop an analogous classification
of logics by means of their most important properties. This entails understanding
the relationships between these properties. Properties of logics that are co-extensive
in the first-order case often have quite different extensions in the general setting.
For example, in first-order logic, the interpolation theorem and the Robinson
consistency theorem appear to be equivalent results. However, in general, the
latter is much more powerful than the former. J^WlC0, for example, has the inter-
polation property but not the Robinson consistency property. So too, the difference
between strong compactness and countable compactness is not too noticeable in
first-order logic, because of the Lowenheim-Skolem theorem. In general, however,
countable compactness is much weaker.

Like properties of logics, so too methods of proof that seem more or less
equivalent in the context of first-order model theory often split and come into
their own in abstract model theory. For example, the Ehrenfeucht-Fraisse partial
isomorphism method has come to the fore in two ways. First, it generalizes in
different ways to a host of model-theoretic logics. Second, it is used as a means
of classifying logics, into those that have and those that do not have the "Karp
property". In the next subsections, we discuss three particularly important links
that come up repeatedly in extended and abstract model theory, the A-closure of
a logic, and the least ordinal pinned down by a bounded logic, and the Hanf
number of a logic. In each we have a property of first-order logic that is largely
overlooked until put in the context of the more general theory.

2.4. The Interpolation Theorem and the ^-Closure

The interpolation theorem illustrates a number of the issues discussed above.
The Craig interpolation theorem (stated below) shows that first-order logic is
closed under a very general form of implicit definability, so that the concepts
embodied in first-order logic are all given explicitly. Closure under implicit de-
finability is obviously a highly desirable result from the perspective of defining
logics that embody a given mathematical notion. Craig's result was discovered
about the same time as the Robinson consistency theorem, and they were widely
perceived to be more or less the same result, one that implied the Beth definability
theorem.

As mentioned above, the Robinson consistency property turns out to be a
much stronger property of logics than the Craig interpolation property in the
context of extended model theory. In fact, as long as the number of symbols in
any single sentence is finite, or at all reasonable in size, one can say that a logic
has the Robinson consistency property just in case it satisfies both the compactness
property and the Craig interpolation property (see Chapter XVIII).

Neither JS?(Q0)nor -Sf(Qi) satisfy the Craig interpolation theorem. But whereas
Mostowski found a principled reason for the failure of interpolation for
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2. Abstract Model Theory 17

there is no such explanation known for S£(Q^). (Keep in mind that if(Qi) is not
in any sense an extension of JSf(<20)- The logic ^{Q{) satisfies the countable
compactness property so "finite" is not definable in this logic.) Rather, the counter-
examples that were found to the Craig and Beth theorems for £P(Qi) and related
logics have repeatedly suggested additional concepts that were in the constellation
of notions around countability but that were not definable in J^(2i). That is,
the counter-examples all suggested that we just did not yet have the right logic,
rather than that there was an essential obstacle. This is presumably part of the
reason there is no convincing characterization theorem for any of these logics.

The problem of finding a countably-compact logic extending S£(Q^) with the
interpolation property has become known as Feferman's problem. It has led to
the study of many interesting and useful extensions of JSf(Ci)—extensions that
remedy various deficiencies in J^iQ^ by building in other notions that seem still
in the spirit of the countable/uncountable distinction. Some of these extensions
are discussed in Kaufmann's chapter. Nevertheless, there is still no conclusive
solution to Feferman's problem either positively, or negatively by a result that
shows, under some reasonable assumption, that an essential obstacle exists.

Feferman's motivation in stating the problem goes back to the issue of com-
pleteness. For first-order logic, there are both model-theoretic and proof-theoretic
proofs of the interpolation theorem, the latter deriving the theorem from the
completeness of Gentzen's cut-free set of axioms and rules. (Gentzen's rule of
"cut" is the analogue of modus ponens for his system. He showed that this rule
is redundant in his system.) For 5£'WiC0, it was this latter proof that Lopez-Escobar
managed to generalize. It was harder to find a purely model-theoretic proof. The
basic idea of the proof-theoretic proof is that if you are able to prove \j/(R, T)
from cj)(R, S\ where R, S and T are relation symbols, and if the proof does not
use "cut", then there should be a proof that only uses the common symbol R in
an essential way, in that you should be able to isolate a sentence 6(R) so that
both (f)(R, S) -+ 0(R) and 8(R) -+ iA(R, T) are provable.

One can use the interpolation property as a yardstick for measuring whether
there is a good proof theory. In the case of JSf(Q i), knowing that interpolation
fails shows that one is not going to have a good Gentzen style proof theory for
J?(Qx). What Feferman was after was a richer logic that had a better completeness
theorem in this sense, and he was using the interpolation property as a model-
theoretic test for such a better theorem.

The proof theory of strong logics has not kept pace with their model theory,
partially due to the interests of the people working in the field, partially due to
the fact that proof theory is not seen as being particularly central to the subject
since many of the logics do not have an r.e. set of valid sentences. And from a
model-theoretic point of view, it has turned out that interpolation is not a par-
ticularly important or natural property for a logic to have. Interpolation is a
much stronger property than is needed for a logic to be closed under implicit de-
finability. The notion that has turned out to be more important in this respect is
that of a A-closed logic.

A class K of structures is called PC (or Zj) in a logic if if there is a class K
of structures that is definable in if so that 9W e K if and only if some expansion
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W of 9Ji is in K'. The interpolation theorem can be restated as: If Ko and K1 are
disjoint PC classes then there is a definable class K containing one and disjoint
from the other. An obvious consequence is that if a class K is both PC and co-PC
(that is, its complement is PC) in ££ then K is definable in <£\ A logic with this
property is called A-closed. Any logic satisfying the interpolation property is
automatically A-closed, but not conversely. And whereas there is no known way
to start with a logic S£ where interpolation fails and find a smallest extension
where it holds, there is a way to define a smallest logic A(JSf) containing <£ and
A-closed, called the A-closure of 5£. This operation on logics preserves many of
the nice properties of the original logic.

The A-closure is completely overlooked in first-order logic because we have
so much more. And A-closure, rather than the stronger interpolation property,
is really what shows us that we have a well-rounded logic.

A frequent use of the A-closure is to show that two logics !£ and if' are really
the same up to implicit definability by showing that A(if) = A(if'). Several such
results appear in Chapters VI and XVII. For example, the various logics if(Qo\
weak second-order logic (where one quantifies over finite sets) and co-logic are
the same up to implicit definability. Makowsky [1975a] and I (Barwise [1974a])
independently noticed that Mostowski's result, that no logic with finitary syntax
that can define finite and infinite has the interpolation property, could be turned
into a characterization of the common A-closure of these logics as a certain in-
finitary logic, the "hyperarithmetic" fragment of S£m^ (see Chapter XVII for a
proof of this result).

2.5. Pinning Down Ordinals

Another property of first-order logic that goes all but unnoticed in that setting,
but assumes a central place in the general theory, is the undefinability of well-
orderings. The distinction between logics where well-ordering is undefinable and
those where it is definable turns out to be an important one.

A logic if is said to be bounded by an ordinal a if a is greater than all ordinals
that can be "characterized" in the logic. Second-order-like logics are those where
the notion of well-ordering is definable and so are unbounded.

First-order logic is bounded by co, the first infinite ordinal, as the (countable)
compactness theorem shows. Indeed, any extension of first-order logic that is
countably compact will be bounded by co. For example, if(6i) is bounded by co.
^(Qo)> by contrast, is bounded not by co but by a certain countable ordinal coj,
the least non-recursive ordinal. ££ ̂ a is bounded by col9 the least uncountable
ordinal. On the other hand, second-order logics ifWlCOl, and logic with the game
quantifier are not bounded.

For some applications, the failure of the compactness theorem can be cir-
cumvented in applications by knowing that the logic is bounded. For example,
first-order logic can be characterized in terms of the Lowenheim-Skolem theorem
and the assumption that the logic is bounded by co. Similarly, for many "Hanf

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.004
https://www.cambridge.org/core


2. Abstract Model Theory 19

number" calculations (see the next subsection) one needs to know a bound for the
logic.

In first-order logic, the fact that the logic is bounded by CD is such a simple
consequence of compactness, that we do not even notice that the property is
important. In more general logics, this notion assumes its rightful place in the web
of properties of logics.

2.6. Hanf Numbers

In elementary textbooks on logic one often finds the Lowenheim-Skolem theorem
for first-order logic stated as: If a theory has an infinite model, then it has models
of all infinite cardinalities. The proof, however, when given, always breaks into
two parts. There is a "downward" half, that allows one to get smaller models from
bigger, and an "upward" half that allows one to get bigger from smaller. The
downward version uses some form of submodel argument, the upward a com-
pactness argument. Not surprisingly, these two arguments generalize quite
differently, to different logics.

Many logics have some form of downward Lowenheim-Skolem theorem,
with a proof analogous to the usual one, with the difference being just how small
the submodel can be. But almost no logics have a simple analogue of the upward
version. In if (20)> for example, one can define theories with model of quite large
infinite cardinalities, but without arbitrarily large models. Hanf observed, how-
ever, that as long as the expressions of a logic if form a set, as opposed to a proper
class, that one can show quite easily, though very non-constructively, that there
must be some cardinal K such that if a sentence <\> of !£ has a model of size at least
K, then it has arbitrarily large models. The least such cardinal has come to be
known as the Hanf number h(£f) of S£.

A fair amount of work has gone into calculating the Hanf number of various
logics. The reader can find a number of such calculations for infinitary logics in
Chapter IX. For bounded logics, the Hanf number is often related to the least
ordinal that cannot be pinned down in the following manner. Define

and, for limit ordinals A,

DA = sup na.

Then for many logics if, like if(2oX &\alfl» <&Kta» °ne has h(&) = 3A, where X
is the least ordinal that cannot be pinned down by the logic. For logics that are
not bounded, there is very little that can be said about the size of the Hanf number.
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Shelah has suggested a structural explanation for the relation between the ease
of computing the Hanf number and the boundedness of the logic. The situation is
clearer if we consider the Hanf number h(T, L) of a countable theory T in a logic L,
the least K such that for any L -sentence </> if T u {0} has a model of power K then
T u {0} has arbitrarily large models. (Setting Tas the "empty" theory we specialize
to h(L).) Similarly, we can define T to be bounded or unbounded in the logic L.

The important structural distinction can be expressed by considering the class
of models of T. Each model of Tcan be decomposed as a "product" of countable
models if and only if Tis bounded if and only if the Hanf number of Tcan be easily
computed. The proof of this result for logics with definable second-order quantifiers,
a characterization of theories according to this classification, and an account of the
ensuing computation of Hanf numbers occurs in Chapter XII. Shelah has identified
a similar dichotomy between superstable theories with and without the dimensional
order property. The resulting structure theory also analyzes a model of power X in
terms of countable models and subtrees of X-™.

2.7. Strong Logics and First-Order Set Theory

There is an older approach to the study of the relationship between logic and
concepts that lie outside of first-order logic, one subscribed to by those who
accept the first-order thesis. One gives a first-order approximation to one's
meta-theory T, something like Zermelo-Fraenkel set theory (ZF) in which all the
notions in question can be defined relative to the notion of set, or perhaps a weaker
or stronger metatheory. To the extent that one can view some branch of mathe-
matics as consequences of this theory, one has an account of that part of mathe-
matics.

This has become something like the orthodox position of remaining mathe-
matical formalists, those who see mathematics as the working out of consequences
of some formal first-order theory by means of the axioms and rules of first-order
logic. In particular, one can step back and look at extended model theory itself
from this perspective. We can define many of the logics discussed here relative to
the notion of set in ZF set theory. Hence, we can examine the relationship between
the properties of logics and their definitions in set theory. This is an approach
which I initiated in Barwise [1972a], motivated by an acceptance of the first-order
thesis. While it now seems to me that my motivations were misguided, the approach
has led to some very interesting work on the relationship between strong logics
and set theory, work that is discussed in Chapter XVII.

From the early days of infinitary logic there has been a close interplay between
strong logics and set-theoretic principles that go beyond ZF set-theory in various
ways, especially so called "large cardinal" assumptions. These are assumptions
that are not justified by clear-cut intuitions about sets, at least not by intuitions
shared by the silent mathematical majority. Weakly and strongly compact
cardinals K are defined in terms of the associated infinitary logic S£KK satisfying
an analogue of the countable or full compactness property, for example. The
assumption that there are such cardinals goes beyond the intuitions about sets
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built into ZF. Measurable cardinals come up in the discussion of the Robinson
consistency property. It, too, is a strong assumption that goes beyond ZF. An
even stronger assumption, Vopenka's principle, is equivalent to the statement that
every finitely generated logic has a strong compactness cardinal, that is, has a
cardinal K SO that any inconsistent theory T of the logic has a subset of size less
than K which is inconsistent. These and related results are discussed in Part F.

It is not clear what to make of results like these. Luckily, most of them have
to do with very abstract logics, or with abstract logic itself, not with the concrete
logics that arise from natural mathematical concepts.

2.8. Other Types of Structures

Lindstrom's theorem poses a dilemma: Give up either compactness or
Lowenheim-Skolem. However, there is an escape from the horns of the dilemma
mentioned earlier. Implicit in the discussion in this section has been the assump-
tion that we were discussing logics that have the same basic sort of syntax and
semantics as first-order logic. There is always the possibility of violating one or
both of these assumptions by studying logics that have different sorts of structures,
or have syntactic rules that are stronger in some ways than first-order logic but
weaker in others.

Part E of the book is devoted to the study of some of the logics that have been
developed for different kinds of mathematical structures. The most extensively
studied class of structures is the class of topological models, models where there
is an underlying topology. In this setting there has been a great deal of effort that
has gone into discovering the analogue of first-order logic.

Harvey Friedman initiated the study of logic on the real numbers incorporating
the notions of measure and category, a topic pursued in Chapter XVI. Keisler,
on the other hand, initiated the investigation into the logic of probability spaces.
These logics are interesting not just for what they say about the logic of the reals
and the logic of probability, but also because they force us to examine additional
assumptions that are usually implicit in extended model theory, assumptions
that do not hold in these settings.

2.9. Unnatural Logics

We should give a word of warning about some of the logics one will meet in this
book. Recall that the aim of extended model theory is to discover natural logics
that embody important mathematical notions. This leads to abstract model-
theory and the study of the relationships between properties of logics. There are
a number of logics that have arisen simply as counterexamples to show that some
one property of logics does not imply some other, not with the real goals of ex-
tended model-theory in mind at all. And, too, some of the logics that seemed
superficially natural turned out not to be. J^(Q0) *

s o n e such- T i m e wiH te ' l which
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logics are truly significant. There is no more point in getting bogged down in the
study of purely artificial and unnatural logics than there is in the study of hemi-
demi-semi-groups with chain conditions.

3. Conclusion

The reader of this volume will find many topics that have not been discussed
above, for the book, like the subject, is a large one. Even so, there are topics in the
field of extended model theory and abstract logics that could not be included in
this volume, for one reason or another. Beyond that, there are many topics that
fit under the general heading described by the title of this book, "model-theoretic
logics," but which are not usually considered part of extended model theory since
they do not fit so well under the general framework that has been developed in
abstract model theory. Consequently, we have not attempted to include this
work here.

The most glaring omission of this sort is work on the semantics and logic of
computer languages. This is a rich domain of research that would need a volume
of at least equal size to treat adequately. In the long run, it seems that a unified
view of logic and semantics will require us to come up with a framework that
encompasses both fields, but we are far from such a conception at present.

The semantics of computer languages, and the differences that emerge in that
work from more traditional model theory, points to a shortcoming in the latter,
namely its failure to come to grips with activity, as opposed to objects and static
relations between them. This same shortcoming causes problems with traditional
attempts to apply model theory to human languages, another topic not treated
here.

Traditional model theory focuses on truth (and satisfaction) of sentences, and
so leaves out the use of language to affect change. This is a shortcoming that has
been emphasized by Austin and other writers on natural language in the tradition
of "speech act" theory. This power of language to effect change (e.g., in so-called
"side effects") is one of the things that makes the semantics of computer languages
strikingly different.

Another area where work on computer and human languages makes the
traditional work in logic appear too static is in the treatment of inference. Infer-
ence, whether by man or machine, is an activity, a process of extracting informa-
tion, whereas the tradition attempts to reduce inference to objects (proofs, strings
of symbols). In another paper I have discussed the need to place the study of logic
within a setting where traditional inference is seen as just one form of information
preserving activity. I think such an approach has much to contribute to the
understanding of mathematical activity, and hence to mathematical logic, but the
development of these ideas will have to take place elsewhere. Even the traditional
approach to inference in logic has not made great inroads in extended model
theory. There are few genuine completeness theorems and even fewer extensions
of proof theory.
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Mathematicians often lose patience with logic simply because so many notions
from mathematics lie outside the scope of first-order logic, and they have been
told that that is logic. The study of model-theoretic logics should change that, by
getting at the logic of the concepts mathematicians actually use, by finding ap-
plications, and by the isolation of still new concepts that enrich mathematics and
logic. I do not know just how much of the work presented in this volume will find
a permanent place in mathematics, because it is, after all, a young and vigorous
subject. But whatever the fate of the particulars, one thing is certain. There is no
going back to the view that logic is first-order logic.
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Chapter II

Extended Logics: The General Framework

by H.-D. EBBINGHAUS1

The contents of this chapter are intended to serve as preparation for the more
specific or more advanced topics of the chapters that follow. We will pay equal
attention to general notions and concrete systems. The first part of the material
is concerned with basic notions and examples. In Section 1 we define general
logical systems. Section 2 contains a description of numerous concrete examples
together with an elaboration of their essential properties—as far as this can be given
without greater effort. Section 3 is concerned with elementary and projective classes
as a tool to compare the expressive power of logical systems. Applications include
the systematic use of PC-reducibility for compactness proofs. In Section 4
numerous preceding examples are systematized by the notion of the Lindstrom
quantifier, and an analogue of the Ehrenfeucht-Fraisse characterization of
elementary equivalence for logics with monotone quantifiers is proved. The
second part of the chapter is concerned with a more systematic representation of
central model-theoretical notions, divided into three groups around compactness
(Section 5), Lowenheim-Skolem phenomena (Section 6) and interpolation
(Section 7).

We assume that the reader is acquainted with basic notions and facts of first-
order model theory. In general we will consider only one-sorted structures;
however, since in some cases many-sortedness leads to a methodological enrich-
ment even for one-sorted model theory (see, for instance, Examples 7.1.2), we
give the definitions for the many-sorted case (provided the many-sorted formula-
tion is not too tedious and is of practical value). If not stated otherwise, examples,
results and proofs refer to the one-sorted version. In most cases it is not hard to
give the many-sorted extensions. For example, this can be done by reduction to
the one-sorted version using additional predicates ("Unification of Domains", see
Feferman [1968a, p. 13]). However, there are exceptions and the warning following
Definition 2.1.1 should be consulted.

1 I would like to thank the co-authors for their advice, suggestions and corrections. Special thanks
go to Gert H. Miiller for all his support and stimulating encouragement and to Jonathan Stavi whose
thoughts on the subjects have influenced my views and are apparent particularly in Sections 3.2 and 5.3.
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26 II. Extended Logics: The General Framework

1. General Logics

What is a logic? The answer to this question is a pragmatic one: we collect some
basic features common to well-known logical systems and use them as defining
properties of a logic. In order to cover all important systems, we would have to
be rather general. On the other hand we wish to provide convenient definitions to
work with. In order to escape this dilemma we do not fix a single definition, but leave
it to the working logician to choose a suitable notion according to the needs of
specific situations. Having thus created the general framework, we then list some
further properties of logics that serve as a means for describing numerous im-
portant examples of stronger logics in Section 2.

1.1. The Framework

For the purposes of exposition, we shall restrict ourselves to notions of logics
based on conventional algebraic structures. For natural generalizations to other
structures such as topological ones, see Chapters III and XV. We begin by listing
our notational conventions and by recalling standard concepts from model
theory.

Many-sorted vocabularies x, a, . . . are non-empty sets that consist of sort
symbols s , . . . , finitary relation symbols P , R , . . . , finitary function symbols f , g , . . .
and constants c,d,.... Each constant and each function symbol of a vocabulary x
is equipped with a sort symbol of t as are the argument places of relation and
function symbols of x.

Let R be a binary relation symbol whose argument places are equipped with
sort symbols s2, sl9 respectively,/be a unary function symbol equipped with s2,
whose argument place is equipped with sl9 and c be a constant equipped with sv

Then

(*) x = {si,s29s39R,f9c}

is a vocabulary. The x-terms are built up and equipped with a sort symbol in the
obvious way. For instance,/(c) is a x-term. It is assigned the sort symbol s2, the
symbol with which / is equipped, / ( / (c)) is not a x-term because f(c) is not
equipped with sx. In first-order logic the atomic x-sentences are of shape Rtot1

where t0, tt are x-terms equipped with s2, sl9 respectively, or of shape t0 = tx

either for arbitrary x-terms f0, tx or—a variant that we shall adopt—only for
x-terms to,t1 which are equipped with the same sort symbol.

We use self-explanatory denotations of vocabularies such as

T = { S , . . . , £ , . . . , / , . . . , C , . . . } .

In the one-sorted case we drop the sort symbol, writing for instance
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1. General Logics 27

A many-sorted structure 21 of vocabulary x (called a "x-structure") possesses
non-empty domains AS9..., corresponding to the sort symbols s, . . . of x, and
interprets the other symbols in x as usual. The elements of As are called the ele-
ments of sort s of 21.

For instance, with T as in (*) above, a x-structure 21 consists of domains AS1,
AS2, AS3, of a subset Rm of AS2 x ASl, a function/21: ASl -• AS2 and an element

We denote structures in obvious ways such as

in the many-sorted case, and

91 = 04, * " . . . , / « . . . , c « . . . )

in the one-sorted case. The class of x-structures will be denoted by Str[x], and for
any structure 21 we let Xg, be the vocabulary of 21.

If a c= x and 21 e Str[x], then we define 21 [ <r, the a-reduct of 21, to be the
cF-structure that arises from 21 by "forgetting" As for s <fc <r and R®,... for R,... ^ a.
If x is as in (*) above, then for instance

V^1si5 ^^52' ^^sa? i V ?7 5 u / I I ^ I J ^2? 1VJ V^^si? ^ 1 s 2 ' "IV /*

Let x be one-sorted, 21 e Str[x], and C ^ A. C is x-closed in 21 if C # 0 , if
moreover c91 e C for c e x, and C is closed under/21 for/ e x. If C is not empty,
[C]91 denotes the substructure of 21 generated by C, sometimes also written 211C
if C is x-closed in 21. If P e x is unary, cr c x, and P^cr-closed in 21 f <y, we can form
the structure (21 [ cr) | P®. This gives what is called a relativized reduct of 21.

A map p: x -• a is called a renaming (from x o/?fo <r) if it is a bijection from x
onto <r that maps sort symbols onto sort symbols, relation symbols onto relation
symbols of the same arity, function symbols onto function symbols of the same
arity, and constants onto constants such that the sort symbols the latter ones are
equipped with correspond via p. For instance, if R e x is as in (*) above, then the
argument places of p(R) are equipped with pisj, p(s2\ respectively. Given a
renaming p: x -> <r and a x-structure 21, we can "rename" 21 by p, thus obtaining
the a-structure 93 = 2IP with Bp(s) = As for s e x and p(§)® = §91 for the other
symbols § from x.

With this preparation, we can now come to the central notion of this chapter.

1.1.1 Definition. A logic is a pair (j*f, \=&\ where ££ is a mapping defined on
vocabularies x such that if[x] is a class (the class of <£-sentences of vocabulary x)
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28 II. Extended Logics: The General Framework

and \=<? (the i?-satisfaction relation) is a relation between structures and
sentences. Moreover, the following properties (i)-(v) hold:

(i) / / t e a , then i*[x] c if [a];
(ii) If 9t \= <? cp, then cp e i f [xg,];

(iii) Isomorphism Property. If 91 \=# cp and 93 = 91, then 93 N=^ (p.
(iv) Reduct Property. If cp e !£\x\ and T ^ %, then

9lt=^cp iff 91 \x \=<?(p.

(v) Renaming Property. Let p: x -> a be a renaming. Then for each cp e $£[x]
there is a sentence, say cpp, from if [a] such that for all t-structures 91,

91|=^<p iff W\=<?cpp.

Remark. The renaming property expresses the following simple fact: Given an
if-sentence cp of vocabulary x = {s, . . . , R,...}, then the symbols (and the sorts)
in cp can be renamed in any reasonable way p, and the resulting {p(s),..., p(R),.. .}-
sentence cpp has, for any t-structure 91, the same meaning in the "renamed"
{p(s\ . . . , p(R),.. .}-structure 93 = (Bp ( s ) , . . . , p(Kf,...) as <p has in 91.

The reader will have noticed here that we did not incorporate conditions con-
cerning rules of inference or other "logical" properties in our definition. Hence it
would seem more appropriate to use a term such as model-theoretic language (see
Feferman [1974b]) instead of the term logic. However, the latter is shorter and has
become customary. (See also Chapter I for a discussion concerning the choice of
this terminology.)

In order to avoid overburdening the notation, we often denote logics simply
by $£, $£*,... and write " \= " instead of " 1=^". Basic model-theoretic notions are
introduced as usual. For instance, if cp e if [T], we write Mod^((p) (or simply
Mod(cp), if x and ^ are given) for {91 e Str[x] 1911= ̂  <p); and for O u {cp} c ^[x~]
the if-consequence relation is defined by

<b\=<?<p iff for all 91 e Str[x], 91 \=<? O implies 91 \=<? cp.

Two x-structures 91, 93 are &-equivalent, 91 = ^ S, iff for all cp e JS?[T], 91 \=<? cp iff
93 |=^ cp. We write Th^(9I) for {cp e ifCxJISI t=^ cp}; it is called the i?-tfo>ory
of 91.

1.1.2 A First Variant. For some purposes it is especially convenient to have
variables and formulas available in a logic. This can be accomplished by a natural
generalization of Definition 1.1.1: For each sort symbol s we specify a class of
variables Xs, . . . for objects of sort s and replace i£ by two functions Sent^ and
Form^, where, for all x, we let Form^[x] be the class of <£'-formulas of vocabulary
x and Sent^[x] be the class oi <£-sentences of vocabulary x. Exact definitions, even
including that for the free occurrence of variables, can be obtained along the lines
of Definition 1.1.1 in a canonical way. For the general theory we will usually
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1. General Logics 29

assume that logics are given without variables, although in most concrete examples
we will follow the definition just sketched. Since free variables behave like con-
stants, there are only minor differences between the two variants.

The traditional first-order logic, J^ww, can be regarded as a logic in the for-
going sense. Moreover, it is also a logic in the sense of Definition 1.1.1, if, for any
x, we define J^ww[x] to be the set of first-order sentences of vocabulary T. Similarly,
second-order logic, J^2, weak second-order logic, 5£wl, infinitary logics such as
^(oia, o r ^ODCO a n d logics with cardinality quantifiers such as ^^QJ (where g a

is interpreted as there are Ka many) are logics in both sense, with or without free
variables.

1.1.3 A Second Variant. The so-called co-logic arises from first-order logic by fixing
a vocabulary {s, < } and allowing only structures 91 such that {s, <} ^ xm and
91 T {s, <} is isomorphic to the standard structure (co, <) of the ordering of the
natural numbers. Of course co-logic does not fit into the present framework because
the renaming property fails. In order to cover it by a notion of logic, we are led to a
generalization of Definition 1.1.1: In addition we demand that a logic J£? have a
further component, namely a map Str ̂  defined on vocabularies where, for all x,
we let Str^[x] be a class of x-structures, the x-structures admitted for <£\ Then we
modify the basic properties of Definition 1.1.1 in the obvious way (see Section 2.6).

7.2. Basic Closure Properties

Practically all investigations of logics need stronger assumptions than those of the
last section. The following closure properties are met by most of the well-known
systems and provide much technical facilitation.

1.2.1 Definition. The purpose of the basic closure properties is to guarantee that
we have at least the expressive power of first-order logic. We have:

(i) Atom Property. For all x and all atomic cp e ^ W W [ T ] there is a sentence
^ e JS?[t] such that

(ii) Negation Property. For all x and all q> e S£[x] there is a sentence \\i e J5?[x]
such that

Mod^i/0 = S t r [x ] \Mod^» ;

(iii) Conjunction Property. For all x and all <p0, cpx e if [x] there is a sentence
\jj e <£[x] such that

M d ^ ( ) n
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30 II. Extended Logics: The General Framework

(iv) Particularization Property. If c is of sort 5, c e t , then for any cpei?[x]
there is a sentence \\i e JS?[T\{C}] such that for all (x\{c})-structures 91,
911= \jj iff (91, a) |= (/> for some ae As.

If if has the boolean property, that is, (ii) and (iii) together, then we use ~i cp,
cp0 A cplto denote the required sentence \j/. If if has the particularization property,
we write 3ccp for a corresponding if/.

For technical convenience we formulate the following properties only in the
one-sorted case.

1.2.2 Definition. All the basic examples of logics above (but not co-logic) allow
relativizations in the sense of:

Relativization Property. I f c ^ t u ( F , ^ G if [a u {c}] and cp e if [x], then there
is a sentence \j/ e if [x u a] such that for all (x u (y)-structures 95, if the set
X* = {b e £|(93, b) N x ) i s T-closed in 93, then

SN^A iff (93 {x)\/*\=<p.

Intuitively, \j/ is the (more exactly, it is a) relativization of cp to {c|x(c)}9 often
written as (p{c|*(c)} or simply cpp, if x = ^> -̂

If constants are present, relativizations can cause difficulties. For instance, if a
vocabulary x contains constants, it is impossible to represent two x-structures
with distinct domains as relativized reducts of a third structure. For the usual
logics this difficulty can be overcome, because one can eliminate constants via
descriptions by unary relations. We formulate this in a general context, giving an
even stronger version that is needed on various occasions: the substitution property.
In the simplest case this property guarantees that for any <r, x the following holds2:
If R$x is n-ary and ij/(c)e!£[a u {c 0 , . . . , cn_1}\ then for every cpe!£\% u {R}~\
there is cp[RIXc\j/{c)\ G if [x u a] with the meaning

3K(Vc(£c <-> ^(c)) A cp).

Similarly for rc-ary/ £ x and constants c $ x, where for instance cp[f/lcajj(c, c)]
has the meaning

c,c)) Acp)

and cp[c/M\l/(dy] has the meaning

A cp).

1.2.3 Definition. In generality !£ has the substitution property iff for any x, x' with
x c T', if cp e i f [x'] and, for all R , . . . , / , . . . , c , . . . e x'\x, there are given predicates

2 We use a, . . . , c , . . . , x , . . . to stand for finite sequences of elements, constants, variables, respectively,
of appropriate length.
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1. General Logics 31

ijsR(cR\ ... then there exists an if-sentence that arises from cp by simultaneously
replacing R,... by AcR ij/(cR\ . . . , respectively.

It is easy to give a more precise formulation of this definition and to see that
any logic ̂ £ with the atom property and the substitution property allows elimination
of function symbols in the following sense: If cr arises from x by replacing any / e x,
where/is ft/-ary, and any c e x by new relation symbols Rf and Rc of arity (nf + 1)
and 1, respectively, then for each cp e ^\x] there exists \\t e ^[_<f\ such that the
a-models of \j/ arise from the x-models of cp by replacing the functions and constants
by their graphs. A similar consideration shows that the substitution property
yields the renaming property, at least in the one-sorted case. The many-sorted
version needs a diligent treatment of sort symbols.

Logics satisfying the properties given in Definitions 1.2.1 to 1.2.3 are well-suited
for general investigations, and we call them regular logics. A regular logic contains
for each first-order sentence cp a sentence I/J of the same vocabulary and with the
same models. When working with such a logic, it is convenient (and will be done
tacitly) to assume that cp itself can be taken as such a ijj.

Further basic properties of logics can be of value in specific situations. One
can, for example, demand that for any if-sentence cp there is a smallest x = x̂
such that cp e ^[x] ^occurrence property"). Concerning questions of effectiveness
it is reasonable to assume that x̂  exists and is finite. In order to have precise
definitions of such notions for the examples that follow, we complete this section
with a translation of crucial properties known from first-order logic into our
general framework. More detailed definitions will follow in Sections 5 through 7.

1.2.4 Definition. Let if be a logic. Then

(i) For an infinite cardinal K, !£ is K-compact iff for all x and all 3> ̂  <^[x]
of power < K, if each finite subset of <I> has a model, then <D has a model,

(ii) ^ is compact iff 5£ is K-compact for all infinite K.
(iii) !£ is effective iff for all x ^ HF (the set of hereditarily finite sets),

To finite

and for all x0 e HF, ^[XQ] is a recursive subset of HF. (Of course, it is
the usual encoding of first-order formulas by hereditarily finite sets that
leads to this definition.)

(iv) 5£ is effectively regular iff ^£ is regular and effective and all regularity
properties are effective. For instance, effectiveness of the negation
property means that for each x0 e HF there is a recursive function
~n: ^[TQ] -• ^[_xo~\ such that for any cp e J£[_xo\ î(<p) is a negation
of cp.

(v) <£ is recursively enumerable for validity iff ^ is effective and for all
x0 £ HF the set {cp e i f [xo] | |= cp} is recursively enumerable,

(vi) !£ is recursively enumerable for consequence iff ^£ is effective and for all
x0 e HF and all recursively enumerable subsets <£ of ^\x^\ the set
{cp e if[x0]|O \= cp} is recursively enumerable.
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32 II. Extended Logics: The General Framework

(vii) 5£ has the Lowenheim-Skolem property (down to K) iff each satisfiable
if-sentence has a model of power < Ko( < K). (Here, the power of a
x-structure 91 is defined as \A\ in the one-sorted case and as £ s e x \AS\
in the many-sorted case.)

(viii) $£ has the Craig or interpolation property iff for all x0, xl: if (p; e ̂ [ t j
(i = 0, 1) and cp0 \= q>u then there is an interpolant, that is, a sentence
^ e if [t0 n xx] such that cpo\= x// and \j/ \= (px (provided—in the many-
sorted case—that t0 n xx contains at least one sort symbol),

(ix) if has the Beth property (that is, if satisfies Beth's definability theorem)
iff for all x, all symbols § from t different from sort symbols and all
cp e if [T], if § is implicitly defined by cp, then § is explicitly definable
relative to (p.

The notions of implicit and explicit definability are given, say for unary R
according to the following definition.

1.2.5 Definition, (i) R is implicitly defined by q>, if every (x\{#})-structure has at
most one expansion to a x-structure satisfying cp.

(ii) R is explicitly definable relative to cp, if for a new constant c of the same
sort s as the argument place of R, there is a sentence \j/(c) in if [(x\{^}) u
{c}] such that for all x-structures 91 with 91 \= cp one has

Intuitively this last means that

Inspection shows that the usual proof in if'wco of Beth's theorem via the inter-
polation theorem needs only the regularity properties of if'wco given by (i)-(v)
in Definition 1.1.1 together with the basic closure properties given in Definition
1.2.1. Hence, any regular logic S£ with the interpolation property has the Beth
property. This simple fact may be considered as the first theorem of abstract
model theory that we have met. And, of course, there is also a first problem:
Under what conditions can one conclude that the definability property yields the
interpolation property? For an answer, the reader is referred to Section XVIII.4.

Historical Remarks. The impetus to treat general logical systems goes back to
Mostowski [1957]. Definitions similar to the ones above were given first by
Lindstrom [1969] and H. Friedman [1970a]. Barwise [1974a] develops a more
systematic approach in a categorical framework. A fairly general definition
covering, for instance, topological logics is given in Mundici [1984b]. A thorough
discussion of properties of logics—from basic ones to more specific ones—can be
found in Feferman [1975].
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2. Examples of Principal Logics 33

2. Examples of Principal Logics

The study of general logics should provide us with means to investigate concrete
logics. On the other hand the study of concrete systems can indicate paths that
should be followed in the abstract theory. Led by this insight, we now briefly
describe numerous systems beyond first-order logic and sketch their most im-
portant features. According to our agreement we restrict ourselves to the one-
sorted case. An exception is the higher-order case in Section 2.1. More details
can be found in Chapter VI.

2.7. Logics of Higher Order

Among the possible higher-order logics, we will restrict ourselves to those of just
the next level.

2.1.1 Definition. Second-order logic, J£?2, is built up as usual, allowing for each
sort s quantification over rc-ary relations on the domain of sort s.

Obviously, if2 is regular. Its expressive power, however, contrasts with the
fact that practically all useful model-theoretic properties of first-order logic fail.
Moreover, because of our weakness in governing the notion of subset, we quickly
run into set-theoretical dependencies as well. For instance, via a suitable formula-
tion of the continuum hypothesis (CH), one can obtain an $£2-sentence that is
valid iff CH holds. Nevertheless the situation is not quite hopeless since many of
the logics developed up to now can be considered as parts of <£2. Hence investiga-
tions of stronger logics can be seen as aimed at providing a model-theoretic
treatment for more and more of if2. In particular, Chapters XII and XIII will
demonstrate that it is even possible to venture into the "real realm" of second-
order logic.

Warning. We are usually correct in taking it for granted that properties of a logic
do not change if we pass from the many-sorted case to the one-sorted case or vice
versa; however, the interpolation property does fail for 5£2 in the two-sorted case,
even though it is trivially true in the one-sorted case. The proof uses a far-reaching
method that goes back to Craig [1965]. A version of it is given in Section 7.3,
and a systematic treatment can be found in Section XVII. 1.2.

2.1.2 Definition. Weak second-order logic, J^w2, in contrast to if2, has the relation
variables ranging only over finite relations.

It would appear that ifw2 deprives the notion of subset of its teeth. In ifw2,
however, one can easily express the notion of finiteness, because the finiteness of
the domain of sort s is guaranteed by the sentence 3XS Vxs Xsxs. In this way, one
can characterize, for example, the standard model of arithmetic, torsion groups,
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34 II. Extended Logics: The General Framework

etc. Hence, j£?w2 is neither K0-compact nor recursively enumerable for validity.
On the other hand, it is easy to prove the Lowenheim-Skolem property. As
arithmetical i?w2-truth is implicitly definable, it can be seen by the method men-
tioned in the warning above (see Section 7.3) that the Beth property and hence
the interpolation property fail.

2.2. Examples of Logics with Cardinality Quantifiers

If J^wco is enlarged by a unary quantifier Q that is monotone in the sense defined
for Theorem 4.2.3, then, according to Theorem III.4.1, the resulting logic ifwt0(6)
is regular just in case Q is some Qa. (For any ordinal a, Qo,xcp(x) means that there
are at least Ka many x such that (p(x).) We shall deal here with the logic S£m(a(Q^)
and some of its relatives. For considerably more information and historical notes
see Chapter IV, and for ^^(QJ with a > 1 see Chapter V.

Example 1. The logic J^wco(2i) has some useful properties: It is K0-compact
(Fuhrken [1964]) and recursively enumerable for consequence (Vaught [1964]).
Keisler [1970] gives a completeness proof using an elegant system of rules that
arises from a complete first-order calculus by addition of the following four
axiom schemata:

(i) "2 is countable": —iQ^x = y v x = z);
(ii) "Qj is monotone": Vx((jp -• X/J) -• (Q\X(p -* QiXij/);

(iii) " Countable unions ofcountable sets are countable" :Qxx3y(p -> 3xQxy(p v

(iv) Renaming of bound variables: QiX(p(x, x) <-> Qiycp(y, x) for any y not free
in cp(x, x).

For details see Section IV.3. Alternative proofs will be given in Sections 3.1 and
3.2. As we shall see there, the expressive power of ^JiQi) beyond first-order
logic comes down to the characterization of Kr///ce orderings, i.e. structures
91 = (A, <M) that are models of the axioms for linear orderings plus the sentence

Qxx x = x A My —i Q±x x < y.

For the strength of ^^JiQi) m mathematical contexts, see Chapter VII.
Theset {-lgiXx = x) u {~ica = cp\0 < a < /? < Kx} shows us that if ^ Q i )

is not Krcompact. Of course, the Lowenheim-Skolem property fails, but the
Lowenheim-Skolem property down to Nx (even for sets of sentences of power
<Xi) can be proved similarly to the downward Lowenheim-Skolem-Tarski
theorem in 5£iOiO. Also, J£?wa/<2i) satisfies an omitting types theorem (cf. Section
IV.3.3). But the hope of having found a useful logic was weakened by several
points. For instance, by the up-to-now unsuccessful search for satisfactory pre-
servation theorems, and by the failure of the interpolation property (Keisler
1971) and the Beth property (H. Friedman [1973]).
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2. Examples of Principal Logics 35

Keisler's counterexample to interpolation in S^^JiQi) c a n be described as
follows. Let cpo(E, R) express that E is an equivalence relation with only un-
countable equivalence classes and that R is a countable set of representatives.
Furthermore, let (px{E, S) express a similar statement with S being an uncountable
set of representatives. Then the entailment

(•) q>0(E9R)\=

holds, but there is no J^/Q^-interpolant (cf. 4.2.7).

Example 2. What might be called the "Ramseyfication" of the quantifier Q1 leads
to the regular logics Sf^JQW for n > 1, and J^ww(gi|n > 1) of Magidor-Malitz
[1977a]. Q\ is an n-ary quantifier, the meaning of which is defined by the following
satisfaction condition :

911= Q\x(p(x) iff there is an uncountable subset M of A where
91 \= <p[b] for all b e Mn.

Sometimes one uses the variation with "for all b e M " " replaced by "for all
distinct b0, ...,bn-le M"; however, the quantifiers resulting in either version
can easily be defined from each other.

Assuming V = L (or even O^) , Magidor and Malitz showed that
^(oco(Qni\n ^ 1) is N(TcomPact- A proof is given in Section IV.5.2. On the other
hand, according to a result of Shelah, it is consistent to assume that ^JQl) is
not K0-compact. The dependence on set-theoretical principles beyond usual set
theory (such as OK,) becomes intelligible if one takes into consideration that
Suslin trees, for instance, are characterizable in Ĵ WW(Q?) (see Example IV.5.1.4).

In ^cocoiQi), the entailment (*) of Example 1 has the interpolant

cp(E) A~iQjxy(x = y v ~iExy)

where cp(E) states that E is an equivalence relation with only uncountable equiva-
lence classes. Nevertheless, for no n > 1 does i?Wfi,(6i) have the Beth property (see
Badger [1980]). For a counterexample to interpolation see 7.1.3(b). Because
^coo)(2i) overcomes Keisler's counterexample, it is strictly stronger than
&a>a>(Qi)'> moreover, as was shown by Garavaglia and Shelah, the expressive
power of J^wa)(6i+1) is greater than that of JSf^Cg"), for all n > 1. Details and
further results of this kind can be found in Rapp [1983], [1984].

Example 3. "Positive" logic, J^wco(pos), and "negative" logic, ifwco(neg). As has
been pointed out, mainly by Feferman, it would be interesting to have a regular
K0-compact extension of ^WC(,(Qi) that is recursively enumerable for consequence
and has the interpolation property. Such a logic would combine the usefulness of
Xo-compactness and interpolation with the expressive power of J^oXGi). The
search has been unsuccessful so far. (Reasons can be found, for instance, in
Proposition XVII.2.4.6.) However, the attempts to date have led to various systems
possessing all desired properties up to interpolation.
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36 II. Extended Logics: The General Framework

In order to find a candidate besides JPaJQIln > 1) we observe that Qixcp(x)
means the same as

(*) 3 uncountable X Vx(~iXx v q>(x))

or as

(**) —13 countable X Vx(Xx v —\<p(x)).

Thus we are led to logics that arise from if wco by allowing quantifications over
either uncountable or over countable subsets. In both cases, however, X0-com-
pactness fails, since we can characterize in these logics (co1? <) and (co, <),
respectively. For instance, a linear ordering is isomorphic to (col9 <) iff it is
(D1 -like and each uncountable subset has a least element.

Let us say that a set variable X occurs negatively (positively) in a formula cp,
if there is an occurrence of X in cp that lies in the scope of an odd (even) number
of negation signs provided —i, A , v are the only propositional connectives in cp.
Obviously, X occurs only negatively in the matrix of (*) and only positively in
the matrix of (**). Hence, in our second, and more modest attempt, we define
the logics ^^ (neg ) and 5£wco(pos) that arise from 5£wco by allowing existential
quantifications such as 3Xcp, with the variable X ranging over uncountable
(countable) subsets, only in case X occurs at most negatively (positively) in cp.

i f ^ n e g ) extends &?
0Ha(Q

n\n > 1), but, according to a result of Stavi, (col9 <)
is still characterizable (see Theorem IV.5.1.2). On the other hand, 5£^(pos) turns
out to be K0-compact and recursively enumerable for consequence. It is strictly
stronger than ^Wia{Qi\ because the entailment (*) in Example 1 has the if W(o(pos)-
interpolant

(p(E) A 3X Vy 3x(Xx A Exy).

An easy induction shows the validity of:

(***) / / (p(X,...) is an ifwco(pos)-/0rmu/a and 91 \= cp[M,...] holds for some
countable M <= A, then for any countable M' such that M c M' <= A,
we have 911= cp[M'',...].

Intuitively, this means that i^Cpos) allows existential quantifications over large
countable sets. The next example provides a natural generalization of this feature.

Example 4. Stationary logic is denoted by if wa)(aa). Here we restrict ourselves to a
short description that will be sufficient to give a compactness proof for models of
power Kj in Section 3.2. A comprehensive treatment is given in Section IV.4.

We first need some set-theoretical terminology. For any set A, a subset S of
the set PMl(A) of countable subsets of A is unbounded (in PWl(A)), if for any s e Pwi(i4)
there is some s' e S such that s ^ 5'. The set S is closed (in PWl(^)), if the union
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of any countable c -chain in S belongs to S. The set S is said to be cub, if it is both
closed and unbounded. The cub filter, D(A), over A (and it really is a filter!) con-
sists of those subsets of P^^A) which contain a cub set. If A = co1, then those
subsets of co1 which are closed and unbounded in the usual sense of ordinal number
theory form a basis of D(A). Intuitively, D(A) may be considered as the set of those
subsets of PafA) which consist of "almost all" elements of P^^A).

The logic J^wco(aa) arises from if ww by adding new variables X, Y,... for
countable subsets. These lead to new atomic formulas Xt (for first-order terms t).
Besides the usual first-order operations, quantifications over set variables are
allowed only by means of a new unary quantifier (aa). The meaning of (aa) is
specified by the satisfaction condition:

SH\=(<m)Xcp(X) iff {s e Pmi(A)\W \= <p[>]} e D(A).

In other words the condition means that 91 \= <p[s] holds for "almost all" count-
able subsets 5 of A.

The name "stationary" suggests several features: For instance, the dual
quantifier ~~i (aa) ~~i to (aa) means intuitively "for stationary many" (where a
stationary set is one intersecting every cub set). As the results in Chapter IV will
illustrate, stationary logic is a nice resting point in the ladder of extensions of
JfanAQx). According to (***) of Example 3 above, any ifwco(pos)-formula 3Xcp
has the same meaning as (aa)X<p. Therefore J^wco(aa) can be considered as an
extension of J§?wco(pos). It is even a strict extension (see Remark IV.4.1.2(v)).

2.3. Cardinality Quantifiers with Complex Scopes

There are some interesting quantifiers which are applied to pairs of formulas.
The Rescher quantifier, QR, from Rescher [1962], is defined by the satisfaction
condition :

iff

The equicardinality or Hdrtig quantifier, I, from Hartig [1965], is defined similarly
but with " = " instead of " < ". QR and / lead to the regular logics ^ ^ ( 2 * ) and

Clearly, the quantifier / can be expressed by QK. On the other hand it can be
seen that there is no ifcow(/)-sentence of vocabulary {U} that has the same models
as QRxy[Ux, ~i Uy]. (See also Hauschild [1981].)

Since (co, <) can be characterized in Sf^JJ) by adjoining to the usual axioms
of linear orderings without last element the sentence

\/xy(x = y <-> Iuv[u < x, v < yj),
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38 II. Extended Logics: The General Framework

we see that neither J^wco(/) nor i?WC0(Q
R) is K0-compact. Even more, if cp is the

j£?wco(/)-sentence in the vocabulary {<, U} formed from the axioms of a linear
ordering by adjoining the sentence

\fxy(Ux A Uy A IUV[U < x, v < y] -+ x = y)

then the {< }-reducts of the models of cp relativized to the predicate U form the
class of all linear orderings that are isomorphic to the natural ordering on a set of
cardinals, and this is nothing more than the class of all well-orderings. In the
terminology to come (see Definition 3.1.1) the class of all well-orderings in RPC in
Ze^JJ) and hence in if WW(QR).

2.4. Logics with Cofinality Quantifiers

Is there a regular logic strictly stronger than first-order logic that is fully compact?
In Shelah [1975d] one finds a variety of examples. We mention the logic -Sf<oa,(Q

cfo>),
where Qc{0} is a binary quantifier the meaning of which is given by

911= Qc{0)xy <p(x, y) iff {(a, b) e A x A | 911= q>[a, b]} is a linear
ordering of its field with cofinality co.

In Section 3.2 we sketch a proof that ^WC0(Q
cfca) is fully compact and recursively

enumerable for consequence. For the failure of the interpolation property see
Counterexample 7.1.3(c), and for larger cofinalities, see Chapter V.

2.5. Logics with Quantifiers of Partially Ordered Prefixes

A usual first-order prefix is of "linear character" in the sense that each existential
variable depends on all preceding universal ones. This becomes obvious by the
introduction of Skolem functions. For instance, a formula such as

Vw 3v Vwx 3y cp(u, v, w, x, y)

is equivalent to

3fg Vwwx (p(uj(u\ w, x, g(u, w, x)),

where/is a unary and g a ternary function variable. One of the simplest examples
of a prefix that is not of this kind leads to the 4-ary Henkin-quantifier QH (Henkin
[1961]). Its meaning is given by:

iff there are functions/0,/i: A -> A such that for all

a0, ax e A we have 91 \= <p[aO9fo(ao)9 a i ,
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2. Examples of Principal Logics 39

Usually QHxoyox1y1 (p(x0, y0, xu yx) is written more intuitively as

in order to display the functional dependence of the variables.
The Henkin logic if WW(<2H) is regular. But, if cp is the sentence

3z

and A # 0 , then we have 4̂ t= cp iff there are a e X and / 0 , / x : 4̂ -• 4̂ such that
a $ rg(/0) and fi(fo(b)) = b for all fe e A. This simply means that A is infinite.
Hence, J^WW(6H) is not K0-compact. Moreover, the adjunction to ££fflfi) of quanti-
fiers like QH that stem from partially ordered prefixes leads to the full expressive
power of second-order logic. Details can be found in Section VI. 1. For the mathe-
matical relevance of these quantifiers see Barwise [1976].

2.6. Logics with Standard Part

An immediate way to obtain a logic in which, say, (co, <) is characterizable, is to
incorporate (co, <) into the semantics of first-order logic as done in co-logic. The
following definition provides a generalization.

Let if be a logic, x0 a vocabulary, U a unary relation symbol not in t0, and
ft a class of to-structures closed under isomorphism. We define a logic if (ft) in
the sense of the generalization under 1.1.3 as follows:

( , otherwise,

and

!

{9l e Str[x] | U* t0-closed in S& and

(21 r to) It/* eft}, i f T 0 u { t / } ^ T ;

0 , otherwise.

21 N *iR) cp iff 21 e S t r ^ w [ t J , <p e J ? ( R ) [ T J , and 21 N x q>.

In the many-sorted case one can proceed similarly (and even dispense with the
analogues of U by introducing new sorts, see also Remark 3.1.2).

If ft = {33193 ^ 21}, we write if (21) instead of if (ft).
An interesting example in addition to co-logic, ^^((o, <), is ifcoco(ft), where

ft is the class of Krlike orderings. In both cases one can dispense with U, as the
task of U can be taken over by the field of <.
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40 II. Extended Logics: The General Framework

The following fact plays a key role in the compactness proof for ^ w w (6 i ) as
given in Section 3.1.

2.6.1 Theorem. Let St be the class oftt^like orderings. Then JSf ̂ ($1) is K0-compact.

Proof. Let xm = {<} for 91 eft and x a fixed countable vocabulary, < ex.
The x-regularity scheme I = Z(x) consists of the J^ww[x]-sentences of the form

Vx Vx 3y Vw < x(3i; efield(<)q>(u9 v, x) -> 3v < y <p(u, v, x)).

It is sufficient to prove that for all d> c ^ w w [x] ,

(*) O has an j ^ J ^ - m o d e l iff ¥ has an if^-model,

where lF = 0 u I u { < is a linear ordering of its field without last element}.
The implication from left to right is clear, because Nx is regular.
For the other direction assume that *F has a x-model 91, where 91 can be chosen

countable. We show that there exists a countable x-structure 33 such that 91 -< 93
and <® is a proper end extension of <m. Then we can repeat this process Nx-times,
taking unions at limit stages, and arrive at an ^wco(ft)-model of O.

Let A(9l) be the elementary diagram of 91 formulated with new constants a
for a e A, c a new constant, and let H = A(9l) u {a < c\a e field(<91)}. We have
to show that S has a model which, for all a0 e field( < **), omits the type
{x # a|a <2Ia0} u {* < %}• I n order to prove this, let a0 e field(<91) be given
and a formula #(x, y) of vocabulary x u {a | a e A} be such that

(1) 3 u {3x x(x, c)} has a model.

We have to show that

(2) 3 u <3x(x(x, C ) A ( \Jx = avao<xvx

I \ \
has a model.

Let us write 3 arb. lg. w\j/(w,...) for Vw efield(<) 3w > u^(w,...). By an easy
compactness argument we see that (1) is equivalent to:

(1') (91, (a)aeA) \= 3 arb. lg. w 3x x(x, w),

and that it is sufficient to prove instead of (2):

(MA<t)aeA)\= V 3arb.lg. w/few), or
a<*a0

(21, (a)aeA) \= 3 arb.lg. w 3x(/(x, w) A (a0 < x v x $field{<))).
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3. Comparing Logics 41

For a proof of (2') assume the first disjunct to be false. Then for each a <® a0

there is some fcefield(<51) such that for all d e field( < **), if i(a, d) holds in
(% («)ae^X then d <* b. As 21 satisfies the t-regularity scheme, there is a uniform
bound b0 of this kind for all a <* a0. Hence, because of (T), the second disjunct
must be true. D

The proof yields more. From (*) we obtain for O u {cp} ^ ^

If <D is recursively enumerable, then so is 4/. Thus we have:

2.6.2 Corollary. Let ft be the class of^^like orderings. Then ^f f lJft) is recursively
enumerable for consequence. D

2.7. Infinitary Logics

We shall not go into details here. Infinitary logics of type S£Kk and admissible
fragments will be treated in Chapters VIII and IX. Infinitary quantifiers such as
the game quantifier G are described in Chapter X. For S£ ̂ <o and arguments for its
naturalness, see Section III.3 and, in particular, Section XVII.2.2. Occasionally we
shall also consider logics such as <^KA(6I)-

In i?ww, the set {—i, A , v } forms a complete system of propositional connec-
tives. Of course, in J2?WlW, where we use only —i and the generalizations of A , v ,
we are far away from propositional completeness. Hence the question arises
whether there are other reasonable (infinitary) propositional connectives for
J2?WlC0. The answer is, in some sense, positive; details can be found in the references
given in Section III.3.8.

3. Comparing Logics

In the preceding section we intuitively compared logics with respect to their
expressive power. The aim of this section is to give precise definitions for the
comparison of logics by use of elementary and projective classes and to present
some concrete examples that will illustrate the methodological importance of the
latter notions.

3.1. Elementary and Projective Classes

We begin with a basic definition.

3.1.1 Definition. Let $£ be a logic and ft a class of t-structures.
We say that St is an elementary class in if (or that ft is EC in if, or that ft

iff there is cp e i f [ t ] such that ft = Mod^(cp).
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42 II. Extended Logics: The General Framework

We say that ft is a projective class in if (or that ft is PC in J?, or that ft e PC^)
iff there is x' 2x, having, in the many sorted case, the same sort symbols as x,
and a class ft' of x'-structures, ft' e EC^, such that ft = {91 [ x 191 e ft'}, the class of
x-reducts of ft'.

On the other hand ft is a relativized projective class in if (or ft is RPC in if,
or ft G RPC^) iff (in the one-sorted case) there is x' ^ x, a unary relation symbol
U e x'\x, and a class ft' of vocabulary x', ft' G EC^, such that

ft = {(91 I T) I U* 191 e ft' and I/* is x-closed in 91};

or (in the many-sorted case) there is x' ^ x and a class ft' of x'-structures, ft' G EC^,
such that ft = {91 fx|9lGft'}.

Using an intuitive notation, we can say for instance that ft is RPC in 5£ in
the many-sorted version, if there is some x' 3 x and \jj e !£[x'] such that ft =

3.1.2 Remarks. For all usual logics if and classes ft of one-sorted structures, we
have ft G RPCj^ in the one-sorted version iff ft G RPC^ in the many-sorted version.
The same is true for all regular logics, if we restrict ourselves to finite vocabularies.
(The direction from right to left can be shown by unification of domains, and that
from left to right by the dual procedure.) Obviously, we have "PC c RPC" for
any logic if containing sentences such as Vxt/x; the inclusion is strict for ifwco,
but not for S^^^. For details concerning these and other well-known logics, see
Oikkonen [1979c].

In general it is not true that every class PC in ^ is EC in ^, even if if = ^W(a.
A counterexample for $£^ is given by the class of infinite sets. The question whether
any class ft of x-structures such that ft and ft = Str[x]\ft are (#)PC in ^£, is EC
in !£, will lead to an interesting interpolation property, the so-called ^-interpolation
(see Section 7.2). The following simple equivalence shows that interpolation is a
generalization of A-interpolation.

3.1.3 Proposition. For any logic <£ having the negation property, the following are
equivalent:

(i) !£ has the interpolation property.
(ii) For all x, any two disjoint classes ft0, ftx of x-structures that are PC in !£

(one-sorted case) or RPC in !£ (many-sorted case), can be separated by an
elementary class; that is, there is a class ft G EC^ such that ft0 <= ft and
fti c R D

What does it mean to say that a logic J^* is as strong as if ? The model-
theoretical point of view offers several ways that lead to a precise definition,
starting for example from the following concepts:

(*) For any ^-sentence (p there is an y*-sentence q>* having the same
meaning as cp.
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3. Comparing Logics 43

(**) Structures that can be distinguished in if, can also be distinguished in
if*.

From (*) we obtain the usual definition if we identify the meaning of a sentence
with its class of models:

3.1.4 Definition. Let jSf, if* be logics. We say that if* is as strong as <£, in symbols
^£ < &*, iff every class EC in JS? is EC in ^ . Similarly, if and ^ are equally
strong or equivalent, in symbols if = ^*, iff both <£<<£* and ^ * < if. Finally,
we say that J?* is stronger than <£, in symbols if < ^ , iff if < if * and not
J^EE if*.

Obviously, < is a partial ordering on logics.
Concept (**) can be made precise by the notion of if-equivalence of structures:

3.1.5 Definition. <£ < s J^* iff for all x and all 91, 93 e Str[x], if 91 =^ 93, then

When we compare the two notions, we immediately see that 5£ < <£* implies
£? <= !£*. The other direction can be false; for instance ^^G < = &„,„, as $£^G

has the Karp property, but ^^^ < ^^Q (see t n e remark following Theorem
4.3.2 and Section X.3.1). Whereas we shall refer to <= only occasionally, the
relation < and its generalizations (see Definition 3.1.6 below) will actually turn
out to be of great methodological importance.

From the examples in Section 2 and the results there stated, we obtain that

ifw

Moreover, one can easily prove that &w2 < g^an but <£2 ^ ^Wlco a n d i ^ c * ^
<£2. For the class ft of K^like orderings we have ifW(0(ft) < i f^(61) . However,
the other direction is false as can be seen from the sentence Qxx x = x. In order
to remedy this situation to some extent, we introduce some new relations between
logics, taking (relativized) projective classes instead of elementary ones in Defini-
tion 3.1.4.

3.1.6 Definition. For logics if and i^*, 5£ <(R)PC ^ iff every class that is (R)PC
in ^£, is (R)PC in 5£^. Analogously < (R)PC and = (R)PC can be defined.

Now we can state:

3.1.7 Proposition. Let ft be the class of^^like orderings. Then i f ^ Q i ) <RPC

ifwt0(ft), provided that for ^JjQi) we do not allow the symbol < that is used for
the orderings in ft.
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Proof. Let cp e £?
(O0)(Q1)[x'] be given such that cp contains a subformula Qxx ijj(x, y)

with Qx not in \jj. We take an appropriate new function symbol/and then, writing
fy(x) for f{x, y), we replace QYx^{x, y) in cp by a formula i = x(y) expressing

{fy(x)\il/(x, y)} is an unbounded subset offield(<).

Also we add to the resulting sentence, as a conjunct, the sentence Vy(# v $),
where 9 means that

hxfy(x) is injective on {x | \//(x, y)} and {fy(x) | \j/{x, y)} is a bounded
subset offield( <).

Repeating this process until all occurrences of Qi are eliminated, we arrive at
some if C0C0(R)-sentence cp in some vocabulary f 2 T such that

. D

3.1.8 Corollary. if^o/fii) is K0-compact.

Proof. Let O c if ^(QOIXI be countable such that every finite subset of O has
an if ̂ (QJ-model. We may suppose < <£ t. Then every finite subset of <X> has
an if wco(ft)-model, where O = {$ | <p e 0} and all the function symbols used in the
construction of the sentences cp are chosen to be different. By K0-compactness of
^cooify (see Theorem 2.6.1) O has an ifWfO(ft)-model, and hence O has an

D

When we analyze the preceding argument, we see that it is essentially based
on the ordering if\JiQi) <RPC ^OXO(^)- Generalizing, we obtain the first part of:

3.1.9 Proposition. Assume if <RPC ^ and K to be infinite. Then:

(i) If ^ is K-compact, then so is <£. Hence, if Z£* is compact, then so is ££.
(ii) If ^ has the Lowenheim-Skolem property down to K, then so does !£.

Proof. To prove part (ii) for instance in the many-sorted case, assume that ^
has the Lowenheim-Skolem property down to K and that cp is a satisfiable sentence
from if [T]. AS ̂  <RPC !£^, there is some x* 3 x and a sentence cp* e J^*lx*^
such that 0 ^ Mod#(cp) = Mod]£*(<p*) [ x. By assumption, cp*, having a model,
has a model 91* of power < K. Hence 91* f x is a model of cp of power < K. D

Proposition 3.1.9(i) is used in numerous compactness proofs. Similar to
Corollary 3.1.8, the (K>) compactness of the logic 5£ in question is reduced to the
(K-) compactness of some other logic !£* by showing 5£ <RPC ^ and proving
(K>) compactness for ^ . Often ^* is first-order logic with some additional
restrictions (for instance Ki-like orderings). Some further examples will be pre-
sented in Section 3.2.
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3. Comparing Logics 45

The general scheme underlying all these proofs can be formulated as follows:
In order to show that a logic if has some property P, one

(a) first finds a logic <£* such that $£ <R P C if*;
(b) then proves that 5£* has property P;
(c) and finally verifies that P descends from J£* to if.

If P means (K-) compactness or the Lowenheim-Skolem property down to K,
step (c) above becomes superfluous because of Proposition 3.1.9. In later sections
we will see that numerous other properties are inherited downward along <RPC,
thus enlarging the applicability of the reduction method considerably.

In many cases, if if <RPC ^ , completeness properties also descend from i^*
to !£. Rather than give a general theorem, we will confine ourselves to examples.
In order to present the first one, we again let ft be the class of Ki-like orderings.
In the terminology of the proofs of Proposition 3.1.7 and Corollary 3.1.8 we have
for any 0> <= £?

(O(O(Q1)[T'] and any cp e if ^(gOEx], that if < £ T, then

As the transition from an if WC0(Q ̂ -sentence \// to $ is effective, we obtain the follow-
ing result from Corollary 2.6.2:

3.1.10 Theorem. ifWC0(Qi) is recursively enumerable for consequence. D

3.2. A Reduction Method

Many applications of the reduction scheme given in Section 3.1 can be systematized
in a way first made explicit in Hutchinson [1976b]. The method applies to logics
if that admit a nice set-theoretical description, and the corresponding logics
if* are based on specific models of set theory. Without exhausting its full power,
we illustrate the method by some examples. (See also Section XVII.2.3.) First, we
treat ^^JQx). Then we sketch a similar procedure for i^w(aa) and for SemJQGi<a\
Besides Corollary 3.1.8 and Theorem 3.1.10 (K0-compactness and recursive
enumerability for consequence) we show that JSf^CQi) has the Lowenheim-
Skolem property down to Kx. The reader is urged to compare the following proofs
with those given in Section 3.1.

We set 5£ = ifwco(<2i). Our first considerations aim at a suitable logic ^*
based on models of set theory which is >RPC ^, K0-compact and has the
Lowenheim-Skolem property down to Kx. For our purposes it will be sufficient
to have an intuitive description of ^ . A precise definition is left to the reader.

Let t be a countable vocabulary, which is kept fixed for the argument to follow,
and let cr = {e, c0} u {c§|§ e t}, where £ is a new binary relation symbol for the
e-relation between sets, and c0 and the c§ are new constants. Next we define a set
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46 II. Extended Logics: The General Framework

F = F(T) of ifWC0[(F]-sentences that provides us with a set-theoretical description
of t-structures. In fact, we set

where

i^0 is c0 7̂  0 , i.e. \j/0 = 3x xsc0, and

{c § £c 0 , if § is a constant;

c* ^ cn
0, if § is an n-ary relation symbol;

c§: cn -• c0, if § is an n-ary function symbol.

If cp e if [T], let <p* be a natural set-theoretic translation of cp. For example, if cp is

3z QixCRzx A - i / (x) = d)

put <p* equal to

3zeco\{xeco\(z,x)ecR
 A -IC-^X) = cd}\ > Kx.

The transition from cp to (p* enables us to treat if-satisfaction in models of ZFC
(Zermelo-Fraenkel set theory with the axiom of choice). For technical reasons,
we consider a system (ZFC) that differs from ZFC in having only finitely many
instances of the axiom scheme of replacement, but that is strong enough to yield
all set-theoretical facts we need. The reader should think of (ZFC) as ZFC and
verify that at the end we have needed only finitely many axioms of replacement.
The main reason for introducing (ZFC) is the following: In contrast to the
situation with ZFC, one can prove that for (ZFC) there are cofinally many ordinals
a for which (Va, eVg) is a model of (ZFC). (Va denotes the set of all sets of rank <a.)

Next, we call a structure SR good, if s e %,, (M, sm) \= (ZFC), and

is an Kj-like ordering. For good models 9K (un-)countability in 9W means (un-)
countability in the real universe. This can be made precise in the following way.
If 91 is a x-structure, there is a minimal ordinal a > coi such that 91 e Ka and
(Ka, eVo) \= (ZFC). We expand (Ka, evj to a good <y-model SR(9I) of F such that
c0 and the c§ describe 91 in SR(9l); that is,

A = {aeM = FJSR(9I) N aec0}

and, say, for unary/ e x,

f* = {(a, b)eM x M|9K(9I) \= (a, b)scf}.
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3. Comparing Logics 47

Conversely, any good a-model 901 of r yields a x-structure 91(501) such that c0

and the c§ describe 91(90?) in 90i Using these notations, we have:

Lemma A. For any O c jgf [ x ] , 91 e Str[x] and 9K e Str[<r],

(i) if 91 *= ̂  <D, f/ierc 9tK(9I) is a grood morfe/ of<S>* u F ; and
(ii) if 9W is a #ood model o/O* u F, f/zen 9l(SR) *= 0).

Proo/. By induction one gets that for any cp e J^ [T] and any x-structure 31, 91 \= <p
iff 9K(3I) \= <p*. Part (ii) is proved similarly. D

As stated above, we leave it to the reader to define a logic S£* that has as a
standard part the class of good {e}-structures and to show <£ <RPC if* (for a-free
sentences).

The next lemma yields K0-compactness of if*.

Lemma B. For *F ^ ££\G\ the following are equivalent:

(i) ¥ u (ZFC) has a model
(ii) *F u (ZFC) has a good model of power K:. D

The direction from (ii) to (i) is trivial. For the other direction we invoke the
so-called Keisler-Morley lemma (see Theorem IV.3.2.5(ii)), which is here stated
for its own interest:

3.2.1 Lemma (Keisler, Morley). Let 9JI be a countable {s}-model of (ZFC). Then
there exists a countable {e}-structure W > 9K such that (K^, s^[) is a proper end
extension of (Kf, e^).

Now, to prove the other implication in Lemma B, we start with a countable
model 9JJ of *F u (ZFC) and build an elementary chain (9Ma)a<Kl, taking unions
at limit points and setting SD1O = 90? and 9Wa+ x = Wa in the sense of Lemma 3.2.1.
(The additional constants in a are not essential.) Then SR^ satisfies (ii) of Lemma B.

We can now show that if is K0-compact. Assume O c 5£\x\ and every
finite subset of <I> has a model. Then, by part (i) of Lemma A, every finite subset of
O* u F has a model, and hence so does O* u F. Using Lemma B and part (ii)
of Lemma A, we see that O has a model of power <i<v In particular, we also
obtain the conclusion that ^ has the Lowenheim-Skolem property down to Kx.
Finally, to show that ^£ is recursively enumerable for consequence, we observe
that for any O u {cp} c

iff O * u r u

and that the operation * is effective.
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In concluding this subsection, we digress to take a brief look at if wco(aa) for
structures of power Kx (see Section IV.4.2 for the general case) as well as at

3.2.2 Theorem. J2?ww(aa), restricted to structures of power K1? is W0-compact and
recursively enumerable for consequence.

Proof. We proceed in a manner similar to that for J^wco(2i). A structure 901 with
s e xm is called good if 9Ji |= (ZFC), (K^, e^) is an Ki-like ordering that admits a
continuous embedding n of the real K1? and further, for every s e M such that
901 \= s is a stationary subset ofKl9 the set {a e M | f l A } n rg(7i) is stationary in
rg(7r). The analogue of Lemma A is an exercise on closed unbounded subsets of
Kx. The analogue of Lemma B uses a stronger form of the Keisler-Morley lemma
due to Hutchinson [1976a], according to which, given some seM which is a
stationary subset of Kx in $H, the structure W can be chosen such that K^ has a
least new element, say p, and pem's.

Now, to obtain a good elementary extension of some countable model 9W
of (ZFC), one splits the real Nx into Kx disjoint stationary subsets Sa (for a < Kx)
and builds an elementary chain (9Wa)a<Kl over 9W = 9W0 by Hutchinson's lemma
such that for each s e M ^ which is a stationary subset of Kx in SM ,̂ there is some
a < ^ with n(P) = pps

mp + 1s for all sufficiently large jSeSa. We describe the
successor step. For simplicity we assume that all Ma are chosen as subsets of some
fixed set {aa\oi < Kx}, where aa ^ ap for a < /? < Kx. Suppose that jS < Kx and
501̂  has already been constructed and is a countable elementary extension of 901.
Let P e Sa. Define 5 to be aa, if aa is a stationary subset of Kx in 9K̂  and to be
K ^ else. Then choose 501̂ +x according to Hutchinson's lemma with a least new
countable ordinal n(p) = pfi9 pps

mp + 1s. D

3.2.3 Theorem. ^^^(Q0^) is compact, recursively enumerable for consequence and
has the Lowenheim-Skolem property down toi<1.

In this case T need not be countable. We call a structure 9W with e e x^ good,
if 9011= (ZFC), (ay01, 6™) has cofinality a>, and for all b e M that are uncountable
regular cardinals in 901, (b, e^) has cofinality > co1. Then the analogue of Lemma A
is routine. In the analogue of Lemma B, we have to cancel the limitation of power
in part (ii), if |x| > K2. The role of the Keisler-Morley lemma is taken over by:

3.2.4 Lemma. Every (ZFC)-model 901 = (M, sm) has a good elementary extension.

Proof. We start with a suitable chain construction that yields a structure W > 90J
such that for all V e M' that are uncountable regular cardinals in W, (b1, sft) has
cofinality c^. A good extension W >- W can now be constructed as the union
of an elementary chain of length co, where 901o = 901' and for each i, 90Jl + 1 >- 901;,
or01' gets longer in 901I + : and no regular uncountable cardinal of 9W; gets longer in
9Kj + x. To obtain 931, + 1 from 5Rj-, one defines inside 9)1, an ultrapower
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4. Lindstrom Quantifiers 49

where °U is some free ultrafilter on co*** in 9tR£. Then 9WI+1 is chosen such that
2Rl+1 ^ 9MJ via an extension of the canonical embedding of 9Wt into Wt (in the
real universe).

When checking the details, one sees that the proof of the ultrafilter theorem
for 9WJ requires the instances

Vz(Vx e co 3y cp(x, y9 z) -> 3u Vx e co 3y e uq>(x, y, z))

of the collection scheme. These can be added to (ZFC), since they are satisfied in
(Va9 eKa), if a is a limit ordinal of cofinality ^co, and there are cofinally many such
a, for which (X, ev) is a model of (ZFC). D

4. Lindstrom Quantifiers

Let ftbea class of structures of some fixed (finite) vocabulary closed under iso-
morphism. For a given logic JSf, is there an extension of S£ more natural than
JSf(î ), in which ft is characterizable ? In the first part of this section, we will give
an affirmative answer that uses the notion of a Lindstrom quantifier as developed
by Lindstrom [1966a]. At the same time this notion enables us to systematize—at
least to a certain extent—the variety of specific logics that we have considered up
to now. The systematization not only assists in the representation of logics but
can also be helpful from a methodological point of view. In the second part of this
section, we will illustrate the latter aspect by proving a generalization of the back-
and-forth characterization of elementary equivalence for logics with monotone
quantifiers that covers several of the Ehrenfeucht-Fraisse type theorems for
stronger logics. In order to avoid any cumbersome notation, we will confine
ourselves to the one-sorted case and treat logics with free variables in the sense of
1.1.2.

4.1. Definitions and Examples

Let a be & finite vocabulary and Q a quantifier symbol suitable for cr (in a sense
that will become clear from Definition 4.1.1). Furthermore, let ft be a class of
a-structures closed under isomorphism. We confine ourselves to the special case
a = {R,f, c} with binary R and unary/.

4.1.1 Definition. For any logic JS?, the expanded logic JS?(2«) is obtained as follows:
Form^(Q^)[x] is taken as the smallest class containing F o r m a t ] which is

closed under boolean operations and particularizations (see Definition 1.2.1) and
that with each cp, i//, x a n d f°r anY variables x0 ^ xl9 y0 # yl9 z0 also contains the
new formula

9 =
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50 II. Extended Logics: The General Framework

A variable u is free in 5, if it is free in cp or \jj or x and different from x09x1 or y0,
y! or z0, respectively.

Sent^Q^^t] is the class of sentences from Form^(Qj|)[T].

Finally, the meaning of Q is determined by the satisfaction condition:

iff there is a a-structure £ 6 ft such that C = A,

R* = {(a, b)eC xC\S& \ = ^ ( Q R ) <p[a, b]}9

graph of/c = {(a, ft) e C x C|8l *=*(ej|) <AI>, b]},

and 91 \=&iQsk) z M exactly for a = cG.

The quantifier Q with the interpretation by ft (for short, QR) is called a Lindstrom
quantifier.

Let if be regular. As it is clear that

ft = Mod^Q^iQxoX^oy^oRxoxJiyo) = yxz0 = c),

we see that ft is EC in JSf(Q )̂, even in .2^(6*) . O n t h e o t h e r h a n d ' i f ^ i s E C i n

if, then JS?(Q )̂ < if and hence if(QR) = £?. To see the key fact, assume that
ft = Mod^(£). Then the if(Qa)-formula QxoX^y^o <p(x0, x j ^ o , yJxteo)
(with if-formulas cp, \//9 x) has the same meaning in ^(Qsd as the formula
^[R/AXQX^CXO, xJJ/tyoyMyo, yj c/Xzox(zo)] has in 5£.

The definition of if (Q^) can easily be generalized to the case of more than one
Lindstrom quantifier, and it is not difficult to see that for regular ^£ the logic
y(Q*t Il G I) with Lindstrom quantifiers Q^ is regular, possibly up to the rela-
tivization and the substitution property. However, the latter property holds, for
example, in case ^£ = 5£Kk . A counter-example to relativization is provided by
^oco(QC) which is defined below. In Definition 4.1.4 we describe a variant of
Lindstrom quantifiers that also guarantees the relativization property.

The following list demonstrates that it is possible to model numerous quanti-
fiers on Lindstrom quantifiers and thus illustrates the scope of this notion.

4.1.2 Examples. In each of the following, a well-known quantifier becomes QR for
the class indicated:

(i) 3forft = {(
(ii) Ql for ft = {{A, M ) | M g A\ there is C c A, \C\ > K and Cn c M};

(iii) Qcf(O for ft = {(A, <*)| <* is a linear ordering relation c A x A of
cofinality co};

(iv) Qwo, the so-called well-ordering quantifier, for ft = {(A, <9I)| <* is a
well-ordering relation c /I x v4};

(v) 6C, the so-called Chang quantifier, a specialization of the equicardinality
quantif ier /, for ft = {(A,Q\C c A , \C\ = \ A \ } .
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4. Lindstrom Quantifiers 51

In order to model higher-order quantifiers, one could introduce Lindstrom
quantifiers of higher order. In principle, however, the present framework is
universal in broad sense:

4.1.3 Theorem. Let <£ be a regular logic which isfinitary, that is for any T,

Format] = (J Form^[x0].
To finite

Then, J£? = S£ ̂ JQ^ \i e /), where the ft, run over all classes of finite vocabulary
that are EC in &.

Proof. For " < " note that each ft, is EC in $£\JQs<)' As for the other direction,
use the fact that &(QR) = & for every / E /. D

In particular, second-order logic <£2 has a representation as in Theorem 4.1.3.
Any such representation requires / to be infinite, that is, j£?2 is not finitely generated',
for otherwise, according to a consideration in Section 7.3, we would get a contra-
diction, since (the one-sorted version of) 5£2 has the Beth property.

Returning now to the relativization property, we introduce a variant of

4.1.4 Definition. The logic ^(Q%) is defined as follows. We change the definition
of J£(Qn) given in Definition 4.1.1 by allowing predicates for the domains of
structures in ft. Using a quantifier symbol Q* instead of Q, we replace the quantifier
clause for Q in Definition 4.1.1 by

9* = Q+

where the meaning of Q* is now determined by

iff there is a cr-structure G e ft such that C = {a e A \ 91
and R*,^ and cc are as in Definition 4.1.1.

For regular jSf, the logic <^(Q%) is regular, possibly up to substitution, and
really regular for instance in case ^f = S£KX. Intuitively, relativization to some
predicate P can be defined by induction on formulas with the essential clause for
the relativization of a <2*-formula being:

Q*u0 . . . zo(Puo A £p)(Px0 APXXA (pp)(Py0 A Pyx A xj/p){Pz0 A / ) .

It is obvious that ^{Qsd ^ ^(Q%)- F° r instance, the Q-formula 3 from Definition
4.1.1 has the same meaning in ££(Q$) as the <2*-formula 3* from above has in
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52 II. Extended Logics: The General Framework

$£(Q%), if one takes u0 = u0 for £. Concerning the other direction we have the
following fact:

4.1.5 Proposition. With new unary U set

ft* := {91 e Str|> u {(7}] | U* a-closed and (91 [ <r)| U* e ft}.

Ttew J2?(Q J) = i?(Q«0.

Proof. The argument for " > " is trivial. For " < " observe for instance that

6SwoXoXi3>oJ>i*o £(wo) <p(x0, *i) \l/(y0, yj z(z0)

has the same meaning as

A ^ i ) A

A ^(>;0, yj) v
A Z (Z O ) ) ,

where ^(M0) represents I/. D

Taking Proposition 4.1.5 into consideration it is not difficult to extend results
about logics S£{Q^) to logics JS (̂Q )̂—at least in many cases (for example, Theorem
4.1.3 and the results in Section 4.2).

Let us now return to our introductory question. For numerous logics if such
as if = SeKk or if = if KX (Q%I \iel), the logic JS?(Q$) is, with respect to elementary
classes, the smallest regular extension of ^£ in which ft is EC. In this sense the
transition from ^£ to J£(Q%) is a natural closure operation. What can we say
about the relationship to J^(§{) as defined in Section 2.6? If, for instance, ft =
{(A, <9I)|9l ^ (co, <)}, then, of course, we have

(*) ^o / f t ) = co- logic < ^(Q**) = ^oKo(eS)-

Using a method like that in the proof of Proposition 3.1.7 one obtains for the
other direction

(**) ^(oco(Q%) ^PC ^coo/ft) f°r vocabularies not containing U, <.

Whereas the analogue of (*) is true in general, the analogue of (**) may fail. For
instance, if ft is the class of all fields of characteristic zero, i^wco(ft) is compact,
but ^^{Qt) is not.
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4. Lindstrom Quantifiers 53

4.2. Partial Isomorphisms and a Characterization of
^-Equivalence

The characterization of elementary equivalence in terms of partial isomorphisms
or games by Fraisse and Ehrenfeucht (cf. Section IX.4 for a thorough treatment)
has been extended to various stronger logics such as ££mJ(Q,i\ &<o<JLQW ^«co(aa)-
A generalization to extensions of ££wco by arbitrary Lindstrom quantifiers is given
in Caicedo [1979]. The characterization becomes very natural for quantifiers QR

and Q%, where ft is of finite relational vocabulary <y and monotone (Krawczyk-
Krynicki [1976], Weese [1980]). The following considerations are devoted to
this case. For reasons of readability we fix a relational vocabulary a = {S}, S
I -ary, and a class ft of a-structures, ft closed under isomorphisms. We treat the
quantifier Q^.

4.2.1 Definition. For 21, 95 e Str[t], p is a partial isomorphism from 21 into 93, if
p is a bijection from dom(p) c A onto rg(p) c B such that the following hold:

(i) for all n > 1, rc-ary Rex and a0,..., an-j edom(p):
R^a iff/*®p(a), where p(a) stands for (p(a0), • • •» Kfln-1));

(ii) for all n > 1, n - a ry / e i and a 0 , . . . , an_l5 aedom(p):
/ a (a ) = flifr/®(Ka)) = p(fl);

(iii) for all c e t and a e dom(p): c91 = a iff c® = p(a).

Part (21, S) denotes the set of partial isomorphisms from 21 into 93.

Sometimes, one demands in addition that the domain of a partial isomorphism
from 21 to 93 be t-closed in 21 (or empty). However, the difference between the
two variants involves only minor technicalities.

4.2.2 Definition. Let 21, © be x-structures, 0 < a < co, and / = (Ip)p<a a sequence
of subsets of Part(2l, 93).

We say that / has the 3-forth property iff for all m < <x,pelm+1 and ae A there
exists q e Im such that p c q and a e dom(g).

Similarly, we say that / has the 3-back property iff for all m < a, p e Im+1 and
b e B there exists qe Im such that p c q and b e rg(#).

Likewise / has the Q^-forth property iff for all m < oc,pelm+1 and (£ e ft with
C = 4 there is t) e ft with D = B such that for all d e S35 there exists qe Im with
P ^ M o i i e rg(<?) and g" x(d) 6 SG.

Similarly, we say that / has the QR-back property iff for all m < a, p e Im+ x and
Def t with D = B there is £ e f t with C = A such that for all c e S c there exists
g 6 Im with p c ^ c o , . . . , ^ ^ dom(g) and q(c) e S®.

Two structures 21 and 93 are oi-isomorphic via /, written / : 21 ^ a 23, iff/ = (/Jm<a

is a sequence of length (a + 1) of non-empty subsets of Part(2l, 93) having the
3-back and the 3-forth property. 21 and © are a-isomorphic, written 21 = a 93,
iff there exists an / such that / : 21 ^ 93.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.005
https://www.cambridge.org/core


54 II. Extended Logics: The General Framework

The notion of a, SK-isomorphic structures is defined similarly, demanding in
addition that the partial isomorphisms in question also meet the g^-back and the
Qfl-forth property.

We call the class ft and also QR monotone, if for all A, M, M' such that (A, M)eft
and M ^ Mf ^ A1, we have (A, M') e ft.

The main result in this section can now be formulated as:

4.2.3. Theorem. Let ft of finite relational vocabulary be monotone. Then for finite
x and 91, 95 e Str[t] the following are equivalent:

(ii) H s ^ S / o r a W n ;
(iii) 2lSra>i,<B.

If we dispense with Q&, the proof below will yield the analogous result for
&am, that is, the Ehrenfeucht-Fraisse characterization of elementary equivalence:

4.2.4 Corollary. For finite x and 21, 33 6 Str[t] the following are equivalent:

(i)9I^_23;
(ii) 91 £„ 95 for all n;

(iii) 9l^w95. D

Proof of Theorem 4.2.3. Let ft be as above. We set JSf = JSf^ga) and fix some
finite vocabulary x. By <p, ^ , . . . we denote formulas from JSf [t]. Each cp is equiv-
alent to a so-called term-reduced formula—a formula where all atomic subformulas
are of kinds Rx0 . . . xn_ l9 x = y, c = y, o r / (x 0 , . . . , xn_ t) = y. We can obviously
confine ourselves to such formulas, which we do for technical convenience.

The implication from (iii) to (ii) is trivial. To prove that (ii) implies (i), we
define the so-called quantifier rank of cp, qrk(cp), inductively by the following
clauses:

qrk(cp) = 0, if cp is atomic;

qrk(-icp) = qrk(cp);

qrk(<p A X/J) = max{qrk(cp), qrk(^)};

qrk(3xcp) = qrk(gxcp) = 1 + qrk(cp).

Next we write

91 = n x 95 iff for all (term-reduced) sentences cp with qrk(cp) < n,
we have 91 \= cp iff 95 \= cp.

Then the implication we want follows from:

(*) For all n, if 91 ̂  „, R ®, then 91 = B> R 95.
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4. Lindstrom Quantifiers 55

To prove (*), let / : 91 ̂ n ^ 33 be given. One shows by induction on qrk(cp) that
for all m < n, p e /m, (p(x0,..., xk_ J with qrk(cp) < m, and ao,...,ak-iG dom(p),
911= cp[a] iff 95 |= <p[p(a)]. For atomic cp one uses that cp is term-reduced. For
the g-step, let m < n, p G Jw, and a 0 , . . . , ak_i e dom(p) be given and assume
<P = Qyo--yi-i ^ o » . . . , * * - 1 , j>o> •••> )>/- I), qrk(<p) < m. If for instance 91 \=
cp[a], then

£ = (A, {c e ^ | 9 l N iA[a, c]}) G «.

For £ and p we take X) e ft with D = B as guaranteed by the g^-forth property
and define £>' to be the structure

As ft is monotone, we get © |= cp[p(a)], if we have proved

(**) S®' 2 S®.

To see (**), let deS® be given. Choose qeIm_uq ^ p, such that d0 , . . . , dj_x

Grg(̂ f) and ^~1(d)GSG. As qrk(i/̂ ) < m — 1, the induction hypothesis yields
91 \= (A[a, q~ x(d)] iff SB |= ^[p(a), d], and hence d e S®'.

Finally, we come to the implication from (i) to (iii). This is the only point
where we need the finiteness of x. To give a more systematic treatment, we insert a
general definition which is modelled on the extension properties of partial iso-
morphisms that we want to realize.

4.2.5 Definition. For 91 e Str[t], a = ( f l o , . . . , ^ _ 1 ) e / and x = (x 0 , . . . ,
the formulas \j/^ gj, a(x) (or, shorter, \j/™) are given as follows:

(i) <Aa = A {^(x) I <P term-reduced, atomic or negated atomic,
21 !=<?[>]};

(ii) K+l = /\ 3#r,c(x,y) A Vy V </C(x,

A A ey V C«(x. y)
c e M

A ^2y^ V

As x is finite, it can immediately be seen that in the definition of i/C all conjunc-
tions and disjunctions can be chosen finite. Hence if/™ e if [x]. The following facts
can easily be proved by induction on m.
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4.2.6 Lemma. For 21 e Str[t] and a0,..., ak-1 e A we have:

(i) qrkOft) = m;
(ii) « N « W ;

(iii) i/C„ |= i/C for all a e A; and hence
(iv) C+1|=«Aa- •

T/ie Proof of 4.23 Concluded. Assume 91 =^ 23 and define

Im = {p e Part(9I, S)|dom(p) = {a0,. • •, a*-1} for distinct a, and
}, and

L = {01

Then the assertion follows from

( + ) (/a)a<co: 91 = w a 93.

We now argue for ( + ). First, because of 91 =& 93 and Lemma 4.2.6(ii), we
have 0 e Im for all m. Let us, for example, check the Q^-back property. Assume
p e Im+l, dom(p) = {a0 , . . . , afc_!}, and (B, N) e ft. We have to find M ^ A1

such that (A, M) e ft and {A, M) meets the further requirements of the Q^-back
property. We set

M =

First, we see that for each c e M there is d e AT such that 93 = i/C,c[KaX d]. Hence,
by definition of Im and Lemma 4.2.6(iii), if c is given, we can choose

q = pu

Obviously q e Part(9T, 93), because by 4.2.6(iv) we have 93 = (Aa,c[>(aX d].
It remains to show that {A, M) e ft. By definition of M,

AT = {d G B1193 |= -i V <cCKa), d] j 2 J
L ce/l'\M J

and as ft is monotone, we obtain that (J5, AT) e ft; that is,

® ^ 6 y - i V <c(p(a),y).
CG>4'\M

As 93 N C+1[p(a)], the formula

^Qy^ V <c(x,y)
ceyt'\M

cannot be a conjunct of i/^+^x). Hence, (A, M) e ft. D
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4. Lindstrom Quantifiers 57

Remarks, (a) In the preceding proof one can avoid the restriction to term-reduced
formulas if one replaces the quantifier rank by a notion of rank that also takes into
consideration the complexity of terms.

(b) Theorem 4.2.3 can be extended without difficulty to the case of finitely
many monotone Lindstrom quantifiers.

(c) As for first-order logic, the algebraic characterization of ^ww(6^)-equiv-
alence can be reformulated in terms of game-theoretical notions; see, for example,
Weese [1980]. If we translate Theorem 4.2.3, say for ^^(g i )—note that Qx is
monotone!—into the game-theoretical version, we get the following characteriza-
tion of $£ (O(O(Q1 ̂ equivalence:

For any finite T, two x-structures 91, 93 are ^^(Q ^-equivalent iff player II has
a winning strategy in the game Gn(9l, 93) for all new.

The game GW(9I, 93) is defined as follows: A play in Gn(9l, 93) takes place
between two players I, II and consists of n consecutive moves which are either
3-moves or Qx-moves. Furthermore, at the beginning of each move player I is
free to choose the kind of move he wants. The moves run as follows: 3-move:
Player I chooses an element a e i o r a n element b e B. This done, player II then
chooses some b e B or some as A respectively. Qi-move: Player I chooses a
subset M c= A (or a subset N ^ B) of power > Kx. Player II then chooses some
N <= B (or some M c A) of power > Kx. Subsequently, player I chooses some
b e N (or some a e M), and finally player II chooses some a e M (or some b e N,
respectively). Player II wins the play iff the set {(a0, bo\ . . . , (an_ l9 6n_ x)} of pairs
from A x B chosen in the play is a partial isomorphism from 91 into 93.

4.2.7 Application. As an easy application of Theorem 4.2.3 we complete the
argument for Keisler's counterexample to interpolation in $£'wco(2i) from Example 1
of Section 2.2. For / = 0, 1, let 91, = (Ai9 E

%i), where E™1 is an equivalence
relation with only uncountable equivalence classes and AJE^ is countably
infinite for i = 0 and uncountable for i = 1. It is easy to see that (/a)a<w:
9I0 =(O,Q1 9ll9 where for a < co the set Ia consists of all partial isomorphisms
from 9I0 into 9IX which have a finite domain. By Theorem 4.2.3, 9I0 =^wa,((2i) ^i>
and hence by Proposition 3.1.3 interpolation fails for (*) in Example 1. (As
91,. G Mod(3# (pi(E, R)) and 9l0 =^mto{Ql) 9li, the classes Mod(3# <po(E, R)) and
Mod(3R <Pi(£, R)) cannot be separated by a class EC in J^o/Qi).) D

43. Partially Isomorphic Structures

In the last paragraph 9l0 and 911 were seen to be co, Qx-isomorphic in a strong
sense, as all /a are equal: they are co, Q^partially isomorphic. To give a definition,
let 91, 93 be t-structures and / c Part(9I, 95). We say that / has the 3-forth (3-back)
property, if for all pel and ae A(beB) there is qe/, q 3 p with aedd(q) (or
b e rg(g), respectively). 91 and 93 are called partially isomorphic, 91 =P95, if there is
/ such that / : 91 ̂ p 93, that is, if / c Part(9l, 95), / is not empty and has the 3-forth
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and the 3-back property. The notions / : 91 ^p tR 93 and 91 ^p ^ 93 are defined
similarly, also incorporating the Q^-forth and the Q^-back property into the
definition.

Looking first at the Q^-free version, a fortiori, the structures 9I0 and 91 x given
in the argument of 4.2.7 are partially isomorphic. Furthermore, any two dense
open orderings are partially isomorphic—also via the set of partial isomorphisms
with finite domain.

The relation ^ w can be considered as a finite approximation of the isomorphism
relation. In good accordance with this view, co-isomorphic structures are iso-
morphic in case they are finite. Similarly, the stronger notion of ^p embodies
countable approximations of isomorphisms:

4.3.1 Theorem. Countable partially isomorphic structures are isomorphic.

Proof. Assume / : 91 ^p 93, A = {af | ieco}, and B = {b^ieco}. By induction on i
one can define p ^ e P a r t ^ , 95) such that for all i: pt c pi+u atedom(p2l), bte

U,Pl-:9l^®. D

The theorem generalizes a well-known result of Cantor according to which
any two countable dense open orderings are isomorphic. However, it is not valid
for uncountable structures: As mentioned above, any two dense open orderings
are partially isomorphic, and there are easy examples of non-isomorphic dense
open orderings even of the same cardinality Ka, for every a > 1. Take, for instance,
Ka many copies of the rationals and order them either according to Ka or inversely.
Moreover, any two infinite sets or any two algebraically closed fields of infinite
degree of transcendence (so-called universal domains) of the same characteristic
are partially isomorphic.

We see from Theorem 4.3.1 that ^p is strictly stronger than elementary equiv-
alence. Hence, from a model-theoretical point of view, we may ask whether there
is some logic if (necessarily) stronger than first-order logic, such that = p equals
if-equivalence. The answer is affirmative.

4.3.2 Theorem (Karp [1965]). For all structures 91 and 95, 91 ̂ p 93 iff® =^w 95.

From an algebraic point of view, any two universal domains of the same
characteristic—even if they are not isomorphic—are not essentially different. The
fact that they are partially isomorphic demonstrates that ^p can be considered
as a methodologically interesting weakening of the isomorphism relation (see
also Barwise [1973b]).

The direction from right to left in Theorem 4.3.2 tells us that if ^ is weak
enough not to distinguish between structures that are "weakly identical" in the
sense of being partially isomorphic. This feature leads us to a new notion: For
any logic 5£, define ^£ to have the Karp property iff any two partially isomorphic
structures are if-equivalent. The direction from right to left in Theorem 4.3.2
now yields that if ^ is a strongest logic with this property, in the sense that if a

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.005
https://www.cambridge.org/core


5. Compactness and Its Neighbourhood 59

logic $£ has the Karp property, then any two if ^-equivalent structures are also
if-equivalent (that is, if < = ^£ ̂  J .

A proof of Theorem 4.3.2 (see Theorem IX.4.3.1 or Barwise [1973b, 1975]) can
be given as a suitable "infinitary" version of the corresponding proof for 3?^
and ^ w , that is, for Corollary 4.2.4. Returning now to partial isomorphisms
including Lindstrom quantifiers, we can proceed similarly with the proof of
Theorem 4.2.3, thus verifying the following generalization of Theorem 4.3.2.

4.3.3 Theorem. Let QRi, for i el.be monotone relational Lindstrom quantifiers.
Then for any x and 21, 33 e Str[x] we have:

«sMl l l | l6 / )8 iff «^M( to i | ,6 / ,». •

5. Compactness and Its Neighbourhood

Up to now we have described important examples in the framework of general
logics and we have tried to isolate some systematizing aspects such as Lindstrom
quantifiers and (R)PC-reducibility. In this and the concluding sections we will
try to provide an insight into some basic features of essential model-theoretic
notions. Our considerations are grouped around compactness, Lowenheim-
Skolem properties and interpolation. Later chapters will exhibit interesting
bridges between these concepts which constitute some of the main achievements
of abstract model theory. For the remainder of this chapter, we will assume that the
logics under consideration are regular.

5.7. Notions of Compactness

In Definition 1.2.4 we introduced the notions of compactness and K-compactness.
The following generalization, which deprives finiteness of its designated role, is
important for instance, with infinitary languages.

5.1.1 Definition. For K > X > Ko, & is (K, X)-compact iff for all t and <D c JS?[T]

of power < K, if each subset of O of power < X has a model, then <D has a model.

The notion "compact" stems from a connection with topology. Given ^£ and
x, where ^[x] is a set, define a topological space 3E_̂ [x] in the following way. The
domain X^[x] of 3E^[x] forms a set of representatives of Str[x] modulo $£-
equivalence, and a basis of (clopen) sets is given by the sets Mod^((/>) n X^[x]
for cp G i^[x]. £^[x] is a Hausdorff space, and it is easy to prove

(*) ^ is compact iff all 3t^[x] are compact.
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60 II. Extended Logics: The General Framework

Call a topological space X (/c, A)-compact if for all sets C of closed subsets of £
with \C\ < K and f) C = 0 there exists C^ C with |C\ < X and f] C = 0 .
Then, according to an observation of Mannila [1983], topological (K, ^-compact-
ness does not correspond—in the sense of (*)—to (/c, A)-compactness of logics, but
to a stronger compactness property, the so-called (K, A)*-compactness, which will
play a central role in Chapter XVIII.

Compactness properties have an influence on the number of symbols in a
sentence cp that are essential for the meaning of cp. We make this precise by use of
the following notion. Let cp be from if [x] and <r c x. We say that cp depends only on
the symbols in <r, if for all x-structures 21, 95 such that 2 I f a ^ S p a w e have
21 \= cp iff" 23 \= cp. For $£ ̂  there does not exist a uniform bound for the number
of symbols that are essential for the meaning of a sentence. According to the follow-
ing proposition compactness properties lead to a dual situation.

5.1.2 Proposition, / / i f is (K, X)-compact and |x| < K, then any cp e i f [x ] depends
on less than X symbols. Hence, any sentence of a compact logic depends only on
finitely many symbols.

Proof. Assume |x| < K and cp e i f [x ] . We take a renaming p : x - » x ' , where
x' n x = 0 , and set

u {Vx / ( x ) = p ( / ) ( x ) | / e x} u {c = p(c)|c e x}.

Then O N= (/> <-> </>p. As | <D | < K:, (fc, A)-compactness yields a subset O0 c (t> with
|O | 0 < A and <J>0\= cp<^> cpp. Let cr be the set of symbols of x which occur in d>0.
Then | c | < A, and if 21,93 are x-structures with 21 [ a ^ © f cr, say 21 f a = 93 T cr,
we have (21, (p(§f P)§eT) l= O0 and therefore 211= cp iff 93P N cpp iff 93 \= cp. D

5.2. Well-Ordering Numbers

Compactness properties provide a powerful tool for constructing non-standard
models. For instance, K0-compactness implies the non-characterizability of
infinite well-orderings. On the other hand, the logic i f ^ , which is not Ko-
compact, admits characterizations of all countable well-orderings. By the following
definitions we create the appropriate terminology to exhibit precise relations
between compactness properties and the characterizability of well-orderings. For
technical convenience we introduce a number oo with a < oo for all ordinals a.

5.2.1 Definition. Let be < e x and <D c if [x]. We say that O pins down the ordinal
a (via <), if

(i) for all models 21 of O, <m is a well-ordering of its field;
(ii) there is a model 21 of O such that <® is a well-ordering of order type a.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.005
https://www.cambridge.org/core


5. Compactness and Its Neighbourhood 61

We define wK(<£) to be the supremum of all ordinals that can be pinned down by a
set of ^-sentences of power < K and call w(J£) = wx(if) the well-ordering number
of if. A logic if is bounded, if there is no sentence that pins down arbitrarily large
ordinals.

By regularity of if we have w(J£) > co. If O pins down a via <, then any
jS < a is pinned down by O u {< is an initial segment of <} via < , and a + 1 is
pinned down via <̂ by <D together with -< equals < with the least element put
at the end (assumed a > co). Hence wK(J£) = oo or wK(<£) is a limit ordinal, and an
ordinal a can be pinned down by a set of if-sentences of power < K iff a < wK{5£).
Similar arguments yield that wK(if) is closed under the ordinal operations of
addition, multiplication and exponentiation.

There is a useful characterization of well-ordering numbers:

5.2.2 Proposition. Suppose K > 1 and wK(<£) < oo. Then wK(^) is the least ordinal
(X such that for all O ^ ^\f\ with < e x and |O| < K it is the case that if for arbi-
trarily large j? < a, O has a model 91 where <® is a well-ordering of order type ft,
then O has a model 93, where < ® is not a well-ordering.

Proof. Assume wK(J£) < oo and let a be the ordinal in question. By constructions
such as in the preceding paragraph one can easily see that wK(^) < a. For the
other direction, it is sufficient to show: If < ex, O ^ <£\x\ |O| < /c, and if for
arbitrarily large fi < wK{^\ O has a model 91 with < m a well-ordering of order
type /?, then O does not pin down ordinals via <. In order to establish this, let O
be given such that <X> satisfies the hypothesis and pins down ordinals via <. As
^£ allows elimination of function symbols, we may assume that T is relational.
With new binary R, -<, and/let *F consist of the following sentences:

(1) -< is a linear ordering A VX sfield«) 3z Rxz;

(2) Vx efield«) (p{zlRxz} for cpe®;

(3) \/y efield(<) 3x >• y: Xzf(x, z) is an isomorphism
from (field(< { {z\Rxz}\ < [ {z\Rxz}) onto
({z\z<xl< [{z[z<x}).

Then *F pins down wK{£?) and is of power < K—a contradiction. D

5.2.3 Examples, (a) wK(ifWC0) = co for all K > 1.
(b) For S£ = Se^JQy) we have w(<£) = w^0(^) = co, but for instance W2K0(&)

> (2No) + . (Note that for any well-ordering -< of the reals the structure (R, +, •,
<, Q, -<, (r)reU) is characterizable up to isomorphism by its if-theory, because
(IR, +, •, <,Q, (/)re[R) is if-maximal, that is, it has no strict extension in the sense
of <£> (Exercise!).) For further results see Fuhrken [1965].

(c) w(j^WlJ = cov We have w{5£^^ > col, because a countable ordinal
a / 0 is pinned down by the ifWlW-sentence

" < is a linear ordering" A Vx \ / {fip(x)\P < a},
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where ptp is defined inductively by

A similar argument works for all admissible fragments <£ ̂ , showing us that
w(J2? )̂ > O(J/) , the least ordinal not in si. The converse inequality is true for
countable si and yields w(i?WlW) < cox.

(d) If if <(R)Pc JS?*, then wK(i?) < wK(JSf *). Using this fact and the remark on
countable admissible sets in (c), one can deduce that

w(iT2) = w(if(<20)) = w(^(to, <)) = co?K,

the least non-recursive ordinal (the "Church-Kleene cot").
(e) The argument from (c) can be extended to arbitrary ordinals a, if we admit

sentences from ^a0(O. Hence, w(JSf «,«,,) = oo. On the other hand, if „„ is bounded
(Lopez-Escobar [1966]).

(f) The logics if2, JSfma,(Q
R), JSf„„(/), ifww(6H), JSf«,«,(eW0), ^ t are not

bounded as they admit a definition of well-orderings, at least as a projective or a
relativized projective class (see Sections 2.3, 2.5 and Example 4.1.2(iv)).

We now return to our introductory remark and state a precise relation between
compactness and the characterizability of well-orderings. A stronger form is
implicit in Theorem III.2.1.4 in the equivalence of (i) and (iii).

5.2.4 Proposition. <£ is W0-compact #f wNo(if) = co.

Proof. For the interesting direction, assume if to be not K0-compact and $ =
{cpn | n e co} to be a countable set of sentences of some vocabulary T such that any
finite subset of Q> has a model, but G> itself does not. Since if allows elimination of
function symbols, we can assume that t is relational. Then, with new binary
relation symbols R and <, the set O' pins down co, where O' consists of

(1) < is a linear ordering;

(2) Vxefield(<)3zRxz;

(3) Vxefield(<)(\{y\y < x}\> n ̂  (p{
n
z]Rxz]) for n e co. D

At this point we can make another idea precise. Often compactness of a logic
can be proved by defining a calculus and showing its completeness. In the frame-
work of our precise notions we can extract the following general fact:

5.2.5 Theorem. Let <£ = ifWC0(2S0' • • • > 6Sn-i) be a logic with Lindstrom quanti-
fiers (in the sense of Definition 4.1.4), where <£ is recursively enumerable for validity.
Then, for any x e HF, !£ satisfies the compactness property for recursive sets of
sentences from <£\x\.
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Proof. First, we treat the special case where if = ^(O(O(Q%i\i < n) is recursively
enumerable for consequence. Let Q> c jSf [T] be a recursive set of sentences such
that any finite subset has a model. If O had no model, we could pass from <D to a
recursive (!) set <£' as defined in the preceding proof. Adding recursive definitions
of addition and multiplication on field(<) to <X>' would lead to a recursive set 0>"
characterizing the set of natural numbers with addition and multiplication.
Hence, the consequences of O" could not be recursively enumerable. Contradiction.
By a technique that goes back to Kleene (see Craig-Vaught [1958]) one can give
a. finite axiomatization of <D" by use of additional predicates. Hence, the assumption
that if is recursively enumerable for validity is sufficient for the preceding argu-
ment. D

5.3. Substitutes

There are extensions of first-order logic—and ifWlC0 is one of the best examples—
that admit an interesting model theory despite the fact that essential properties
such as compactness fail. They illustrate that the value of a logical system
should not only be measured by the number of significant properties of first-order
logic that are preserved. For instance, ifWlW compensates missing compactness
by other properties that are well adapted to its specific syntax and its expressive
power, such as that of having the "small" well-ordering number co1, or the inter-
polation property. Guided by such experience and moreover by results such
as Proposition 5.2.4, we may arrive at the idea of considering compactness not
only in the "crude" sense of ^-compactness or its variants, but of measuring it,
for instance, by the size of the well-ordering number. In this sense, the logic if O0(O,
having well-ordering number oo, but being bounded, has preserved a vestige of
compactness.

Taking these aspects seriously, we are led to the following way of exploring the
value of some logic if. Instead of asking for the preservation of properties of
J^oto, we try to isolate properties of 5£ that are able to replace missing properties
of g^o o r a r e useful in connection with the special features of 5£. Properties of
the first kind could be called substitutes (for the corresponding properties of
$£t

(O(a). Adhering to compactness we try to give an illustration by some examples.
When doing so, however, we should bear in mind that we are not searching for
some technical means, but rather are on the trace of some kind of "methodological
ferment".

Example 1. Barwise compactness, based on a suitable generalization of finiteness,
may be considered as the most convincing example. (For details see Barwise
[1975] or Chapter VIII.)

Example 2. Small well-ordering numbers and boundedness. We have already
mentioned ^^^ and the role of its well-ordering number being CDX (see also
Flum [1975b]). A further illustration will be treated in Theorem III.3.6: If we
combine boundedness as a substitute for compactness with the so-called countable
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approximation property (see Kueker [1977]) as a substitute for the Lowenheim-
Skolem property down to Ko, we get a "substitute" for Lindstrom's first theorem
with if ooo, as a "substitute" for ifwco.

The reader who watches carefully for methodological aspects, will meet
further examples at various points. Certainly he will do so when he recognizes the
role of indiscernibles (instead of compactness properties) as a means of obtaining
upper bounds for Hanf numbers ("stretching method", see the examples following
Theorem 6.1.6).

6. Lowenheim-Skolem Properties

The well-ordering number w(j£?) and its generalizations wK(JSf) center around the
characterization of well-orderings. Lowenheim-Skolem phenomena refer to
analogous questions concerning the cardinality of models. There are two dual
aspects: one deals with Hanf numbers (as a counterpart of well-ordering
numbers), the other one with Lowenheim numbers.

The following definitions and results can be restated for the many-sorted
case, if one defines the cardinality of a many-sorted t-structure 91 as ]Tsex \AS\
(see Definition 1.2.4(vii)).

6.7. Hanf Numbers

For any logic if, compactness yields the upward Lowenheim-Skolem theorem
in the following form: If <D is a set of sentences of 5£ of power < K that has an
infinite model, then <D has models of arbitrarily high cardinality. In the terminology
to come this means that /iK(if) = Ko for all K.

6.1.1. Definition. We say that Q> c JS?[T] pins down the cardinal K iff O has a model
of cardinality K, but Q> does not have models of arbitrarily high cardinalities. We
let /iK(JS?) be the supremum of all cardinals that can be pinned down by a set of
if-sentences of power <K and call h(J?) := /^(i?) the Hanf number of <£.

By regularity, /i(JSf) > Ko. To get more information, let <I> c J£?[T] pin down
arbitrarily high cardinals below fi9 \L > Xo. Assume without loss of generality that
T is relational. Then *F pins down \i, where *F consists of

(1) < is a linear ordering of the universe;

(2) Vx(/>{z|Kxz} forq>e<b\

(3) Vx AM/(X, M) I" {yl}7 < x} is an injection into {z\Rxz}.

From this we see (taking /x+ instead of p) that /iK(JSf) = oo or /iK(i?) is a limit
cardinal that cannot be pinned down by a set of if-sentences of power < K. Hence,
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6. Lowenheim-Skolem Properties 65

= oo or hK(<£) is the least cardinal /x such that every set of if-sentences of
power < K that has a model of cardinality fi has arbitrarily large models. More-
over, we obtain as a weak analogue of Proposition 5.2.2:

6.1.2 Proposition. If <!> c ^£\x\ \Q>\ < K, and d> has models of arbitrarily high
cardinality below hK(J£\ then Q> has models of arbitrarily high cardinality. D

We have h(<£ ̂  = oo even if we restrict ourselves to finite vocabularies (for
instance to {<}, as can be obtained from Examples 5.2.3(c), (e)). On the other
hand, logics with "few" sentences should have Hanf numbers < oo. To make this
precise, we introduce a new notion.

6.1.3 Definition. Occ(i^), the occurrence number of !£, is the least cardinal \i such
that for all x,

Cf\^\ — I I CfXr 1cZ' |_t_j — i j oZs |_*o_J?

| T 0 | < ft

if such a cardinal exists; otherwise Occ(if) = oo.3

The following theorem can be considered as one of the earliest results of what
is now called abstract model theory.

6.1.4 Theorem (Hanf [I960]). Let $£ be small (that is, for all x, ^£\_x\ is a set) and
assume that Occ(i^) < oo. Then for all /c, hK(!£) < oo.

Proof. Set fi = /c • Occ(if) and let x be a "universal" vocabulary of power JLL;
that is, x contains \i many relation and function symbols of each arity and \i
many constants. In order to investigate hK(5£\ we can confine ourselves to x-
sentences of ^£. As ^£\x\ is a set, we have

hK(£f) = sup{|/l||2l N <D, O c if[x], |O| < K and O does not have
arbitrarily large models} < oo

(Axiom of Replacement!). D

The use of the Axiom of Replacement in the argument above is quite essential.
This can already be illustrated in case ^£ = <£2 (see Barwise [1972b]).

3 Just as one defines the occurrence number Occ(if) one can introduce a so-called dependence number
o(if), as is done in Chapter XVIII, 2.1.4: o(if) is the smallest cardinal K such that for all T and q> e <£ [T]
there is a vocabulary C C T of cardinality < K such that cp depends only on a, and o(j£?) = oo if no such
K exists. Intuitively, the dependence number is the semantic side and the occurrence number the
syntactic side of one and the same coin. Indeed, using the substitution property to remove dummy
relation symbols, function symbols, and constants, one can easily see that o(if) and Occ(if) can
play the same role in the one-sorted case. In the many-sorted case this may not be true because the
substitution property as we have stated it in 1.2.3 does not enable us to remove dummy sort symbols;
however, it can be guaranteed by a suitable reformulation of 1.2.3 which we leave to the reader.
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Compactness properties yield small Hanf numbers. For example, if if is
(K, A)-compact for all K, then hK($£) < X for all K. On the other hand, compactness
fades away with growing well-ordering numbers. Hence the question: Do large
well-ordering numbers come along with large Hanf numbers? For a precise answer
we introduce the beth numbers from classical set theory:

6.1.5 Definition. We define by recursion:

(i) 30(K) = TC;

(ii) 3a+1(fc)=2a-<*>;
(iii) 1P(K) = suppa0c)|a < jS} for limit ft.

To illustrate the size of beth numbers, let A be a set of power K and define
V*(A)9 a variant of the von Neumann hierarchy over A, by the following equations:

(i')
(ii') V*+1(A) = power set of V*(A),

(iii') V${A) = U {»^04)|a < P) for limit jS.

Then for all a we have | V*(A)\ = 2a(k).
Now assume that X < hK(J£) is pinned down by a set O c JS?[T] of power < K,

where x can be chosen relational (if allows elimination of function symbols!).
With new binary relation symbols V, s and new constants co,cx let 0 ' consist of

(1) 3z Vcoz A Vz(Fcoz v Vcxz);

(2) ^l^oz} f o r ( p E o ;

(3) \/xy(Vz(zsx <^> zey) -+ x = y); that is, "e /s extensionaV';

(4)

Then for any model 91 of O' we have with jii = \{aeA\(cf, a) e Vs*} \ that \A\<
fi0 + fiu where /x0 < hK(3P) and /ij < H^/io). Hence O' pins down cardinals, and
obviously hK(^) > 3X(A).

O' can be considered as a description of the first two steps of the modified von
Neumann hierarchy over the domain of models of O, where Q> pins down X. The
construction can be easily generalized in a natural way to describe the hierarchy
along well-orderings that can be pinned down in <£. Thus, one can prove:

6.1.6 Theorem. Assume that each ordinal a < wK(i?) can be pinned down by a set
*Fa of sentences, |*Fa| < /c, having a model 91 of power <hK(^) where <m is of
order type a. Then for every X < hK{5£\ hK(&) > 2Wtcm(X).

As an application we obtain, for instance, that

for jSf =
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6. Lowenheim-Skolem Properties 67

What about the other direction in these examples? It is valid, too. Thus, in each
case we get equality. The corresponding proofs are based on partition theorems
and indiscernibles. These techniques can also be used to get further strong results
in the same direction (see, for example, Barwise [1975]).

If a logic is weak in pinning down ordinals, it may happen that we are unable
to give satisfactory information about Hanf numbers. For example, for if =
•2^(7), the size of h(&) depends on set theory: If V = L, then h(££) = h(^2).
On the other hand, h(£f) may be smaller than the Lowenheim number /(if) as
defined below, which may itself be smaller than 2No (see Section VI.2.1 and
Vaananen [1982a]).

Warning. We have become accustomed to numerous preservation facts for
(R)PC-reducibility. For instance, we obviously have

(*) If if < PC ^* ? then for all K, hK(£?) < /iK(if *).

However, it is plausible that we would meet difficulties if we were to try to prove
(*) for <RPC. Indeed, in the remark preceding Proposition 7.2.5 we will see that
there are counterexamples.

6.2. Lowenheim Numbers

Lowenheim numbers measure the strength of downward Lowenheim-Skolem
theorems.

6.2.1 Definition. ZK(JS?) is the least cardinal ji such that any satisfiable set of JSf-
sentences of power < K has a model of power < /x, provided there is such a cardinal;
otherwise, ZK(i?) = oo. We call /(if):= /x(if) the Lowenheim number of if.

Obviously, ^ has the Lowenheim-Skolem property down to A iff* l(^) < A.
By taking inequalities between K many constants we see that lK(3?) > max{fc, No}.
The proof of the downward Lowenheim-Skolem theorem for ifW£0(2i) as men-
tioned in Example 1 of Section 2.2 can be generalized and yields /(ifft)ft)(2a)) =
W ^ ^ C G J ) = K«. Clearly, /(if ^ J = oo. But if ^ is small (that is, if all if [t]
are sets) and Occ(if) < oo, then by an argument like that for Hanf's theorem
(6.1.4), we have lK(^) < oo for all K.

Numerous results such as \^{5£^(QJ) = Ka can be strengthened by showing
that structures possess small elementary substructures; however, this possibility
may fail already with familiar logics. For instance, / ( i f^aa)) = X1? but the
existence of ifwt0(aa)-elementary substructures of power < Kx is independent
from ZFC (see remark after IV.4.2.5). For a closer look at Lowenheim-Skolem
properties and substitutes the reader is referred to Section III.3.
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7. Interpolation and Definability

In this final section we return to central notions of a more "logical" character.
The main topics we shall touch concern interpolation and a generalization of
Robinson's consistency theorem in Section 7.1, A-interpolation in Section 7.2 and
variations of Beth's definability theorem in Section 7.3. Again we confine ourselves
to regular logics. However, we explicitly include the many-sorted case. As the re-
formulation of the usual interpolation property given in Definition 1.2.4(viii) by
separability of projective classes as in Proposition 3.1.3 splits into cases—referring
to "PC" in the one-sorted version and to "RPC" in the many sorted version—we
use "(R)PC" to stand for "PC" in the first and for "RPC" in the second case.

7.1. Interpolation and the Robinson Property

As a generalization of the interpolation property, we state

7.1.1 Definition. Let if, if* be logics, if* has the interpolation property for if or
5£^ allows interpolation for <£ iff any two disjoint classes of the same vocabulary
that are (R)PC in ^£ can be separated by a class EC in J^*.

Interpolation is indeed rare. The positive examples among the logics we have
mentioned up to now can be listed very quickly:

7.1.2 Examples, (a) if ww. The one-sorted case is due to Craig [1957a], the many-
sorted one is proved in Feferman [1968a]. The one-sorted version follows from
the many-sorted one, even in the stronger form with "RPC" instead of "PC",
because relativized reducts can be rewritten as simple reducts of many-sorted
structures (see Barwise [1973a]). It is especially with interpolation that many-
sortedness pays. As seen in Feferman [1974a], the many-sorted version of the
interpolation theorem together with its possible refinements is a powerful tool
even for one-sorted model theory, offering for instance elegant proofs of various
preservation theorems. For a proof of a strong version of if ^-interpolation
the reader is referred to Theorem X.2.2.9.

(b) 3?^^ (Lopez-Escobar [1965b]) and countable admissible fragments
(Barwise [1969b]).

Interpolation properties seem to indicate some kind of balance between syntax
and semantics. This can be seen, for instance, from the work of Zucker [1978]
or from the fact that interpolation implies Beth's definability theorem, according
to which implicit definitions can be made explicit. Last but not least it is illustrated
by a result of Feferman [1974a] according to which A-interpolation is equivalent
to truth maximality (see Corollary XVII. 1.1.17). Hence we may expect that inter-
polation properties (or definability properties, see Section 7.3) fail if syntax and
semantics are not in an equilibrium. The counterexamples to interpolation that
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7. Interpolation and Definability 69

we have mentioned up to now (such as ifw2, being able to code its own truth, or
^cocoiQiX being able to characterize uncountability) are not astonishing if seen in
the light of these heuristics.

7.1.3 Further Counterexamples, (a) In the case of large infinitary languages, the
main fact is that if ^ does not allow interpolation for ifW2W. For a proof we con-
sider the classes

#x0 = {A\A # 0 , \A\ < Xo}, #K l = {A\\A\ > XJ .

ftNo and ftKl are PC in ifW2£0 (for ftXl we can use the sentence

But 5^No and ft**1 cannot be separated by a class EC in if „„, as all infinite sets
are partially isomorphic and, hence, 5£^-equivalent by Karp's theorem (4.3.2).
(For further results see Example IX.2.3.1 and Theorem IX.2.3.2.)

(b) For extensions of if'^(Qi), we find that ifwco(6i|n > 1) does not allow
interpolation for if£0C0(gi), and if wa,(aa) does not allow interpolation for ifwco(2i).
Hence, none of the logics ifwco((2i) for n > 1, if wco(aa) or if w(0(pos) has the inter-
polation property.

To argue for the first assertion, let ftcfco, Stcfeoi be the classes of orderings of
cofinality co, co1? respectively. Both are PC in i f ^ Q i ) : ftcfco via a sentence
cpo( <, Uo) saying that < is an ordering of the universe without last element and
Uo of power <K0 a cofinal subset, and itcfC0l via a sentence cpi(<, Ux) saying
that < is an ordering of the universe and U ± a cofinal subset such that
< [ U1 x Ul is an Ki-like ordering. ftcfw and ftcfc0l cannot be separated by a
class of orderings EC in ^^JQ^n > 1). For let 91 = (R, <R) be the ordering of
the reals and 93 = (93, <B) the result of replacing each ordinal in Kx by a copy of
91. Then 91 e Slcfa, and » e ftcffi>1. On the other hand, we have 91 =^^^(^7) 93 for
all n > 1, as CD*^: 91 =0,,^ S, where / is the set of partial isomorphisms from
91 into © with finite domain. (For the second assertion and further material, see
Section IV.6.3).

(c) &<aa>{Q!*<o\ the fully compact extension of !£«>«>, does not have the inter-
polation property (alas!). To sketch a counterexample, call a tree (T, <, E) with
an equivalence relation E on T whose equivalence classes are maximal antichains
("levelled tree") rankable by a linear ordering (R, <) , if there exists a homomorph-
ism n from (T, <) onto (R, < ) such that the equivalence classes of E are the pre-
images of n. Define ft0, H1 to be the class of levelled trees rankable by some ordering
of cofinality co, > cou respectively. Then ft0 and 5^ are disjoint and PC in ifcoa,(6

cf w).
Define Zo to be the set {t\t: {a e Q \a <Qb} -• {0, 1}, b e Q} ordered by inclusion
where two points are equivalent if they have the same domain, and define 3^
similarly, using a dense Krlike end extension of (Q, <Q). Then Xt G 5̂ f (/ = 0, 1),
but Zo <#tnmiQcr<o) Xf See also Mekler-Shelah [1983, Theorem 3.5].

(d) For a general class of counterexamples the reader can refer to Proposition
VI.2.3.1.
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In first order logic there is access to interpolation via Robinson's consistency
theorem. This possibility can be generalized.

7.1.4 Definition, if has the Robinson property iff for any vocabularies x0, xt and
x = x0 n xx and for all classes (!) $ c g>[x] and <£>,- c jgf[TJ (/ = 0, 1), if
$ is complete (i.e. all x-models of <|> are if-equivalent) and if <J> u O, has a model
for i = 0, 1, then O u ^ u f j has a model.

7.1.5 Proposition. Let if fee small (i.e. all S£\x\ are sets). Then, if 5£ is compact,
$£ has the interpolation property iff ^ has the Robinson property.

Proof. Let ^ be compact and x0, xl and x be given as in Definition 7.1.4. Since
5£ is small, all classes of sentences defined below are sets so that the compactness
property is applicable. Assume first that 5£ has the Robinson property and let
<Pi e &[x[\ (i = 0, 1) be given such that

Setting <X>' = {<peif[x]|(p0 \= cp}, we have $>' \= cpv (Otherwise, if 93 e Str[x] has
an expansion satisfying <D' u {~\q>i}9 then Th^(93) u {~i^i} has a model, and
by a compactness argument, so does Th^(33) u {cp0}. Hence the Robinson
property yields a model of {q>0, ly^—a contradiction to (*).)

Now, by compactness, there is some finite subset of <£', say <D", such that
<b" \= (pv Obviously, / \O" is an interpolant for (*).

For the other direction let <P, O0, Ox be given as in Definition 7.1.4, Q> complete,
O u <&i satisfiable for i = 0, 1 and without loss of generality O ^ O0. As Ĵ 7 is
compact it suffices to show that for any finite conjunction q>t over <S>t (i = 0, 1)
the set {q>0, (p^ is satisfiable.

Assume for contradiction that {q>0, cp^} has no model. Then the interpolation
property yields a sentence cp e ^£{_x\ such that cp0 \= cp and <p\= n ^ i . A s O u {cp0}
has a model and O is complete, we have O |= cp. But then O u ^ J has no model,
a contradiction to the satisfiability o f O u O j . D

Proposition 7.1.5 can be strengthened considerably: For logics with sufficiently
small occurrence number, the Robinson property yields compactness (see Theorem
XIX.1.3 and Chapter XVIII).

7.2. A-interpolation and A-closure

The following notions have proved to be very fruitful.

7.2.1 Definition. A class ft of x-structures is said to be A in if (in symbols 51 e
iff ft and ft = Str[x]\ft are (R)PC in if. A logic 5£ has the ^-interpolation property
iff every A class of ^£ is EC in 5£. A logic ^ has the /^-interpolation property
for Se (or ^ allows A-interpolation for <£) iff every A class of ^£ is EC in £e*.
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7. Interpolation and Definability 71

As we have already observed in Section 3.1, A-interpolation is a weakening of
interpolation. Moreover, Theorem 7.2.6 will show us that it is a strict one. For
several reasons, however, it is an interesting one, one that is able to compete
seriously with the perhaps too strong notion of interpolation:

(1) According to a remark after Example 7.1.2(b), A-interpolation is equivalent
to truth-maximality and thus, in a precise sense, embodying a balance
between syntax and semantics.

(2) A-interpolation is equivalent to a certain variant of Beth's definability
theorem, see Proposition 7.3.3.

(3) A-interpolation is by far not as rare as interpolation. This will become
clear from the notion of A-closure given below.

7.2.2 Examples and Counterexamples, (a) ifWC(,((?i) does n o t allow A-interpolation
as the classes corresponding to Keisler's counterexample to interpolation (see
(*) in Example 1 of Section 2.2) are A in Se^JQ^

(b) Even sharper: i f ^ ( S i I n > 1) does not allow A-interpolation for <£^(d).
(For a proof see Theorem IV.6.3.3.)

(c) Similar to (a), the counterexample to interpolation for ifww(<2cf w) as given
in 7.1.3(c) is also a counterexample to A-interpolation.

In contrast to the interpolation property, the A-interpolation property
guarantees the existence only of such elementary classes as are uniquely deter-
mined. Hence, unlike interpolation, A-interpolation leads to a natural closure
operation which we now examine.

7.2.3 Definition. The A-closure of if, A(if), is the logic that has as elementary
classes just the classes that are A in if. To develop a more precise description, let
A(if)[T] consist of all pairs

<p = (3ToXt(/)o, 3rAt<Pi),

where xt ^ T, cpt e i f [Tj (i = 0, 1), and Mod^(3ToVt<p0) and Mod^(3tlXT<j91) are
complementary, and set

7.2.4 Theorem (Properties of the A-Closure). Assume that Occ(if) = Ko. Then

(i) A(if) is a regular logic with occurrence number Ko.
(ii) A is a closure operation on the logics under consideration, that is,

(1) if < A(if);
(2) If&< i**, then A(if) < A(if *);
(3) A(A(if)) = A(if).

(iii) A(if) has the /^-interpolation property and <£ = (R)PC A(if).
(iv) A(if) is modulo equality via elementary classes the strongest logic < (R)PC 5£

and the smallest < {R)PC-extension of <£ having the A-interpolation property.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.005
https://www.cambridge.org/core


72 II. Extended Logics: The General Framework

Remarks. The first statement of (iv) says that if if* <(R)PC if, then <£* < A(if).
Thus it makes precise the range of (R)PC-reducibility: There is a unique borderline
realized by A(if).

As the proof below will show the condition on Occ(if) is used for instance
to formulate t-closedness of predicates. In infinitary languages this can be done
even for infinite vocabularies. Hence Theorem 7.2.4 is also valid for logics such

Sketch of Proof of Theorem 1.2 A. We show some parts of (i) and (ii)(3), confining
ourselves to the one-sorted case and considering typical examples. If S is, say,
unary and cp{c) = (3R(po(R, c), IScp^S, c)\ then one can take (IScp^S, c),
3Rcpo(R, c)) for -i(p(c) and (3R 3ccpo(R, c\ 3S' Vccp^zS'cz, c)) for 3ccp(c) where
S' is a new binary relation symbol. To show the relativization property,
let x = @.0\*Xo, 3«1\«Zi)eA(JSf)[a] (with <r <= ah <rf finite, Xt e ^ M and>
say, CF0 = CFi) and let 9 = (So, Sx) be some A(if)-sentence of meaning
Vc(Uc+-+(p(c)\ U new and, say, SG A(if)[x u {(7}]. Then one can obtain a
A(if)-sentence of meaning ^cl*(c» by suitably rephrasing the equivalent statement

(317 3aoW(S0 A Unclosed A XOX 31/ 3aoW(S0 A ( I Unclosed v ;tf))).

In order to prove A(A(if)) = A(JSf) one observes that a typical sentence of A(A(JSf))
such as

(3R(3Scpo(R, 5 , . . . ) , . . . ) , 3R'(3S'(p'0(R\ S'9 . . . ) , - • •))

has the same meaning as (3RS(po(R, S,...), 3R'S'<p'0(R'9 S\ ...)). D

Remark. Properties that are transferred from if to A(if) include those which
are inherited by =(R)pC- Therefore the A-closure preserves (K, A)-compactness,
well-ordering numbers, Lowenheim numbers and boundedness. On the other
hand it does not necessarily preserve Hanf numbers in the many-sorted case. For
example, as shown in Vaananen [1983], it is consistent to assume in this case
that h(<£<oJJ)) < KA(&(oM)))- However, if A classes and the A-closure are
defined via PC as in the one-sorted case, Hanf numbers are preserved also.

7.2.5 Proposition. The A-closure does not preserve the Karp property.

Proof. ifW2C0 has the Karp property (see the remarks following Theorem 4.3.2).
According to Counterexample 7.1.3(a) the classes ftKo = {A ¥= 0 1 \A \ < Ko} and
ft*1 = {A\\A\ > K J are A in jS?ro2a, and so are EC in A(JSfa>2<0). Therefore,
^o ^ M&CO cu) î- ̂ u t o n ^ e °ther hand we have Ko =p Kt. Thus, the Karp property
fails for A(VW2J. D

We can say even more. By the proof of Proposition 7.2.5 we have S£
A(ifC02C0). Hence the classes Sicf(O and ftcfc0l of orderings of cofinality co, co1, respec-
tively, which are PC in S£mJQ^) (compare the proof of Counterexample 7.1.3(b)),
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are PC in A(^W2C0). Assume that there is some class ft, ft EC in A(JSfct>2Ct>), that
separates ftcfw and ftcfc0l. Then for suitable x 3 {<} and cp e J ^ ^ C t ] , we have
ft = Mod((p) T {<}. Let Se be the smallest fragment of S£W2iO containing cp. We
take some 21 e Str[i] with (A, <***) an ordering of cofinality co2 and^build into 91
a chain (9Ia)a<x1? forming unions at limit points, such that for all a < N1? 9la -<_̂
2l«+i < ^ 91, and < M- is not cofinal in <9I« + 1.Then9Iw r{<}eftiff9lNl t{<}eft .
This, however, is a contradiction. Thus we have proved

7.2.6 Theorem (H. Friedman), ^-interpolation is strictly weaker than interpolation.
For instance, A(Ĵ W2CO) does not allow interpolation. D

The reader should consult Theorem IV.6.3.5 for another example.

Concluding Remarks, (a) Our definition of A(JS?) as sketched in Definition 7.2.3 is
useful for technical purposes. But it does have a remarkable disadvantage: even
the S£wco-part of A(JSfww)( = S£TO(!)) is not effective, since for sufficiently rich x
the A(^fww)-sentences of the form (cp,3x x ^ x) (that is, those with cp e ^ ^ [ t ]
and \= cp) do not form a recursive set. A more significant example illustrating the
task of giving an informative description of A-closures is due to Barwise [1974a]
(see Theorem XVII.3.2.2):

A(iT2) = ti{£ejiQ0)) = ^WCKW (for finite vocabularies).

(b) Use = Se^JQ^ . . . , Q%n) with Lindstrom quantifiers Q% and if IK consists
of those classes which are A in se and of finite vocabulary, then obviously A(JSf) =
S£{Q%\$< e IK). Now, if IK0 is a finite subset of IK, then one can prove by a slight
variation of the technique used in the proof of Proposition 3.1.7 that, if S£ is
recursively enumerable for consequence then so is S£{Q%\$< e (Ko). It is in this
sense that the A-closure preserves axiomatizability locally.

7.3. Definability Properties

In Definition 1.2.4(ix) we formulated the Beth property by a natural translation of
Beth's definability theorem into the framework of abstract model theory. The
following definitions introduce some variants.

7.3.1 Definition. Assume § e x and cp e J£?[T]. We say that cp defines § strongly
implicitly iff for each 91 e Str[t\{§}] there is exactly one expansion (91, §m) of
91 which is a model of cp. The logic S£ has the weak Beth property iff for each T,
§ and cp as above, if cp defines § strongly implicitly, then § is explicitly definable
relative to cp.

Like A-interpolation which guarantees the existence of uniquely determined
elementary classes, the weak Beth property ensures the existence of uniquely
determined explicit definitions. Hence it induces a natural closure operation on
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logics yielding the so-called weak Beth closure WB(JS?) of a logic S£ (it is treated,
for example, in Sections XVII. 1.2 and 4.1). As can be shown by examples (see
Chapter XVIII, 4.2.2) the weak Beth property is strictly weaker than the Beth
property. According to H. Friedman [1973] and Badger [1980], -Sf^CGi) does
not have the Beth property for n > 1. It is open as to whether or not it has the
weak Beth property. (For n = 1 see also Mekler-Shelah [198?].)

Failure of the Weak Beth Property. We have already mentioned after Definition
2.1.2 that there is a fairly general method of disproving the (weak) Beth property
by a codification of truth. The method goes back to Craig [1965] and is explicitly
used in Mostowski [1968] and Lindstrom [1969]. It applies to logics such as
ĉoco(2o)> <̂ w2> o r ^coco enlarged with finitely many Lindstrom quantifiers in

which, for example, the standard model of arithmetic is characterizable
and which allow an arithmetization of their semantics. A systematic treatment
can be found in Section XVII. 11.2. For illustration we give an example for
the one-sorted case. We assume that !£ = ^^JiQsd with ft of vocabulary {JR},
R binary, and that for some finite x ^ {+ , •, < ,0 , 1} and some cp e Sent^[x] the
sentence 3xx{+t.t<tOtl}q> characterizes the standard model of arithmetic.

For our procedure we use an effective Godel numbering

y: F o r m a t ] ^ U co,

and we code assignments of finitely many variables over co—the case we are
interested in—by elements of co in some natural manner, identifying variables with
natural numbers. Then, with a binary relation symbol Sat, we construct a (x u
{Sat})-sentence o of if such that (abbreviating 1 + • •• + 1 by m)

m- times

(*) Sat is defined strongly implicitly by the sentence

a = (cp A o) v (—\cp A Vxy —i Sat xy).

(**) If (91, Sat31) \= cp A <r, then, for all m, n e co, we have

91 \= Sat mV 1 iff m91 codes an assignment n over A the domain of
which contains all variables occurring free in
y1^) such that ^(n) is true under n in 91.

To obtain cr, one describes the inductive definition of satisfaction for S£\x\-
formulas. For example, the Q-step can be treated as follows: Let / : co3 -• co be a
recursive function such that for all /, m, n e co,
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Then, writing "Sat(x, y)" for "Sat xy", the following sentence becomes a conjunct
of a:

Vx \fuvw (Sat(w, " f(u, v, x)") <-• (" w assignment for f(u, v, x)"

A g j * Sat("w r(dom(w)\{W, »}) u {(u, JO, (i;, z)}", x))),

where the parts in quotation marks have to be replaced by an arithmetical de-
finition.

Proof of the Failure. Now, assume $£ to have the weak Beth property. Then, by
(*), there is \//(v09 vx) e F o r m a t ] defining Sat explicitly relative to <?. Let n be the
Godel number of —i ^(" {(0, v0)}", v0) and assume 91 to be a model of cp A G. Then,
by (**), we obtain

91 \= iK« {(0, n)}", n) iff 911= -i ^(" {(0, n)}", n).

This is a contradiction. •

As the interpolation property yields the definability property, counterexamples
to the latter are, in effect, counterexamples to the former. Positive results concern-
ing the other direction are described in Chapter XVIII.4.

We conclude with a link between interpolation and definability which goes
back to Feferman [1974a]. For this purpose, we strengthen the weak Beth property
in a new direction.

7.3.2 Definition. The logic if has the projective weak Beth property iff for all
x, T' with t ^ T' and for all § e x and cp e S£\x'\ if 3TXT(/? defines § strongly implicitly,
then § is explicitly definable relative to 3T,Nx cp.

7.3.3 Proposition, if allows /^-interpolation iff if has the projective weak Beth
property.

Proof. Assume first that if has the projective weak Beth property, and let 5^ =
Mod(3TiAT<joI-) (i = 0, 1) be two disjoint complementary classes of t-structures.
With new unary P (in the many-sorted case this P will be equipped with some
sort symbol s e T) we set

I = (3XoXxcp0 A VxPx) v ( 3 ^ ^ ! A Vx -i Px).

Obviously, % strongly implicitly defines P and the projective weak Beth property
applies. Let \jj be an explicit definition of P relative to /. Then

{(91, a) 191 e Str[x], 91 N 3ToXx<po, a e A(s)] = Mod(tfr)

is EC in 5£ and hence, by particularization, so is ft0.
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For the other direction, assume S£ to allow A-interpolation and 3X'Vt
(P to

strongly implicitly define § e t, say § = P, a unary relation symbol. Then

ft = {(21 r (x\{P}), a) 1911= 3T,XTcp, a e P*}

is (R)PC in S£. The complementary class ft can be written as

ft = {(91 r ( A W ) , a)\% |= 3TAT<?, a £ P*}

and hence is (R)PC in if, too. Therefore, ft is EC in $£. Now take \\i such that
ft = Mod(^). Then \jj is an explicit definition of P relative to 3T'XT<p. D

Following the pattern of Definition 7.3.2, the reader may define the so-called
projective Beth property. For instance, suppose a sentence cp(R, 5, P) defines P
implicitly relative to S in the sense that, with new symbols R\ P',

<p(R, S, P) A cp(R\ S, P') |= Vx (Px ^> P'x).

Then the projective Beth property implies that cp(R, S, P) admits an explicit
definition of P relative to 5, that is, a formula iK<S, ^) s u c h that

<p(R, S, P) N Vx(Px ++ ij/(S9 x)).

The usual proofs of Beth's definability theorem—including the original proof in
Beth [1953]—extend immediately to the projective Beth property. Even more: A
slight modification of the preceding argument shows that the interpolation property
and the projective Beth property are equivalent for all regular logics (Rowlands-
Hughes [1979]). Thus we get an alternative answer to the question about the
relationship between interpolation and definability as posed in the remarks
following Definition 1.2.5.
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Chapter HI

Characterizing Logics

by J. FLUM

The model theory of first-order logic is well developed. It provides general results
and methods which enable us to study and classify the models of systems of
first-order axioms. Among these general results of wide applicability are the
completeness theorem, the compactness theorem, and the Lowenheim-Skolem
theorem. Thus, for example, the completeness theorem leads to decidability
results; in many cases we obtain for a given system of axioms models with special
properties using a compactness argument; finally the Lowenheim-Skolem
theorem tells us that we can restrict to countable structures when classifying—with
respect to its first-order properties—models of a system of axioms.

Much effort was spent in finding languages which strengthen the first-order
language and which are

(i) sufficiently strong to allow the formulation of interesting systems of axioms
and properties of structures which are not expressible in first-order logic,
and

(ii) still simple enough to yield general principles and results which are useful
in investigating and classifying models.

Taking into account the situation for first-order logic, it is not surprising that many
logicians attempted to find logics satisfying the analogues of the completeness, the
compactness, and the Lowenheim-Skolem theorems. That this search could not be
successful was shown by the following two results, both of which are due to Lind-
strom[1969]:

(1) First-order logic is a maximal logic with respect to expressive power
satisfying the compactness theorem and the Lowenheim-Skolem theorem.

(2) First-order logic is a maximal logic satisfying the completeness theorem
and the Lowenheim-Skolem theorem.

Let us point out some consequences of these results.
(a) They tell us that first-order logic is a natural logic, if one accepts the

completeness (or the compactness) and the Lowenheim-Skolem property as
natural properties. I suspect that most mathematicians do not accept the Lowen-
heim-Skolem property as natural. Quite the contrary, as Wang [1974, p. 154]
remarked: "When we are interested in set theory or classical analysis, the Lowen-
heim theorem is usually taken as a sort of defect (often thought to be inevitable)
of the first-order logic. Therefore, what is established (by Lindstrom's theorems)
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is not that first-order logic is the only possible logic but rather that it is the only
possible logic when we in a sense deny reality to the concept of uncountability

(b) Lindstrom's results show that it makes no sense to classify logics as
either good or bad, depending on whether they are complete (compact) and have
the Lowenheim-Skolem property or not. On the contrary, Lindstrom's result
gave special emphasis to the proposal—already expressed by Kreisel in 1963—that
there must be a balance between the syntax and the semantics of a logic and that
the semantic properties we consider must be adapted to the expressive power and
the special features of the given logic.

(c) Lindstrom's results were the starting point

(i) for investigations which were trying to find some order in the diversity
of extensions of first-order logic, and

(ii) for a systematic study of the relationship between model-theoretic prop-
erties of logics.

In particular, these investigations have led to characterizations of other logics by
means of suitable model-theoretic properties.

(d) Robinson [1973] specified the following task ". . . to develop topological
model theory. What I have in mind is a theory which is related to algebraic-
topological structures, such as topological groups and fields, as ordinary model
theory is related to algebraic structures." There were some approaches to this
problem which led to different logics for topological structures. However, when
Ziegler [1976] proved that a certain logic !£t is a maximal logic—in the sense of
Lindstrom's results—for topological structures, there was strong confidence in
the fact that S£t is the logic for topological structures corresponding to first-order
logic; and, in particular, that 5£x should prove helpful for the investigation and
classification of topological structures. It turned out that this is actually the case.

Section 1 of the present chapter is mainly devoted to a proof of Lindstrom's
theorems. Section 2 contains some further characterizations of first-order logic
by means of model-theoretic properties. In Section 3 we show that J^ww is a maxi-
mal logic satisfying properties which can be viewed as model-theoretic generaliza-
tions or substitutes for compactness and the Lowenheim-Skolem property. In
Section 4 we prove that among the logics of the form JSf^Q) with a unary mono-
tone quantifier Q the logics i?wco(<2a), where ga is the quantifier "there are at least
Ka-many" are the only ones with the relativization property. Finally in Section 5
an "abstract maximality theorem" is established. This result not only covers
Lindstrom's result but it also tells us how to obtain maximal logics for other kinds
of structures, such as topological structures, for example.

1. Lindstrom's Characterizations of
First-Order Logic

We first present a proof of Lindstrom's first theorem ("compactness +
Lowenheim-Skolem property characterize JS^o/'X which does not presuppose
knowledge of any special model-theoretic results. We then try to minimize the
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1. Lindstrom's Characterizations of First-Order Logic 79

assumptions and prove a lemma which, on the one hand, isolates the main step in
the derivation of Lindstrom's first and second theorems ("recursive enumer-
ability for validity + Lowenheim-Skolem property characterize i ? ^ " ) and, on
the other, makes visible the relationship between maximality and a separation
property. Later, when we are characterizing i f '^ and some other logics as maximal
logics, we will see that a proof of the maximality along the same lines leads to a
separation theorem. In this way we will obtain in a unified form some results which
now appear to be scattered throughout the literature. In the second part of this
section, we list some examples which show that it is not possible to strengthen
Lindstrom's theorems in some more or less plausible ways. We will close this
section by giving a characterization of the monadic part of first-order logic (and
of some monadic extensions of first-order logic).

Throughout this chapter, given any vocabulary x we denote by x' a disjoint
copy of x. For/, R, c in x let/ ' , R\ d be the corresponding symbols in x'. If JS?
is a logic and ij/ an if [x]-sentence, then \//' will be the if [x']-sentence associated
with \\i by the renaming property. Finally, for a x-structure 91 let 91' be the cor-
responding x'-structure. If 95 = 91', we set 95" ' = 91.

For definiteness let us assume that all logics are one-sorted. In this section, if
not explicitly stated otherwise, all logics are assumed to be closed under (finitary)
boolean operations (that is, they are assumed to have the Boole property).

1.1. Lindstrom's First and Second Theorems

We begin by proving a version of Lindstrom's first theorem.

1.1.1 Theorem. Let !£ be a logic, ££wco < !£, with the compactness property and the
Lowenheim-Skolem property for countable sets of sentences. Then if = if cow •

Proof. The proof proceeds in three steps. First, we will show that each if-sentence
depends on finitely many symbols. Then, in case ij/ e $£\_%\ is not equivalent to a
first-order sentence, we will get elementarily equivalent structures 91 and 95 such
that

( + ) 91 \=\l/ and 9 5 N I I A .

Finally, we will see that it is even possible to obtain isomorphic 91 and 95 with
( + )—a contradiction.

Let us start with the first step (see Proposition II.5.1.2).

Given \jj e S£[_x], there is a finite x0 c= x such that for any x-structures
(1) 91 and 95

91 K £ 95 K implies (91 \= xj/ iff 95 |= i/0-
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To prove (1) let O c if [x u x'] be the set

0> = {Vxi . . . \/xn(Rx! ...xa<r+R'xl...xn)\n > 1 , /Jexn-ary}

u {Vxx... Vxn/(x!, . . . , xn) = / ' ( * i , . . . , xn)|n > 1,/e x n-ary}

U {c = C'\CEX}.

Clearly Q>^= \j/ ^\j/'. Hence, by JS?-compactness, there is a finite <X>0 such that
(£0 |= ij/++\l/r. But then any finite xx such that O0 c i f [ x j leads to a finite x0

satisfying (1).
We now assume that the conclusion of the theorem fails; and, hence we sup-

pose that some \j/ e if [x] is not equivalent to a first-order sentence. Choose a
finite x0 c x according to (1). We now prove:

There are x-structures 21 and 95 with

(2)
A = B, 21 N ^ , 9 3 | = ^ and 31 px0 = 93 T^o-

To establish (2), let <pu q>2, . . . be a complete list of the ifjxoj-sentences. By
induction, we obtain a sequence \j/l9 \l/2, •.. such that for each n, \j/n = <pn or \jjn =
"~i<pn, and ^ A ^! A • • • A \/jn is not equivalent to a first-order sentence. Then
also ~i\j/ A i//l A • • • A \j/n is not equivalent to a first-order sentence. Hence, both
\jj A \jj1 A ••• A i/^and—ii// A \j/1 A "- A \j/n are satisfiable. Let ¥ = {^n|n > 1}.
By if-compactness and by the assumed Lowenheim-Skolem property for 5£
there are countable structures 91 and © such that 211= *F u {^} and 95 |= V u
{-iiA}- But then 21 T x0 = 93 \ x0 and by (1), 21 \ x0 g 95 f t0 . Therefore, X and 5
are countable and infinite. Hence, without loss of generality, A = B.

In the last step we obtain the desired contradiction passing in (2) to structures
having isomorphic—instead of elementarily equivalent—xo-reducts. For this
purpose, choose a disjoint copy x' of x and new (2n + l)-ary function symbols /„
and^ .Se tx* = x u x' u {/„, gjneco}.

For each w, fix an enumeration <x,-(xl9... ,xn,x)\iea>} of all ^^Ji^o]-
formulas with free variables among xl9 . . . , xn, x. Let F consist of the JS?[T*]-

sentences

("the x-reduct is a model of ^, the x'-reduct a model of ~i^/M),

cp^cp' for each if^^[xoj-sentence (/?

("the xo-reduct and the x'0-reduct are elementarily equivalent"),

and of the following sentences which enable us to construct in a countable model,
step by step, an isomorphism of the xo-reduct onto the x^-reduct (let x = xl... xn

and y = yx... yn)
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(*)
VxVjT

/\(Xi(x,x)^x'i(y,y)))
i = 0 }

A te(*> x) «-• x'i(yJn(x, y, x))) I,
E = 0 /

A te(*> Qn(x, y , y)) <^ x'iiy, y ) ) l n , r e a>.

Note that given a finite set ¥0 of sentences in (*) we can expand an arbitrary
x0 u to-structure to a model of *F0. Hence, by (2) each finite subset of T is satisfiable.
Using the compactness and the Lowenheim-Skolem property of if, we obtain a
countable model D of T Let 21 = t) { T and SB = (D f x')~' (where ': T -> t' is the
given renaming). Clearly, 1̂ = 5 = 1), 9I^=^> 93^=~i^ a n d ^I T To = ® T To •
We will show that 91 {x0 ̂  © f x0, which contradicts (1).

Let du d2, ... be an enumeration of Z). Since 91 f t 0 = S Isx0, then we have
by(*)

(s i r to ,<*i,

(91 r x 0 , d l s

Continuing in this way (see the proof of Theorem II.4.3.1), one obtains sequences
ai,a2,... and bl,b2,... such that A = {an\nsco},B = {bn\nsw} and

( 9 1 ^ 0 , 0 ! , ^ , . . . ) = (33 \zO9bubl9..).

But then n: 91 |" x0 = 95 \ x0 for n defined by n{an) = bn for neco. D

The following lemma contains the main step in Lindstrom's derivation of his
theorems. We state it in the form of a "separation theorem". In this way, we will
be able to obtain some further applications.

Recall that a logic j£? is said to have the finite occurrence property, if for arbi-
trary x we have if [x] = (J {i?[x0] |x0 cz x, x0 finite}.

1.1.2 Lemma. Let J£ be a logic with the finite occurrence property. Assume
J^axo < ££ and that $£ is closed under conjunctions and disjunctions but not neces-
sarily under negations. Let !£ have the Lowenheim-Skolem property and suppose that
there are disjoint <£-classes which cannot be separated by an elementary class, i.e. for
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some x0 there are if [T^-sentences <p and ij/ with Mod(cp) n Mod(i/0 = 0 such
that there is no / e i?coco[xo] ^tn

Mod(cp) a Mod(/) and Mod(#) n Mod(^) = 0 .

Then there is for some vocabulary cr containing (at least) a unary relation symbol
U an 5£\<s\-sentence 9 such that (i) and (ii) hold:

(i) i/9I |= 3 then UA is finite and non-empty,
(ii) for each n > 1 there is an 21 f= 3 wit/z 11/"41 = n.

Before proving this lemma, let us state some of its consequences.

1.1.3 Theorem. Let 5£ be a logic with the finite occurrence property, ^M(O < !£,
and assume that <£ is closed under conjunctions and disjunctions but not neccessarily
under negations. If <£ has the Lowenheim-Skolem property and is countably com-
pact, then any disjoint ̂ -classes can be separated by an elementary class.

Proof. Otherwise, there exists an if-sentence 9 satisfying (i) and (ii) of Lemma
1.1.2. But then

( + ) {$} u {"there are more than n elements x with Ux"\n > 1}

is a finitely satisfiable set which has no model. D

Recall that in this section we assume that all logics have the Boole property,
if not explicitly stated otherwise.

1.1.4 Lindstrom's First Theorem. Let <£, !£^ < <&, be a logic with the finite
occurrence property. If $£ has the Lowenheim-Skolem property and is countably
compact, then JS?^ = <£.

Proof Given any j£?-sentence cp the model classes of cp and ~i cp are disjoint, hence,
by the preceding theorem, there is a first-order sentence x separating Mod(cp)
and Mod(~~i cp). But then x is equivalent to <p. D

1.1.5 Lindstrom's Second Theorem. Assume that J£? is an effectively regular logic
(see Chapter II for definitions). If !£ has the Lowenheim-Skolem property and is
recursively enumerable for validity then $£ rofi) effectively contains $£.

Proof For the sake of contradiction, suppose that some if-sentence cp is not equi-
valent to a first-order sentence. Since the model classes of cp and —i cp cannot be
separated by an elementary class there is an if-sentence 3, 9 e if [<r], with prop-
erties (i) and (ii) of Lemma 1.1.2. By a theorem of Trahtenbrot [1950], for some
finite t—we can assume x n <r = 0 - the set O of if wco[x]-sentences true in all
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finite models is not recursively enumerable. On the other hand, we have for

iff \=9-*(pu

where <pu denotes the relativization of cp to U (see Definition II. 1.2.2). if is ef-
fectively regular and recursively enumerable for validity, hence by (*), the set O is
recursively enumerable—a contradiction. To show that ifwco effectively contains
$£, given an if-sentence cp, we enumerate the validities of if until we arrive at a
formula which expresses the equivalence of cp to a first-order sentence. D

1.1.6 Remarks, (a) If if effectively contains i ? ^ then the set ( + ) of if-sentences
in the proof of Theorem 1.1.3 is recursive. Therefore, in this case, the assumption
"!£ is countably compact" which was made in Theorems 1.1.3 and 1.1.4 can be
replaced by "5£ is compact for recursive sets".

(b) In Theorems 1.1.3 and 1.1.4 we can drop the assumption "5£ has the
finite occurrence property", if we assume that 5£ is compact and not merely
countably compact. In fact, suppose that cp and x// are if [t] classes with disjoint
model classes, then we can obtain a finite x0 c: x such that

91 \= cp and 91 \ x0 ^ 95 \ x0 imply non 95 |= ijj.

(Here we apply if-compactness to the unsatisfiable set <X> u {cp, yj/'} where Q> is the
set introduced in the first step of the proof of Theorem 1.1.1). Using this finite
x0, one obtains—as in the following proof of Lemma 1.1.2—a formula S with (i)
and (ii).

Proof of Lemma 1.1.2. Let J?,T0,(p and \jj be given as in Lemma 1.1.2. Suppose by
contradiction that there is no if-sentence S with the properties (i) and (ii). Then
we can show:

,.v If x is an if-sentence not equivalent to a first-order sentence, then %
has a model of power Ko.

In fact, given such a X choose a finite t such that X is an if [x]-sentence. If x has an
infinite model, then for a new unary function symbol / the if-sentence

X A "/is one-to-one but not onto"

is satisfiable and by the Lowenheim-Skolem property has a countable model,
which must be of power Ko. Now suppose x n a s only finite models. Since x is
finite, for each nea>, there are only finitely many (non-isomorphic) x-structures of
size < n, and each one can be characterized by a first-order sentence. Therefore,
for each n, x must have a model with at least n elements (otherwise it would be
equivalent to a first-order sentence). But in this case, 9 := x A 3X UX for a new
unary relation symbol U is a sentence satisfying (i) and (ii). This completes the
proof of (1).
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By assumption, the if [xo]-sentences cp and \jj have disjoint model classes which
cannot be separated by an elementary class. We can assume that T0 is finite. Let
(pl9(p2,-- be an enumeration of the set of ifwca[T0]-sentences. Then:

For each n > 1 there are xo-structures 91 and 95 of power Ko such that

A = B, 9l*=<p, 93t=iA andfor i<w (911= cpt iflf 95 1= cpt).

To establish (2), by induction choose i/^, i//2,... such that for each n, \j/n = cpn or
\jjn= —\(pn and such that the model classes of cpn --= cp A ij/l A . . . A i//n and
\j/n := \jj A xj/1 A . . . A \jjn cannot be separated by an elementary class. In particu-
lar, neither cp" nor \jjn is equivalent to a first-order sentence. Thus, we obtain the
desired models 91 and 95 applying (1).

Using the notions of partial isomorphism, /c-partial isomorphic, . . . and the
corresponding results (see Section II.4.2) we may rewrite (2) in the following form:

For each keco, there are xo-structures 91 and 23 of power No such that

A = B, 9lNcp, 95Ni/> and 91^95 .

In the last step, we pass in (2') to isomorphic structures 91 and 95. To achieve
the corresponding result in the proof of Theorem 1.1.1, we applied the Lowenheim-
Skolem property to a set F consisting of two if-sentences and a recursive set of
ifC0(0[T*]-sentences in a vocabulary x* including x0 u x'o. By a theorem of Craig
and Vaught, there is a finite set of if ^-sentences having the same t0 u x'0-reducts.
Therefore one really needs the Lowenheim-Skolem property only for single
sentences. Nevertheless, we show here explicitly how to obtain isomorphic
structures in (2'), since, in this way, we can become acquainted with a proof
technique which is frequently used in soft model theory in general and in this
chapter in particular.

For k e CD, take 91 and 95 as given by (2') and choose (Im)m<k such that (Im)m<k:
91 ^k 95. By the results of Section II.4.2 we can assume that [jm<k Im is countable.
Moreover, suppose without loss of generality that {0,. . . , k} a A. Choose a one-
to-one mapping from (Jm<k/m into A. In the sequel, we shall identify p e (Jm<k/m

with its value under this mapping. Take new relation symbols (7, P (unary), <, /
(binary) and G (ternary) and let <r = x0 u x'o u {P, <, /, G}, where XQ is a disjoint
copy of x0. Let (£ (= (£fc) be the (^-structure with domain A given by

£ [ x0 = 91, G Is XQ = 95' (95' denotes the x'o-structure
corresponding to 25),

Uc={0,...,k},

<c is the natural ordering on {0, . . . , /c},

Pcp iff pel)lm,
m<k

Icmp iff m < k and p e / m ,

Gcpab iff p E [j Im and p(a) = b.
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1. Lindstrom's Characterizations of First-Order Logic 85

Then £ is a model of the conjunction 5 of the following if [a]-sentences

" < is a discrete ordering with first and last element",

" U is the field of < " ,

"Each p on P is a (partial) injective mapping"

that is, V/?(Pp -» Vx Vy Vu Mv{Gpxu A Gpyv -• (x = y <-> w = v))\

" Each p in P preserves all symbols in T0 "

for example, for a binary R in x0

Vp(Pp -• Vx Vy Vw Vv(Gpxu A Gpyv -> (#xy ^

"For each w in U the set JM is non-empty"

that is, \/u(Uu -• 3p(Pp A /W/?)),

"The sequence of /u's has the forth property"

that is, Vw Vv(v < u -• \/p(Iup -> Vx 3̂f 3y(/i;^
A Vz Vw(Gpzw -> Gqzw)))\

"The sequence of/u's has the back property".

Clearly, by (2') the sentence & has property (ii). In fact, H£k is a model with | [/Gk | =
/c + 1. We show that S also satisfies (i). Otherwise, $ has a model with infinite
t/-part. Let/be a new unary function symbol. Then,

9 A "/maps the (7-part one-to-one onto a proper subset"

has a model, and hence a countable model T) by the Lowenheim-Skolem property.
<^ being a discrete ordering with last element of the infinite set U® contains an
infinite descending sequence

Let 9l0 = X> t%0, ©0 = (D PT'O)"' and J = {p\I*dnp for some neco}. Since
D 1= 9, we can identify pe Pv with the partial isomorphism {(a, /?) | G^pab} from
sil0 to 33O. Moreover, by T) 1= 9, we have 9l0 N= ^ ®o 1= *A a n d ^: 9l0 =P®o;
that is, 9l0 and S o are partially isomorphic via J (that J has the back and forth
property can be easily seen by using the fact that the dn's form an infinite descending
sequence). But D is countable and countable partially isomorphic structures are
isomorphic (see Theorem II.4.3.1). Hence, 9I0 ^ 23O. In particular, 2l0 N {<p, \//}
and therefore 91 e Mod(cp) n Mod(i/^)—a contradiction. D

1.1.7 Examples, (a) Take as i? in Theorem 1.1.3 the set of I {-sentences over
J^wco (that is, sentences of the form 3R1... 3Rn(p, where cp is first-order). Then
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Theorem 1.1.3 yields the ££^-interpolation theorem: Any two £}-sentences with
disjoint model classes can be separated by an elementary class.

(b) For n > 1 let Qn be a quantifier binding n-ary relation variables. Fix the
interpretation of Qn by the clause

SH\=QnR(p iff \{RA\(%RA)\= cp}\ >2 'A | .

Qn is a kind of "second-order Lindstrom quantifier". Call an ^^(QJn > 1)-
formula positive, if it is a member of the smallest set containing the first-order
formulas and closed under A , v , 3x, Vx and QnR. Let if consist of the positive
< ĉoto(6nlw ^ l)-sentences. Using the local Chang-Makkai theorem for recur-
sively saturated structures (see Schlipf [1978]), one can show that !£ has the
Lowenheim-Skolem property and is countably compact (it is even compact!).
Hence, by Theorem 1.1.3, it follows that any two disjoint if-classes can be sepa-
rated by an elementary class.

The following proposition is related to a result obtained in the course of the
proof of Theorem 1.1.1.

1.1.8 Proposition. Let <£<!£' where if and ££' are logics and where if [t] is a set
for any vocabulary x. If 5£' is compact and

(*) 21=^93 implies 21=^93

then & = 5£'.

Proof. For an arbitrary satisfiable if'[x]-sentence cp we have by (*)

V A *A-
511= <p il/e&[T]

Now standard compactness arguments will show that the disjunction and the
conjunctions on the right-hand side can be replaced by finite ones. D

For further reference we state:

1.1.9 Remark. The preceding proof shows that if 5£' has the finite occurrence
property and if [t] is countable for finite T, then it suffices to assume that <£' is
countably compact. Moreover, if <£' has the Lowenheim-Skolem property down
to K for countable sets of sentences, then (*) must only be required for structures of
cardinality <K.

1.2. Some Counterexamples

In this part we list some more or less strange examples which will show that certain
strengthenings of the theorems of Lindstrom are not possible. A further example
is contained in Section 2.3. Already in Chapter II it has been shown that if W£0(g

a)),
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1. Lindstrom's Characterizations of First-Order Logic 87

the logic with the cofinality co quantifier, is compact, recursively enumerable for
validity, and has the Lowenheim-Skolem property down to Kt. The reader should
consult Shelah [1975d] where further examples of compact extensions of first-order
logics are given. In particular, there a logic ^^(Q) is introduced, which is regular,
compact, and more expressive than first-order logic even for countable structures:
Let X be the first weakly compact cardinal. The binary quantifier Q is then defined
as follows:

21 (= Qxycpix, y) iff cpm •-= {(a, b) \ 911= <p[a, b]} is an ordering and
there is a Dedekind cut (Al9 A2) of cpm with
cofinalities in {Ko, A}.

A Dedekind cut of an ordering (B, <) is a pair (Bl9 B2) such that Bx n B2 = 0,
Bxu B2 = B and bx < b2 for bl e Bl9 b2sB2. The cofinalities of a Dedekind cut
are the cofinalities of (Bl9 <) and of (B2, >).

Note that (Z, <) and (Z, <) + (Z, <) are not j?^(Q)-equivalent. JSP^CQ)
does not have the Lowenheim-Skolem property.

1.2.1 Example. Let if be the logic obtained from JS?^ by adding a new "atomic"
sentence xs- Let xs be in J5?[x] for each x and set

91 \= Xs iff I ̂ 41 is a successor cardinal.

Then £g is compact, has the interpolation property and the Lowenheim-Skolem
property down to Kx.

1.2.2 Example. Given a x-structure 91, say 91 = (A, Rl9R29... J\Ji, - • •, cl9...)
denote by 9tc the x-structure (A, Rc

l9 Rc
2, . . . , / i , / 2 , • • •, cl9 . . . ) , where for n-ary

Rt, .R- = i^VR,.. Let ^ c be the logic with the same syntax as J5fww and with the
semantics given by

f 21 *= <z>, if A is infinite,
21 \=cq> iff <̂

[2lct= <p, if A is finite.

Neither i f ^ < J^c nor ifc < i f ww holds. i^c is a compact logic with the Lowen-
heim-Skolem property and is also a maximal logic with these two properties. We
leave it to the reader to adapt the preceding proofs to show that <£c is a maximal
logic.

1.3. The Monadic Case

Throughout this part of the discussion we will restrict ourselves to monadic
vocabularies; that is, we will assume that all vocabularies only contain unary
relation symbols. We will give Lindstrom-type characterizations of monadic
first-order logic and of some extensions.
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88 III. Characterizing Logics

When analyzing the arguments of Section 1.1 for the monadic case one should
note the following differences:

(a) For a finite vocabulary, any two elementarily equivalent structures are
isomorphic (thus the last step in the proof of Theorem 1.1.1 is actually
redundant).

(b) Using a single monadic if wco-sentence, one cannot force a structure to be
infinite (as by "/is one-to-one but not onto" in the general case).

(c) For any monadic recursive vocabulary T, the set of if ^[tj-sentences
valid in all finite models is recursively enumerable (it is even recursive).

In fact, while the characterization of 5£i0lo given in Theorem 1.1.1 carries over
to the monadic case (see Theorem 1.3.2 below), the following examples show that
in this characterization the Lowenheim-Skolem property is really needed for
countable sets (and not just for single sentences), and that Lindstrom's second
theorem no longer holds.

1.3.1 Examples, (a) The monadic part of the logic in Example 1.2.1, with the new
atomic sentence %s true in structures, the cardinality of which is a successor cardinal,
is an example of a logic more expressive than first-order logic which is compact
and has the Lowenheim-Skolem property. The Lowenheim-Skolem property
follows from the fact that every satisfiable monadic ifww-sentence has a finite
model.

(b) Let ^£ be the logic obtained from ^^^ by adding a new "atomic" sentence
which is true just in the models of even finite cardinality. Then the monadic part of
5£ properly extends i?ww, is decidable, and has the Lowenheim-Skolem property
for countable sets of sentences.

(c) Let ^£ be obtained from if'wco by adding a new "atomic" sentence which is
true in models of even finite or uncountable cardinality. Then the monadic part
of i^ is countably compact, decidable, and each satisfiable sentence has a finite
model.

It is easy to extend the above-mentioned maximality result for the monadic
part of Jg^co t o a more general situation. For the rest of this section, however,
we restrict ourselves to monadic logics $£ with the finite occurrence property. For an
ordinal P denote by Qp the unary quantifier "there are X^-many". Fix an ordinal a
and let !£ = ^(Qp \ P < a, P successor ordinal). Since in a structure 91 of finite
vocabulary t0 = {Rl9..., Rn}, the cardinalities of the boolean atoms P1 n • • •
n Pn, where Pt = Rf or Pt = A\Rf, determine the isomorphism type of 91, we
have for io-structures 91 and 93

(*) 91=^93 and \A\,\B\<Ka imply 91^93.

Hence, for any logic !£' with the finite occurrence property and an arbitrary
monadic vocabulary x, we obtain from (*)

(*) 91=^93 and |yl | , | J5 |<Ka imply 91=^,93.
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1. Lindstrom's Characterizations of First-Order Logic 89

We will make use of (*) and (*) in proving the following maximality theorem.

1.3.2 Theorem. For a countable ordinal a the monadic part of <£ = S£f
oc9 P successor ordinal) is (among the monadic logics) a maximal countably compact
logic with the Lowenheim-Skolem property down to Ka for countable sets of sen-
tences. Furthermore, i f has the interpolation property.

Before undertaking the proof of Theorem 1.3.2, let us state some consequences.

1.3.3 CoroUary. (a) (Tharp [1973]) The monadic part of ̂ w c o is a maximal logic
with countable compactness and the Lowenheim-Skolem property for
countable sets of sentences.

(b) (Caicedo [1981b]) The monadic part of SfoJiQ\) is a maximal logic with
countable compactness and the Lowenheim-Skolem property down to tftfor
countable sets of sentences. Moreover, this logic has the interpolation property.

(c) (Caicedo [1981b]) The monadic part of&nJQi) an^ of ^^(SLSL) are equiv-
alent. (The reader is referred to Example 4 of Section 2.2, Chapter II for the
definition of i f

Proof of Theorem 1.3.2. We prove the "separation property" corresponding to
the maximality assertion : Let S£', <£ < S£\ be a countably compact logic with the
Lowenheim-Skolem property down to Ka for countable sets. Suppose that
Mod((/>) and Mod(i/0 are disjoint if'-classes not separable by an if-class. Since for
a finite vocabulary T there are only countably many if-sentences—this is the point
where we need the restriction to a countable ordinal a—we obtain as in the proof
of (2) in Lemma 1.1.2, using the countable compactness of $£', structures 91 and 95
of cardinality < Ka with

91 =# 93, 911= <p and 93 |= \j/.

This is a contradiction in view of (*) above. It still remains to show that if is
countably compact, and this will be accomplished by the next theorem. D

1.3,4 Theorem. Let a be an arbitrary ordinal and if = ifwto(6^|0 < /? < a,
cofinality of /? ^ co). Then the monadic part of & is countably compact and has the
interpolation property.

Proof Suppose each finite subset of O = {<pu q>2,...} is satisfiable. Choose
x = {Rl9 R2,.} such that O a i f [ t ] . We want to obtain a model 91 of O, fixing
step by step, the cardinalities of the boolean atoms determined by {R1,...,Rn}
in such a way that for any finite subset O0 of <D these cardinalities are realized in
some model of <I>0. For this let

F = {/|there is k > 0 such tha t / : { 1 , . . . , k} -* {0, 1}}.
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90 III. Characterizing Logics

For a x-structure 91 and/e F define X' by

, n . . . n P , , i f / : { l , . . . , * } —{0 ,1} ,

where

[Rf, i f /( i)=l,

Suppose given pairwise distinct/, gu . . . , gl eF with dom(gt) <= dom(/) for all i,
and cardinals A1? . . . , Az. For necolet

Cn = C(n9f, gl9..., 07, Al 5 . . . , A,)

I *= {(p1?..., <pH}9 \A« I = Al 9 . . . , |X" | = A,}.

We show that

(a) sup{/cjme co} e Cn, for any sequence Kj < K2 < • • • of cardinals in Cn.
(b) Co => Ci => • • •
(c) If CB # 0 for all w e co, then f) {CJn e co} # 0 .

To prove (a), choose m0 large enough such that in q>± A • • • A cpn no quantifier
Q^ with Kmo < Kp < sup Km appears (and hence by definition of if no quantifier
Qp with Kmo < Kp < sup Km). We assume that Kmo is infinite and leave the case
"/cmo finite" to the reader. Take 91 \= {q>x,..., cpn) such that IX9'1! = A1? . . . ,
\A911 = Az and |X' | = tcmo. Suppose / : { 1 , . . . , k} -• {0, 1} and choose fc' > k
such that (/>! A • • • A cpn s jSf [{/? l 5 . . . , /?k'}]. Since |X' | = Kmo, there is a boolean
atom determined by Rl9..., Rk,9 of power fcmo, which is a part of X'. Obtain 2T
from 91 blowing up this boolean atom to a set of cardinality sup Km. Then 2T shows
that sup Km e Cn (since Km e Cn for all m, we have sup Km < At for any i with g{ a / ) .
(b) is clear by definition of the Cw's, and (c) follows immediately from (a) and (b).

We now construct the desired model 91 = (X, R*,...) of Q>. Let f0 = 0 . Choose
K0 e Pj {C(w,/0)|n e co} and let X be a set of cardinality K0. Denote by fx and/2

the functions given by fuf2: {1} -> {0, 1} with /x(l) = 1 and /2(1) = 0. Choose
K:I e n { Q n J i J o ^ o ^ e c o } and K2 6 f) {C(nJ29f0Ji, *o> KiJlweo)}. Let i?f
be a subset of X of cardinality K1 with complement of cardinality K2. NOW one
defines Ri choosing cardinalities for the subsets X', where dom(/) = {1, 2} with
the help of the appropriate sets C(...). In this way, one can fix inductively all the

We leave it to the reader to verify the interpolation property. Observe that since
in any if-sentence only finitely many Qp occur, one can restrict to a countable
sublanguage and argue as in the proof of Theorem 1.3.2). D
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2. Further Characterizations of S^ww 91

1.3.5 Notes. Theorems 1.1.4 and 1.1.5 were proven by Lindstrom [1966a], [1969];
Theorem 1.1.4 was later rediscovered by Friedman, to whom assertion (1) in the
proof of Theorem 1.1.1 is due. The examples listed in 1.3.1 are due to Tharp [1973].
Example 1.2.2 and the results given in Theorems 1.3.2 and 1.3.4 on monadic logics
are new here, (although the countable compactness of the monadic part of
^oo(Q«s • • • > QJ f o r a l 9 . . . , an > 0 was proved by Fajardo [1980]. Added in
proof: Theorem 1.3.2 can be generalized to uncountable a, as will be shown
elsewhere.

2. Further Characterizations of J£

In this section we present some further characterizations of first-order logic, first
examining those logics having the Lowenheim-Skolem property or a related
property, the Karp property. In the second part we drop these assumptions. We
close this section with the study of compact sublanguages of ̂ OQiO.

Throughout parts 1 and 2 we will assume that all logics j£? under consideration
are regular and have the finite occurrence property (even though many results
would continue to hold under weaker assumptions). Recall that a regular logic <£
has the substitution property (and hence possesses the relativization property)
and also satisfies $£wco < if.

2.1. The Lowenheim-Skolem Property and the
Karp Property

By definition, a logic $£ has the Karp property if partially isomorphic structures
are if-equivalent, that is, if

91 ̂ p 95 implies 21 = ^ 95.

In the presence of the substitution property, we can replace in Lindstrom's first
characterization of first-order logic the Lowenheim-Skolem property by the
weaker Karp property (The reader is referred to Proposition 2.1.7 below for the
relationship between the Lowenheim-Skolem and the Karp properties). Indeed,
we have:

2.1.1 Theorem. / / !£ has the Karp property and is count ably compact, then
SP = SP
°^ coco — °^'

Since the ordering (co, <) cannot be defined in a countably compact logic, this
theorem is a consequence of the following lemma.
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92 III. Characterizing Logics

2.1.2 Lemma. / / S£wco < <£ and $£ has the Karp property, then (co, < ) is RPC in S£ _
(that is, there is a satisfiable J£-sentence cpo(U, < , . . . ) such that in each model 91
of cp0 the relativized reduct (UA, <A) is isomorphic to (co, <)) .

Proof. Let cp be an S£-sentence not equivalent to a first-order sentence. Choose a
finite T0 such that cpe JS?[T0]. Then, for finitely many cpx,..., cpnei^wco[to], there
are 91 and 23 such that

91 \= cp, 95 \= ~\cp and (91 \= cp{ iff 93 N (pt) for i < n.

Hence,

for each /c e co, there are 9L and 23k such that
(*)

9lk^k93fc, 9 1 , ^ 9 and 95,

Let U, <, V, Wbe new relation symbols, U unary, <, Fand W binary. Coding
partial isomorphisms as in the proof of Theorem 1.1.2, we obtain in a suitable
vocabulary T, an ^-sentence cp0 expressing

" < is a discrete linear ordering of its field U with first but no last
element; for each x in U the set Vx- (i.e. {y\ Vxy}) is a model of cp, the
set Wx • is a model of —i cp, and Vx • and Wx • are x-partially isomorphic,
i.e. there is a sequence, indexed by the < -predecessors of x of non-empty
sets of partial isomorphisms with the back and forth property."

(Compare Chapter II Proposition 5.2.4 to see how we can formulate this statement
by an if-sentence). By (*), cp0 has a model 91, where (UA, <A) is isomorphic to
(co, <) and where attached to the fc-th element a of the ordering <A are the models
9lfc and 93k; that is,

{{b\VAab},..)^S&k and ({b\ WAab},...) ^ 95,.

Now let 23 be any model of cp0; we must show that (UB, <B) is isomorphic to
(co, <). If (UB, <B) qk (<oo, <), a "non-standard" element x in (UB, <B), gives
rise—as in the proof of Lemma 1.1.2—to partially isomorphic models Vx- of cp
and Wx • of —i cp. This is, a contradiction, however, since we assumed that <£ has
the Karp property. D

In case ££ has the Lowenheim-Skolem property, the structures 9Ik and 95k in
(*) of the preceding proof can be chosen of power Ko and hence (*) can be coded
in a countable model of cp0. Thus we can require that < is an ordering of the
universe of the model. Accordingly, we obtain:

2.1.3 Corollary. / / $£M(a < <£ and if has the Lowenheim-Skolem property, then
(co, <)is¥Cin£e.
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2. Further Characterizations of S£MUi 93

This corollary can also be derived from the results of the preceding section:
Since ifwco < $£ there is a sentence $ = 3(17,...) having properties (i) and (ii) of
Lemma 1.1.2. Now it is not difficult (using the substitution property of i?) to
write down a sentence PC-characterizing (co, <) : This sentence will express that
attached to each element x of the ordering < is a model of # whose [/-part has as
many elements as the set of < -predecessors of x.

In the following theorem, we collect some model-theoretic properties .that
characterize J2?wco among the logics with the Lowenheim-Skolem property.
However, we state the theorem in such a way that it provides information on the
expressive power of proper extensions of if ww.

2.1 A Theorem. For a logic j£? satisfying the Lowenheim-Skolem property the
following conditions are equivalent.

(ii) if is not countably compact.
(iii) (The class of structures isomorphic to) (co, <) is PC in J?.
(iv) Each countable structure in a countable vocabulary is PCd in S£\ that is, it

is characterizable using additional symbols by a countable set of sentences.
(v) ifHF <RPC if, where ifHF is the second-order logic with quantification on

hereditarily finite sets over the universe, and <£\ <RPC ££\ means that each
class of relativized reducts in if\ is such a class in J£\.

(vi) There is an ^-sentence with an infinite but no uncountable model.
(vii) <£„„ <^<£\ that is, there are 91, 95 such that 91 = 93 but 91 # ^ 93.

Proof Clearly each of the conditions in (ii)-(vii) implies (i). Hence, it suffices to
show that (ii)-(vii) follow from (i).

(i) => (ii). This was shown in Section 1.
(i) => (iii). See the preceding corollary.
For the proofs of the following implications let cp0 always denote an if [x0]-

sentence PC-characterizing (a>, <).
(iii) => (iv). Given a countable structure 91 choose a one-to-one enumeration

<an | n e co} of A, write down the algebraic diagram <D of 91, where an is represented
by the n-th element of an ordering < of type co. Then {q>0} u <D is a PQ-character-
ization of 91.

(iii) => (v). Use q>0 (and hence (co, <)) to code the hereditarily finite sets over the
universe.

(iii) => (vi). q>0 has no uncountable model.
(iii) => (vii). Let 91 be a countable model of cp0. Then any uncountable model

of Th(9l), the first-order theory of 91, is elementarily equivalent but not <£-
equivalent to 91. D

2.1.5 Remarks, (a) In case ^£ has the form ^^(Qu • • •, Qn)
 w h e r e 6i> • • • > Qn

are Lindstrom quantifiers we can add in Theorem 2.1.4 the condition

(viii) ^ does not have the definability property (Beth property).

The reader is referred to Chapter XVII for a proof of this result.
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94 III. Characterizing Logics

(b) We want to draw the reader's attention to the notion of an a^-securable
quantifier (see Makowsky [1975b]) which captures the properties of the existential
quantifier needed to prove that each structure has a countable elementary sub-
structure. In fact, Makowsky proved the following: If i f = ^JiQ^iel) is obtained
from first-order logic adding a^-securable quantifiers, then i? has the Lowenheim-
Skolem property. Hence, for such an if, the equivalences in Theorem 2.1.4 hold.

We use Theorem 2.1.4 to derive a further characterization of ifwco. A logic if
is said to have the Robinson property if the following holds: Let x, x1 and x2 be
vocabularies with x = tx n x2. Let Q) be a set of if [x]-sentences and <X>; a set of
if [xj-sentences for i = 1, 2. If <S> is complete and Q> u <5>l and O u O2 are satis-
fiable then so is <X> u d^ u O2. In Chapter XIX it is shown that this is a very strong
property of a logic. In fact, it is proved there that in case there are no measurable
cardinals the Robinson property implies the compactness property.

2.1.6 Theorem. / / 5£ has the Lowenheim-Skolem property and the Robinson
property then iPWC0 = S£.

Proof. Since we have the general assumption that ^£ has the finite occurrence
property there are countable structures 911 and 9t2 in a countable vocabulary x
such that

SH, -ce 9 l 2 a n d S&x g 9 l 2

(e.g., take non-isomorphic SHl and 9I2 such that for any finite x0 cz x the x0-
reducts (H1 [x0 and 9I2 |"x0 are isomorphic). Suppose by contradiction, that
^GXO < <&- Then, by the equivalence (i)o(iv) of Theorem 2.1.4, there are PQ-
characterizations <DX and <X>2 in !£ of (H1 and 2l2. We use distinct additional
symbols for ^ and 9I2. Since <H1 =<? 9I 2 ,0 u <J>X and O u $ 2 are satisfiable; but
O u ^ u O 2 has no model, as SH1 £ S&2.

Note that in case we restrict attention to finite vocabularies, the preceding
proof shows:

If ^COOJ < & a n d J^ has the Lowenheim-Skolem property and the
Robinson property for countable sets of sentences (that is, countable
O, Q>x and <D2), then =# coincides with the isomorphism relation on
countable structures.

In particular, we see that weak second-order logic does not have the Robinson
property; ifWlC0 is a logic satisfying the hypothesis of this result.

We close this discussion with a result that clarifies the relationship between the
Karp property and the Lowenheim-Skolem property.

2.1.7 Proposition, (a) / / i£ has the Lowenheim-Skolem property, then J? has the
Karp property.

(b) Assume $£ has both the Karp property and the interpolation property, then
$£ has the Lowenheim-Skolem property.
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Proof. The proof of (a) is by contradiction. Suppose that if has the Lowenheim-
Skolem property but that for some if-sentence cp, we have

(•) 91 £ P S , 9lN<p and » |

Coding partial isomorphisms as in the precedings proofs, we obtain an if-sentence
\jj expressing that

"the F-part is a model of cp, the W-part is a model of —i<p, and the
K-part and the W-part are partially isomorphic".

By (*), the sentence \j/ has a model, and hence one of power < Ko. But then we
obtain countable structures 9T (the F-part) and 95' (the W-part) such that 91' \= (p,
93' 1= ~\<p and 81' ^p 93'; hence 9T ^ 95', a contradiction.

Turning now to the proof of (b), we let ^ be given as in (b) and suppose
^VHO < & (if ĉow = ^?»t n e conclusion holds). Since if has the Karp property,
by Lemma 2.1.2 (co, <) is RPC in ^£, say <po(U, < , . . . ) is an if-sentence RPC-
characterizing (co, <). If if does not have the Lowenheim-Skolem property, then
there is an if-sentence <px having only uncountable models. Consider the classes

5*0
 := {(A UA)\ there is <A, such that (A, UA, <A, ) |= <po}9

«x := {(A, UA)\there is . . . such that (UA,...) \= cp^.

Since (A, UA)eR0 (resp. (A, U^e&i) implies that UA is countable (resp. un-
countable), ft0 and 5*x are disjoint PC-classes of ^£. Take an arbitrary (A, UA) in
5*o and choose (B, UB) in 5*x such that | £ \ ^ * l = I A ^ l - T h e n {A, UA) and
(B, UB) are partially isomorphic. Hence, there is no if-class separating 5*0 and 5*1?

since 5£ has the Karp property. But this contradicts the assumption that S£ has the
interpolation property. D

22, The Tarski Union Property and the
Omitting Types Property

The following characterization of 3?^ shows that an important model-theoretic
tool of first-order logic, the Tarski union lemma, is not available in any proper
compact extension.

First we introduce some terminology. Suppose given a logic !£. A structure 93
is said to be an SZ-extension of 91, 91 <<? 95, if 93 is an extension of 91 and if for any
finite a0, . . . , an-xeA, we have (91, a0,..., an-x) =^(25, a0,... ,flB_i). (For
if = y?^ we say that 23 is an elementary extension and write 91 < 25.)

Denote by Th^(9l) and D^(9I) the <£-theory of 91 and the <£-diagram of 91,
respectively; that is,

:={(p\cp if-sentence, 91 \= <p}, D^(9l) .= Th^((9I, (a)aeA)\
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96 III. Characterizing Logics

where in the latter case we consider the if-theory in an expanded vocabulary
containing a new constant for each aeA. In case if = JS?^, write Th(2l) and

As for first-order logic, one can easily prove both (+ ) and (+ +) below (recall
that all our logics are assumed to be regular and to have the finite occurrence
property).

, , The (reducts of) models of D^(2l) are—up to isomorphism—the
1 ) if-extensions of 21.

/ , ,x Assume ^ is compact. Suppose given 21 and a set of <£> of if-sentences
I + + ; if Th(2I) u O is satisfiable, then there is 93 such that 2 l < 93 and 95 |= O.

Now we say that ^£ has the Tarski union property, if whenever

then 2lB ^ (Jm 2lm for each n.
i (̂0C0 and i ^ X g i ) have the Tarski union property. Moreover, we have (see

Makowsky [1975b] for further examples and results):

2.2.1 Theorem. If ££ is compact and has the Tarski union property, then 5£'ww = ^£.

Proof. If not ifW(a = 5£, then there is an if-sentence cp and structures 21, 93 such
that

(1) 21 = 93, 21|=<p and %>\=^(p

(see Proposition 1.1.8). We construct by induction a sequence 2I0, 2 l l 5 . . . such
that

and 2lx t= ~icp as follows:
By (1), Th(2I) u {-19} = Th(93) u {-icp} is satisfiable. Hence, by ( + + )

there is 21 x such that 21 -< 21: and 21 j \= ~icp. Now suppose 2tn has already been
defined. Since

Th((9In, (aX,^,,.,)) =

we have that
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2. Further Characterizations of ^W(O 97

is a satisfiable set of if-sentences. Using (+ +) once more, we therefore obtain an
elementary extension (9ln+1, (a)aeA _J of {^n,{a)aeA x) which is a model of

Let D = (Jn
 (H2n = [jn ^2n+i- By the Tarski union property, we have 9l0 ^ ^ D

and 9lx ^_^ D. But since 9I0 |= cp and 21 j |= —ic/>, we obtain the contradiction:
T) N= c/> and X) |= -i cp. D

Lindstrom [1983] introduced a kind of union property for direct limits
and showed by refining the previous proof, that a logic is equivalent to first-order
logic if it has this generalized union property and is countably compact.

We now turn to a characterization of $£ww by means of a single property, the
omitting types property for an uncountable regular cardinal.

Let K be an infinite cardinal and if be a logic. Given a set <T> of if-sentences and
a set F(x) of if-formulas having at most the free variable x (see II. 1.1.2), we say
that T(x) is a K-free type ofQ>, if the following hold:

| <I> u Y(x) | < K, O is satisfiable and for every set ¥(x) of if-formulas
such that | *¥(x) \ < K, if d> u ^(x) has a model, then for some x(x) e T(x)
the set Q> u ¥(*) u {""ixO)} has a model.

We say that !£ has the K-omitting types property, if whenever T(x) is a /c-free type of
O, there is a model of 0 omitting T(x).

Thus the "classical" omitting types theorem is the result that ^ ^ has the co-
omitting types property. In Keisler [1971] it is shown that also ^^^ has the co-
omitting types property. A logic with the co-omitting types property has the
Lowenheim-Skolem property for countable sets of sentences: Given a countable
and satisfiable set <D, apply the co-omitting types property to the co-free type F(x) of
O, where T(x) •-= {—\x = cn \n e co} for new constants cn.

The K-omitting types property is strongly related to the construction method
of models from constants (the reader should consult Barwise [1980] where a dif-
ferent notion of omitting types property—more precisely, of co-omitting types
property—is introduced, which is more sensitive to the specific features of a
given logic). Using the method of construction of a model from constants, one
can show that if wco has the fc-omitting types property for all K (see Chang-Keisler
[1977]). Moreover, we have

2.2.2 Theorem. / / K is an uncountable regular cardinal and <£ has the K-omitting
types property then <£'wco = ^£.
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98 III. Characterizing Logics

Proof. First, we show

Suppose the set 0 of if-sentences, | O | < K, has a model 91 such that
(*) (l/a , <*) is an ordering without last element. Then <X> has a model 95

such that (I/93, <®) is an ordering of cofinality K.

To prove (*), take new constants ca, a < TC; then

r(x) = {C/x} u {ca < x|a < K}

is a /c-free type of

<I)1 = <£ u {" < is an ordering of U without last element"}

u {cfi < ca\P < a < K).

In fact, if |^F(x)| < K and Q>1 u ^(x) u {Ux} is satisfiable, then choose a sufficiently
large such that cp does not occur in *F(x) for /? > a. In a model of®! u ^(x) u {Ux},
all these cp may be interpreted by a fixed element bigger than x. Thus Ox u ¥(x) u
{~ica+! < x} is satisfiable. Now, since if has the /c-omitting types property there
is a model 95 of O^ omitting T(x). But then (I/8, <*) has cofinality K.

In particular, (*) shows that the ordering (co, <) is not RPC in <£. Using
Lemma 2.1.2, we see that in case <£m(O < <£, the logic if does not have the Karp
property; that is, there are 91 and 95 such that

(*) 91^,95 and 91 #^95.

We will code (*) in a model in such a way that use of the K>omitting types property
leads to isomorphic but not if-equivalent structures—a contradiction. Choose
an if-sentence \j/ such that Sd\= \j/ and 95 1= —i .̂ Let ca, da, pa, for a < *c, be
new constants and V, W, I be new unary relation symbols. Let O be a set of
if-sentences, |O| = /c, expressing the following:

7n W = 0",

"the F-part is a model of ^",

"the W-part is a model of ~\ij/",

"the F-part and the W-part are partially isomorphic via /",

"/pa , ca is in the domain of pa and da in the range of pa" for a < K,

"pp is an extension of pa" for a < /? < K.

By (*), O is satisfiable (choose a partial isomorphism p in I where / : 91 =p ©, p
with non-empty domain, say a e dom(p), and set for all a, pa = p, ca = a, and

Let T(x) be the type

T(x) = {Vx v Wx} u {-ix = ca A -ix = dp\ai, P < K}.
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2. Further Characterizations of <£„„ 99

Clearly, in a model of O omitting F(x), the function \Ja<K pa is an isomorphism of
the K-part onto the W-part. Therefore, it suffices to prove that F(x) is a K-free
type of d>.

Let ^(x) be a set of if-formulas, | ¥(*) | < K and suppose d> u ^(x) is satis-
fiable, say C \= <fr and £ |= *F[a]. We must show that <X> u ^(x) u {~iz(x)} has a
model for some /(x)eF(x). If <z<£ Kc u Wc, then (£ N ~~izM f°r X = V* v

Wx6F(x). Let a e F c u Wc, say ae Vc. Choose a < K large enough so that for
/? > a, the constants p^, ĉ  and ^ do not occur in *F(x). Using the forth property,
we see that there is a partial isomorphism q in the model extending pa and with a
in its domain. For /? > a, change the interpretation of pp to g, of cp to a, and of dp
to g(a). This shows that O u ¥(x) u {x = ca+ J is satisfiable. •

23. Compact Sublanguages of JSf ̂ w

Let c/)0 be an ^WlC0-sentence and denote by ^^Jicpo) the smallest set of sentences
containing cp0 and closed under first-order operations. Clearly, <£'ww((Po) has the
Lowenheim-Skolem property. But, in general, ^^(Po) does not have the re-
naming property. Therefore, in case ifwo)((p0) is countably compact, we cannot
apply the theorems already proven to conclude that ^^(po) = ^o^o^ a n d hence
that cp0 is equivalent to a first-order sentence. Indeed we will show that there is
a cp0 such that J^'^((Po) is countably compact but stronger than first-order logic.
On the other hand, if ^aStyo) ^s assumed to be compact (that is, is fully compact
and not merely countably compact) then cp0 already expresses a first-order property.
Finally, we will see that this result does not generalize to if ^ i There is cp0 e if ^
such that ifwco((Po) properly extends $£fflfl) and is compact.

To be precise, for an i^^^M-sentence, define ^£ = if^(cpo) by

i f [ r ] =

0 , if a <fi x,
smallest subset of if ^Ex] containing cp0 and the
atomic ifcow[i]-formulas and closed under first-
order operations (say ~~i, v , 3x), if a c T.

Given any <p0
G^oocoM s e t ^1 = Mod°(<p0) and ft2 = Mod°(-i<p0). Then

J^cocoitPo) is compact (countably compact) if and only if ft2 and ft2 are compact
(countably compact). Here a class ft of a-structures is called compact (countably
compact) if the following holds: Given any set of ifww[x]-sentences <E>, with
| O | = Ko, where c c i , if every finite subset of O has a model with a-reduct in ft,
then so has O.

2.3.1 Example. We will give an example of an ifWlC0-sentence q>0 such that
ifcoco((/)0) is a proper countably compact extension of ^w Let each natural
number code in an one-to-one and effective way a finite sequence of natural
numbers. Define the binary relation -< on co by

n -< m iff the sequence corresponding to n is an initial segment of
the one corresponding to m.
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100 III. Characterizing Logics

There is a recursive functional T which assigns to each I c w a tree
<= (co, -<) recursive in X with an infinite branch but with no branch hyperarith-
metic in X (see Rogers [1967]). In particular, for n G co, there is p(rc) C P^CO)
x Pw(co), where Pw(co) denotes the set of finite subsets of co, such that for any
X ceo

(1) w 6 T(X) iff there is (X1? X2) e p(n) with Xl a X and X2 n X = 0.

Moreover, the binary relation 9t on P(co), the power set of co, given by

SRXY iff Y is an infinite branch of T(X)

has the property

VX e P(co) 3Ye P(co)9?X 7,

VX G P(o) -i 37 G P(o>) (5RX7 and 7 hyperarithmetic in X).

Let a = {.RJ/IGCO}, where Rn are unary relation symbols and let 9l0 be the a-
structure (P(co), (i?^°)nG J , where

R^X iff MGX.

By (1) we have for n e co and X G P(CO\

S l o ^ m iff

where \l/n(x) is the ^ ^

Now

holds for

= V ( A Rm
(Xi,X2)ep(n) \meXi

neco meco
n<m

J

A A
meco
m<n
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2. Further Characterizations of $£w 101

Moreover, one can easily verify that for any cr-structure 91 and a, be A,

SlN^M iff neT({m\R£a})

and hence, we have

(3) 9lh=p[a,ft] iff K{n\Rta}{n\R£b}.

Finally, take as q>0 the JS?WlW[a]-sentence

q>0 = A Th^o) A Vx 3j cp(x, y\

where Th(9I0), the theory of 9I0, denotes the set of first-order sentences holding in

Clearly, cp0 is not equivalent to a first-order sentence. But if waX<Po) is countably
compact: Set 5^ = Moda(c/>0) and ft2

 = Moda(—ic/>0). To prove that ftx is count-
ably compact (even compact) it suffices to show that every co-saturated model
91 of Th(9l0) is a model of Vx 3y c/>(x, y). But for each Y a co, 91 being co-saturated
contains an element a such that Y = {n\R*a}. Then by (2) and (3),

911= Vx 3y c/>(x, y).

Toprove that ft2 = ModCT(—I<JO0) is countably compact, it suffices to show that if
O u Th(9t0) is satisfiable, where Q) is a countable set of first-order sentences, then
there is a model of <I> u Th(9l0) u {~i Vx 3y cp(x, y)}: Take a subset X a a> such
that <£ u Th(9l0) is recursive in X. Inside Hyp(X), the smallest admissible set
containing X, construct a model 95 of

where c is a new constant. Hyp(X) only contains subsets of co hyperarithmetic in
X. Therefore by (2), 95 |= ~i 3y <p(c, y). D

On the other hand we have:

2.3.2 Theorem. Suppose q>0 is an J?^[a^-sentencefor some countable a. If&udicpo)
is compact, then cp0 is equivalent to a first-order sentence.

Observe that for each if^^-sentence cp0, there is some countable <r such that

Proof. First, we prove:

/ x Suppose that Mod(<p) is compact, where cp e if ^^[(r] and |<r| < Ko. If
91 \= (p then there is an co-saturated 91' such that 9T = 91 and 91' \= cp.
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102 III. Characterizing Logics

To establish this, for each (n + l)-type p a J^w

P = {*Am(xi, . . . , x n , y ) \ m € c o } ,

take a new n-ary function symbol fp. Now, set

-+ A <Ai (* l> • • • > X n J p f r u ' - > Xn))j
i<m I

\ m , n e c o , p = {*l/m(xl9 . . . 9 x n , y ) \ m < co}(n

Clearly, Th(9l) u <X> u {cp} is finitely satisfiable and hence satisfiable, say 35 \=
Th(9I) u O u {cp}. Let 81' = 95 \a. Then 81' = 91, 21' |= cp, and 91' is co-
saturated since 95 \= 0.

Now let cp0 and <y be given as in the theorem and suppose that ^^((po) is
compact. By (the proof of) Proposition 1.1.8, it suffices to show that

M s 8 implies ffl^^B,

or, equivalently, that

91 = 95 implies (91 \= cp0 iff 95 N <p0).

For the sake of argument, suppose that 91 N= <p0
 a n ^ ® 1= "^^o- Applying (*)

twice, we obtain co-saturated 91' and 95' such that

91' = 95', 91' |= cp0 and 95' |= ^cp0.

But this is a contradiction, since any two co-saturated elementarily equivalent
models are <£ ̂ -equivalent. D

2.3.3 Example. We will now show that Theorem 2.3.2 does not remain valid, when
we drop the assumption that <r is countable. In fact, we can give an example of a
sentence cp0 e JSf̂ o, such that ^wco(c/>0) properly extends 5£wco and is compact.
For a < co1? let #a be a binary relation symbol and set <y = {KJa < co^. Call a
pair 3F — (J%> &* \) °f finite sets ^ 0 and $F± of non-empty finite subsets of cox

good, if F <£ E holds for all E e J% and F e &v (E, F, £ a , . . . will always denote
finite non-empty subsets of coj). Denote by cp^(x) the formula

A 3 ) ; A ^ ^ A A ^i/\
EeSFo aeE Fe&i <xeF
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2. Further Characterizations of &„„ 103

and set d>0 = {3x cp^{x)\^ good}. Let cp0 be the sentence

where

^xj ;) .

Clearly, <p0 e £fa2(O. Furthermore, (1) and (2) below show that ^^((po) properly
extends Ĵ W£0 and is compact.

(1) q>0 is not equivalent to a first-order sentence.

To show (1), we prove that there are elementarily equivalent structures 91 and 95
such that 2l|=~i<Po a n ^ ® N= <p0- Choose an enumeration <J^|/? < coj>
of all good pairs, say, &* = (J^g, &{) with J^g = {£?, . . . , £ ^ } . Also let the
a-structure 91 be given by:

A = cOi u {coj}, and

R*u>iy iff a < y < col9 and for jS < co1:

Rfpy iff y < mp and aG£j + 1 .

Then 91 \= (p&e[fi]. Hence 91 \= Q>0, and x := coj shows that 91 ^ \j/Q. Therefore,
91 \fc <Po - On the other hand, any co-saturated structure 95 elementarily equivalent
to 91 is a model of \jj0 and hence of cp0 also.

Set ftx = Mod°(c90) and ft2 = Mod°(-i<p0).

(2) 5̂ 2 and SK2
 a r e compact.

Since any co-saturated structure is a model of \j/0, the class ftx is compact. Now,
assume that O u {~\(p0} is finitely satisfiable, where <I> cz ifwca[T] with CF C T. We
must show that 3> u {~\(p0} has a model. We may assume that the consistent set
O u O 0 has built-in Skolem functions. Let T0(x) be maximal among the types
T(x), r(x) cz JS?wa,[T], with the property:

For any good ^\ O u O0 u F(x) u {(p^(x)} is consistent.

(Note that F(x) — 0 has this property.) By first-order compactness, there is a
model 91 and as A such that

9lN0>ua>0 and 91 *= F0(x) u | A

Let 23 be the submodel generated by a. We will complete the proof by showing
that 95 |= d> u {~i<Po}- Since $ h O u $ 0 , it suffices to prove that 93 ̂  ~i^0-
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104 III. Characterizing Logics

In fact, we show 23 \£ 3y f\0L<(Ol Raxy[a], where this assertion is obtained proving
that for any unary Skolem function/

there is some a such that —\R0Lxf(x) e F0(x).

Otherwise, for each a there is a good #^(a) such that

(*) O u O0 u ro(x) u {(pePivix)} |= Raxf(x).

But then by a combinatorial argument which uses a result of Erdos and Hajnal, one
obtains a, a' e col9 a ^ a' such that for /? := /?(a) and /?' := /}(a') the following hold:

£ c£ F for (£, F) e (#"g x ^ f ) u

Hence, ^ = (J^g u J^g', J^? u &\ u {a, a'}) is good, and \=(p#(x) -• ((p&p(x) A

But then, using (*), we obtain

0) u O0 u ro(x) u {<p*(x)} N Kax/(x) A Ka,x/(x).

But this is a contradiction, since \=cp^(x) -> ~i3yCRaxy A i^axy).

2.3.4 Notes. Nearly all results of Section 2.1 are contained in Barwise [1974a] or
in Lindstrom's papers [1966a, 1969]. The characterizations of i f ^ in Section 2.2
are due to Lindstrom [1973a, 1974]. The reader will find a further interesting
characterization of ifwt0 in Barwise-Moschovakis [1978]: ifW(0 is the unique
logic with "uniformly inductive" satisfaction relation. Observe also that
criteria for first-order axiomatizability of classes of structures such as

ft is an elementary class iff ft and its complement are closed under
ultraproducts and isomorphisms,

may be rewritten as characterizations of first-order logic. We owe Example 2.3.1
and Theorem 2.3.2 to Gold [1978]. Example 2.3.3 is due to Ziegler (personal
communication).

3. Characterizing 00 CO

This section is devoted to characterizations of !£ ̂  by means of model-theoretic
properties.

The property of a logic if of being bounded is a weakening of the compactness
property (j£? is bounded, if for any if-sentence cp( < , . . . ) having only models with
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3. Characterizing Seaato 105

well-ordered <, there is an ordinal a such that the order type of < is always
less than a). As has been already mentioned in Chapter II this property may be
regarded as a model-theoretic substitute for compactness. In fact, for some
bounded logics results on non-axiomatizability, preservation thorems, upward
Lowenheim-Skolem theorems and so on may be obtained in a way similar to the
corresponding results for first-order logic provided one replaces compactness
arguments by suitable applications of the boundedness property. This is also
illustrated by the proof of Theorem 3.1 given below—a proof the reader should
compare with the proof of Lemma 1.1.2.

One may regard the almost-all Lowenheim-Skolem property—the so-called
Kueker property, which is introduced below—as a substitute for the Lowenheim-
Skolem property in this model theoretic sense. Based on an interesting set-
theoretical notion of countable approximations to uncountable objects, the
Kueker property acts symmetrically on models and sentences. The reader should
examine Kueker [1977, 1978] for a more penetrating view of the role of this
property in model theory.

J^ooa is bounded and has the Kueker property; and if the compactness and
Lowenheim-Skolem property in Lindstrom's theorem are replaced by these
substitutes, we obtain a characterization of J ^ ^ as a maximal logic. We will derive
this result as a consequence of Theorem 3.1, a theorem which shows that JS^^ is a
maximal bounded logic with the Karp property. The reader should also consult
Chapter XVII, where these results are discussed from a set-theoretical point of
view and where further characterizations of JS?^ are obtained.

First, we define S£^-sentences which characterize the "a-isomorphism type"
of a structure: Given an arbitrary t and a t-structure 91, for each ordinal a, we
introduce an if ^^[T]-sentence cp^ such that for any 95 the following are equivalent
(compare Chapter VIII or Section II.4.2, in which for finite a, the corresponding
formulas are introduced for the logic £?(OJ<Qsd with monotone QR):

(i) »NJ.
(ii) 91 =a 93 (that is, 91 and 95 are a-isomorphic).

(iii) 91 and 95 satisfy the same j£? ̂ -sentences of rank <a.

To define cp^, we first introduce by induction on a, for each finite sequence a =
a! . . . an 6 A, an if BW[T]-formula q>l(xl9..., xn):

<P2 = A M*i> • • • > xn) I s* i= *A M a n d <A h a s t h e f o r m

(-i) Rxh... xtj or (-i)/(xfl,..., xt) = xt or

(-|)C = XiOT(-l)Xj = Xj,

pl+i = /\3xn+l cpla A VxB+1 V<PL>
aeA

<pl = f\(pi for a limit ordinal a.
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106 III. Characterizing Logics

Now let <p$ be the sentence cpa
0, where 0 denotes the empty sequence. An easy

induction on a shows the following: in case either |x| or a is infinite there are not
more than Ha+1(|x|) sentences (pairwise non-equivalent) of the form cp^ and
each such sentence cp^ belongs to if3a(|T|)+C0[T]. Otherwise their number is finite
and each is a first-order sentence. Recall that the sequence of beth cardinals
11 JK), where K is a cardinal and a an ordinal, is defined by: H0(K) = K, 3a+1(K:)
= 23a(K) and 2Jk) = supP//c)|jS < a}, if a is a limit ordinal. Write 2a for 2JO);
in particular, Hw = co.

We adapt the proof methods used in Section 1.1 to show

3.1 Theorem. Assume S£ is a regular logic with i ? ^ < 5£. If $£ is bounded and has
the Karp property, then $£ = $£ „„.

Proof. By contradiction suppose that cp is an if -sentence not equivalent to an
if ^-sentence. For an ordinal a, let

Then, by the preceding remarks, / a is an if ^-sentence and \=cp -> f. Therefore
^f ^ cp. That is, for some 93a, 95a |= f, but 93a |= ~icp. By the definition of /"
there exists 2la such that 5Ia \= cp and 95a |= cp^. Hence, 9Ia ^ a 95a. Summarizing,
we thus have:

for each ordinal a there are 9Ia and 93a such that
(*)

21* t= <P> 95a N ^<P and 9la ^ a 95a.

Coding partial isomorphisms (as in the proof of Lemma 1.1.2), we obtain an <£-
sentence which contains among others relation symbols V9 W (unary) and <, /
(binary), and which expresses:

"the F-part is a model of cp, the VF-part a model of ~i cp; < is an order-
ing, for each x in its field Ix • is a non-empty set of partial isomorphisms
from the F-part to the W-part, and the sequence Ix • with x in the field
of < has the back and forth property."

By (*), for each ordinal a, \jj has a model such that < is well-ordered of order type
> a. Since ^£ is bounded, \// has a non-well-ordered model T). Then V^ is a model
of cp, W^ a model of ~icp. And, as in the preceding proofs (see Lemma 1.1.2), by
choosing an element in the field of < with an infinite descending sequence of
predecessors, one shows that Vv and W® are partially isomorphic. But this is a
contradiction, since ^£ was assumed to have the Karp property. •

Observe that in case !£ has the finite occurrence property, we can omit the
hypothesis $£ ̂  < if in the preceding theorem and obtain 5£ < $£ ̂  as con-
clusion. We state some results that are obtained by slight changes in the last proof.
For K = a> the following theorem is essentially the characterization of 3?^ as
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3. Characterizing J ^ 107

given in Theorem 2.1.1. (Consult Section II.5.2 for the definition and properties
of the well-ordering number of a logic.)

3.2 Theorem. Suppose K is a cardinal and K = 2K. Assume also that J? with
ifK£0 < <£ isa regular logic with occurrence number <K. If the well-ordering number
of "JS? is <K and $£ has the Karp property, then <£ = i^KW.

Proof We employ the notations used in the proof of Theorem 3.1 and note that in
case the well-ordering number of if is < K this proof shows that any cp e J^[x] with
| T | < K is equivalent to some x" with a < K. For any /?, X < K we have 11p(X) <
2X+P < 1K = K. Hence, xae Ĵ KC0 by the above remarks on the number of non-
equivalent sentences of the form <p$,. •

3.3 Remarks, (a) Clearly, one can generalize Theorems 3.1 and 3.2 in the spirit of
the "separation theorem" 1.1.3 and, for example, derive: Assume that ££ with
^aoco < & is a logic with the relativization property and closed under (finitary)
conjunctions and disjunctions. If 5£ is bounded and has the Karp property, then
any two disjoint ^-classes can be separated by an if^^-class (the reader should
consult Makowsky-Shelah-Stavi [1976], where this result is stated for 5£ =

In fact, if Mod(cp) and Mod(i/0 are disjoint if-classes not separable by an
S£^-class, for each a define f as above. Then there are 9la and 93a such that
9la |= cp, 93 a |= I/J, and 93 a |= cp^a, and we obtain a contradiction as in Theorem
3.1.

(b) Suppose if is a regular logic with the Karp property. For an if-sentence
<p and an ordinal a, let f = Vto&l® 1= <Pl T h e n HAaordinai f) -> <p. In fact,
suppose for the sake of argument that for all a, S N f and 93 |= ~"i <p. Let K =
\B\ + . Choose 91 \= <p such that 91 ̂ K 93. We show that 91 ̂ p 93 which—in view
of 93 |= —\cp and 911= (^—contradicts the assumption " i f has the Karp property".
From 91 = K 93, we obtain 91 = Ĵ jcw ©, since each if KC0-sentence has quantifier
rank < K. Hence, 91 = ^^ 93, because each 5£^-sentence is equivalent in Th^Ktu(93)
to an if KC0-sentence (see Flum [1971c]). Thus 9I = p93. Summarizing, we have
shown: Assume J? is a logic with the Karp property. Then for any J£-sentence cp
we have t=(p<-+ /\«ordinal Xa, where f = V l ^ l 9 * N cp}.

Since if OOG is a logic with the Karp property, this result applies to jSf ̂ G (see

Keisler [1968a] and compare with Chapter XVII for a more general version).
(c) For a generalized quantifier Q one can extend the preceding results to

logics Se of the form ^ = i ^ J g ) or if = ^K(a(Q), if there is an appropriate
characterization of if-equivalence by means of partial isomorphisms and if there
are if-sentences which play the role of the formulas (p^. For example, if Q = Ql9

that is, in case Q is the quantifier "there are uncountable many" and if we define
the "KrKarp property" as suggested by the corresponding back and forth notions
for ifC0(0(gi) (see Section II.4.2), we then obtain (the reader is referred to Caicedo
[1981b] for further results in this direction)

If Se with if ooJQi) < if is bounded and has the "N r Karp property",
then ^£ = JfUQi).
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108 III. Characterizing Logics

From now on in this section we will assume that all logics under consideration are
built up by set-theoretical principles so that their sentences are sets.

We will quickly review some definitions and results concerning the notions of
approximations of sets and of the closed unbounded filter, and ask the reader to
consult Bar wise [1974b] for details.

We work in a universe of sets and urelements and define for any sets x and s the
approximation xsofxins by e-recursion:

ps = p if p is an urelement,

xs = {ys|y e x n s}, if x is a set.

Let M be a transitive set and let / be the set P^^M) of all countable subsets of M.
The closed unbounded filter on M consists of all I c / such that for some X° c X:

(i) every s e I is a subset of some sf e X°; and
(ii) X° is closed under unions of countable chains.

Let 91 be an n-ary predicate of sets and urelements. For given xl9..., xn in a transi-
tive set M, we say that <Hx\ . . . xs

n holds for almost all countable s, if the set

is a member of the closed unbounded filter on M. This notion is independent of the
particular transitive set M containing xl9..., xn.

We say that a predicte 9? of sets and urelements is Z, if it is definable by a
Z-formula of set theory. Barwise [1974b] generalized Levy's Absoluteness Lemma
and showed :

3.4 Proposition. Let 9t be an n-ary ^-predicate. If9ixl ...xn, then 91x1... xs
nfor

almost all countable s. D

We assume that vocabularies and universes of structures consist of urelements
only. Then for almost all countable s:

W is the ^-substructure of 91 [ zs with universe A n s,

and for any if ^-sentence cp and almost all s,

<PS = (P[s\

where (p[s] = cp, if (p is atomic;

(-i<p)[sl = -i<p[sl;

(3xq>)[s] = 3xcp[s];

and

= \/ {(
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3. Characterizing Sf^ 109

Here—as also in the proof of Theorem 3.6 below—we assume that the operations
(p\->—\q>, cp\-^3xcp, ... are "simple" operations, say ^-operations. Thus, for
example, (~\cp)s and ~^(cps) are equal for almost all countable 5.

"91 ^p 93" and "91 \= cp" for an if ^-sentence cp are Z-predicates of 91 and 93,
resp. 91 and cp. Therefore, using Proposition 3.4, we obtain (see Barwise [1974b]):

3.5 Proposition, (a) 7/91 ^p 93, then 91s ^ ^ for almost all countable s.
(b) Ifcp is an S£ ̂ -sentence, then

911= 9 implies 91s |= cps for almost all countable s. D

We say that a logic if has the Kueker property, if for any if-sentence cp, 911= cp
implies 91s |= cps for almost all countable s. Thus, in particular, we assume that
cps is an if-sentence for almost all countable s.

In particular, if m<o is a logic with the Kueker property. Moreover—as was
announced in the troduction to this section—this property together with the
boundedness property characterize 5£a0(O.

3.6 Theorem. Let <£ be a regular logic with <£^ < <£. If <£ is bounded and has the
Kueker property, then <£ = <£o0(O.

Proof By Theorem 3.1 it suffices to show that S£ has the Karp property. So let cp
be an if-sentence and suppose that 911= cp and 91 =p 93. For the sake of argument
suppose that $f=n<p. Then, by Proposition 3.5 and the Kueker property, we have
for almost all countable s

91s ^ 93s, 91s l= cps and 93s \= ~i(ps,

a contradiction. D

What is the corresponding separation property of ^£ ̂ 7 Let cp and \j/ be sen-
tences of a logic with the Kueker property. Consider the following properties (i) and
(ii) of cp and i//:

(i) Mod(<p) n Mod(iA) = 0 ;
(ii) Mod(cps) n Mod(^s) = 0 for almost all countable 5.

Clearly, (ii) implies (i). However, in general, (i) does not imply (ii); for otherwise
the next theorem would show that i ? ^ has the interpolation property. This
theorem contains the separation result corresponding to the maximality result
of Theorem 3.6.

3.7 Theorem. Suppose J? with ££^ < !£ is a logic closed underfinitary conjunctions
and disjunctions and has the relativization property. Assume that ££ is bounded and
has the Kueker property, and let cp and \\i be <£-sentences. If Mod(cps) n Mod(ij/s)
— 0 for almost all countable s then for some x e =Sf ̂ ^ and almost all countable s

Mod(cps) c ModCrt and Modtf) n Mod(v>5) = 0,
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110 III. Characterizing Logics

and consequently,

Mod(cp) cz Mod(x) and Mod(%) n Mod(^) = 0.

Proof. For an ordinal a, let -f = \f {<pi|9l t= </>}. Then / is an i f ^ - sentence
with |= cp -> / . If Mod(/) n Mod(i/0 = 0 holds for some a, then we let % = -f.
Otherwise, for each a there are structures 2ta and 33a such that 9Ia |= (p, 93a h= *A,
and 2Ia ^ a S a . Using the boundedness property of if and arguing as in the proof
of Theorem 3.1, we obtain structures 51 and 93 such that

9ll=<p, 95 N (A and 9I^P95.

Hence, 91s |= cp\ 93s |= (As, and W ^ ©s for almost all countable s—a contradic-
tion. D

Taking as if the Z}-sentences over JS?^, Theorem 3.7 above is Theorem 2 in
Kueker [1978].

3.8 Notes. Theorems 3.1 and 3.2 are due to Barwise [1974a]. ifWlC0 is a well-
behaved logic with a fruitful model theory. For the problem of characterizing
ifWl(0, the reader is referred to Barwise [1972a], Gostanian-Hrbacek [1980], and
Harrington [1980].

4. Characterizing Cardinality Quantifiers

In this section we characterize the logics ^^SQo) w^h the quantifier "there are
Ka-many" among the logics of the form ^^(QX where Q is a unary quantifier.

Given a unary Lindstrom quantifier Q and a non-empty set A, let Q(A) be the
set of "big" subsets of A,

Q(A) = {X czA\(A,X)^QyUy}.

In the terminology of Chapter II, Q is the quantifier associated with the class
5* = {(A, X)\A^0,Xe Q(A)}. Clearly

(1) if (A, X) ^ (£, Y), then (X e Q(A) iff Y e Q(B)).

Throughout this section all quantifiers are assumed to be unary. We call a quanti-
fier Q monotone, if

X e Q(A) and X a Y cz A imply Y e Q(A).
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4. Characterizing Cardinality Quantifiers 111

We now list some examples of monotone quantifiers:

the existential quantifier 3, 3(A) = {X a A\X # 0 } ,

the quantifier Qa, Qa(A) = {X c 4 | |X| > KJ,

the Chang quantifier ^Q^A) = {X c A| |X| > Ko, |AT| = |/4|},

the "non-cofinal complement" quantifier gncc, where

The dual quantifier Qd of a quantifier Q is defined by

Observe that Qdycp(y) is equivalent to ~i Qy ~i (/?(};) and that Qd is monotone, if Q
is monotone. Clearly, we have

(2) ^UQd) = if 0,0,(0-

The main result of this section is the following characterization of the logics of
the form iP^CQJ.

4.1 Theorem. Suppose <£ = ^^Q) is a regular logic where Q is a monotone
quantifier. Then

& = &„„ or J^ = J^ww(ea) for some a.

As an immediate consequence of this theorem, we obtain:

4.2 Corollary. Suppose $£ = J2?wa)(<2) with ̂  < if is a regular logic, where Q is a
monotone quantifier. If' $£ has Lowenheim number Ka, then !£ = ifww(6a). D

(if has Lowenheim number K:, if any satisfiable if-sentence has a model of
power < K, and K is the least cardinal with this property.)

To prove Theorem 4.1, we must introduce some terminology and notation.
For n e co let 3-", Q", and Qc" be the monotone quantifiers definable in i f ^

and ifW£0(2a), respectively, by:

3~nx(p:<^> "there are at least n elements x satisfying cp";

Qlxcp.^iQzXx = x->Qax<p) A

QTxcp:^ (Q«x x = x-+QzX(p) A

where 3<n means "there are less than n".
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112 III. Characterizing Logics

Clearly, 3-", Q", and Qc" are monotone and

(3) &»JFn) = semm\ &UQZ) = &<o<o(Q*V, &UQ?) = ^ ( Q . ) -

(For example, that if ̂ (QJ < J^CG") holds is shown by

\=Q*xq>~(QH
ax<P A V x l . . . V x n - i Q n

a y ( y = x 1 v •-- v y = * „ ) ) . )

Let Q be an arbitrary monotone quantifier. By the isomorphism condition (1)
stated at the beginning of this section, whether X e Q(A) holds or not only depends
on the cardinalities of the sets A, X and A\X. We associate with Q a function
g (= gQ) defined on the class of non-zero cardinals which maps each cardinal
A # 0 on a pair of cardinals, g(X) = (//, v), where for any A with | A | = A,

li = k and v = 0, if Q(A) = 0 ,

and otherwise

V = M{\X\\XeQ(A)}, v = suV{\A\X\+\XeQ(A)}.

Then, by monotonicity,

Q(A) = {X a A\\X\> fi9\A\X\ < v}9

and hence Q is uniquely determined by g. Moreover, note that \i < A, v < k+ and
\i + v < A+.

In particular,

(A,O) forA<Ka,

a,A+) forA>Ka.

Given monotone quantifiers Q and Q\ we say that Q and Q' are eventually equal,
if there is n0 e co such that for all k> n0, gQ(k) = gQ\k). Clearly,

(4) if Q and Q are eventually equal, then JSf ̂ (Q) = JSfo,a,(6')-

In view of (2)-(4), Theorem 4.1 is an immediate consequence of the following
lemma.

4.3 Lemma. Suppose $£ = S^^JJQ) is a regular logic with a monotone quantifier Q.
Then for some ordinal a and some neco, Q or its dual is eventually equal to

l~n or Qn
a or Q™.
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4. Characterizing Cardinality Quantifiers 113

Proof. Denote by g the function gQ. We establish the lemma by showing the follow-
ing claims (i)-(v):

(i) If co < A < fi and g(X) # (A, 0), then g(ji) # fa 0).
(ii) Suppose A > co and new.

If #(A) = (A, rc) then there is m0 e co such that for all m > m0

g(m) = (m-n + l, n).

If g(X) = (n, A+) then there is ra0 e co such that for all m > m0

g(m) = (n,m - n + 1).

By (i) and (ii) we see that in case there is no A > co such that g(X) = (fi, v) with
infinite ja and v, then Q or Qd is eventually equal to 3-".

Now, let Ao = inf A where A = {A|g(A) = (ji, v) for some infinite fi, v} is
assumed to be non-empty.

(iii) g(X0) = (Xo, X^) or g(X0) = (Ao, Xo).
(iv) If Xo = co then for some m0 and n e co we have

for all m > m0, f̂(m) = (n, m — n + 1) or
for all m > m0, #(m) = (m — n + 1, n).

(v) If g(X0) = (Ao, Ao
+) then for A > Ao, ^(A) = (Ao, A

+).

Let us show, for example, for the case co < Ao, g(X0) = (Ao, Ao) and g(co) = (n, co+),
how we obtain from (i)-(v) the assertion of the lemma. For the dual quantifier Qd,
we have gd(X0) = (Ao, AJ) and ^d(co) = (co, n). Hence, by (v)

0d(A) = (Ao,A
+) forA>A0,

and by (ii) there is m0 e co such that

g\m) = (m — n + 1, n) for m > m0.

Thus for a with Ka = Ao we have

Qd is eventually equal to Qc".

The proofs of (i)-(v) make essential use of the relativization property. We sketch
the idea underlying these proofs. Suppose, for example, that g(X) = (jz, A+), where
[i = Ka; that is, Q is the quantifier Qa in models of power A. Then each $£'wco(2)-
sentence is equivalent to an ^^(QJ-sentence in models of power A. Now for unary
relations symbols U and P let cp be the relativization of QxPx to 17; that is, we let
cp = (QxPxf. Then for 91 = (A, UA, PA) with C7̂  ̂  PA we have

(•) (A, UA,PA)\=cp iff i*4eQ(l/i4).

Let \// be an jSf C0£0(Qa)-sentence equivalent to cp in models of power A. By (*), we
obtain the possible values of gQ(p) for p < A—if we determine the expressive
power of if ww(ga)-sentences in structures of cardinality A of the above form. This
can be done with the back-and-forth methods of Chapter II. D
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114 III. Characterizing Logics

4.4 Remark, (a) One can use the idea of the preceding proof to determine the
logics with the relativization property in more general cases, for example, in the
cases of logics of the form JSf ̂ Q 1 , . . . , Qn) with unary monotone Q1,..., Qn.

(b) Since the proof of Lemma 4.3 is given in a way that only unary relation
symbols are used, we see that in case we restrict to logics for monadic vocabularies
the statement corresponding to Theorem 4.1 is true.

We now state yet another immediate consequence of Theorem 4.1.

4.5 Theorem. Suppose S£ — &\SQ) with JS?^ < ^ is a regular logic with a
monotone quantifier. IfQ is trivial for finite sets, that is, Q(A) = 0 for finite A, then
for some a

Q = Q« or Q = Qt

If, moreover,

XUYG Q(A) implies X e Q(A) or Ye Q(A),

Caicedo [1981b] calls a monotone quantifier a cofilter quantifier, if for any A
and X, Y a A

XuYe Q(A) implies X eQ(A) or Y eQ(A).

Then for finite A we have Q(A) = P(A), Q(A) = P(A)\{0} or Q(A) = 0. Denote
by Card and Card^ the class of non-zero cardinals and the class of infinite cardinals,
respectively. If/: Card -* {0, 1} u Card^ is a function, let Qf be the quantifier
given by

Qf(A) = {X^A\\X\>f(\A\)}.

Clearly, Qf is a cofilter quantifier (observe that we do not require that ^^Qf) has
the relativization property). Moreover, we have

4.6 Theorem. If Q is a cofilter quantifier, then Q = Qf for some/: Card -> {0, 1}

Proof Note that a function/: Card -> {0,1} u Card^ is well defined by

Cmf{\X\\XeQ(A)} X
f(\A\) =<

Uup{co,\A\ + } i

We show that for arbitrary A

(*) Q(A) = {XczA\\X\>f(\A\)},

that is, we show that Q = Qf.
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5. A Lindstrom-Type Theorem for Invariant Sentences 115

Clearly, (*) holds if Q(A) = 0. Now suppose Q(A) # 0. Iff(\A\) is finite,
then/(|v4|) is either 0 or 1, and (*) holds by monotonicity. Let/(|i4|) = \i be
infinite. Then, by monotonicity (*) holds, once we have established:

(*) There is an X e Q(A) such that | X \ = \i and | A\X \ > \i.

Otherwise, by definition off/, we have \A \ = jn. Take any Y c A with | Y | = \i and
\A\Y| = fi. Since Y u (A\Y) = A and A e Q(A\ we must have, by the cofilter
property, YeQ(A) or (A\Y)sQ(A). But then X -•= Y or X-•= A\Y satisfies

4.7 Notes. Theorem 4.1 is new here. As is shown by its proof, the theorem tells us
that relativization is a strong property. Theorem 4.6 is due to Caicedo [1981b].

5. A Lindstrom-Type Theorem for
Invariant Sentences

Lindstrom's theorem tells us that for algebraic structures of the logics satisfying
the compactness and the Lowenheim-Skolem theorem, first-order logic is a
maximal logic. Are there maximal logics with these properties for other kinds of
structures—for instance, for topological structures? By isolating the main as-
sumptions and ideas of the proof of Lindstrom's theorem, we will be able to prove
an abstract maximality theorem for ordinary structures. The general character of
this theorem will enable us to obtain maximal logics for certain classes of structures,
in particular, for the class of topological structures.

Let R be a binary relation between structures and (p a sentence of a logic f̂.
We say that cp is R-invariant if

9I#93 and 91 \= cp imply 81= <p.

Denote the class of /^-invariant sentences of $£ by ££R. In case if = J£?*, we say
that if is a logic of R-invariant sentences. In particular, if a logic if is given, then
<£R is a logic of ^-invariant sentences.

5.1. Let <£bea logic with the Lowenheim-Skolem property and suppose that i^x and
R2 are binary relations between structures. IfR± and R2 are PC in i f and agree on
countable structures, then <SfRl = <£Rl. D

Let R be the relation =p of partial isomorphism. Logics of ^-invariant
sentences are precisely logics with the Karp property. Thus, Theorem 2.1.1 can
now be stated in the following form:

5.2. Among the logics of ^p-invariant sentences <£%& is a maximal compact logic.
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116 III. Characterizing Logics

(Observe that in Theorem 2.1.1 we needed only countable compactness, since
we restricted to logics with the finite occurrence property). Since =p and the
relation ^ of isomorphism agree on countable structures, we obtain from 5.2
using 5.1:

5.3. Among the logics of =-invariant sentences £?Sto *s a maximal logic with the
Lowenheim-Skolem and the compactness property.

But JSf- = JSf holds for any logic, hence the result in 5.3 is precisely Lindstrom's
first theorem.

Similarly, Theorem 3.1 can be stated in the form:

5.4. Among the logics of =p-invariant sentences if =£> is a maximal bounded logic.

^p is a relation between structures PC in ifwco. For each ordinal a, the relation
^ a of a-isomorphism is an "approximation" of ^p. For finite n, =n is explicitly
definable in if w(0 in the sense that for any structure 91, there is a sentence (p% e !£m(o

such that for arbitrary 93,

8|=<pi iff 91^,93.

The following "abstract maximality theorem" is obtained from 5.2 replacing
^ p by an arbitrary relation R having all the properties of ^ p and its approxima-
tions ^ n that are used in the proof of Lindstrom's theorem. Essentially, Theorem
5.5 tells us that in case R is itself definable by ^-invariant first-order sentences
and has definable approximations, then if ^ is a maximal compact logic of R-
invariant sentences.

Note that Theorem 5.5 deals with many-sorted logics. For the sake of simplicity,
we restrict to finite vocabularies. In the following, the term "logic" will always
mean "many-sorted logic" in the sense of Chapter II. Furthermore, if it is not
otherwise stated, we will always assume closure under boolean operations.

5.5 Theorem. Suppose there is given for any vocabulary x, a set Q>x a ifww[T] and
let 5T = Mod(OT). Assume that R is a binary relation between structures such that

implies % © e SFfor some t. Suppose that

(1) R (restricted to x-structures) is an equivalence relation on Rx.
(2) Ifp: x -> t is an injective renaming, then for all x-structures 91 and 23

911*93 implies 9 1 - ^ 9 3 ^ .

(3) ("R is invariantly definable and has definable finite approximations.") Given
x there arefor somex*,x a t*:, <£\ai^x^~\-sentences (Po,(p^cp2^ • • .suchthatfor
arbitrary x-structures 91 and 93 the following hold:

iff (91, 93,...) \= {<pt \icco} for some choice of (the
universes and relations in)...,
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5. A Lindstrdm-Type Theorem for Invariant Sentences 117

and for neco the relation Rn on ftT given by

SHRn93 iff (21, 95, ) \= {(pt\i < n} for some

has the following two properties:

(i) Rn is an equivalence relation on ftT.
(ii) For SH e ftT, there is ij/n

m e JSf^M such that for 93 e ftT

Tfe/7 among the logics of R-invariant sentences and semantics restricted to structures
in (J {ftT 11 vocabulary} the logic J ^ w o/ R-invariant first-order sentences is a
maximal compact logic.

Moreover, if ££ with i?*w < 5£ isa compact logic of R-invariant sentences which
is closed under conjunctions and disjunctions (but not necessarily under negations),
then any two ^-classes can be separated by an S£^m-class.

Proof. Clearly S£^m with semantics restricted to St-= [j {ftT|x vocabulary} is
compact. Moreover, if £w is closed under boolean operations (since R is an equi-
valence relation) and has the reduct and renaming property (by (2)). Note that for
91 e ftT, the sentence \f/\ mentioned in assumption (3) (ii) is ^-invariant. In fact,
let 93#e and 93 |= ^ . Then 2lKn93. Since R ^ Rn and Rn is an equivalence rela-
tion, we obtain 9lRn(£. Hence, £ |= ^J .

It suffices to prove the separation claim in the theorem, since this claim implies
the maximality property of i?*w. Let $£ be as above and choose q>, \jj e JS?[T] such
that Mod(<p) n Mod(i^) = 0 , where Mod(...) denotes the class of models of... in
R\

For n e co we have

By the preceding remark, i/^ is ^-invariant. Hence, by if-compactness it follows
that the disjunction in (*) can be replaced by a finite one. That is, there is such a
finite disjunction -f e i ^ w with \=R cp -+ -£.

By if-compactness it suffices to show that {y?\n eco} u {\j/} has no model in
ft, for it will then follow that for some n e co, Mod(cp) c Mod(/° A • • • A #") and
Mod(x° A - - - A j f )n Mod(i^) = 0. By contradiction, suppose that 93 in ft is a
model of {xn\neco} u {^}. Then, for each n, there is 2lneft with 2ln 1= <p and
JB |= ^Jn. Whence 2lni?n93. By (3), we now have

(«,,»,—)*= fol^*}

for appropriate . By if-compactness, there are 21, 93 and appropriate . . . such
that
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with 91 \= <p and S |= i/̂ _But then 91K23. Hence it must be that S \= cp, since cp is
^-invariant. Therefore, 95 e Mod(cp) n Mod(^)—a contradiction. D

5.6 Remarks, (a) Note that the preceding proof shows that each j^^-sentence is
equivalent in R to a disjunction of sentences ij/^. Thus, if if is a compact logic of
R-invariant sentences containing all first-order sentences i/^, then J?*w = 5£.

(b) Theorem 5.5 also holds for Z£^<a instead of ££mia-> if f°r e a c h ordinal a, we
introduce the corresponding relations Ra and also assume that each R^ has set-
many equivalence classes. The conclusions will then read as follows:

Among the logics of R-in variant sentences, JSf̂ c is a maximal bounded
logic; and

»co ^ & a n d ^ is a bounded logic of .R-invariant sentences, closed
under conjunctions and disjunctions, then any two disjoint J^-classes
can be separated by an S£ £w-class.

(c) One can even prove a more general theorem that will cover the cases in
Theorem 5.5 and in the preceding remark, replacing JS?WC(, by an arbitrary logic $£
and explicitly using the well-ordering number of S£. This theorem would also
include the corresponding results (indicated in Section 3) for the logic with the
added quantifier "there are uncountably many".

We now give the applications of Theorem 5.5 to topological structures and to
other types of structures as well.

A topological structure is a pair (91, fj) consisting of an (algebraic) structure 91
and of a topology \i on A. Topological spaces and topological groups are
examples of topological structures. Let Top denote the class of topological struc-
tures. We obtain a logic for Top which is neither compact nor has the Lowenheim-
Skolem property, if we take the two-sorted first-order language corresponding to
structures of the form (91, \i, e), where (91, /i) e Top and where e is the membership
relation between elements of A and open sets. In particular, quantified variables
of the second sort range over open sets.

Now, consider arbitrary structures of the form (91, ju, E\ where A and \x are the
universes and £ is a binary relation with E a A x ft. For U e /i, put

UE= {as A\aEU} and vE = {UE\Uefi}.

Let

Bos = {(91, \i, E)\fiE is basis of a topology on A},

and, for (91, n,E)eBas denote by (91, /i, E) the induced structure in Top.
Bas consists precisely of the models of the following (two-sorted) first-order

sentence

cpBas = Vx3XxeX A VxVIV7(xeI A XEY->3Z(XEZ A

\fz(z GZ^(ZEXAZE y)))).
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5. A Li ndstrom-Type Theorem for Invariant Sentences 119

Let ^ be the relation of topological homeomorphism on Bas. That is, ^ is
the relation given by the isomorphism relation of induced topological structures:

Observe that a sentence cp is ^'-invariant just in case

(1) (%fi,E)\=cp iff

holds for (91, fi, E) e Bas. Therefore, we also speak of basis-invariant sentences in-
stead of =f-invariant sentences.

If^f is any logic for topological structures, then, using (1) as definition, we obtain
a logic for structures in Bas which will consist only of basis-invariant sentences.
On the other hand, if $£ is a logic for structures in Bas which consists of basis-
invariant sentences, then—using again (1) as definition—we obtain a logic for
Top. Because of this one-to-one correspondence, maximal logics for Bas "are"
maximal logics for Top.

We apply Theorem 5.5 to obtain maximal logics for Bas—it being clear how
the notion of one-sorted and many-sorted type and structure must be redefined in
our case. For this, choose <£T such that Mod(OT) is the class of structures in Bas
of type T, for example, <X>T = {q>Bas} for "one-sorted" x. As R and Rn take the relation
=p of partial homeomorphism and the relation ^J, of n-homeomorphism, respectively
(they correspond to the relation of partial isomorphism and n-isomorphism of
induced topological structures; the reader is referred to Chapter XV or to Flum-
Ziegler [1980, p. 18]). By Theorem 5.5, &=& is a maximal compact logic of ^p-
invariant sentences. Since ^ and =p are first-order definable relations which
agree on countable structures, we obtain from this result and from 5.1:

5.7 Theorem. The logic of basis-invariant first-order sentences is maximal among the
logics for topological structures with the compactness property and the following
Lowenheim-Skolem property: ifcp has a topological model, then there is (91, /i) e Top
such that (91, /LL)\= <p, A is countable and /u has a countable basis. D

5.8 Remarks, (a) Since ^'p and ^ agree on countable structures, one can get
from the proof of Theorem 5.5, the interpolation theorem for the logic of basis-
invariant first-order sentences in a way similar to that for first-order logic given
in Example 1.1.7(a).

(b) By the preceding results and Remark 5.6(a), any logic containing sentences
i / ^ a) characterizing the ^-isomorphism type of any topological structure (91, a)
already contains all basis-invariant first-order sentences. This result will be used
in Chapter XV.

Similarly, one can obtain maximal logics for other types of structures. We will
give two further examples.
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120 III. Characterizing Logics

A uniform structure is a pair (91, JJ) where \i a A x A is a uniformity on A A
monotone structure is a pair (91, /i) where \i c X is a monotone system on A,
that is, a non-empty set of subsets of A such that X e\i and I c 7 c A imply
Ye 11.
Using in both cases the corresponding notions of basis and the corresponding
Lowenheim-Skolem properties we obtain in the same way as for topological
structures the following result:

5.9 Theorem. Among the logics for uniform structures (monotone structures) with
the compactness and the Lowenheim-Skolem property, the logic of basis-invariant
first-order sentences is maximal D

5.10 Remarks, (a) In Chapter XV the reader can find syntactic characterizations
of the basis-invariant sentences for the above cases.

(b) Observe that the result which we obtain from Remark 5.6(b) for the cor-
responding infinitary logics are not satisfactory. For example, Remark 5.6(b) tells us
that among the logics for topological structures, JS?=& is a maximal bounded
logic of ^-invariant sentences. And it is not hard to give a "syntactic" charact-
erization of the sentences in JS?S*. But is JS?;,* = £?^J That is, is J2?|£, the class of
basis-invariant 5£^-sentences?

5.11 Notes. The Lindstrdm-type results for topological structures, monotone
structures, and so on are due to Ziegler [1976]. Theorem 5.5 is new here. The
reader should compare our approach to maximal logics with that given by Sgro
[1977b]. Sgro's main result—when translated into our terminology—reads as
follows: Given a relation R between structures, the logic i?£ro is, among the logics
of K-invariant sentences, a maximal logic satisfying a "Los ultraproduct theorem".
Since the ultraproduct operation commutes with the operation which associates
to each model in Bas the induced model in Top, we obtain: The logic of basis-
invariant sentences is a maximal logic for topological structures satisfying a Los
ultraproduct theorem.
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PartB

Finitary Languages with
Additional Quantifiers

Part B of the book is devoted to the study of logics with added quantifiers and the
applications of such. The logics considered, for the most part, express properties
of ordinary structures. Logics with additional quantifiers based on richer structures
are studied in Part E.

Chapter IV begins the discussion by investigating the logic ££(Q\) with the
quantifier "there exist uncountably many." It also discusses various extensions of
£?(Qi) including stationary logic ,i?(aa) and the Magidor-Malitz logic if <(O. The
primary emphasis of the chapter is on the method of constructing models of size
Kx used by Keisler [1970] to prove his completeness theorem for £?(Qi\ a method
that has become one of the standard tools of the subject. Each of these logics
comes with its own intended concepts of "small" set and "large" set. The basic
idea of Keisler-type proofs is to use an elementary chain <^la: a < co1 > of countable
non-standard or "weak" models to build a standard model, one where the quan-
tifier has its intended interpretation. The key step is always from Aa to Aa+l9

constructing ^4a+1 so that all small definable subsets of Aa stay fixed, but where a
fixed definable subset of Aa that is supposed to be large receives a new element.

Chapter V discusses the general problem of transferring results known about
j£?(<2a) to some other J?(Qp), especially the problem of taking results known about
^(QiX where we have powerful techniques for building models, to J?(Qp+1) for
larger /?. For example, if we assume the Generalized Continuum Hypothesis, it
follows that the axioms and rules that are complete for 3?(Q\) are also complete
for any logic of the form J?(Qp+i), as long as K̂  is regular. In general, this chapter
depends heavily on various set-theoretical assumptions which are independent of
the usual axioms of set theory, however.

Chapter VI surveys and compares the strength of a host of other logics with
additional quantifiers. One of these is the class of partially ordered quantifiers like
<2H whose meaning is given by: QHx, y; z, w0(x, y9 z, w) is true just in case for every
x there is a y, and for every z there is a w, such that y depends only on x, w only
on z, such that 0(x, y, z, w). Quantifiers of this kind are called partially ordered
because they are often written:
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122 B. Finitary Languages with Additional Quantifiers

Some other quantifiers discussed in Chapter VI include:

• the Hartig quantifier /, defined so that Ix, y[0(x), ij/(y)] means that the
number of 0's is the same as the number of t/̂ 's;

• the similarity quantifier 5, defined so that Sx, x'\_(j){x\ iK*')] means that the
substructures defined by 0 and \\t are isomorphic; and

• the well-ordering quantifier W, defined so that Wx, ycj)(x, y) means that <\>
defines a well-ordering.

The relative strengths of these logics, and their A-closures are discussed. For
example, it is shown that A(^(QH)) = A(J^(S)) = A(JSfmI1), where if mU is monadic
second-order logic. Under the assumption of the axiom of constructibility, it is
also shown that A(J£?(J)) = A(if m").

Chapter VII is devoted to identifying decidable and undecidable theories in
logics with generalized quantifiers, especially if(Qi), the Magidor-Malitz logic
if <co, logic 5£(l) with the Hartig quantifier, and stationary logic if (aa). The
chapter is organized around three main methods of proof, quantifier elimination,
the method of interpretations, and the use of "dense systems." These are all well-
known methods from first-order logic which have interesting extensions to stronger
logics. The mathematical theories discussed include abelian groups and modules,
orderings, and boolean algebras. This chapter leads into a rich literature on the
decidability of theories with extra quantifiers.
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Chapter IV

The Quantifier "There Exist Uncountably Many
and Some of Its Relatives

by M. KAUFMANN

The idea of adding quantifiers to first-order logic goes back at least to Mostowski
[1957]. Fuhrken [1964] and Vaught [1964] were the first investigators to prove
compactness and (abstract) completeness theorems for such a logic, namely the
logic ^(Qx) obtained by adjoining the quantifier Q1 (there exist uncountably
many) to first-order logic. The first systematic study of if (Qi) and, in fact, of any
well-behaved logic obtained by adding a quantifier to first-order logic, appeared
in Keisler's 1970 paper. By giving the completeness of a simple explicit set of
axioms for J^(Qi), along with other nice features of a logic such as an omitting
types theorem (with applications), Keisler's work encouraged the further study
of ^(Qx) as well as the search for extensions of i?«2i) that retain some of the
nice properties of first-order logic. In this chapter we will present some of the
progress in this study.

A main focus of this chapter is on the development of methods of proving
completeness theorems for logics extending ^ ( d ) . (Such an approach allows
compactness theorems to be derived as corollaries.) In Section 3, the proof of
Keisler's concrete completeness theorem for ^(Qi) leads to new methods of
constructing models and to a version of the omitting types theorem which differs
a bit from the first-order version, and which leads to a completeness theorem for
the corresponding infinitary version of if(6i). These methods, and the resulting
intuition developed for ££{Q\\ make possible the completeness proofs for the
other logics that are examined in Sections 4 and 5. Although concrete completeness
is a desirable feature of a logic, our main purpose here is to present the methods
that go into the proofs of such theorems.

The basic plan for proving each of these completeness theorems is to reduce
the given logic to first-order logic in some manner so that familiar tools from
first-order model theory may then be applied. One such reduction is used in
Section II.3 to prove that the set of validities for J£{Qi) is r.e. in the vocabulary;
another reduction—one that is due to Fuhrken—is given in Section 1.1 below.
However, in order to prove a concrete completeness theorem, we need a reduction
that is somehow more closely tied to the logic. The notion of weak model is thus
developed for this purpose in Section 2 although some of the details are relegated
to the appendix. The general approach adopted in Section 2 enables us to give a
reasonably unified treatment of the completeness theorems in Sections 3, 4, and 5.
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124 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

In Section 6 we conclude our study with an investigation of interpolation and
definability questions for various extensions of J^(<2i). The interest in these
questions is largely due to the use of a variety of back-and-forth arguments for
proving ^-equivalence (for various logics if), although the original motivation
was largely due to the search for well-behaved extensions of first-order logic.
Several of the proofs given in Section 6 elaborate the basic model-theoretic practice
of showing that certain partial isomorphisms preserve elementary equivalence.

This chapter is essentially self-contained, its only prerequisite being a reason-
able familiarity with first-order model theory.

1. Introduction to

Probably the simplest quantifiers which are stronger than 3 and V are the cardi-
nality quantifiers Qa, "there exist at least Xa" defined in Section II.2.2. When
a = 1, the subscript on Q will be omitted. In this case, Q asserts that "there exist
uncountably many." The notation !£ (2a)(x) denotes the set of S£(Qa)-formulas of
the vocabulary x. In the present chapter, however, we will rarely consider the case
a > 1, since it comprises part of Chapter V.

Of course, !£(Qa) is strictly stronger than first-order logic. For example, the
sentence Qax(x = x) A VX ~I Qay(y < x) holds in a linear order if and only if
that order is Xa-like. Examples of the expressive power of £f(Qa) tend to be rather
obvious. In order to express more interesting notions in the logic, we must
extend if (Qa). This is done in Sections 4 and 5.

As is shown in Section II.3, if(Qi) is countably compact (compact for count-
able theories), a fact which we will again prove in this chapter, in Section 3. How-
ever, our method and emphasis are somewhat different from the one in Section
II.3, as was explained in the introduction above. For now, we will begin our work
by discussing the incompactness of ^(Qo) in subsection 1.1 and then examine
some Lowenheim-Skolem properties of if(Qa) in Section 1.3, giving also a brief
outline (with comments) of Fuhrken's original compactness proof for if(6i) in
Section 1.2.

7.7. Incompactness o

The following finite theory T has only one model (up to isomorphism), namely
(co, <) : T = {Vx —i Qoy(y < x), " < is a linear order without last element"}. It
follows then that J?(Q0) is not countably compact. Moreover, the set of valid
sentences of if(Q0)(x) is n ° t recursively enumerable (it is actually complete IlJ)
if x contains a binary relation symbol. In fact, Barwise [1974] has shown that the
A-closure of if(go) i s equivalent to i f '^ n ifWCK (see Section II.7.2), the latter
being the hyperarithmetic fragment of if ^ (see also Theorems VI.2.3.3 and
XVII.3.2.2).

Since most of the emphasis in this chapter is on logics that are countably
compact, we will now turn to
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1. Introduction to & (0a) 125

1.2. On Completeness and Compactness of

Mostowski [1957] asked whether ^(Qx) has a recursively enumerable set of
validities. The chief result in this direction was Vaught's two-cardinal theorem
(see Morley- Vaught [1962]), or, perhaps more accurately, the proof of the theorem.
To be precise, Fuhrken discerned that J^(2i) is countably compact by abstracting
the following lemma from the proof of Vaught's theorem.

1.2.1 Lemma (Fuhrken [1964; 1.7]). Suppose that T is a set of (first-order) sen-
tences in a countable vocabulary x which contains a unary relation symbol U. Let
W be a new unary predicate symbol, and let A be the set of all sentences

VVO...VVH-1[W(VO) A . . . A Wfa.J^W^Kl)"]-],

where <j> is any x-formula having only v0,..., vn_i as free variables, and (f)w is ob-
tained from 4> by relativizing all quantifiers to W. That is, W defines an elementary
submodel of the universe. Then the following are equivalent:

(i) T u A u {\fx(U(x) -• W(x)), 3x ~i W(x)} is consistent;
(ii) T has a model Mfor which \ U*\ < \A | = Kt;

(iii) T has a model Mfor which \ U* \ < \ A |. D

A proof of this result is carefully worked out in Chang-Keisler [1973; §3.2,
especially 3.2.12]. We will now examine the two relevant corollaries of this lemma,
discussing their proofs in 1.2.4.

1.2.2 Corollary (Fuhrken [1964; Theorem 3.4]). if(Q) is countably compact. D

1.2.3 Corollary (Vaught [1964]). For countable t, the set of valid sentences of
^(6i)(T) *'s recursively enumerable in x. In fact, ££(Q\) is recursively enumerable
for consequence (in the sense of Definition II.1.2.4). D

1.2.4 Idea of Proofs of Corollaries 1.2.2 and 1.2.3. These corollaries both follow
from Fuhrken [1964, Theorem 2.2]. The idea is that one can replace ~igx(/>(x, y)
by a statement asserting that there is a function mapping {x: 0(x, y)} one-one
into U; and that one can replace Qx<j)(x, y) by a statement asserting that there is
a one-one function from the universe of the model into {x: (f)(x, y)}. The details
of how this may be accomplished can be found in Fuhrken [1964]. However, the
result is that questions about satisfiability of an <&(QP+1) theory Z may be reduced
to the satisfiability of a corresponding ,Sff

€X0 theory I * in a model 91 with U® <
K̂  < \A\. Setting (I = 0 gives the corollaries. These ideas were expanded in
Keisler [1966a] in giving an axiomatization of 2-cardinal models. The reader
should also see Section V.I for more about the method of reduction.

Comparison of Completeness Proofs and the Related Literature. As we have
pointed out, Fuhrken's Lemma (1.2.1) is based largely on the proof of Vaught's
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126 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

2-cardinal theorem. That is generally proved by using homogeneous models to
build an appropriate elementary chain. However, the proof of Keisler's complete-
ness theorem (see Section 3.2, also Section II.3.2) is based on the proof of Keisler's
2-cardinal theorem. That is, homogeneous models are replaced by an omitting
types argument. The latter technique is what really enables Keisler to give an
explicit set of axioms for J£(Qi\ and to prove an omitting types theorem for
J£?(Qi). The reader should see Section 3 for more on this.

It is also interesting to compare the method of Section II.3.2 (and also of Sec-
tion 3.2) to that used for the MacDowell-Specker theorem for models of arithmetic.
The latter asserts that every model of Peano arithmetic (even if it is uncountable)
has an elementary end extension. (See Section V.7 for a related result.) The former
is more closely related to the methods used to prove an analogous theorem for
models of set theory, Theorem 3.2.5 below (Keisler-Morley [1968]). The Keisler-
Morley theorem does not hold for all uncountable models. However, the fact
that it requires the collection schema, rather than the (stronger) induction schema
does speak in its favor. The connection between the Keisler-Morley theorem and
Keisler's i?(<2) completeness theorem is made somewhat more explicit in the
proof of Theorem 3.2.5 given below (the Keisler-Morley theorem), which uses the
Main Lemma (3.2.1) from the proof of completeness of

13. Observations on

We will close this introduction by making some easy observations about !£ (Qa).
The first was noticed by Mostowski, and it generalizes easily to the ^-interpre-
tation of J^<to (see Definition 5.1.3).

Before we examine the argument for this result, we should make a comment
on the notation and notions involved. By 93 <&(Qa) ^

 w e mean that 95 •< 91
and that both 93 and 91 satisfy the same J^(Qa) formulas at any assignment of 93.
These ideas clear, we now turn to

1.3.1 Proposition. 7/91 is any model, then there exists 93 <<?iQ } 91 such that \B\ <
K-

Sketch of Proof. For a = col9 the result follows from Fuhrken's normal form (see
subsection 1.2.4) together with Lemma 1.2.1, if we only require 23 =^(Qa)9I.
However, the more general statement has an even easier direct proof. Assuming
that | A | > Ka (for otherwise, the argument is done), the usual proof of the down-
ward Lowenheim-Skolem theorem can be easily modified to provide Ka witnesses
to each Qx0 instead of only one. D

On the other hand, as we will now show, the upward Lowenheim-Skolem
property clearly fails. (The reader should consult Theorem II.6.1.6 and V.4.2.3
for theorems on Hanf numbers.)
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2. A Framework for Reducing to First-Order Logic 127

1.3.2. Proposition. For each of the conditions (i) through (iv) below, there is a sen-
tence (j) of y(Q) such that for all a and ft: </) has a model of power K̂  in the a-inter-
pretation (that is, considering $ as a sentence of^(QJ) iff that condition holds.

(i) p < a.
(ii) j8 = a.

(iii) jS < a + n,for any n < a>.
(iv) K̂  < 3n(i<a)9 for anyn< co, whereno(a) = a and2n+1(a) = 22nia)).

Hence, full compactness fails for all JS?((2a).

Proof, (i) (/> is, of course, simply ~iQax(x = x). Thus, it follows that compactness
fails for J^(ga): Consider the set {~^Qax(x = x)} u {cp ^ cy: p < y < Na}.

(ii) </> says that < is a (reflexive) Xa-like linear order: " < is a linear order"

(iii) Here, such a sentence <\>n can be constructed by induction on n. Thus, </>0

is " < is a linear order" f\\/x ~i Qay(y < x), while (/>„+1 says " < is a linear order
and every proper initial segment can be expanded to a model of 0M."

(iv) We assume that n > 1 (for, in the absence of this assumption, (iii) clearly
applies). Thus, the language of <f> includes <, Po , Pl9...9Pn, and e. And, that
much being so, we assert that each Pi+1 is contained in the power set of Pt. (See
also Theorem II.6.1.6.) D

This contrasts with Theorem 8 of Yasuhara [1966], which gives full compact-
ness when one removes =, 3, and V from =Sf(Qa), a > 1.

2. A Framework for Reducing to
First-Order Logic

Our goal in this section is to provide some means of reducing a given logic to
first-order logic in order that we may develop some model theory for JSf(Q) and
some of its extensions in Sections 3, 4, and 5. As we will see, when we transform
a given logic into first-order logic in some manner—say, by enlarging the vo-
cabulary—we may apply methods of first-order model theory to obtain results
about the given logic. The reduction given here works for any logic that possesses
some basic syntactic properties, "concrete syntax". Our notion of "concrete
syntax" is neither memorable nor worthy of study in its own right. Indeed, every
reasonable logic probably has this property in some sense. However, it is a notion
which will enable us to prove theorems about so-called weak models, and these,
in turn, will enable us to carry out the more interesting model constructions later
on. In fact, we will omit the precise definition of "concrete syntax" here as well
as most proofs. These are, however, included in Section 7 (the appendix) where
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128 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

they may be safely ignored. The reader might want to read this section with
jSf(g) in mind.

Keisler's notion of weak model is presented in Section 2.3, where it is related
to the notion given here in Definition 2.1.3. That done we will then briefly touch
on the logic of monotone structures.

2.1. Logics With Concrete Syntax and Weak Models

A precise definition of concrete syntax can be found in Definition 7.1.1. For present
purposes, it suffices to say that the properties include:

• closure under —i, v, 3;
• possession of a notion \- % of finitary proof, with a deduction theorem;
• existence of a rank function r(0) which measures the complexity of 0 in a

reasonable way;
• existence of a function frvar(0) which gives the set of free variables of each

formula </>, as well as a notion of substitution </>(/) for any function
/ : frvar(0) -> C, for some set C of constants.

These properties are sufficient (when stated precisely) to prove the deduction
theorem in the usual way, as in Enderton [1972].

2.1.1 Theorem (Deduction Theorem). F u {(/>} I— (̂T) $ iffF \-&{x) (f> -» ^. D

Any logic with concrete syntax can be transformed into first-order logic by
using extra relation symbols and "weak models" as follows in

2.1.2 Definition. Let if be a logic with concrete syntax. We define a map
0i—•</>* which sends if(x)-formulas to ifcoco(T

+)-formulas, where T+ = x u
{R^'.cj) is an JSf(x)-formula, neither atomic nor of the form —n/̂ , ij/1 v \j/2, or
3xil/}. The arity of R^ is | frvar((/>) |. The definition is by recursion on rank r(4>).
If (/> is atomic, set 0* = </>. Also, set (~i^)* = ~i(^*), OAi v ^ 2 )* = *AT v i)/*,
and (3xi/0* = 3x(i/f*). If cj) is neither atomic nor of the form —\ij/, \j/1 v i//2, nor
3xi//, and if frvar(0) = {vh,..., vin} with i'i < • • • < i,,, then set </>* = R^v^..., vin).

2.1.3 Definition (Weak Models). A weak model for a logic J^ with concrete syntax
is a x+-structure 91* = <9l, ^*>^e^( T ) , for some x, which satisfies every instance
of 0* for every h- ^.-axiom 0 in J?(T). For 0 any formula of if (x), we write 91* |=
0[s] to denote 91* \= 0*[s]. Since "*" commutes with ~i, v , and 3, " t=" obeys
the usual inductive clauses for first-order satisfaction.

For weak models 91* and 95* of vocabulary x+, we write 91* <w 95* if A c B
and for all assignments s into A and all 0 e JSf(x), 91* |= 0[s] iff 95* |= 0[s].
Notice that this is weaker than 91* •< 95*, since we restrict ourselves to formulas
of the form 0*.
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2. A Framework for Reducing to First-Order Logic 129

22. Some Weak Model Theory

In this discussion we will present completeness (and related) theorems for weak
models. The proofs, although routine, are given in the appendix. Throughout this
section we assume that if has concrete syntax.

2.2.1 Proposition (Soundness). Let 91* be a weak model for J5?(T), and suppose that
4> is an <£(i)-formula andf: X -* C,for some one-one function f, some X c= frvar(^),
and some set C of constants which is disjoint from x. / / 1 - ^(xuC) </>(/) then for all
s:frvar(0)-» A, 91* t= (/>[>]. D

2.2.2 Proposition (Elementary Chain Theorem). Let 91* be a xa
4-structure for all

a < y, where a < ft implies that xa c xfi and 9t* -<w 9l | [ xa
+. Let 91* be the union

o/{91*: a < y}, t/zat is, 91* is a (\Ja<y restructure and for all a < y, 91* [ xa
+ =

0/>ey-a 91*. Then for all a < y, 91* -(w 91* T ta
+. D

2.2.3 Theorem (Weak Completeness). Let T be an <£(x)-consistent set of <£(%)
sentences, where x is countable. Then T has a countable weak model, that is, there
is a countable weak model 91* for L(x) such that 91* |= <\>for all </> e T.

The following extension of the weak completeness theorem will also be useful.
First, however, we need a related definition which, in applications, will be equiv-
alent to a more familiar condition.

2.2.4 Definition. Let T be an i?(t)-consistent set of if (t)-sentences. Also let I be
a set of if(x)-formulas such that frvar(d) ^ x for all a e l ; then we write
frvar(E) c x . T is said to <£(x)-locally omit I , if for every finite set C of constant
symbols, every if(T U C)-sentence 0 which is if(x u C)-consistent with T, and
every function/mapping x into the set C, there exists a e X such that 4> A [—I of/)]
is 5£(x u C)-consistent with T. Notice that range (/) may include constants of (p.

2.2.5 Weak Omitting Types Theorem. Let T be an <£(i)-consistent set of if (x)-
sentences, where x is countable. Also let {£„: n < co} be a family of countable sets
of 5£(x)-formulas with frvar(EM) ^ xn. If T <£(i)-locally omits Znfor all n < co,
then T has a countable weak model omitting each 2n, that is, which satisfies

The following technical lemma is used in Sections 3, 4, and 5, to extend weak
models while omitting types. The exact statement can be found as Lemma 7.2.3;
for the present, we will use this slightly imprecise but considerably more readable
statement of it.

2.2.6 Lemma (Extension Lemma). Suppose 91* is a countable weak model for
if(x), where x is countable. Also let T be any consistent countable extension of the
elementary diagram of 91* which !£(i)-locally omits sets Xw(xw), each n < co. Then
there exists a weak model 93* of T which omits each set Sn, such that 91* •< 33* [ x+.

D
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130 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

2.3. Connections With Monotone Structures

We will conclude this section by relating the notion of weak model as given
by Keisler [1970] (and studied later by others: see Definition 2.3.3) to the notion
given above. Keisler considered structures (91, q\ where q £ 2?(A\ and inductively
defined satisfaction for if (Q) formulas in such models with the new clause

(O,«)NGx0[s] iff {aeA:(W,q)t=<l>[s(x,aJ]}eq.

Here, s(x, a) denotes [sf (dom(s) — {x})] u {<x, a}}.

2.3.1 Definition. <?°(Q) is the logic with concrete syntax with the usual notions
of substitution, frvar((/>), and r(0)( = complexity of (j>). The axioms are simply the
schemas of first-order logic together with the universal closure of each formula
Vx(0 <->\l/)-> (Qxcj) <-» Qx\j/), as well as of each formula Qxcf) <-+ Qy(<j)y) whenever
y does not occur in (/>.

Strictly speaking, J£?°(Q) is a logic only if we give a "standard semantics",
that is, a global interpretation of Q. But this is not a problem, since in this discus-
sion we are only concerned with weak models. For a fuller explanation of this
point see Remark 7.1.2.

2.3.2 Proposition. Suppose 91* is a weak model for ifo(6). Let q consist of all sets
of the form {as A: 91* N 0[s(x, a)]} such that 91* |= Qx<j>ls]. Then for all
<t> e Se\Q) and s, 91* \= 0[s] iff(% q) \= 0[s].

Proof. The proof is a straightforward induction on complexity. The only interesting
step is that of assuming that (91, q) \= Qv</>[s] holds and showing that 91* N
Qv(f)[s] must hold also. By definition, there exist Qu\j/ and t such that 91* N Qu\j/[t']
and for all as A,

(1) 91* |= ^[r(tt, ay] o 91*

The following two facts are easy to establish.

(2) Suppose x and y are disjoint. For every JS?°(Q) formula 0(x) there is
an ££ °(Q) formula 6'(x) of the same vocabulary, such that no yt from
y occurs in 6\ and h- #oiQ) Vx(0 <-> 0').

(3) For any formulas 0 and 0' and sequences x and y as in (2), if/maps y
to x, that is, f(yt) = xi9 all i, then for all 5, 91* 1= 0[s] iff 91* N 0'[s]

For, (2) follows by induction on 0, using the axioms Qyoc «-> Qz(aJ) and the theorems
3yot<^>3z((x.yz\ while the second "iff" in (3) follows from the equality axiom x =
y A 6f(x) -• 0'(y). Thus, we may assume that <j> and \j/ have disjoint sets of free

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.008
https://www.cambridge.org/core


2. A Framework for Reducing to First-Order Logic 131

variables; and by changing \jj again, we may assume that u and v are the same
variable. Accordingly, (1) then yields

(4) 91* \= (i// +-» 0)[(s u t)(v, a)'] for all a e A;

and hence,

(5) 91* |= Vt# <-> 0)[s u *].

By the axioms, we have

91* |= (Qv\l/ <-• Qvct))[s u t ] .

Since 91* t= G#M> 91* t= 6^</>[s] and the argument is complete. D

We can also define the class of monotone structures as in

2.3.3 Definition. A structure (91, q\ where q c @>(A), is said to be a monotone
structure if for all X and 7, X ^ 7 e g implies that X eq.

For more on monotone structures, the reader should consult Makowsky-
Tulipani [1977] or Ziegler [1978]. In the present volume, Chapter III, Section 4,
Chapter XV, Section 6 and Section 6.4 of this chapter offer some further material
along these lines.

The logic with concrete syntax j£?m(Q) where the "m" stands for monotone, is
obtained from J?°(Q) by strengthening the axioms Vx(0 <-> \j/) -• (Qx(j) <-• gxi/O to

2.3.4 Proposition. Suppose 91* JS # w^a/c model for <£m(Q). Let q consist of all sub-
sets of A which contain {a e A: 91* \= </>[s(x, a)]} for some <j> and s such that 91* t=
Qx0[s]. T/z^n (91, q) is a monotone structure and for all 4> e J?m(Q) and s, 91* |=
</>!>] iff(% q) 1= 0 M .

Proof. Of course, (91, g) is a monotone structure. The remainder of the proof is
obtained from the proof of Proposition 2.3.2 by changing "<->" to "->" in (1),
(4), and (5). D

Although our main purpose in this section has been to pave the way for com-
pleteness proofs in Sections 3, 4, and 5, we should notice that our digression here
in Section 2.3 has brought us to the well-known weak completeness theorem given
in

2.3.5 Corollary (Folklore Weak Completeness). Let T be a consistent set of sen-
tences in i? 0 (g) . Then, for all K > co, there exists (91, q) \= T such that \A\ =
K + \T\. If T is in fact J?m(Q)-consistent, we may take (91, q) to be a monotone
structure. The converses {soundness) also hold, regardless of cardinalities.
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132 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

Proof. For countable T, this is immediate from the weak completeness theorem
(2.2.3) together with Propositions 2.3.2 and 2.3.4. In general, we can obtain a weak
model of each countable subset of T, apply first-order compactness and
Lowenheim-Skolem arguments to get a weak model 51* of T of the desired
cardinality, and then apply Propositions 2.3.2 or 2.3.4. The argument for soundness
is clear. •

2.3.6 Corollary (Compactness for Weak Models). Let T be a set of sentences of
J£°(Q) such that every finite subset of T has a weak model. Then T has a weak
model. The term "weak model" may have either of the two meanings from
Proposition 2.3.2.

//, in fact, every finite subset ofT has a weak model which is a monotone structure,
then T has a weak model which is a monotone structure. The reader can find an
ultraproduct proof for this in Makowsky-Tulipani [1977, §7].) D

3. i?(2i) and J ^ ^ ( d ) • Completeness and
Omitting Types Theorems

This section consists primarily of the main results from Keisler's paper [Ke]1 on
J5?(<2), where Q = "there exist uncountably many." Although we will base the
proofs on the notion of weak model as presented in Section 2, the reader may
prefer to use Keisler's notion (see Section 2.3) or any other notion having reason-
able properties. Further applications of the completeness theorem for JS?(Q) can
be found in [Ke].

3.1. The Axioms, Basic Notions, and Properties

3.1.1 Definition ([Ke]). The axioms of ££(Q) include the universal closures of all
first-order axiom schemas as well as the following axioms, all of which may have
free variables other than those displayed.

(1) ~iQx(x = y v x = z);

(2)

(3) Qx<j)(x) <-• Qy4>(y\ where 0(x,.. .) is a formula of S£(Q) in which y
does not occur, and (\>{y,...) is obtained by replacing each free occur-
rence of x by y;

(4) Qy 3x0 -+ ixQycp v Qx Bycf).

1 Henceforth, [Ke] will refer to Keisler [1970]. Except as otherwise noted all results in Section 3 are
proved in [Ke].
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The rule of inference is modus ponens (but universal generalization may be
derived as in Enderton [1972]). Notice that the axioms are all valid (where again,
Q = 2i)- To see that Axiom 4 is valid, consider its contrapositive —\Qx3y(j) A
~I 3xQy4> -> —i Qy 3xcj), which asserts that a countable union of countable sets is
countable. Throughout the following discussion we will assume that the axiom
of choice holds. Keisler [Ke] also credits Craig and Fuhrken with the conjecture
that these axioms are complete.

In order to apply the results of Section 2 (on weak models) to the problems at
hand, we need the following lemma. The proof, though routine, is omitted since
it lacks interest. Nevertheless, we note that the proof of (i) is similar to the ^ ^
case as treated in Enderton [1972].

3.1.2 Lemma, (i) With the notion of proof as defined above, £?{Q) has a concrete
syntax {in the sense of Section 2).

(ii) The notion "J£(Q)-locally omits" as given in Definition 2.2 A is equivalent
to the usual notion. That is, for a fixed vocabulary x, T J£(Q)-locally omits
Z(x) iff whenever 3x</> is consistent with T, then so is 3x((j> A —\G)for some
(j e l . D

For the remainder of this section, we fix a countable vocabulary T. The proof
of the completeness theorem is composed of three steps. First, the weak complete-
ness theorem (2.2.3) is applied to obtain a countable weak model of a consistent
theory T. That done, we then prove a "main lemma" which will, in effect, show
how to expand "uncountable" sets while keeping "countable" sets unexpanded.
Extending the given countable weak model and iterating a>1 times using this
process, we will find that the union of the structures gives the desired model of
T. First, however, let us formally state the kind of extension we need.

3.1.3 Definition. Let 91* and 95* be countable weak models for jSf(Q). We say
that 33* is a precise extension ofW* relative to </>, if (/>(*) is a formula of if (Q) with
parameters in A and

(i) 91* -<w 93*.
(ii) If 91* 1= Qx§, then 93* |= </)(b) for some b e B - A.

(iii) Whenever 31* |= ~i Qx\\t for Qxxjj a sentence with parameters in A, then
93* |= -i^(fc) for all b e B - A.

3.1.4 Remarks on Notation. Notice that the notation has become more informal
than that used in Section 2. A precise definition would consider precise extensions
relative to <</>, s>, where 0 is a formula of JS?(Q), and s is an assignment into A
with domain including all but at most one free variable x of (/>. Then, for example,
(ii) would be worded thus: "if 91* \= Qx0[s] then 93* |= 0[s(x, &)] for some
b E B - A." The more informal notation will generally be used in the sequel.
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134 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

The symbol Q*x is an abbreviation for "iQx"i, "for all but countably many
x." Before moving to the "main lemma", we should summarize some easy conse-
quences of the axioms. Accordingly, we have

3.1.5 Lemma. Every formula in the following schema is a theorem of J£(Q) and is
therefore valid in every weak model for

(i) -iQx\l/++Q*x-i i//.
(ii) Qx(x = x) -» Q1x1 . . . Qnxn{4> A Qn+1y1 . . . Qn+mym^)

<->Qi*i • • • QnxnQn+ iyi . . . Qn+m ^m(0 A i/0, whenever yl9...,ym are not
free in 0, and each Qt e {3, V, Q, Q*}.

(iii) (Monotonicity) Vx(</> -> i/f) - • (gx$ -> gxi/f), w/iere gx is any string of '3, V,
Q, Q* quantifiers on x.

Moreover, we also have the following "Intersection principles":

(iv) A e***A -> e*^ A ̂  (/^te).
iel iel

(V) QX(/> A Q*XIJJ ̂  Q x ( 0 A ^ ) .

(vi) Vx0 A gxi/^ - • qx((p A i/̂ ) (for f̂ = Q o r Q*). D

3.2. Towards a Proof of Keislef s Completeness Theorem

3.2.1 Main Lemma. Suppose 91* is a countable weak model for J£(Q), and suppose
0(x, p) is a formula ofJ£(Q) with parameters p in A. Then there is a precise extension
of 91* relative to </>.

Proof If 91* |= -iQx(t>(x, p), then we set 95* = 91*. So, assume that 91* 1= Qx(f)(x9 p),
and let CA = {ca: as A) be a set of new constant symbols. Also let D = CAKJ {C}

for yet another constant symbol c, and form the following set 7̂ ,(91*) of x u D-
sentences of JSf(Q). The notation ca denotes <ca i , . . . , can>, when a = <a1 ?. . . , an}
is any sequence of elements of A.

= {0(ca): 91* |= 6>(a)} u {(/>(c, cp)}

u {-ii//(c, ca): 91* |= -IQXI/J(X, a)}.

For each i/̂ (x, a), we define a set Z^ such that

ClaimA.T^(9l*) is an J^(e>consistent theory which ^(©-locally omits S^, for
each ^(x, a), such that 91* \= ~i Qx\j/(x, a).

Deferring the proof of Claim A for the moment, we will see how the theorem
follows. Let 93* > w 91* be the countable weak model guaranteed by the extension
lemma (2.2.6) or by Lemma 7.2.3. That is, 93* omits each Z^, and there exists
e e B (corresponding to c) such that for all 0(c, ca) e T0(9I*), 93* N 6(e, a). Since
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0(c, cp) e 7 (̂21*), it follows that 93* |= </>(*?, p). Moreover, ~i(c = ca) e T0(2l*) for
all aeA, since 91* |= iQx(x = a) by Axioms 1 and 2. Thus, 95* \= e # a for all
ae A, and hence £ £ A. Accordingly, we see that (ii) in the definition of "precise
extension relative to 0 " is satisfied. Part (iii) holds because 93* omits each necessary
2^. Thus, the proof is complete once Claim A has been proved. First, however,
it is very helpful to have a useful criterion for consistency of x u D-sentences of

with 7 (̂21*).

Claim B (Consistency Criterion). For any x-formula 0(y, z) of 5£{Q) and a in A:

(i) 0(c, ca) is <£(0-consistent with T/2I*) iff 21* N G><0(y, p) A 6(y, a)),
(ii) 7 (̂21*) h- *(<2)0(c, ca) iff 21* N 6*y(0(y, P) - 0(y, a)). (Recall Q* = i G^.)

Proof of Consistency Criterion. Using Lemma 3.1.5(i) and ~i6 for 0, it is easy to
see that (i) and (ii) are equivalent. Thus, we will only prove (ii). For the (<=)
direction, we suppose that 21* |= -i Qy ~i ((/)(y, p) -> 8(y9 a)). Then ~i (~i (0(c, cp) -•
0(c, ca))) 6 T0(2I*), by definition. Thus, T0(2I*) h- *(Q) 0(c, cp) -> 0(c, ca). And,
since (/>(c, cp) e T0(2I*), we have that 7 (̂21*) \-#iQ) 6(c, ca).

Conversely, suppose 7̂ ,(21*) I- 6(c, ca). Since proofs are finite, there exist
formulas <5£(ca.) for i e / and i/f/y, caj) with j e J, where both I and J are finite,
such that

(1) 21* \=Sfad, all iel;

(2) 2I*N=-i6#/y9a J ) , all jeJ;

(3) {0(c, cp)} u {5,(cai): i e /} u {-i^r/c, cBi): j e J} I-^(Q) fl(c, ca).

By repeated application of the deduction theorem (2.1.1), we see that (3) implies
that

/ \ r / \ I

By soundness (see Proposition 2.2.1), since 21* |= /\ieI 5^) by (1) this yields

(4) 21* |= Vy\<Ky, p) A (/\ ~i i/t^y, *j)\ - 9(y,

We now make use of the "intersection principles" of Lemma 3.1.5. Applying
Lemma 3.1.5(iv) and (i) to (2) above, we obtain 21* 1= Q*y/\jeJ ^j(y, a,-).
Combining this with (4) above, the "intersection principle" given in Lemma
3.1.5(vi) shows that

21* \= Q*y\\<Ky, p) A (/\ -i^y, a,)) - , 6(y, a)l A / \
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By Lemma 3.1.5(iii) (monotonicity) this implies 91* \= Q*y[</)(y9 p) -• 9(y, a)],
which concludes the proof of Claim B, the "consistency criterion".

It now remains to prove Claim A. First of all, the consistency criterion implies
that 7 (̂91*) is JS?(Q)-consistent. Now suppose that 91* \= -iQx^(x, a). We must
show that T/9I*) j£?(e)-locally omits 2^ = {ij/(x, ca) u {x # cb: 91* 1= ̂ (fc, a)},
in the sense of Lemma 3.1.2(ii). Thus, suppose 3x0(x, c, cd) is consistent with
7̂ ,(91*), where d is from A. By the consistency criterion and Lemma 3.1.5(ii), we
have

(5) 8 l * l = e y 3 x [ ^ , p ) A0(x,y,d)].

If 91* |= Qy 3x[</)(y, p) A 0(X, y, d) A "i^(x, a)], then by the consistency criterion,
3x[0(x, c, cd) A ~i^r(x, c j ] is consistent with 7 ,̂(91*), and we're done. Otherwise,
91* 1= <2*)A/x[(/>(j, p) A 0(x, y, d) -• ^(x, a)]. Then, by the intersection principle
Lemma 3.1.5(v) and its analogue for l£mm9 this combines with (5) to yield

(6) 91* |= Qy 3x[_W(y, p) A 0(X, y, d)] A [</>(y, p) A 0(X, J , d) -> f̂(x, a)]].

Applying the monotonicity principle (Lemma 3.1.5(iii)) to (6), we have

(7) 91* |= Qy 3xt<Ky, P) A 0(X, y, d) A f̂(x, a)].

Now is the time to apply the main axiom of J£?(Q), namely Axiom 4. Applied to
(7) this gives

(8) 91* |= Qx lyWy, p) A 0(x, y, d) A <Kx, a)],

(9) 91* N= 3xQy[0(y9 P) A 0(x, y, d) A ^(X, a)].

But (8) is impossible, since it implies that 91* \= Qx\l/(x, a)—a contradiction of the
assumption. Thus, there exists a witness e e A for (9) above. Then 91* t= Qy[(f)(y, p)
A 9(e, y, d)] which further implies 91* \= Qy 3x((j)(y, p) A 0(X, y, d) A —i x + e\
by monotonicity. But applying the consistency criterion we see that 3x(6(x, c, cd) A
-IX ^ ce) is if(g)-consistent with T^(9I*), as desired. D

Remark. In [Ke], 93* is defined to be a precise extension of 91* if it is a precise
extension relative to every formula. By iterating the Main Lemma co times in an
appropriate manner, we may construct such an extension. Although this would
slightly simplify the proof of the completeness theorem (3.2.3), such a notion of
extension is not as useful for ^f(aa) in Section 4 and for <£(Q2) in Section 5.

The final lemma needed for the proof of the completeness theorem tells us
that a careful iteration of the Main Lemma produces the desired model.
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3.2.2 Lemma (Union of Chain Lemma). Assume that <9I*: a < cox> is a chain of
countable weak models for i?(<2), with the following properties.

(i) For all a < cox, 91*+1 is a precise extension o/9I* relative to (j),for some </>.
(ii) For each formula </>(x) with parameters in some Aa, {/? < co1: 9l*+ 1 is a

precise extension ofVlf relative to <j>} is uncountable.
(iii) The chain is continuous, that is, 91* = (J a < A 91* for limit X < co1.

Then by setting 91 = Ua<COl 9la, w^ have 91 \= 4> #f 21* 1= (/>for all sentences </>
with parameters in Aa9 where a < col is arbitrary.

Proof. The proof is by induction on the length of cf). For atomic </>, it is clear, and
both the—i and v steps are trivial. Now notice that a < fi < co x implies 91* <w9l*,
by Proposition 2.2.2 (the elementary chain theorem for weak models). The case
0 = 3yil/(y) then follows in the usual way.

Finally, suppose that 4> is Qx\j/. If 91* |= QXI/J, then by (ii) above, there exists
an uncountable set X ^ co1 such that for all PeX, 9l*+1 \= \jj(a) for some
aeAp+1 — Ap. This implies that 91 N il/(a) for some aeAp+l — Ap. Thus,
911= Qxij/. Conversely, if 91* 1= ~i Qxxj/, then by (i), it follows by induction on jS
(and the definition of precise extension relative to a formula) that 91* 1= \j/{a)
implies a e Aa. By the inductive hypothesis, this translates into: 911= \l/(a) implies
aeAa. Since Aa is countable, we must have that 91 \= -^QX\\J. D

3.2.3 Theorem (Completeness Theorem for J£(Q)). Suppose T is a set ofx-sentences
of&(Q\ where x is a countable vocabulary. Then T is 5£{Q)-consistent iffT has a
model.

Proof. We have already shown soundness. For the other direction, we suppose T
is j2?(Q)-consistent. We wish to define a chain <9l*: a < co^ which satisfies the
hypotheses of Lemma 3.2.2, the "union of chain lemma." It will be convenient to
require Aa c a>1 for all a < co^ For then we will have that (Ja<COl Aa c: co1? and
the following construction will indeed witness each Qx<\> uncountably many times.

More precisely, we start with any partition of co1 into uncountable sets X^,
where (/> ranges over formulas 0(x) with parameters in co1. Let us define 91* by
induction on a. First, let 91* be a countable weak model for ££(Q) which satisfies
T, by the weak completeness theorem (2.2.3). We may require Ao = co. For suc-
cessor stages a + 1, we apply the Main Lemma (3.2.1). Let 9l*+1 be a precise
extension of 91* relative to <j>, where a e X^ (unless the parameters of <j> do not lie
inside Aa9 in which case set 9I*+1 = 91*). Finally, set 9Tf = Ua < A9l* for limit
1 < cov Also set 91 = (J {9Ia: oc < CDJ. By Lemma 3.2.2, we have that 91 \= (/>(a)
iff 91* |= 0(a), for all a < co1 and a in Aa. In particular, since 91*. 1= $ for all
0 e T, we have that 91 is a model of T. D

3.2.4 Corollary. J?(Q) is countably compact. D

Before continuing with an extension of the completeness theorem to JS^o/6)
and omitting types in if (Q), we will examine a corollary to the Main Lemma, as
was promised in Section 1. This result appears as Corollary 3.6.1 of [Ke].
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3.2.5 Theorem (Essentially due to Keisler-Morley [1968:4.2,2.2]). Let 91 = (A,E)
be a countable model o/ZF, possibly excepting power set. For all as A, set aE =
{b:(b,a>EE}.

(i) There exists 95 = (B, F) > 91 such that for all aeA, aF = aE, and the
ordinals of 95 are co^like.

(ii) For every regular cardinal a of 91, there exists 95 = (B, F) > 91 such that
bE = bpfor all bEa, but <%, F [ aF} is co^like.

In fact, for (ii) it is not necessary that 91 satisfy the collection schema.

Proof (i) We expand 91 to a weak model 91* for jSf(g) by interpreting Q as "for
unboundedly many." For every a-formula c/> of J£(Q\ let </>+ be the result of re-
placing each quantifier of the form "Qx" by "there exist arbitrarily large x", that
is, Vy 3x(x $ y A --) (where y is chosen not to conflict with other variables of </>).
We then set R%c<t>{X,y) = {a: 911= (Qx(/>) + (a)}. As in the proof of Proposition
2.3.2, an easy induction on complexity of (j> e J£(Q) shows that 91* \= (/>(a) iff
211= 0+(a) for all $ and a. It is then easy to check that 91* is a countable weak
model for JS?(<2): the axiom of collection is used to verify Axiom 4.

By the Main Lemma (3.2.1), 91* has a precise extension relative to "x is an
ordinal". Iterating, we thus obtain a chain <9I*: a < cox> with 91*. = 91*, such
that 91*+1 is a precise extension of 91* relative to "x is an ordinal" for all a < col9

and 91* = |Ja < A 91* for all limit A < cov Set 95 = [ja<(Ol 9Ia; then 95 is the desired
model.

(ii) The proof here is the same, except for two changes. This time, (f)+ is obtained
by replacing each quantifier Qx by Vy e a 3x e a (y e x A • • •), and the expansion
91* of 91 is defined accordingly. Also, in this situation we require that 91*+1 be
a precise extension of 91* relative to x e a. These changes made, the proof of (i)
goes through. D

A rather similar development concerning linear orders appears in Jervell
[1975].

3.3. Omitting Types in

The next goal in this section is to get an omitting types theorem. Further on, in
Section 3.4 we will discuss applications.

3.3.1 Definition ([Ke]). Let T be a set of T-sentences, and Z(x) a set of t-formulas
(with free variables contained in the finite sequence x), of J£(Q). T is said to
strongly omit Z if the following condition is met. Let Qy be an arbitrary quantifier
string of the form Qly1 ... Qnyn, where Qt e {3, Q} for 1 < i < n. We call such a
Qy a quexistential string. Then, for every sentence of the form Qy 3x0 which is
consistent with T, there exists a e l such that Qy 3x(0 A ~I a) is consistent with T.
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A weak model 91* is said to strongly omit E(x), where Z may have parameters
in A, if whenever 91* \= Qy 3x0_ with Qy a quexistential string, where 0 may have
parameters in A, then 91* t= Qy 3x(</> A ~I G) for some cr e I .

For applications to logics such as i^<co (in Section 5), it is helpful to consider
certain extensions of if (Q).

3.3.2 Definition. A logic <£ with concrete syntax is a reasonable extension of
if (<2) if it meets the following criteria.

(i) if is closed under Q: if 0 e JSf(x) then gx0 e Jgf(x).
(ii) Every formula 0 of if (T U C) with C n x = 0, is ^ ( / ) for some ^ e if (x)

and some/. (This is needed for the proof of the Main Lemma (3.2.1); it
enables the proof of Proposition 3.1.2(ii) to go forward.)

(iii) The notions of free variable, substitution, and rank—frvar(</>), </>(/),
r((j)) from Section 2.1—obey the obvious inductive clauses for Q.

(iv) Every axiom schema (1-4) of if (Q) is an axiom schema of if. In particular,
there is a notion of change of free variable to which Axiom 3 applies, as
does 3x0(x) <-* 3y(f)(y).

3.3.3 Remark. The notion of "precise extension relative to 0", Lemma 3.1.2(ii),
the quantifier manipulations of Lemma 3.1.5, and the Main Lemma (3.2.1) with
Claims A and B, extend in the natural way to any reasonable extension of S£{Q).
That this is actually the case can be verified in a routine way. Accordingly, we will
use these extended versions.

3.3.4 Lemma. Fix a countable vocabulary x. Let 91* be a countable weak model
for any reasonable extension ££ of£?(Q). Suppose that Z(x) is any set of formulas in
the finite sequence x of free variables, where £ may have parameters in A. For every
formula S = Qy 3x^(x, y, u), where i// is parameter-free, such that u is disjoint from
x and y and Qy is a quexistential string, let

2*00 = {5} 3xiA(x, y, u)} u {^Qy 3x[>(x, y, u) A I O ( X ) ] : a e I } .

If A* omits each such S^(u), then A* strongly omits S.

Proof. The proof of this result follows immediately from the definitions. D

To prove the omitting types theorem we will follow the pattern of the com-
pleteness theorem proof. That is, we will obtain a weak model, iterate a "main
lemma" a>1 times, and then take the union. Hence, we will need:

3.3.5 Lemma ("Main Lemma" for Omitting Types). Suppose 91* is a countable
weak model for <£(x), x countable, where 3? is a reasonable extension of <£{Q). Let
{Ln :n < co}bea countable family of sets ofx-formulas of<£, possibly with parameters
in A, each in a finite sequence xn of free variables. Assume that 91* strongly omits
Znfor all n < co. Then for all (f){x, p), there is a precise extension o/9I* relative to
cj) which strongly omits each £„.
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Proof. The proof is an extension of the proof of the Main Lemma (3.2.1), and we
refer to that argument below. Form the theory 7 (̂91*) and the sets S^, as before.
By Claim A (from the proof of Lemma 3.2.1), 7 (̂91*) locally omits each set 2^.
Suppose for the moment that 7 (̂91*) also locally omits each set SjJ, as defined in
Lemma 3.3.4. Then as before, we apply the Extension Lemma (2.2.6) to obtain a
precise extension 33* of 91* relative to $, which omits each SjJ. By Lemma 3.3.4,
we see that 93* strongly omits each EM.

It now remains to show that 7 (̂91*) locally omits each EjJ, say 5 is
Qy 3x^(x, y, u), where Qy is a quexistential string and u is disjoint from x and y.
Suppose that 3u0(u, ca, c) is consistent with 7 (̂91*). If

3u[0(u, ca, c) A -iQy 3x\j/(x9 y, u)]

is consistent with 7 (̂91*), our argument is done. Otherwise, 3u[0(u, ca, c) A
Qy 3x^(x, y, u)] is consistent with 7^(91*). By "quantifier shuffling" as discussed
in Lemma 3.1.5(ii), 3u Qy3x[6(u, ca, c) A ^(X, y, U)] is consistent with 7 (̂91*).
We now apply the consistency criterion (that is, Claim B in the proof of Lemma
3.2.1) to obtain

91* N QzMz, p) A 3u Qy 3x[0(u, a, z) A tfr(x, y, u)]].

By using the last part of Definition 3.3.2(iv), we may replace u, y, x if necessary so
that these are disjoint from the free variables of (/>. Then, by using quantifier
shuffling again, we have that

91* N Qz 3u Qy 3x[0(z, p) A 0(U, a, z) A ^(X, y, u)].

But Qz 3u Qy is also a quexistential string; and so, since 91* strongly omits ZM,
there exists a e Zn such that

91* N Qz 3u Q? 3x[0(z, p) A 0(U, a, z) A ^(X, y, u) A

By using quantifier shuffling again, we obtain

91* N Qz[<Kz, P) A 3u Qy 3x[0(u, a, z) A ^(X, y, u) A -IO(X)]] .

And applying the consistency criterion once more, we see that

3u Qy 3x[0(u, ca, c) A ^(X, y, u) A -KT(X)]

is consistent with 7 (̂91*). Again using quantifier shuffling, we have that

3u[0(u, ca, c) A Qy 3x[^(x, y, u) A ~i(r(x)]]

is consistent with 7^(91*), and the proof is complete. D

3.3.6 Theorem (Omitting Types Theorem for i?(Q)). Suppose that if is a reason-
able extension of <£(Q) and that x is countable. Suppose also that T is a consistent
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x-theory of J£(Q) which strongly omits sets Sn(xn) (n < co)from ^f(x). Then T has
a model which omits each £„.

Proof. As was shown in the proof of Lemma 3.3.5, it follows that T <£(Q)-locally
omits the sets EjJ of Lemma 3.3.4. By the weak omitting types theorem (2.2.5),
there is a countable weak model 91* for ^(Q) which omits each Z^. Thus, by
Lemma 3.3.4, 91* strongly omits each ZM.

We now partition a*! into disjoint uncountable sets X^, where 0 ranges over
formulas with parameters in col. We proceed, as in the proof of the completeness
theorem (3.2.3), to construct a chain <9l*: a < a^), with the additional require-
ment that each 91* strongly omits each £„. Set 51*. = 91*, where we may assume
that Ao <= cOii and, in fact, each Aa <= cov For limit A, set 91* = (Ja<; i 91*; then
it is clear from the elementary chain theorem for weak models (2.2.2) that 91* is
still a weak model for i?(Q) which strongly omits each Zn. For successor stages
a + 1, we choose <p so that a e l f We may thus apply the main lemma for omit-
ting types, Lemma 3.3.5, to obtain 91*+1 as a precise extension of 91* relative to 0,
which still strongly omits each Zn.

Set 91 = (Ja<£Ol 9la. Using the Union of Chain Lemma 3.2.2, we see that
911= </>(a) iff 91* |= 0(a) for all </> and for all a in Aa (all a < (ox). Since 91*. 1= T,
then we must also have that 911= T. In order to see that 91 omits Zw, we suppose
that a is a sequence from A with |a| = | x j . We may, of course, choose a < a^ so
that a e ^a

<w. Then, since 91* N 3x(x = a) (that is, 3x /\t xt = at), and 91* strongly
omits Zn, we may then choose cr G Zn such that 91* 1= 3x(x = a A —\a(x)). Tha,t
is to say, 91* 1= ~i o-(a). Then, 911= ~i o-(a) and the argument is done. D

3.3.7 Remarks. At this point we should make a few remarks on some of the
developments we have examined.

(i) The converse of Theorem 3.3.6 also holds for complete theories T, as the
reader may verify. Hint: Use the fact that 3 and Q commute with countable
disjunctions.

(ii) Bruce [1978b] has improved the omitting types theorem for J£?((2) by
showing that the notion of strong omitting may be replaced by an equivalent
notion, a notion in which the quexistential string Qy may be required to consist
only of quantifiers Qyt (not 3yt). His proof is a direct one which uses forcing for
^f(Q). An alternate syntactic argument can be found in Kaufmann [1979], where
there is also an extension of Theorem 3.3.6 which produces models of /\n —i Qxn /\
En(xw) in which Qxn may have Q quantifiers in addition to 3 quantifiers. Finally,
we remark that these results extend, in fact, to families of <2W sets of formulas, by
a corresponding result for first-order logic by Shelah [1978a; Conclusion 5.17B,
p. 208]. In this connection the reader should also see Lemma VIII.8.2.2.

3A. Other Topics

3.4.1 The Infinitary Case. Before we undertake the exposition of the topics to
which this section is devoted, we will observe that the reader should also consult
Chapter VIII for a discussion of Ĵ WlC0 without Q. That said, we will begin our
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formal discussion by noting that the logic £^miJSl) is formed from ^(Q) by
allowing the new rule of forming countably infinite conjunctions as long as the
resulting formula has only finitely many free variables. In our development we
will take \J as a defined symbol. The axioms and rules of inference include those
of if (Q\ together with the universal closures of all formulas of the form

(A) A 0 " * ^ fora11 <t>eQ>'
The added infinitary rule of inference is

r I- Q*y((j) -> fl) all 6 e 6

for any quexistential string Qy, where Q*y is formed by replacing Q by Q* and
3 by V, in Qy.

A fragment is a set of formulas of J^WlC0(2) which is closed under the finitary
formula-building operations. In [Ke], these axioms and rules are proved complete
for c&uKoiQ) a n d its countable admissible fragments. Observe that for the latter,
we show by induction on proofs that if T h- </>, then there is a proof in the fragment
of 0 from T. Keisler's argument has been abstracted in Barwise [1981] and,
roughly speaking, it asserts that for many logics, the omitting types theorem implies
a completeness and omitting types theorem for a corresponding infinitary logic.
For the details on this, the reader should see Section VIII.6.6. Furthermore, the
reader who wishes to examine Keisler's argument in this chapter may find it for
$£(aa) in the proof of Theorem 4.3.4.

The following theorem is interesting even for first-order logic, and a well-
written proof of it can be found in Section 5 of [Ke], as well as (in its essentials)
in Keisler [1971a, Theorem 45]. As an exercise the reader should prove the analog
of this result for i ^ J a a ) as defined in Section 4 of this chapter.

3.4.2 Theorem. Let T be a consistent set of sentences of the countable fragment
<S^^(Q). Suppose that T has an uncountable model which realizes uncountably many
complete ^^(Q)-types in k variables, some k < co. Then there is a family
{SAf:fe

i(Ol)2} of non-isomorphic models of T. In fact, iff =£ g, then SHf realizes an
y?s4(Q)-tyVe which is omitted in (Hg. In particular, a consistent countable theory of
^(oto with uncountably many complete types has 2Wl models of power co1. D

The next theorem is quite striking and its proof is beyond the scope of this
chapter. For extensions of this result see Section XX.3.

3.4.3 Theorem (Shelah [1975c, Theorem 5.7]). Assume <>Wp or even (as in later

work) 2W < 2Wl. / / T is a countable consistent theory of J£?colW(6) containing
Qx(x = x) with fewer than 2Wl models of power co1? then T has a model of power
CD2. D
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This result stands in contrast to the situation for ££(aa). For more on this the
reader should see Remark 4.1.2(v).

The study of admissible fragments if^(<2) has been advanced by the work of
Harnik-Makkai [1979], and these advances were based on the earlier work of
Gregory [1973] and Ressayre [1977]. As concerns Gregory [1973], the reader
should consult Section VIII.7.3 of the present volume. The idea is to provide an
axiomatization of J^(Q) based on the notion "if 0 holds then \// is countable."
Proofs in this direction involve Z^-saturated models.

Another direction that the study of JSf̂ CQ) has taken is that of the Robinson-
style forcing of Krivine-McAloon [1973] and Bruce [1978b]. Extra predicates
are used in the former development, while the latter requires no extra predicates
at all. In Bruce-Keisler [1979] one can find applications to the study of
"decidable" weak models for if^(Q), where the model has domain a (with s/ = La)
and Q means "for unboundedly many." This idea of using La has been extended
in Wimmers [1982] to JS?(aa) and &<(O (see Sections 4 and 5).

In the next two sections some countably compact extensions of if(Q) are
considered.

4. Filter Quantifiers Stronger Than Q1 :
Completeness, Compactness, and
Omitting Types

In this section we will examine extensions of if(2i) that are formed by adding
"filter quantifiers" over PWl(^) = the set of countable subsets of A. We will
mainly concentrate on if(aa), or "stationary logic". Just as Qx refers to the
family of uncountable sets, the aa quantifier ("almost all") refers to the family of
closed unbounded subsets of cou a basic family of study in set theory. For a dis-
cussion of closed unbounded sets and their largeness properties, the reader should
see Kunen [1980]. This logic was introduced in a slightly different form in Shelah
[1975d], where countable compactness and abstract completeness (recursive
enumerability for theories) are proved. These properties are also implicit in
Schmerl [1976] and, later, in Dubiel [1977a]. The proofs of these properties are
related to the argument for if(aa) in Section II.3.2. In a manner analogous to
that of Keisler's 1970 paper (see Section 3) as compared to that of Fuhrken [1964]
and Vaught [1964], Barwise-Makkai [1976] introduced an explicit set of axioms
for if (aa). Their completeness proof and an omitting types theorem can be found
in Barwise-Kaufmann-Makkai [1978]2 and Kaufmann [1978a]. These notions
form the main part of the present section. We will conclude our exposition with a
discussion of some extensions of if (aa).

2 Henceforth referred to as [BKM].
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4.1. Preliminaries

4.1.1 Definition (Stationary Logic (if(aa)) and the Closed Unbounded (cub)
Filter). Let t be any vocabulary. A x-formula of if(aa) is a formula which is built
up from atomic x-formulas and formulas S;(xj), by using first-order formation
rules and the following rule: If 0 is a formula so is aa st </>. The defined quantifier
stat is also useful, and, formally stat s 4> is —i aa s —i </>.

To define satisfaction, we interpret aa by the cub filter D(A) on PWl04), an
interpretation that is due to Kueker [1972] and Jech [1973]. A collection X of
countable subsets of A is cub if X is closed under unions of countable chains and
unbounded in Pm(A); that is to say, (Vs e Pmi(A))(3s' e x)(s ^ 5')- Then D(A) is
the filter generated by the cub subfamilies of P^A). Satisfaction may now be
defined by induction on formulas, with the new clause:

9I^aas</>(s) iff {s e Pmi(A): ^ 1= <K5)} e D(A).

A sublogic of if (aa) is ifpos or "positive logic", where one forms aa s 4> only
if 5 occurs only positively in <p and (j) e J£?pos. For more on this the reader should
see Example 3 of Section II.2.2 and Remark 4.1.2(iii) below.

4.1.2 Remarks. We will now gather some facts which serve to clarify the definition
just given.

(i) Suppose \A\ = &>! and <^a: a < cox> is & filtration of A, that is, we have
Aa=\J{Ap+1:P<(x] and A = [ja A,. Then, for all X <= pmi(A), X e D(A) iff
{a < co1: An e X} contains a closed unbounded subset of coj. It follows then that
if A has domain 4 , then 911= aa s 0 iff {a: 911= 0C4a)} contains a cub subset of
col5 and 91 t= stat s 0 iff {a: 91 N= 0(v4a)} is stationary in co^

(ii) Exercise: For all A, the cub filter on Pm(A) is closed under countable
intersections. In fact, even more than this is true, as the reader can confirm by
examining the proof of Proposition 4.1.4.

(iii) If s occurs only positively in 0(5,...) and 911= </>(t9 p) for some t e Pai(A\
then 911= </>(r', p) for all tr ^ t; and, hence, 911= aa 5 (/>. Hence, j£?pos can be defined
using 3s in place of aa s.

(iv) j£?pos contains ^ ( g ^ , since Qxcj) ^ ~iaa s \fx((f)(x) -> s(x)).
(v) The class of co^like linear orders which continuously embed co1? whose

members are sometimes called strongly co^like, is axiomatized in if(aa) by:
" < is a linear order" A QX(X = x) A aa s 3x("s = {y: y < x}"). This is easy to
see using (i) above. Hence, Shelah's non-categoricity theorem for $£(Qx) (Theorem
3.4.3) fails for ^f(aa). In fact, we just add " < is dense with least element" to get a
categorical sentence. The class is not ifpos-axiomatizable: a back-and-forth
argument such as is used in Example 6.1.2 shows that all a^-like dense linear
orders with first element are j£?pos- = . This example naturally suggests that one
could restrict to strongly co1 -like linear orders and then obtain a first-order version
of if (aa). The reader should also see Section II.3.2 for more on this.

Other properties of linear orders can be expressed in if (aa). The following
offer two interesting examples in ifpos. 91 is separable iff 91 f= aa s (s is dense),
that is to say 91 \= aa s Vx \/y (x < y -• 3z(s(z) A X < z A Z < y)\ which belongs
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to JS?pos. 91 has cofinality a> iff 91 \= aa s (s is cofinal); that is, 911= aa s Vx 3j; e s
(x < y). In fact, Shelah [1975d] has proved full compactness for such a cofinality
quantifier; see Section XVIII. 1.3 and Theorem II.3.2.3. None of these classes is
axiomatizable in J^(2i): see Theorem 6.3.3, Proposition II.7.2.5, and Theorem
II.7.2.6.

(vi) Keisler's original counterexample to interpolation in JS?(2i) shows that
the following class C/f of models is not ^(QJ-axiomatizable (see also Section
VI.3.1 and II.4.2.8): Jf = {91: 91 = (A, E\ where E is an equivalence relation on
A with countably many equivalence classes}. However, Jf is axiomatizable in
J?pos by the sentence "E is an equivalence relation" A aa s Vx 3y(s(y) A E(X, y)).

(vii) It is shown in [BKM] that J^(aa) $£ &ao<x>- *n fact> there does not exist K
such that 91 =„,, 95 => 91 =^(aa) 95 (Kaufmann [1984]). This should come as no
surprise, given Kueker's game-theoretic description of the aa quantifier: If
X^Pmi(A\ then XGD(A) iff Vx0 3y0 Vxx 3y, . . . VxM 3 ^ . . . ({*,: i < a>} u

{yt: i < co} e X). (See also Chapter X of the present volume for a discussion of
game quantification.)

Another sense in which j£?(aa) is strictly stronger than S£{Q) is the sense of
Shelah's theorem which asserts that its Hanf number exceeds H^, the Hanf number
for J^(g); see Theorem V.3.3.11. More on this can be found in Shelah-Kaufmann
[198?]. The idea is that, in a sense, j£?(aa) can express well-ordering for sufficiently
large structures. Notice that the constructions to follow produce models of power
at most OJV

Alternatively, one can define D(A) to be the set of subsets of K of power less
than K. This idea was successfully applied to abelian group theory in Eklof-
Mekler [1981].

4.1.3 Axioms of if(aa). For any formula 0, call i// a quasi-universal closure of fa
if \j/ has no free first- or second-order variables, and ij/ results by prefixing </> with
quantifiers of the form aa s and Vx.

The axioms of J^(aa) consist of the quasi-universal closures of the following.

(FO) All axioms and axiom schemas of first-order logic.

(0) aa 5£ 0(5,,...) <-> aa Sj^Sj,...) (sj not occurring in 0(s;)).

(1) n a a s ( x ^ x).

(2) aa s (x e s).

aa Sj (s( c Sj) for i # j .

(3) aa 5 <f) A aa s \\f - • aa 5 (0 A \j/).

(4) aa 5 ((/> - • xjj) -> (aa s (j) - • aa s ij/).

(5) Vx aa 5 0(x, s, . . . ) - > aa s Vx (s(x) - • 0(x, s , . . . ) )

(6) (j) -> aa s 0 , if 5 is not free in 0.
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The only rule of inference is modus ponens. The reader will observe the similarity
here to Keisler's axioms for JSfCQO in Definition 3.1.1. In [BKM] there is a rule
of aa-generalization, a rule which we do not need because we have taken quasi-
universal closures in forming the axioms.

4.1.4 Proposition (Soundness). IfT\-(j) in JS?(aa), then 91 N <\>for all 91.

Proof. It suffices to verify the validity of axioms (l)-(5), since all the others are
obviously valid. Axiom 1 says 0 $ D(A); and Axiom 2 is equally clear since
{t e Pmi(A)\ s c t) e D(A) for all s e P^A). Axioms 3 and 4 are valid because
D(A) is a filter. Finally, Axiom 5 is valid because D(A) is closed under diagonal
intersections, that is, we have that if {Xa: ae A} ^ D(A), then A{Xa: ae A} =
{SG P(Ol(A):(Vae s) se Xa} e D(A). In fact, the diagonal intersection of cub
families is cub, as the reader may verify. D

In order to apply the results of Section 2 on weak models to our development,
we may now state the following proposition by way of analogy to Proposition
3.1.2 for J£(Qi). The proof of this result is routine and will therefore be omitted.

4.1.5 Definition, (i) The logic i f(aa) with the above notion of proof is a logic with
concrete syntax in the sense of Section 2.1, when we are restricted to formulas
in which no second-order variable st occurs free.

(ii) The notion of'"J£?(aa)-/oca//y omits" in Definition 2.2 A is equivalent to
the usual notion. That is, whenever 3x0 is ^(sL3)-consistent with T9 so is
3x((j> A —id) for some a e l D

In light of the above, we may speak of weak models 91* for $£(aa)(t) when T is
a countable vocabulary. That is to say, we have 91* = <9I, K^s^ej^aaXT)- Recall
now that T+ refers to the vocabulary of 91*. The reader may have guessed our
strategy by now. We will require a main lemma which will show how to witness
formulas stat s <f> (recall that this means —i aa s ~i (/>), much as we witnessed
formulas Qxcj) in the if(Qi) case. Since s is a second-order variable, we propose to
witness stat s (j>(s) by having cf)(A) hold. This approach differs slightly from the
one in [BKM], where 2-sorted structures are used with interpretations for first-
order and second-order variables. Instead, we add a predicate symbol for A.

4.2. Proving the Completeness Theorem for j£?(aa)

We begin this section with

4.2.1 Definition. Suppose that x is any vocabulary and that 91* is a countable
weak model for if (aa)(t). Let PA be a unary relation symbol not in t. We say that
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93* is a precise extension 0/91* relative to <\> if (j)(s) is a formula of j£?(aa)(T) with
parameters in A, 93* is a (x u PA)+-structure, and

(i) 91*<w93* [x+;
(ii) if 91* t= stat s 0, then 93* |= (t>(PA); that is to say, 93* |= ((/>(P )̂)* (see

Section 2);
(iii) whenever 91* t= aa s i/f(s) for aa s \\t a sentence with parameters in 91*,

then 33* |= ^(PA);
(iv) (PJ®* = A.

4.2.2 Main Lemma ([BKM, 3.4]). Suppose that A* is a countable weak model for
J£ (aa)(x) and that 0(s, p) is a formula of <£ (aa)(t) with parameters p in A. Then there
is a precise extension o/9l* relative to </>.

Proof. We may assume that 91* |= stat s 0(s, p), or else we may replace 0 by
Vx(x = x). Let CA = {ca: a e A} be a set of new constant symbols, and set

= W O : 91* N 0(a)} u {0(P^, cp)} u W(PA, ca):

91* |= aa s ^(s, ca)},

where ca = <cfl l... cfln> if a = <ax . . . «„>. Also set

Claim A. T (̂9I*) is an J^(aa)(x u P^)-consistent theory which if(aa)(x u
locally omits %()

As in the proof of Lemma 3.2.1, the Main Lemma for JSf ( g j , let us see how the
result follows from Claim A. Now the Extension Lemma (2.2.6) (or formally,
Lemma 7.2.3) gives us a countable weak model 93* for i?(aa)(x u {PA}) such that
91* <w 93* r x+, 93* |= 0(a) whenever 91* ^ 0(a), 93* f= ^(PA, p), and 93* N
i/^(P ,̂ a) whenever 91* N= aa s [//(s, a). So (i) through (iii) hold in the definition of
precise extension relative to (j) (Definition 4.2.1). Now Lemma 2.2.6 also allows us
to choose 93* so that it omits ZA, and this guarantees (P )̂®* £ A. Since 91* \=
aa s(a e s) for all fl 6 X (Axiom 2), we have that P(ca) e 7 (̂21*). So 93* t= P^(a);
and hence A c (PA)®*. Thus, (iv) holds, and 93* is the desired precise extension of
91* relative to (j).

In order to prove Claim A we will use the analogue of Claim B in the proof of
Lemma 3.2.1. The proof is essentially the same once we observe that, for every
x-formula 0(s,...) and every set F of i?(aa)(x)-sentences, if T h- 6(PA,...) in
JS?(aa)(x u {PA}\ then r I- aa s 0(s,...) in jSf(aa)(t). This follows from an induc-
tion, using Axiom 4.

Claim B (Consistency Criterion). For any formula Q(s, z) of if (aa)(x) and a in A,

(i) 0(PA, ca) is (x u {P^})-consistent with 7 (̂91*) iff 91* \= stat s(0(s, cp) A
0(s, cj) .

(ii) T0(9I*) h- 6(PA, ca) in j?(aa)(x u {P^}) iff 91* |= aa s(0(s, p) -> 0(S, a)).
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It remains to prove Claim A. The consistency criterion implies that 7 (̂21*) is
consistent. Now suppose 3x6(x, PA,cJ is consistent with T/9I*). If
3x(6(x, P^,ca) A ~iPA(x)) is consistent with 7 ,̂(91*), then our work is done.
Otherwise, we have that 3x(d(x, PA, ca) A PA(X)) is consistent with 7 (̂91*). Thus,

91* \= stat s 3x[0(s, p) A 0(x, s, a) A S(X)]

by Claim B. Rewriting this as

91* |= n a a s V x e s n [<£(s, p) A 0(X, S, a)],

we see that Axiom 5 implies that 91* 1= ~i Vx aa s ~i [0(s, p) A 0(X, S, a)]. That is
to say, we have that

91* |= stat 5[(/>(s, p) A 0(e, s, a)]

for some ee A. Then, by using the consistency criterion again, we have that
6(ce, PA, ca) is consistent with 7 (̂91*). And, hence, 3x(9(x, PA, ca) A - IX ^ ce) is
also. D

4.2.3 Lemma (Union of Chain Lemma). Assume that <9I*: a < co^ is a chain of
countable weak models for J?(aa) with the following properties.

(i) 91* is a countable weak model for j£?(aa)(xa) for all a < co1? where xa =
xv{PAp:P<a}.

(ii) For all a < co1? 9l*+ x is a precise extension o/9I* relative to (f),for some <j).
(iii) For all a < co1 and for every formula 0(s, x) of <£ (aa)(xa) and for all param-

eters a from Aa, the set {[! < co1: 9I|+ x is a precise extension o /9 l | relative
to (j)(s, a)} is stationary in co1.

(iv) The chain is continuous: For all limit X < co1 and a < A, 91J {x^ =
U W r x a

+ : a < i 8 < A } .

S e t S H = \ J a < m i W L a . T h a t i s J o r a l l 8 < c o l 9 $ t [ % d = ( J { 9 l a r x « : « ^ a < © J .
Thenjor all a < co1? JSf(aa)(xa)-jfbrmw/as 0(x), anrf a in Xa, 91 N 0(a) iff 91* N 0(a).

Proof. The argument is by induction on the length of </). Notice that a < /? < cox

implies that 91* -<^9l* T xa
+, by Proposition 2.2.2. We first show that a < ft < cox

implies that {PAof
ip = Aa, by induction on /?. For j? = a + 1, this is part of the

definition of precise extension. Now, 91* |= aa s aa t(s ^ t) by Axiom 2. So 91*+ x |=
aa t(PAa c t); and, hence, 91* t= aa r(P^a c t) for all y > a + 1. Then 9l*+1 t=
PAx c p^^ so (PAJ"**1 = (P^J51*, which Is Aa by the inductive hypothesis. Limit
stages of the induction are clear and we have verified that (PAJm^ = A^ for all
a < p < co1.

Clearly, 911= (/)(a) iff 91* \= c/>(a) for atomic 0. The v and ~i steps are trivial,
while the 3 step presents no problems. For 0(a) = aa s i/̂ (s, a), suppose that
91* |= 0(a). Then 91* |= 0(a) for all )5 > a, so that 9l*+1 |= ^ ( P ^ , a) for all
j8 > a. By the inductive hypothesis, we have that 91 N ^(PAp, a) for all /? > a.
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Hence, 911= aa 5 \j/(s, a). As to other direction, we suppose that 21* |= ~i aa s i/̂ (x, a).
That is, we suppose that 91* |= stat s -ii/<s, a). Then, 91* \= stat 5 -n//(s, a) for all
j? > a. But hypothesis (iii) implies that {/? > a: 9I*+1 |= —\\l/(Afi9 a)} is stationary
in OJV Since this set equals {/? > a: 911= ~i\j/{A^ a)} by the inductive hypothesis,
we must have that 91N stat s ~i ̂ (s, a) by Remark 4.1.2(ii). That is,
911= -1 aa s \//(s, a). •

4.2.4 Theorem (Completeness Theorem for if(aa) [BKM]). Suppose T is a set of
sentences of if(aa)(t), where x is a countable vocabulary. Then T is if(aa)(t)-
consistent iff T has a model.

Proof. The direction <= is Proposition 4.1.4 (Soundness). Now suppose that T is
if(aa)(t)-consistent. For each a < col9 set xa = t u {PAp: P < a}. By a theorem
of Ulam [1930] (see, for instance, Kunen [1980, p. 79]), there is a partition of co1

into disjoint stationary sets X^, where cj) ranges over formulas 0(s) of ^(aaXt^)
with parameters in cov Define <9l*: a < a^), each 91* a countable weak model
for j£?(aa)(Ta), by induction on a as follows, where Aa ^ co1 for all a < co1. Let
91* be a countable weak model for ££(aa)(i) which satisfies T, and for each a, if
(XE X^ let 91*+ x be a precise extension of 91* relative to 0, by the Main Lemma
(4.2.2). We take unions at limits.

We now set 91 = (Ja<C01 9Ia. Since 91* t= T, then 91 \= T by the union of chain
Lemma 4.2.3. D

4.2.5 Corollary, (i) if(aa) is countably compact.
(ii) Every consistent countable theory of j£?(aa) has a model of power at most

Kx. D

In connection with this corollary, it is interesting to observe that whether or
not if(aa)-elementary submodels must exist is independent. This fact has been
proved by Harrington, Kunen, and Shelah (see [BKM], Footnote 2, p. 221).

As is true for ^{Qx\ the study of if(aa) was partly motivated by the study of
end extension of linear orders and models of set theory. By analogy with Theorem
3.2.5(ii), we could reverse history by proving a relativized version of the Main
Lemma (4.2.2) to obtain the following theorem of Hutchinson [1976a].

4.2.6 Theorem. Let 91 = {A, E) be a countable model of ZF, possibly excepting
power set and the collection schema. For every regular cardinal a ofW, there exists
93 = (B, F) > 91 such that bE = bFfor all bEa, but (aF - aE, F [ aF - aE) has a
least element. Moreover we may require <aF, F {aF} to be co^like and embed a>1

continuously.

Hint of Proof. Define 91* 1= aa s cp iff 91 1= 3C (C is cub in a and Vy e C(cp(y)). D

4.2.7 Remark. Probably the closest known analogue of Theorem 3.2.5(i) is ob-
tained by adding a quantifier "aa a" to the language of set theory, as studied in-
dependently by Kaufmann [1983] and Kakuda [1980]. See, for example,
Kaufmann [1983, 2.16 and 5.8]. A combination of Peano-arithmetic and JS?(g2),
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a topic that is discussed in Section 5, has been studied in Macintyre [1980], in
Morgenstern [1982], and in Schmerl-Simpson [1982]. The reader should also
see Schmerl [1982] for an extension.

4.3. Omitting Types and Infinitary Completeness

As in Section 3, we now extend the completeness theorem to obtain omitting
types and infinitary completeness theorems. In fact, the proofs are direct descen-
dents of Keisler's proofs for if (g).

4.3.1 Definition ([BKM]). Let T be a set of ^(aa)(x)-sentences and E(x, t) a set
of J2?(aa)(x)-formulas in finitely many free variables xx . . . xm9 tx . . . tn. Let S be
any quantifier string composed of quantifiers stat st and stat tt, where i < j implies
that stat tt occurs only before stat tj. T strongly omits £ if for every such S and
every formula S 3x (j)(x, s, t) which is ^f(aa)(x)-consistent with T, then
S 3x(4> A —ICT) is consistent with T for some a e X . (Notice that we've fixed an
ordering <t1 ? . . . , tn} of the second-order free variables of £.) We say that 91 omits
I if 91 N= aa tx ... aa tn Vx V ^ i "^(x, t).

4.3.2 Theorem (Omitting Types Theorem for if (aa) [BKM, 4.2]). Let x be count-
able and suppose that T is a consistent x-theory o/if(aa) which strongly omits sets
Zn(xM, tw), where n < co. Then T has a model which omits each £„. The converse
also holds if T is complete.

Hint of Proof. Let us merely remark that Lemmas 3.3.4 and 3.3.5 have straight-
forward translations into if(aa), and the case tn = 0 for all n follows just as
Theorem 3.3.6 follows for JS?(Qi). D

4.3.3 Definition. The logic ££<axJ<&'&) is formed from ^f(aa) by allowing the new
rule of forming countably infinite conjunctions, as long as the resulting formula
has only finitely many free variables. The new axioms are the quasi-universal
closures of

(A) A ^ ^ fora11 ^e^;
and the new rules of inference are

r i- s*{(t> - • 0) ail e e e

for any quantifier string S consisting only of quantifiers of the form stat s or 3x.
Here, S* results from S by changing each stat to aa and each 3 to V.

"Countable fragment" is defined as for ^ ( Q J in Definition 3.4.1), as is the
notion of 5£^(aa)-consistency, that is, consistency with respect to proofs consisting
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of if ^(aa)-formulas. If the fragment is admissible, then the following theorem
can be extended to give Barwise completeness and compactness.

4.3.4 Theorem (Completeness and Omitting Types Theorems for ifWlC0(aa),
[BKM, 4.6]). IfTis a consistent theory of a countable fragment if^(aa), then Thas
a model. If in addition T strongly omits sets !„ , where n < co, then T has a model
which omits each Zn.

Proof. We will reduce to finitary logic in a manner analogous to that of Definition
2.1.2, except that we do not need to eliminate the "aa" quantifier, since we already
have a completeness theorem for if(aa). Rather, we will replace each infinitary
conjunction by an atomic formula. Formally, we define a map "prime" (') from
formulas of J^(aa) to J£?(aa)(x), where

T = [vocabulary of J^(aa)] u {R A o(x, t): / \ <*>(*, t) e ^ ( a a ) } .

We set </>' = </> for atomic 0; and we set (0 A xj/)' = $' A \j/\ (~~i(/>)' = ~i</>',
)' = 3x0'; and (aa 5 (/>)' = aa 5 (/>'; and, finally,

where xl.. .xm (resp. t1...tn) enumerates the first-order (resp. second-order) free
variables of <I> in order of subscript. "Prime" almost has an inverse, "minus":
namely, $~ = <f) for atomic 4> e J£?^(aa), and "minus" commutes with the finitary
connectives and quantifiers; and

where <X>, x x... xm, t j . . . tn are as above. It is clear that ((/>') ~ = (j) for all 0 e
Let T = {</>': T h- 0and 0 E JS? (̂aa)} u {S*[(0(x, t ) " ) ' ~ c/>(x, t)] : 0 e -S?(aa)(t),

iS* consists of quantifiers aa t, Vx}. D

Claim 1. For every </> e ^(aa, T \- § iff T \- (j)'. The forward implication is
clear. For the converse direction, we verify that if p is a proof from axioms of T in
j£?(aa)(t) and p~ results from p by replacing each formula \jj in p by ^", then p"
is a proof in J2^(aa) from axioms of T. We omit the details of the argument. So if
T V- 0', then T \- (<£')". That is, T h- 0.

Claim 2. / / T strongly omits Z, f/ien T' strongly omits E' = {tx': o- e Z}. For suppose
that S3x(j) is consistent with T', for appropriate S. Then 5 3x </>' is consistent
with T, by Claim 1. So for some a e I , S 3x (<fr~ A ~IG) is consistent with T. And,
hence, by using Claim 1 again we have that S 3x ((</>")' A -iaf) is consistent with
T. But since S* Vx [(0 ") ' <-• 0] is an axiom of T, we must have that S 3x (0 A -I C')
is consistent with T, as desired.
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Claim 3. T strongly omits the set I A o = {~i / \ O} u d>,for each f\ O e JS
To see this, suppose that we are given a sentence S 3x ^(x, s, t) which witnesses that
T does not strongly omit I A o . Then, for all $ e <D, T h- S* Vx (^ -> (/>). By the
infinitary rule of inference, we deduce that T \- S* Vx (\// -» j \ O). But also
- i / \ O e I A o . Hence, by choice of S 3x ifr, T \- S* Vx (\j/ -• -i A*)- Xt t h u s

follows that S3x\jj is not consistent with T, which contradicts our choice of this
sentence.

Now by Claim 1, T is consistent, and by Claims 2 and 3, V strongly omits
(!„)' and each ( I /\ o ) ' for A $ e ^*(aa). Let 91 be a model of T which omits each
(!„)' and each (2 A O)'> by Theorem 4.3.2 (the omitting types theorem for if(aa)).
The theorem now follows from the following claim.

Claim 4. For all 0(x, t) e J^(aa), 91 (= aa t Vx [0(x, t) <-> 0'(x, t)]. The proof is by
induction on 0. Although the details are left as an exercise, some hints are put
forward in the following discussion. For the A steP> o n e should at some point
observe: |= A t e /

 a a 10t <-• aa t /\t e 7 0f if / is countable; and

since 91 omits (L /\ o ) ' . For the " aa" step, aa s </>(x, t, s), one uses |= aa t aa s Vx
aa t Vx aa 5 \j/9 where \j/ is the formula 0(x, t, s) <-> 0'(x, t, s), together with

1= aa s [0 <-> 0'] -^ [aa s 0 <-> aa s (/>']. D

4.4. Other Filters

The completeness and compactness theorems of if (aa) were extended by Kauf-
mann [1981] to logics ^^(aa , M). The quantifier M ( = "most") is interpreted
using a filter 3F on co1 which contains every cub subset of col. That is, for \A | = OJ1

and any filtration <^a: a < a^) of A, 91 N M s <̂ (s) iff {a < cox: 91 \= (J)(AJ)} e &.
Thus, for example, M is really just aa if 3F is just J^cub = {X ^ col: X ^ Y iov
some cub Y}. Some of these results are summarized in:

4.4.1 Theorem Suppose that $F is a countably complete filter on co^ Then <£ ̂ (aa, M)
is countably compact and recursively enumerable for consequence. Moreover, for
countably complete 3F and ^, J^ (aa , M) and J£? (̂aa, M) have the same valid
sentences iff either

({)& = & = J^cub; or
(ii) ^ =£ J^cub, <§ ± ^cuh, but ^ and <8 are both closed under diagonal inter-

sections'^ or
(iii) no diagonal intersection from 3F is empty, and the same holds for &, but

3F and <& are not closed under diagonal intersections; or
(iv) neither 2F nor <3 belongs to the classes described in (i), (ii), or (iii) above. U
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Other filters !F give compact logics. As an example, countable compactness
holds for any regular ultrafilter 2F on a>1 such that 2F 2 #"cub (see Kaufmann [1981,
3.14]). We know of no filter & 2 i^cub, in fact, for which j£?^(aa, M) is not count-
ably compact. What about filters & ^ jrcub? I n [BKM, 7.1], we find the "eventual
filter" ^ e v = {X c / ^ ( o ^ ) : for some s0, we have 5 e X for all 5 2 5 0 ( s c c^)}.
By [BKM, 7.2] the corresponding logic jSf ̂ (M) is not countably compact. How-
ever, if j f is the filter generated by all collections of the form {s - F: s e X, F is
finite, F ^ cOi}, then the resulting logic J^(M)is countably compact and axiomat-
izable even though ^^(aa , M) is not (see Kaufmann [1981b, Example C, p. 189]).

5. Extensions oft^
?(Q1) by Quantifiers

Asserting the Existence of Certain
Uncountable Sets

5.1. Preliminaries

In Section 4 we considered an extension ^f(aa) of J?(6i) in which one could
quantify over countable sets. A simple piece of if(aa), J5?pos, was presented in which
we can assert 3s</>(s) when s occurs only positively in 0. A related logic is
"negative logic" if neg, which is defined below. Now JSf neg is not countably compact
(Theorem 5.1.2), which is perhaps surprising, since it looks like a rather small
extension of the logic i f < w of Magidor-Malitz [1977a]3, which is countably
compact assuming <> (Corollary 5.2.6). That done, we will examine some related
quantifiers of Malitz-Rubin [1980] and of Shelah [1978d].

5.1.1 Definition. The logic J5fneg is formed from the atomic formulas by closing
under —i, v , 3x, and a second-order quantifier 3X: if X is a unary relation symbol
which occurs only negatively in 0, where 0 e J£?neg, then 3X0 e J^neg. Hence, we
allow \/X(j) when X occurs only positively in (j) and </> e if neg. The interpretation of
3X is given by: A t= 3X0 iff (A, X) N= 0 for some uncountable X ^ A. Notice that
J^neg contains <£(Q^), since gx0(x) •-> 3X Vx(X(x)

5.1.2 Theorem (Stavi and Malitz, Independently). The class

is RPC in JSfneg. Hence, ifneg is nor countably compact.

Proof. Let 0 be the conjunction of the following: a sufficiently large finite amount
of set theory (for the argument below); Vx((7(x)^xea;1); and the sentence i//,

3 Henceforth we will write [M2] for Magidor-Malitz [1977].
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where \\i says that U is corlike in the real world and that every uncountable subset
of U (in the real world) contains a subset internal to the model. Formally, \jj is

Qx{x e coj) A Va G cox —i Qx(x e a)

A VX[X c W l - > 3y(\y\ = co1 A y c X)].

Now if (i4, E)\= (p and some reasonable set theory holds in (A, £), then
(arf, ^ rw?) is well-ordered. For, in {A, E) we let X be any strictly increasing
coj -sequence that is cofinal in cof. If y c Jf, then y is also well-ordered. Now,
choose y G X, witnessing \jj. Then the transitive collapse of y in 91, which must be
co1 in 91, is well-ordered. D

Suppose that there is an "almost disjoint" family of K2 subsets of co1?

that is, every pair has countable intersection; this, of course, is the case if CH holds.
Then the argument above shows that although <j> has an uncountable model, the
argument above shows that (/> has no model of power at most Kx. Hence, the follow-
ing logic is properly contained in if ncg, as the reader can easily verify by using the
exercise which immediately precedes Proposition 1.3.1.

5.1.3 Definition ([M2]). The logic S£<(O = ^(Q, Q2, Q\...,Q\...) is obtained
by closing the atomic formulas under ~i, v, 3x, and the quantifiers Q": If 0 is a
formula of if <(a so is Qnx1x2 . . . *„</>. The semantics are defined with the new rule:
911= Qnx1... xn(f)(x) iff for some uncountable X c A, 91 \= (j)(a1 ...an) for all
distinct al9...,aneX; that is, "there is an uncountable homogeneous set for <£".
This is really a definition of if(Q1? Q\,..., Q",...). A compactness theorem for the
^-interpretation is proved in Shelah [1981a] for a = A+, assuming Oa and OA?
see Section V.8. See also Remark 4.2.7 and VII. 1, 2, and 5 for "applied" results on
the S£{Q§. Notice that if i < j then Ql is definable in terms of Q\ that is:

Let if(<2") denote the restriction of if<co to the quantifiers Q, g 2 , . . . , Qn.

Recall that in if(aa) we may axiomatize the class of models 91 = (A, E) such
that E is an equivalence relation on A with only countably many equivalence
classes. This is also possible in &(Q2) using the sentence ~iQ2xy -\E(x, y). Hence,
if(<22) is also a proper extension of J?(Q). In fact, Garavaglia [1978b] has shown
in ZFC that if(Q")-equivalence does not imply if(Q"+^-equivalence, and it is
shown in Rubin-Shelah [1983] that {91: 911= i Qn+ 'x,... xn+ yRix, ...xH+1)} is
not the class of reducts of models of a countable if(Q")-theory, assuming O^-
However, while satisfiability is absolute in if (aa) (by the completeness theorem),
this is not the case for if(<22):

5.1.4 Example ([M2]). A Suslin-like tree is an cortree (T, <, <) (also see Section
V.3.3) such that:

(i) there is no branch; that is, —\Q2xy(x < y v y < x), and
(ii) there is no uncountable antichain; that is, —\Q2xy(~^x < y A ~iy < X).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.008
https://www.cambridge.org/core


5. Extensions of <£(£>,) by Quantifiers 155

It is easy to see that there exists a Suslin-like tree iff there exists a Suslin tree.
However, the latter is independent of ZFC. Therefore, satisfiability of <S?(Q2)
sentences is not absolute for models of ZFC. D

5.2. The Magidor-Malitz Completeness Theorem

The next goal is to prove completeness for &(Q2). The same idea works for if <co,
although the notation there is more involved. That being so, we will only indicate
how the argument for ^(Q2) extends to if (g3) (in Section 5.2.5), rather than to all
of if<(0. Sections 5.2.1 through 5.2.6 are adapted from [M2].

5.2.1 Axioms of J?(Q2)- An acceptable vocabulary x is a vocabulary which con-
tains a (|z| + l)-ary predicate symbol P^>JC>yfZ for all formulas 0 which do not
contain constants, and for all distinct x, y9 z. We will feel free to write P^ for
P<t>,x,y,z> when the variables are understood. The axioms for if(<22) include the
universal closures of [0]-[6] below. Notice that [0]-[4] are exactly the $£(Q)
schemas (see Definition 3.1.1). Fix an acceptable vocabulary.

[0] All first-order axiom schemas.

[1] —\Qx(x = y v x = z).

[2] Vx[# - tfr] - (Qx<t> -> Qx*).

[3] Qx<j){x) <-> Qy<t>{y\ where cj)(x) is a formula in which y does not occur.

[4] Qy 3x0 -> ixQycj) v Qx

[5] "Witnessing schema": this axiom schema says that Pe,Xl,x2, z(x> a ) Pro~
vides a witness to Q2x1x29(x1, x2, a):

[Q2x1x20(x1, x2, y) -> QxPe,XuX2,y(x9 y)]

A [QxPo9X1,X2,j(x, y) -> Vxx Vx2[P0,Xl,X2>y(x1, y)

A po,xux2.y(x2> y) A *i * X2 -* 0(^i» ^2? y)]].

And, finally, there is the following schema, a schema that is both diflBcult to describe
and hard to look at (hence the name "Medusan"). For now, think of it as saying
that \jj produces a homogeneous set for 0. What this actually means will become
clearer in the proof of soundness which follows. Moreover, the origin of these
axioms will be explained in the proof of completeness.

[6] "Medusan axioms": Let Qy be a quexistential_string, that is, a string
of quantifiers of the form Qyt or 3yt. Also let Q*y be the result of re-
placing each Qyt and 3yt by Q*yt and Vy,, respectively. Then

Qy 3x<Kx, y) A Q*y Vx[>(x, y) -> Q V v*'(*K*', y')

-> x' 7̂  x A 0(x', x) A 0(x, x'))] -• Q2x1x2O(xu x2)

is an axiom, whenever all variables in the list x, y, x', y' are distinct.
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156 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

The rule of inference is modus ponens, and, as usual, we can check that universal
generalization is a derived rule.

Clearly every t-structure may be expanded to a a-structure for some acceptable
a 3 i so that schema [5] holds, where we may assume that no Pe is in T. Hence,
soundness follows from

5.2.2 Proposition. The "Medusan axioms" [6] are valid.

Proof. Suppose Qy is quexistential and

(1) « l

(2) 91

where rj(x) is Q*y' Vx'[<K*', y') -• 0(x, x') A 0(X\ X) A X ^ x']. We will construct
a homogeneous set {xa: a < a^} for 0 by induction on a with inductive hypotheses
(a) 91 \= n(xfi\ (b) 911= 6(xp, xy) A 0(xy, x,) A x ^ xy, all y < j? < a. To define
x0, notice that (1) and (2), together with an appropriate intersection principle
(Lemma 3.1.5), combine to yield 91 N 3y 3x[(^(x, y) -> rj(x)) A ^(X, y)]. It follows
then that 911= 3xrj(x); choose x0 such that 91 N rj(x0).

Now, suppose that we have xp for all ft < a, where the inductive hypotheses
hold for all j8 < a. Then (a) implies that 91 N ly(x )̂ for all j8 < a; that is, for all
P < a, we have

(3) 91 N 2 ^ Vx[>(x, y) » 0(x, x^) A flCx^, x) A x # x j .

(1) through (3) yield, by "intersecting",

91 N 3y 3x[iA(x, y) A [ > ( X , y) -* ^/(x)]

A / \ [^(X, y) -• 0(X, X^) A 6(xfi9 X) A X # X^]].
j3<a

This implies that

(4) 91 *= 3x(i/(x) A A Wfe *„) A 0(x ,̂ x) A x / x j) .

Pick any witness to (4) and call it xa. Then the inductive hypotheses are preserved.
Inductive hypothesis (b) guarantees that {xa:a<co1} is an uncountable

homogeneous set for 6. D

As for HfiQt) and if(aa), it is convenient to observe:

5.2.3 Lemma. i?(22) is a reasonable extension of JSf(Q) (see Definition 3.3.2) i/we
are restricted to acceptable vocabularies (defined in Section 5.2.1). D

Example 5.1.4 shows that the set of valid sentences of ^(Q2) is not absolute.
Therefore, we will need an added set-theoretic hypothesis in order to prove that
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5. Extensions of S£{Qx) by Quantifiers 157

the axioms, already proved sound in Proposition 5.2.2, are also complete. The
following well-known principal of Jensen is a consequence of V = L.

O: There is a sequence <Sa: a < cox> with Sa £ a for all a < col9 such
that for a l l l c a ) 1 ; { a : l n a = Sa} is stationary.

We will call such a sequence a ^sequence.

5.2.4 Theorem (Completeness Theorem for JS?(Q2)). Assume O. Let x be a countable
acceptable vocabulary {see Section 5.2.1) and suppose that T is an <&(Q2)(x)-
consistent set of x-sentences of^(Q2). Then T has a model.

To prepare for the proof of this theorem, we will give a fairly detailed outline
in the following discussion. We will build an co1 -chain of weak models, much as we
did for JSP(Q). The "witnessing schema" [5] will guarantee that sentences
Qx1x26(x1, x2) which hold in some 91* will also hold in 91. The key problem is to
guarantee that when some 91* satisfies -i Q2x1x2 6, then this also holds in 91. So, we
must in a sense "kill off" all potential uncountable homogeneous sets for such 6.
The following diagram summarizes the plan of the proof, as explained further
below. Notice the similarity to Jensen's construction of a Suslin tree from <>• An
arrow indicates that the lower box is intended to make the upper box true.

Goal: To "kill" all potential uncountable homogeneous sets for 0.

T

Keep each Sx from growing into an uncountable homogeneous set
forfl.

t

Suffices to omit (in 91) a type S£a(x) which says that Sa u {x} is a
homogeneous set for 9.

Instead, it suffices to omit a slightly bigger type Se>a(x) (as we will
see).

T

It suffices that 91* strongly omit Zflffl[(x) for all y > a.

T

Suffices that 91* strongly omit Z0> a, which follows from the Medusan
Axioms.
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158 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

As before, the interesting stages of the construction are the successor stages.
Suppose we already have 91* and want to get 91*+ x. We form essentially the same
theory T0(9lf) as in the proof of the Main Lemma 3.2.1, for appropriate <j>. The
consistency criterion still holds. Keeping countable sets from expanding can be
accomplished just as before, by omitting certain types. It makes sense that we also
omit types to keep homogeneous sets countable, as follows.

Suppose that a set Sp is a homogeneous set for a formula 6{xu x2\ where
91* |= -iQxlx29(x1, x2). Here, Sp is the /?th member of a fixed O-sequence. How
can we keep Sp from expanding to an uncountable homogeneous set for 61 We
would like to omit the type

2°,/>(*) = {x^a A 0(x,a):aeSp},

where, for the sake of simplicity, we will suppose that 8 is symmetric; that is,
\=0(xl9 x2) <-• 9(x2,x1). As before, it will suffice that 21* strongly omit I$tfi. In this
way, we can keep strongly omitting this type at later stages.

How can it be that 21* does not strongly omit Zjf/?? That means that there is
some \j/(x, y) for which (1) and (2) below hold in 21*:

(1)

(2) g*7 Vx(iKx, y) -> (x # a A 0(x, a)) for all aeS^.

However, this is not enough. A bigger type than E$5 p might be easier to strongly
omit—that is, failure to strongly omit a bigger type might have stronger con-
sequences. Regard (2) as a formula r\{a)—then ^(a) holds for all a e S^. If we had
chosen l^p so that it included j/(x), we would then have 91* satisfying

But, "(1) A (3) -> QXiX20" is an instance of the Medusan Axioms (6). Hence
91* \= Qxix26, a contradiction.

So 91* does strongly omit any type containing E° p which also contains every
formula rj(x) having the property possessed by our "jy" above, that is 9t* N= r\(a)
for all a e Sp. So set

I M = 1,1 fi u {<5(x): for all a e S^, 2I | N <5(a)}.

As previously mentioned, we can continue strongly omitting this type in models
21* for y > p. Hence, as in the previous proof for <£{Q\ 21* omits Z0 fi9 where
9** = U«<co 91*-

Suppose that 9l*01= ~iQ2x1x26; we want to show that 911= ~\Q2x1x2d. To
this purpose, we will suppose not, and choose S c A so that 91 N 0(a, b) for all
distinct a,bsS.<> will give us a > a0 for which (91*, Sa) -< (91*, S). We may check
that every aeS - Aa realizes Z 0 a in 91*. On the other hand, since 9I*0 -<

w2l*,
91* 1= ~i22x1x20, which implies (by construction) that 91* omits £# a!
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5. Extensions of &(QX) by Quantifiers 159

Proof of Theorem 5.2.4. Partition (DX = \J {X^: </> is a formula of if(Q2) with
parameters in o^}. For all a < cou choose </>a so that a eX^a. Fix a O-sequence
<Sa: a < cox >. We build a chain <9l*: a < col > of countable weak models satisfying
the following inductive hypotheses on a:

(a) 91* N 7\
(b) If a = /? + 1, then 91* is a precise extension of 91* relative to <^.
(c) If a is a limit, then 91* = (J,,<« 91*.
(d) Aa = oj • (1 + a)
(e) For each (5 < a and formula 6(xl,x2) with parameters in ^ if S3 is a

homogeneous set for 6 in 31* (that is, Vxxx2 6^ ,91* 1= #(x1? x2) v xx = x2),
and 91* N ~iQx1x20, then 91* strongly omits

ZM(X) = {X / a A 0(X, a) A 6(a, x): a e 5,}

9IJ is constructed by applying the weak completeness theorem (2.2.3). For
limit a, it's easy to see that, by setting 91* = {Jp<a 91*, we preserve the inductive
hypotheses.

For the successor step a = /? + 1, we want to use the Main Lemma 3.3.5 from
the proof of the omitting types theorem for jSf(Q). Hence, it suffices to see that 91*
strongly omits all of the sets given in inductive hypothesis (e) for a. For d < /?,
91* strongly omits Z0 ^(x) whenever Sd is a homogeneous set for 6 in 91^, by the
inductive hypothesis. So we are left with the problem of showing that for any
formula 0(x1? x2) with parameters in Afi, ifSp is a homogeneous set for 6 in 91* and
91* 1= -\Q2xlx26(xl, x2), then 91* strongly omits I M (x ) .

To obtain a contradiction, we suppose not. Then, for some formula ij/(x, y)
with parameters in 91* and some quexistential Qy, Qy 3xi// witnesses this supposi-
tion. Hence, we have

(1) 9I*

(2) 91* N= G*y Vx[^f(x, y) -> x # a A 0(X, a) A 0(fl, x)] for each aeSp.

By (2), the formula rj(x) e Se>j8(x), where

(3) ^(x) = Wy' VxT^x', y') -> x' # x A 0(x', x) A 6(X, X')].

So, by choice of Qy 3x r̂, we have

(4) 9 I | f 3 ;

By the Medusan axiom schema [6], together with (1), (3), and (4) above, 91* |=
Q2x1x2 6. This contradicts our assumption and the successor step is thus complete.
Hence, the induction is also complete.

Set 91* = (Ja<Wl 91*. Since 91*. 1= T, the proof will be finished once the follow-
ing claim has been established.
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160 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

Claim. For every a < cou sequence a of members of Aa, and formula cj)(y) of

9l*l=<Ka) iff 8l|=<Ka).

The proof is by induction on the number of Q2 quantifiers occurring in (/>, and
within a fixed such number, by induction on the complexity of <j>. All of the inductive
steps except Q2 work just as in the proof of the union of chain Lemma 3.2.2. Let
us therefore focus on the Q2 step.

Using the witnessing schema [5], the direction (=>) is easy. For the converse, we
suppose that 9t \= Q2x1x26(xux2,a); say S c A, S uncountable and for all
Xy> x2 eS9xx # x2 implies that 911= 0(xl9 x2, a). Let Cx and C2 be the following
cub subsets of co1:

Ci = {a < a>1: co • (1 + a) = a} = {a < co1: ^4a = a};

C2 = {a < co,: (91*, S n AJ< (91*, S)}.

Also, define a set

E = {a < col: S n a = Sa};

then £ is stationary by choice of {Sa: a < co,}. Choose 5eClc\C2r\E such that
a6^5

<co and pick beS - Ad.

Proo/. Choose cr e 2e(Jcl>JC2>a). If o- is x / c A 0(X, C, a) A 0(C, X, a) for some csSd,
then c e 5. So this follows from the choice of S, since 91* 1= 0(6, c, a) iff, by the
inductive hypothesis, 911= 0(6, c, a), which is true for all distinct b,ceS. Otherwise,
a is rj(x) for some rj holding in 91* of every element of Sd. But Sd = S n 3 = S n Ad,
since deE n Cv Thus, since 5 e C2, and since ^ = S n A5 implies that 91* N
Vx(x G 5 -• ry(x)), we have 91* 1= Vx(x G S -> f/(x)). Therefore, 91* 1= iy(6). D

Subclaim 2. 9l5* N Qx1x20(x1, x2).

Proo/ Suppose not. By inductive hypothesis (e), that would imply that 9I | strongly
omits ^e(xux2,n),d f°r aU P > S. But then 91* strongly omits and hence omits
0̂(jci,x2,a),<5> contradicting subclaim 1.

Now (91*:/? < co,) is an <w-elementary chain, by construction. Thus, by
subclaim 2, 91* |= Q2x1x2 0(xl9 x2). D

5.2.5 The Case J^(g3). The goal here is to lift the preceding results to J^(g3), so
that one can believe in a corresponding set of results for if<<a without going
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5. Extensions of ^ ( g j ) by Quantifiers 161

through all the ghastly notation which might otherwise be required. For
we need extra witnessing axioms of the form

1, x2, x3, y) -• QzPe(z, y)] A

Vy[QzPe(z, y) - ^xlX2x3(P^xl9 y)

A Pd(x2, y) A Pe(x3,y) A xx # x2 A xx ^ x3

A x2 # x3 -* 0(xl9 x2, x3, y))].

Furthermore, we need extra Medusan axioms, and these are described below.
To prove the completeness theorem, we proceed as in the situation for J£(Q2).

As before, we want to omit a type Z0jflt, whenever 91* 1= -)Q3x1x2x30(x1, x2, x3).
By analogy, we have

u {rj(x): for all but at most one a e Sa, 91* N= ^(a)};

here #'(*i> x2, x3) is / \ {0(xfl, xi2,xi3): i a permutation}. If 91* does not strongly
omit E0 a, then for some Qy lx\j/ where Q^ is quexistential, 91* [= Qy 3xij/ and
5T* |= g*y Vx(^(x,y) -• x ^ a A X # fe A 0'(^«^)) for all distinct a, ft eSa . Thus,
we may write 91* 1= ̂ (a , ft), where

Vi(x, ft) = (Fy1 VxH^Cx1, y1) ^ x1 # x A x1 # ft A 0'Cx1, x, ft)).

Accordingly, [x # ft A f/1(x, ft)] e SOfa for all beSa; then

(1) 9 I*N2*yVxOKx,y)^x#f t Aih(x,6)), all fteSa.

Now set

rj2(x) = g*72 Vx2(iA(x2, y2) -> x2 # x A ^ ( X 2 , X)).

Then (1) says that 91* 1= f/2(ft) for all fteSa. Thus, ry2(x)eS0fa. Again, using
our choice of Qy 3X\/J,

This yields 91* 1= 23x1x2x30(x1, x2, x3)—a contradiction—z/ we make the fol-
lowing an axiom:

[Qy 3xij/ A Q*y\/x(il/(x, y) -> IJ2(X))] -> g3x1x2x30(x1, x2, x3),

where ^2 is as defined above.
As before, at stages ft > a we can strongly omit I0,a(x), if 91* 1= -ig3x1x2x30.

And, as before, this does the job.
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162 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

Are the new axioms valid? Suppose that 91 is a model of the hypotheses of a
new Medusan axiom. Define {xa:oi<co1} subject to the following inductive
hypotheses on a. For all <x1 < a2 < a3 < a:

(i) 911= rj2(xj.
(ii) 9lt=ih(xa2,xa3).

(iii) W\

Details are straightforward extensions of those given in Theorem 5.2.2 for

5.2.6 Corollary ([M2]). Assume <>• Then £?<(O is countably compact and recursively
enumerable for consequence.

Proof for ^(Q2). This result follows from the completeness theorem, since every
countable vacabulary x can be expanded to an acceptable x' which is still countable
and is recursive in t. D

There is no known explicit set of axioms for if (Q2), that is, axioms which do
not require x to be acceptable, even assuming O. Shelah has recently shown that
in a certain sense, no finite set of schema axiomatizes the set of validities of if(Q2);
see Shelah-Steinhorn [1982].

The following theorem bears on the sensitivity of if <w to the axioms in the
metatheory. We are indebted to Ken Kunen for supplying the following theorem
and proofs. In this connection we note that it would also be interesting to find a
complete set of axioms under MA + —i CH.

5.2.7 Theorem (Kunen). (i) One cannot prove in ZFC + SH (Suslirfs hypothesis)
that adding "SH" to the axioms for if(Q2) (in Section 5.2.1) results in a complete
axiomatization for i?(Q2).

(ii) One cannot prove in ZFC + —i SH that the usual axioms of !£(Q2) (see
Section 5.2.1) are complete.

Proof (i) Otherwise, satisfiability for if(Q2)-sentences is absolute for models of
ZFC + SH. However, in if(Q2) one can assert that a partial order is c.c.c. On
the one hand, Con(ZFC + SH + CH) by Jensen, and CH -• 3P (P is c.c.c and
P x Pis not c.c.c), by Laver and Galvin. While on the other hand, MA + ~i CH ->
SH and MA + ~iCH -> VP (P is c.c.c. -• P x P is c.c.c).

(ii) In Kunen-Van Douwen [1982] we find that by iterating c.c.c forcing, we
may obtain the consistency of ZFC + ~i CH + ~i SH +

(*) Whenever Aa c Q for a < co1 satisfy Va < ft < co1 (Afi - Aa is
bounded Av4a — A$ is unbounded), there is an X cz co1 such that
1*1 = 0! and V<z9PeX(<x.<p^Afi<f: AJ.

Observe that here, 5 ^ Q is bounded iff 3q(S <z (—oo, q)). However, there is a
sentence <j> of ^(Q2) which has a model iff ~i(*). <j> is consistent with the usual
axioms because CH => ~i(*). D
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It is shown in [M2] that the axioms for if <(O remain complete in some model
of -i O, namely when one adds K2 Cohen reals to a model of O. Nevertheless,
Shelah has recently found a model of set theory in which J?(Q2) is not countably
compact.

5.5. Other Related Logics

An extension of 5£<l° has been proved to be countably compact (assuming O) in
Malitz-Rubin [1980]. In this logic, for example, we can say that {<*, y>: </>(x, y)}
contains an equivalence relation with uncountably many uncountable equivalence
classes as follows, where X2 ranges over uncountable sets of uncountable sets.

(3X2)(\/X\ E X2)(\/X\ e X2)(VXl E Z})(Vx2 E X[)(Vx3 e X\)

[</>(x1? X2) A -K/>Oi, X 3 ) ] .

Here, it is understood that distinct variables are intended to represent distinct
things. More generally, we allow "descending quantifier strings", which begin
with (3Xn) (some n) and contain various QJX^EXI*1) for i < n, such that each
such Xl

k
+i is either Xn or else appears in an earlier quantifier (VX£+1 EX\ + 2).

Here, X? = x7- ranges over K°(A) = A, and X)+ * ranges over

{Z c K\A)\ \Z\ > OJ,} = Kn+1(A).

Perhaps a simpler logic, which is equivalent—at least if one has a pairing function—
allows quantifiers (3X")(Vxs: SET) 0 « X S : S E T » , where T is any finite subtree of
of (ordered by inclusion). This quantifier is interpreted as follows: Xn is a tree
of height n having uncountably many elements of level 0 as well as uncountably
many immediate successors of each element of level <{n — 1); and xs is to be
< xt whenever s < t, with xs ranging over elements of level \s\ — 1.

Another version of this quantifier is defined in Rubin-Shelah [1983]. More-
over, it is there proved that one has a strict hierarchy of these quantifiers.

The following definition gives a simplified version of the quantifier "there is a
branch" from Shelah [1978d], the general version being found in Section V.8 of the
present volume. Shelah's quantifier is, in fact, fully compact, whereas the following
version is not (and this for the same reason that if(Qi) is not). It is also interesting
to note that this logic is a countably compact piece of if (Q2) for which O is not
needed, since satisfiability is absolute. Intuitively, it seems then that one has the
equation

if ("there is a branch") Aronszajn tree
~~ Suslin tree

And, of course, O (or something at least) is needed to construct a Suslin tree, but
not to construct an Aronszajn tree.
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5.3.1 Definition. &(QB) is the logic formed from <£{QX) by adding an additional
quantifier QB: if (/>(*, y) is a formula of Se(Qtt) then so is QBxy(p. Write rj™ for
{a: 911= n(a)}. Then the new inductive clause for satisfaction is

911= QBxy </>(x, y) iff (field^91), 0®> is a tree satisfying
Vy—i<2xc/>(x, y), such that there is an
uncountable branch through this tree.

5.3.2 Theorem (Shelah [1978d]). ££{QB) is countably compact and recursively
enumerable for consequence.

Proof. An approximate idea of the proof is to place &(QB) inside A(j£?(g)) (de-
fined in Section II.7.2), more or less, in a generic extension of universe. We then
may use the absoluteness of !£(©-satisfiability. Fix a vocabulary x. We define
maps (j) h-> cj)3 and (j) H-> </>V from jSf (QB)(x) to if(gXx'), where x' = x u S for some
set 5 of new relation symbols (these relation symbols will be determined below).
The approximate idea here is that if the world were perfect, then <\> would be
equivalent to 3X(/>3 and to VY0v, where X and Y are the new relation symbols in
4>3 and $v, respectively.

(j)3 and c/>v are defined by induction on the following depth r((/>) of the quanti-
fiers QB and Q in (/>: r((/>) = 0 for </> atomic, r(~\ij/) = r(Vx^) = r{\jj\ r((j) v i//) =
max(r((/>), r(i/0), KQx^) = r(0) + 1 and r(QBxy(j)) = r((/>) + 2. Set (j)3 = ^ = <\>
for 0 atomic. Now, suppose that <p3 and (/)v are defined for r((/>) < n. We then
define </>3 and 0V for r(0) = n by induction on 0. If 0 is —i xj/, then cj)3 is ~i (i//v) and
(/>v is -i (^3). Suppose that $ is 0 v ij/. Then, of course, 03 is 63 v ^3. To define c/>v,
where (/> is 6 v i/f, we first make the new relation symbols of 0V disjoint from
those of i/fv, say by suffixing a "0" on those of 9y and a " 1" on those of i/̂ v. Call
these modified formulas 6' and \j/'9 and set (0 v i^)v = 0' v ^'. The next case is
cf) = Vxi/f. Then </>v is Vx^v. For (/>3, we first consider the choice schema

Vx 37i/(x, 7,. . .) - 37' Vx>7(x, (7%, . . . ) ,

where n(x, (Y')x, ...) denotes the result of replacing each occurrence of the form
Y(y) by an occurrence of Y'(x, y) in n. Then <j>3 = \/x\j/\{Xl)x,..., (xn)x\ where
X1,..., Xn are the new relation symbols occurring in if/3. (Observe that this idea
appears in the proof of Theorem II.7.2.4(a).) The next step in our development is to
define (QxO)3 as QxX(x) A [VX(X(X) -• 0)]3 by using the rules above. Similarly,
we have that (Qx0)v is [Q*xX{x) -> [3x(X(x) A 6)f~] A QX(X = x).

Finally, we wish to define n3 and rj*, when rj is 8fixy(/>(x, y). n3 is easy to define,
since it simply is ["X is an uncountable branch of the tree <field((/>), 0>" A
Vy -i Qx(f)(x, y)~] 3. In order to define *7V, we imagine that if a given ranked tree
does not have a branch, then there is an order-preserving map from that tree into
the rationals. Thus, T/V is the following formula, where R and S are binary relation
symbols not in x which do not occur in n: ~i ["R is an order-preserving function
from the tree {<x, y>: 4>(x, y)} to the countable linear order 5" v —i"</>isatree" v
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It is routine to verify by induction on 0 that for all </> e ^(QB\ we have that

(1) t=</>3->0 and N(/>^(/>v.

Now we claim that for any set F of sentences of J?(QB\ if F3 = {03: 0 e F}, then:

(2) F is satisfiable iff F3 is satisfiable.

Since </>3 e i*(Q) for all 0 e ^{QB\ the theorem follows from (2) above. The direc-
tion (<=) follows immediately from (1) above. For the proof of (=>), we suppose
that 9t N F. Let (£/, <) be the disjoint sum of all trees P such that Vyi QxPxy, with
field contained in 91, that do not contain an uncountable branch. Then (U, <)
does not contain an uncountable branch. By Baumgartner-Malitz-Reinhardt
[1970], there is a c.c.c. partial order which generically adds an order-preserving
map from (£/, <) into the rationals. An easy induction shows that the predicate
"911= </>[s]" is absolute for the generic extension, since no new branches are
added. Thus, F remains satisfiable. Moreover, in the generic extension: 3Xc/>3 <-• 0,
0 «-* VY0v are valid in 91 for all <j> e if(QB), as one can again check by induction
on 4>. Hence, we have that F3 is satisfiable in the generic extension. Thus, F3 is
if (g)-consistent in the generic extension, which implies that F3 is if (Q)-consistent
in V, since consistency is finitary. By the completeness theorem for if(<2), F3 is
satisfiable (in V). •

6. Interpolation and Preservation Questions

In this section we will survey some of the results, methods, and questions that are
related to definability properties of if(2i) and (to some extent, at least) its ex-
tensions if(aa) and if<co. In Section 6.4 we will consider such properties for the
"weak models" of Section 2.3.

6.7. Preservation of <£-equivalence Under Products and
Unions Jor <£ = j£?((?a), if(aa), ^<co

The following theorem is proved in Lipner [1970].

6.1.1 Theorem. Suppose that {9l£: i e/} and {95f:ie/} are finite families of T-
structures, where 9It- = #(Qu) 95,/or all i e I. Then f\ {% :iel} = <?{Qoc) f ] {33,-: i e / } .
And if x has no function symbols, then the disjoint unions ( J {91;! z e / } and
( J {95f: i e 1} are also ^(QJ-equivalent. D

One method of proof is the method of back-and-forth systems, also known as
"Ehrenfeucht games": see Section II.4.2. This method has also been used in
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Vinner [1972]. Badger[1977] has also given an appropriate back-and-forth
criterion for <£<a). In that work, we also find—in spite of this criterion—that
if (Q2)-equi valence is not preserved by finite direct products. The reader should
see Definition II.4.2.2 for material on back-and-forth systems in a more general
setting.

By assuming an appropriate combinatorial hypothesis on Na, Lipner has also
proved Theorem 6.1.1 for other powers of/. For Ka = 2°°, this theorem also holds
for any index set / which is not at least as large as some measurable cardinal, and this
even if we only assume % and 33; are ifww-equivalent for all i e I (Flum [1975a,
Theorem 2.10]). Related results on preservation of if (ga)-equivalence by reduced
products, where Ka = 2W can also be found in Flum [1975a].

We will now turn to if (aa). There are several back-and-forth criteria for if (aa)-
equivalence. These results were developed independently by Caicedo [1978],
Makowsky (see Makowsky-Shelah [1981, Section 2]), Kaufmann [1978a], and
Seese and Weese [1982]. Nevertheless, the following example shows that if (aa)-
equivalence is not preserved by disjoint unions. A similar argument can also be
given to show that it is not preserved by finite products.

6.1.2 Example (Shelah). Let S be a stationary subset of cox with stationary com-
plement, and set (A, <) equal to the ordered sum £ {^a: a < coj where Xa = Q
if cteS, otherwise Xa = 1 + Q, and < results from replacing each a by I r

Similarly, let (B, <) be the ordered sum £ {Ya:<x. <w1} where Ya = 1 + Q if
a € S, otherwise Ya = Q. A back-and-forth argument establishes that (A, <) and
(£, <) are J^oow(aa)-equivalent. [Hint: let X'a = (J {Xy: y < a}, and Y'a =
(J {Yy: y < a}. By induction on 0(s, x) show that if a0 < • • • < an_x and jS0 < • • •
</}„_!, where at e S iff Pt^S, and if / is a partial isomorphism from
(91, * ; 0 , . . . , X'^) to (23, y ; 0 , . . . , y;n_ t), then S& N <K*;O, . . . , * ; „ _ , , domain/)
iff 93 1= (t>(Y'ao,..., Y'an_l9 range / ) . ] However, if (A\ <') is a disjoint copy of
(A, <), then (A' u A, < ' u <) and (A' u B, < ' u <) are not if(aa)-equiva-
lent. For, the following sentence 6 holds in the former but not in the latter: 6 =
stat s 3x 3y Vz(s(z) <-• z < ' x v z < y).

To take care of this problem, Kaufmann [1978a] defines and Eklof-Mekler
[1979] further studies the notion of finitely determinate structure. Roughly
speaking, such a structure is one in which we do not have disjoint definable station-
ary sets. In fact, we might say that the aa quantifier is self-dual on such structures.
More precisely, we have

6.1.3 Definition. A structure 91 is finitely determinate if it satisfies all formulas of
the form aa sx... aa sn Vx [stat t 0(x, s, t) -• aa t </>(x, s, t)].

We observe that many familiar structures are finitely determinate, for example,
(R, <) and all modules are proved to be finitely determinate in Eklof-Mekler
[1979].

Using back-and-forth systems for finitely determinate structures (see Kauf-
mann [1978a] or Eklof-Mekler [1979]), we can prove an analogue of Theorem
6.1.1.
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6.1.4 Theorem (Kaufmann [1978a]). Suppose that {9l£: i e / } and { 9 3 t : / e / } are
families of finitely determinate x-structures such that 91, =^(aa) 93;/or all i e /.

(i) / / / is finite then \\ {91;: f e /} am/ f ] {93;: ze/} are & {^-equivalent and
finitely determinate.

(ii) Ifx is relational then the disjoint unions (J {91;: i e /} am/ (J {23;: z e /} are
^ (^-equivalent and finitely determinate. D

6.1.5 Remark. Shelah has recently shown that every countable consistent theory
of J5f(d) has a finitely determinate model; see Mekler-Shelah [198?].

A number of variants of Theorems 6.1.4 and 6.1.1 have been proved. Aside
from some obvious extensions to <£ooa>(6a) a n d to jSf^aa), we may also consider
other operations on structures, such as direct sums (see Eklof-Mekler [1979] or
Kaufmann [1978a, IIL3.11]). Moreover, Seese [1981b] and Mekler [1984] have
used ordered sums to prove theorems such as Seese's theorems that every ordinal
(a, e) is finitely determinate, and that the J*?(aa)-theory of ordinals is decidable;
see also Section VII.4.

62. Preservation of J£(Q ̂ -sentences by Extensions, and
Related Problems

Among the definability problems that might be raised for J2?(2i), one that has
received some attention (see, for example, Bruce [1978a]) is:

6.2.1 Question. Classify those sentences cj> of ^(Qi) such that whenever 911= </>
and 91 c 33, then 95 |= 0. Such 4> are said to be preserved by extensions.

Of course, the Zos-Tarski theorem for first-order logic establishes that the
class of existential sentences is the answer if one restricts to 3?^. The natural
generalization is the class of quasi-existential or "quexistential" sentences:

6.2.2 Definition (Bruce [1978a]). A formula <\> of ^(Q) is quexistential if it is in
prenex form, with only Q and 3 quantifiers.

One may easily verify, as Bruce has noted, that every quexistential sentence
is preserved by extensions. Although Question 6.2.1 remains open, the natural
conjecture was proved false in Baldwin-Miller [1982] if one restricts to the class
of models of a given theory. The general result, given below, is new and due to
Shelah:

6.2.3 Example (Shelah). There is a sentence 0 of J£?(Qi) which is preserved by
extensions but which is not equivalent to a quexistential sentence.
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Proof. Let \jj be the conjunction of:

(a) < is a linear order of the universe such that every proper initial segment
is countable.

(b) <* is a linear order of the universe.
(c) Qx(x = x) -> 3x[{y: y < x} is dense for <*].

Then \jj is preserved by submodels. This is not difficult to see, since every suborder
of a separable linear order is separable. It suffices to show, then, that ~i \j/ ( = </>) is
not equivalent to a quexistential sentence. This, in turn, follows from the existence
of models 91 = (A, <A, <5) and 95 = (£, <B, <%) such that 211= ~i^ and
93 \= \j/9 and for every quexistential sentence 0, if 911= 6 then 93 1= 6. We will
construct models 91 and 93 with the following properties:

(1)A (91, <5) is a non-separable linear order.

(2)A (91, <%) is condense, that is, it satisfies

Vx Vy(x <* y -> Qz(x <* z <* y)).

0)A (% <A) is avlike.

(1)B (93, < | ) is an ^i-dense subset of R of power cox.

(2)B If a <Bb and c <%d then for some e, a <Be <Bb and c <%e <% d;
and there is no <B-least element.

(3)B (93, <B) is coi-like.

Assume for the moment that such models have indeed been constructed.
Then 911= i ^ and 93 N \j/. In fact, {x: x <B b) is <|-dense for all b e B, by (2)B

above. We thus claim that for every quexistential formula 6(x) and finite partial
isomorphism {(ai9 bt}: i e / } , if 911= 0(a) then 93 \= 6(b) also. This is easy to show
by induction on complexity of 6. We use (2)B for the 3 step. As to the Q step, if
ai <Aa2 <*•*• <*<*„-! and 911= QxO(x,a), then for some j < n there exist
uncountably many x such that 91 N= 0(x, a) A fli<*x<*aj+1 (where a0 = - oo
and an = oo). Since almost all these x are <^-greater than every at by (3)^, then
every x with fry < | x <BfrJ+i which is <B-greater than every br will satisfy
0(x, b) in 93, by the inductive hypothesis. By (l)B and (3)B above, we have that
93 \= Qx6(x, b).

It now remains to construct such models 91 and 93. (A, <5) is any condense
cofinal subset of U • co1? of power cov Then <A is any co^like ordering of A. Also
(J5, < | ) is easy to choose so that (1)B holds. The construction of <B so that (2)B

and (3)B hold is left to the reader, with the hint that it proceeds co steps at a time,
and that it suffices to consider rational numbers c and d in (2)B above. D
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An analogous question is raised in Bruce [1978a] for J£?(aa). One might con-
jecture that the sentences preserved by extensions are the "generalized X" sen-
tences, that is, those sentences in prenex form with no universal quantifiers. In
fact such sentences are preserved by extensions (Bruce [1978a, Theorem 3.1]). But
here again equality eludes us. For, Theorem 3.5 of Baldwin-Miller [1982] states
that the class of separable dense linear orders is defined by some sentence </> for
which —\(j> is not equivalent to a generalized Z sentence, and yet Mod((/>) is closed
under substructures.

Of course, there are other preservation questions we might raise, and they are
all open. For example, Bruce has conjectured that by analogy to first-order logic,
a sentence is preserved by unions of co-chains iff it is of the form Qfxx... Qfxn(f)(x\
where each Qf e {V, Q*} and (j) is preserved by extensions. Here again, one direc-
tion is easy. Bruce points out that interpolation properties can be useful in proving
such theorems—see, for example, Section 6.4(1). Thus, let us turn next to the
interpolation problem.

6.3. The Interpolation Problem for Extensions o

Recall that the interpolation property (even A-interpolation) fails for i?(2i); see
Remark 4.1.2 (vi). However, research has been stimulated by questions such as the
following, which was raised by Feferman and others (also see Makowsky-
Shelah-Stavi [1976, §3]).

6.3.1 Question. Is there an extension of JSf(Qi) which is countably compact and
satisfies the interpolation property?

Shelah has recently announced that it is relatively consistent with ZFC that
the answer here should be affirmative, and he has also recently shown [1982a] that
every valid implication in ^crco (see Section II.2.4) has an interpolant in ^f(aa). A
topological result of Caicedo [1981b, 1.3] is that interpolation holds for the restric-
tion of if(Qi) to monadic vocabularies. Since space is limited here, we will not
prove any of the (admittedly limited) number of positive results. Instead, we will
indicate some obstacles to the interpolation property by way of presenting a few
examples. This will also provide us with a rationale for becoming more familiar
with the expressive powers of the logics we have been discussing.

6.3.2 Lemma (Badger [1977]; see also Ebbinghaus [1975b]). Let K be a cardinal
and suppose that 91 and 95 are linear orders which are K-dense, that is, they satisfy
Vx \/y[x < y -> QKz(x < z < y)]. Then 91 and 23 are j£?'^-equivalent in the K-
interpretation.

Proof. A routine induction on formulas 0 of JSf̂ S shows that for every partial
isomorphism/from 91 to 95,91 \=K c/>[s] iff 95 ]=K 0 [ / ° s] for every assignment s of
the free variables of (/> into domain(/). The key observation here is that if — oo =
a0 < ax < • • • < ak = oo and 91 I=K Q"x0 • • • *„_ X0(x, a), then for some i < k,
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21 f=* Qn*(f\j<n ai < xj < Ui+i A 0(x, a)); and, hence, for all one-one x in A,
21 NK (Aj<n at < xj < ai+1 -* ^(x> a))- We argue similarly for 93. D

6.3.3 Theorem (Based on Makowsky-Shelah-Stavi [1976, Theorem 2.15]).
y^Z does not allow ^-interpolation for

Proof. Let jf* be the class of separable condense linear orders without endpoints.
Clearly, Jf is H{(J£(Q)). Also the complement of Jf is immediately seen to be
Sj(JSP(<2)), once we observe that a dense linear order L is non-separable iff L x L
has an uncountable family of pairwise disjoint open rectangles not meeting the
diagonal (Kurepa [1952]). Certainly, if L is separable, then so is L x L; and, for
the converse, notice that for every maximal family of pairwise disjoint rectangles
not meeting the diagonal {(at, b,) x (ci9 dt): i e / } , {at: i e /} is dense.

However, Jf is not elementary in JSf^J. For 91 = (R, <) is separable, while
93 = (R • col9 <) is not separable, yet 91 and 93 are if ^-equivalent by Lemma
6.3.2. D

Badger [1977] has shown that JS?££ does not allow A-interpolation for J*f(g2),
in every cardinal interpretation. In Badger [1980] one finds that the Beth property
fails for i f j ^ , *n every cardinal interpretation K with K regular. This partially
generalizes a theorem (and its proof) of H. Friedman [1973], that the Beth property
fails for every ^^JiQo). In particular we can prove:

6.3.4 Corollary (Badger [1980]). There is an implicitly definable relation of £f(Q)
which is not explicitly definable in 5£^Z (in the co ̂ interpretation).

Hint of proof We may combine the proofs of Corollary 6.3.4 and of Theorem
XVIII.4.3, which then say that under suitable conditions the Beth property implies
interpolation. Roughly speaking, we may show by induction on formulas that
for any two tree structures as in the proof of Theorem XVIII.4.3, every map
which is a partial isomorphism from a subtree onto a subtree (and appropriately
respects the tree order) actually does preserve if ^-formulas. D

Following is a natural example which shows that the A-interpolation property
does not imply the interpolation property. The original version appears in Theorem
II.7.2.6 and is due to H. Friedman. Although that result involves infinitary logic,
the following one, in fact, is based on it.

6.3.5 Theorem. A(JSf <(O) does not allow interpolation (or the Robinson property) for

Proof If K = co or K = a> x then the class of linear orders of cofinality K is a PC
class of if (g), as we simply assert that X is a cofinal subset which is countable (if
K = co) or is c^!-like (if K = co^). Since these classes are disjoint, it suffices to find
two linear orders which are A(JS?< w)-equivalent, and whose cofinalities are co and
(ov Choose a structure 91 = (Ra, co2, e), where (Ra,e) satisfies the same !„-
sentences with parameters in (Ra, e) as does (V, e), by the reflection theorem; n
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should be sufficiently large so that the definitions of satisfaction for A(JS? <ca), and
of co2 should be, say, ZB_1 0 (to be safe). Thus, let us say that co2 = PA. Choose
93! -< 91 and 952 -< 91 such that col -\- 1 ^ B1 n B2, (P®1, E) has cofinality co, and
(P®2, E) has cofinality ©!. That done, our proof will be complete once we have
proved that for all formulas <f) of A(if < £ 0):

(*) Let £ -< 91, where o)t + 1 c C. Then, for all a in PG and all Xl9...,

(PG, E, Xx n C, . . . , Xn n C) |= (/>(a) iff (co2, e, X 1 ? . . . , Xn) |= 0(a).

To prove (*) it suffices (see the proof of the result in Theorem II.7.2.4(i)) to show
that for all I formulas 6 of J^<co, if Xe C (X <= co^) and (co2,e,X) N 0(a)
then (PG, G, X n C) 1= 0(a). Thus, suppose that (co2, E, X) \= 3 Y<A(a, y), where
i//e^<(O. Then, by choice of 91, 911= 37"(P, e, X, 7) I- ^(a, 7)". Since £ < 91
we have 911= "(P, E, X, 7) |= ^(a, 7)" for some YeC; and then again, by choice
of 91, it follows that (co2»e, X, 7) \= î (a, 7). Hence, it suffices to prove (*) for
all cj)eJ£<fO. However, this is merely a straightforward induction on 0 and is
therefore left to the reader. D

For if<co, we have just presented counterexamples to interpolation involving
separability of linear orders and countable versus uncountable cofinality, notions
which are elementary in if(aa). However, the notion of whether an a^-like tree
has a branch is elementary in if <(D but not in if(aa). This was observed by Shelah,
and the relevant details are supplied in Makowsky-Shelah [1981]. In this con-
nection, the reader should also see Ebbinghaus [1975b] for a related theorem.
For an extension see also Example XVII.2.4.5 and Proposition XVII.2.4.6.

6.3.6 Theorem. J£?(aa) does not allow interpolation for J£f(Q). In fact, under MA +
~iCH, if(aa) does not allow /^-interpolation for

Hint of Proof We find two ranked trees of height to± (or o^-like) which are if(aa)-
equivalent, but such that one has a branch and the other does not. More precisely,
we find 5£(aa)-equivalent structures in the following disjoint PC classes of if (Q):
the class of corlike ranked trees satisfying 3X ("X is an uncountable linearly
ordered subset"); and the class of models of 3/("/is an order-preserving map into
a countable linear order"). According to a theorem of Baumgartner-Malitz-
Reinhardt [1970, Theorem 4], under MA + ~iCH, these classes are comple-
mentary in the class of co^like ranked trees. D

Shelah [1982a] has announced the relative consistency of A-interpolation of
if(aa) for j£f(Q). We should also note that by a theorem of Caicedo [1981b, 4.1],
Theorem 6.3.6 implies that if ooW(aa) does not allow interpolation for &(Q).

Question 6.3.1 might be asked for the Robinson property rather than for the
interpolation property. As to that case, Mundici [1981c] used uncountable vocabu-
laries to supply a negative answer. See also Section XVIII.4.1 for a generalization.
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6.4. Interpolation and Preservation Revisited:
Monotone Structures

Consider the logic of monotone structures (91, q) as defined in Section 2.3; that
logic has nice properties, including not only compactness and axiomatizability
(see Section 2.3), but also interpolation. Interpolation was first proved inde-
pendently by Shelah (see Bruce [1978a; 3.1, 3.2]), Sgro, and Makowsky-Tulipani
[1977, Corollary 3.1]. The reader should also see Chapter XV for related theorems
about topological logics. A particularly straightforward way of obtaining com-
pleteness and interpolation theorems, even for countable fragments of f̂Wl£0, is
to use consistency properties: see Section VIII.3. We add the following clause: if
Qxcj) and Q*x\l/ are in s where s belongs to a consistency property S, then for some
c, s u {</>(c), *Kc)} e S. The details involved in this development are straight-
forward for the reader who is familiar with consistency properties.

Some Directions Radiating from the Study of the Logic of
Monotone Structures

(1) Guichard [1980] has used consistency properties to generalize Feferman's
many-sorted interpolation theorem [1974a] and its application to preservation
theorems, so as to obtain a preservation theorem for bounded quantifiers Qyx ("for
many x e y"), such as are studied in Barwise [1978b].

(2) Interpolation and countable compactness theorems can be proved for
the logics if ^(Q\ whose structures are of the form (A,...; q^)9 where q^
= { I C Q ) : C O - X ^ ^ } , with $F being any given filter on a> which properly
contains the cofinite filter; see Kaufmann [1984a]. There seems to be a connection
with uniform validity (as discussed in Kueker [1978]) which has not yet been
fully clarified although related work has been undertaken by S. Buechler and
D. Kueker.

(3) Finally, we will mention a paper by Ebbinghaus-Ziegler [1982], a paper in
which the quantifiers Qn (as discussed in Section 5) are studied for monotone
structures (91, q\ especially when q is an ultrafilter on A. It is proved there (Theorem
1.1) that the following are equivalent, where we write JS?u(Qn) to indicate our
restriction to ultrafilters:

(i) &\Qn) is compact;
(ii) &\QF) satisfies interpolation;

(iii) n = 1.

The emphasis in this chapter has been on logics involving cardinality X^
Although monotone structures may provide some additional understanding of
the area, their application to logics with cardinality (and related) quantifiers seems
to be limited. Methods appropriate to higher cardinals are studied in the next
chapter.

We will conclude this section with a problem: To find an extension of 5£(Qx)
which has a Lindstrom-type characterization (in the sense of Chapter III).
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7. Appendix {An Elaboration of Section 2)

In this section we will present here the precise definitions and the proofs that were
promised in section 2. We will begin by considering

7.7. Concrete Syntax

In the ensuing discussions, we will frequently make use of the notation if =
(JT ii?(t). This clear we now present

7.1.1 Definition. A logic if has concrete syntax if the following properties hold.

(0 ^coM ^ ^CO for all x, and furthermore i f is closed under first-order
operations ~i, v , 3 (and there is unique readability). If x is countable, so is if (t).
V, A , ->, and <-* are defined symbols. Finally, xx c x2 implies that ifO^) £= £>(T2).

We allow the map T I—• if(t) to be a partial map, provided that <£{% u C)
exists whenever i f (t) exists and C is a set of constant symbols.

(ii) There is a map frvar which assigns a finite set of variables to each formula
4> of if. Moreover, for (j> e if wco, frvar(c/)) is the set of free variables of (/>. As usual, a
sentence is a formula (/> such that frvar(0) = 0 . Finally, the map frvar obeys the
obvious rules for —i, v , 3.

(iii) For each formula 0 of if and function/mapping a finite set of variables to
constants, there is a unique formula (/>(/), which has the usual meaning (substitute
f(v) for v) if 0 is atomic. If 0 e if(t), then (/>(/) e if(x u range(/)). Moreover,

(a) (3v$)(f) = <
13v(<t>(f - {<!>,/(!>)>})), if t> e d o m ( / ) .

(b) (10X/) = -I0CA (^ v (AX/) =
(c) ("Restriction rule of substitution")
(d) 0(/)(gf) = 0 ( / u gf), i f /u gf is a function.
(e) 0(0) = 0
(iv) There is a notion I- ^(T) of if(x)-proof satisfying the following properties:

(a) An if(x)-proof is a finite sequence of if (x)-formulas. We write F f- ^(T) </>
to indicate that an i f (x)-proof from F c ^£(%) exists. That is to say, each
formula in the proof is either a member of F, or an axiom of i f (x) (where
the axioms include those given below), or else follows from previous
formulas in the proof by modus ponens. We also require that whenever
T H^(TU{C}) 0({<x, c>}) where F u {0} c ^{x\ then F \-^x) Vx0. That is,
universal generalization is a derived (and not an explicit) rule.

(b) Every tautology in i£(x) is an axiom of !£(x\ as is every if(x)-formula
Vx —i (j) <r+ ~i 3x(f).

(c) Every if(x)-formula i3y(/>(f) -• " i 0 ( / u {<^,c>}) is an axiom of if(x),
when y ̂  dom(/).
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(d) Every equality axiom of first-order logic which belongs to if (x), is an
axiom of if (x). And, for all 0 e if (x), and / and g such that / and g map
variables to constants in x, where dom(/) = dom(#), we have h-^(T) </>(/) A
Axsdom(f) fto = g(x) -+ 4>{g).

(e) If F u {(/>} ci ^£{i) and t ' = t u C for some set C of constants, then
r i-^(T) </> iff r

The final condition for a concrete syntax is:

(v) There is a "rank function" r from if into the ordinals such that r(</>) is
less than each of r(3xcj)\ r((j) v \j/), r(—i (/>).

7.1.2 Remark. For the purposes of Section 2.3, we note that we may speak of a
"concrete syntax" even if we omit all of the semantics of a logic. Since all of the
results below rely only on the first-order semantics of weak models anyhow, they
also make sense and remain true when the semantics is removed.

7.1.3 Proof of Soundness (Proposition 2.2.1). Assume that h-^(TUc)<K/X where
range(/) n frvar((/>) = 0 . Using the derived rule of universal generalization, we
have h-^(TuC) V*! . . . Vxn0, where dom(/) = (x l 9 . . . , xn). Then h-^(T) Vxt • • •
Vxw$, by Definition 7.1.1 (iv) (e). Thus, we have reduced to the case /= 0 . But
this is a trivial induction on the length of the proof, since modus ponens is the only
rule of inference and every axiom is valid in 91*. D

7.2. Proofs of the Weak Completeness Theorem and
Its Extensions

7.2.1 Proof of Theorem 2.2.3 (Weak Completeness Theorem). The argument here
is a straightforward Henkin argument. However, it should be observed that we do
not attempt to control what sentences hold in 91* other than, of course, those of the
form 0*. Since x is countable, so is if(x) by Definition 7.1.l(i). Now, let C be a
countable set of constant symbols disjoint from x, and let {<</>„,/„>: fl < co}
enumerate all <</>,/> such that cj) is an if(x)-formula and / : frvar(0) -> C. By
proceeding in the usual way, we may form finite theories Tn of ^£(x u C) such that
T u Tn is ^(x u C)-consistent, such that for all n:

(i) « / f l ) G r B + 1 o r
(ii) if <!>„ is 3 # and <£„(/„)e Tn then ^ ( / u {<>>,c>})eTn+1 for some c e C

Let T^ = [Jnea)Tn. Observe that Tw is deductively closed. Form the Henkin
model from equivalence classes from C ([c] = [d] iff "c = d " e Tw). For atomic

>, define

(*) 91* *= (/>[/] iff (/>(/) eT w , whenever / : frvar((/>) -> C,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.008
https://www.cambridge.org/core
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where f(x) = [/(x)]. For J^f(t)-formulas (/> which are neither atomic, nor a
negation, nor a disjunction, nor of the form 3x^, define

where

dom(/) = {vio,..., t;fn_J = frvar(0)

and

This is well defined by the equality axioms for j£f, and we see that (*) holds
for all such 0 also. As usual (using the rank function r((/>) so that we can carry
out the induction), (*) holds for formulas ii// and <Ai v i/̂ 2. The latter uses
the "restriction rule of substitution," which is given in Definition 7.1.1(iii)(c)
and which we henceforth use implicitly. Finally, for the 3 step, suppose that 91* N
3y^[ / ] , where dom(/) = frvar(3yi/4 so y$dom(f). Choose ceC such that
9t* |= ^ [ / u {<y, [c]>}]. By the inductive hypothesis (since r{\j/) < r(3yi//)\
*K/U {(y>c)})€ T^. Hence, (3yijj)(f)e Tm. For otherwise, we would have that
—\3y\l/(f)e Ta, so that by an axiom and modus ponens, -ii//(fu {<j, c>})e Tm,
contradicting consistency of some Tn. For the other direction of (*), suppose that
(3yij/)(f) e 7 ,̂, where/: frvar(</>) -• C. Then for some n, we have that <(3yi/0,/> =
<0n, fn} holds. Thus, by construction, there exists ceC such that xl/(f u {(y, c>})
6 Tn+1. By the inductive hypothesis, 91* 1= ̂ ( / u {<y, [c]>}). So, 91* 1= 3>^[/ ] .

By construction, T ^ T^ and every ^(x) axiom belongs to Tw. By (*) it now
follows that 91* is a weak model of T. D

7.2.2 Proof of Weak Omitting Types Theorem (2.2.5). The proof of the weak
completeness theorem given above will suffice here provided we mix in some
additional steps as follows. We enumerate (in type co) all pairs <S,/> such that
E = £„ for some n < co and/maps xn to C. At stage (n + 1) we guarantee that
91* (= - | <j[/] for some o e I . By (*) in the proof of Theorem 2.2.3, it suffices that
-|<r(/)e Tn+1 for some ere I . But this can be easily achieved by using the local
omitting hypothesis, since Tn is consistent with T. D

The following technical lemma is used in Sections 3, 4, and 5, to extend weak
models. It is the precise version of Lemma 2.2.6.

7.2.3 Lemma (Extension Lemma). Assume the following hypotheses, where $£ has
concrete syntax.

(i) T, T', and D are disjoint countable vocabularies.
(ii) 91* is a countable weak model for J^(T), and D 3 DA = {da: a e A}.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.008
https://www.cambridge.org/core


176 IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives

(iii) T is an if(x u %' u D)-consistent set of if(x u t ' u D)-sentences\ and in
addition, T = {<£(/): <</>,/> e F} for some F such that for all <0,/> e F,
(j) e if (T U X') and range f ^ D.

(iv) For all assignments s in A, set s = {<x, ds(x)}: x e dom s};

(v) T JS?(T u x' U D)-locally omits sets !„(/„) = M/M): a e S J /or a// n < co,
w/iere EM has free variables xn and yn (disjoint) andfn: yn-+ DA. Observe that
yn may be infinite.

Then there exists a countable weak model 93* for JSf(x u T') such that
91* -<W93* [x+, and moreover there exists a function g:D-+B such that
g(da) = afor all as A and 93*N</>[0°/] for all <0 , />Gr . Finally, 95* N
VxM v {-I<T: a e £„} [gf o/J for all n < co.

Proof The proofs of the weak completeness and weak omitting types theorems
show that if we add a countable set C of new constant symbols, we may obtain an
if (t u T' U D U C)-theory T^ with the following properties.

(1) T <= Tm.

(2) For all </> e if (x u x') and all maps / : frvar(<£) - > D u C , <f>(f) e Tw iff

(3) For all 3x0 e <£ (x u x') and / : frvar(3x0) -^DuC, if
then (/>(/u {<x, c>}) £ Tw for some ceC.

(4) For all/: x ^ D u C , ia(fn u / ) e Tw for some a e ZM.

Form the Henkin model S* from D u C. As in the proof of Theorem 2.2.3, (2) and
(3) together imply that

iff

for all if (T U i')-formulas 0 and functions / : frvar(0) -> C u D, where /(x) =
[/(x)]. In particular, since T £ Tw by (1) above, 95* N (/>[/] for all <(/>,/> e F,
by (iii). Now, if 91* \= 0[s], then <0,5> e F so 95* 1= 0[S]. Hence, by identifying
Ida] and a for all aeA,we obtain s = s and conclude that 91* ^ 95* f x+. Finally,
if we set g(c) = [c] for all c e D, then, by using (4) to see that each £„ is appropriately
omitted, we obtain the desired conclusions. D
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Chapter V

Transfer Theorems and
Their Applications to Logics

by J. H. SCHMERL

This chapter is primarily concerned with the general problem of transferring
results about one logic, say <^{Qi\ to another logic, say J?(Qa). A typical such
property is N0-compactness. It is known from Chapter IV that <£(gx) is Ko-
compact. Under certain set-theoretic assumptions on a discussed in this chapter, the
logic £?(Qi) transfers to if(<2a)- In such cases we can then conclude that if((2a)
is also K0-compact. The logics that we consider in this chapter are variants and
generalizations of if (<2i)> and the properties of these logics which we are most
concerned with are compactness and recursive enumerability for validity.

1. The Notions of Transfer and Reduction

After presenting the basic definitions that allow useful model-theoretic comparisons
between logics, we present applications to compactness and recursive enumerability
of logics and to two-cardinal questions.

1.1. Transfer

The substantive theme of this chapter is the notion of transfer and we will begin
our explorations with

1.1.1 Definition. Suppose jSf 0 and i ? \ are two logics which have exactly the same
syntax but differ in their semantics. Then if 0 transfers to if x iff every sentence
which is satisfiable relative to <£0 is also satisfiable relative to ££ v In symbols, we
write J£?o -• J2\.

Transfer becomes quite fruitful when there is mutual transfer, when both
if o -• S£ i and <^>

1-^ ^0 hold. For, in this situation if 0 and 5£\ have exactly the
same valid sentences, so that a syntactic property known to hold for J£o will also
hold for if 2. For example, if <£0 has the Beth property, then so does if ^ In this
chapter we will generally be concerned with two properties which are especially
amenable to verification using the methods of transfer. These properties are
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178 V. Transfer Theorems and Their Applications to Logics

compactness and, to a lesser degree, recursive enumerability for validity. To be sure,
if there is mutual transfer <£0 -> 5£ x and ̂ £ 1 -+ J5f0

 a n d if either one of these logics
is compact or recursively enumerable for validity, then so is the other. However, it
often turns out that the proof of a specific transfer theorem yields a sort of self-
transfer theorem of the form <£ -> if. And while the transfer if -> if is evidently
trivial, one nevertheless often obtains a stronger form having as a consequence
the compactness and the recursive enumerability for validity of if This is the
approach that Fuhrken and Vaught used in the original proofs of the compactness
and the recursive enumerability for validity of S^{QX).

To see how compactness typically obtains, we need a strengthening of the
notion of transfer. For K an infinite cardinal, we say that if 0 -• if\ ^-compactly iff
whenever a set of at most K sentences is finitely satisfiable relative to S£§, then it is
satisfiable relative to <ev Fuhrken and Vaught observed that ^(Qa+1) -> if(2i)
X0-compactly. In particular, if(Qi) -* if (61) K0-compactly, which is just another
way of saying that ^{Qx) is X0-compact.

For the sake of completeness, we will mention a further generalization of
transfer at this point. For each j e J, let if} be a logic with the same syntax as 5£.
Then {gf.jeJ} -> & iff each sentence which is satisfiable relative to each 5£)
is also satisfiable relative to S£. Similarly, {if'j: j eJ} -> !£ fc-compactly iff when-
ever a set of at most K sentences is finitely satisfiable relative to each ifj9 then it
is satisfiable relative to !£.

1.2. Reduction

Although it was noted at the outset of this Section that the notation of transfer
provides the substantive theme of the present chapter, there is, nevertheless, a
methodological theme appearing in this chapter: Reduction. This notion of reduc-
tion is of considerable importance in our exposition and the basic idea underlying it
is to associate (usually effectively) with each sentence in some logic 5£ a correspond-
ing first-order sentence, and then reduce the study of the model theory of ̂ £ to the
study of those models of some first-order theory satisfying some additional
property.

Much of what we do in this chapter will concern the logic if (<2) with various
cardinality interpretations, which have already been discussed in Sections II.2.2 and
III.2.4, and (for K = K^, in Section IV.3. For any infinite cardinal K, if we are
defining the ^-interpretation of ££{(£), then the key clause in the definition is that

S l N G * # 0 iff \{aeA:SH\= 0(fl)}| > K.

We will also adhere to the convention that if 91 is a structure appropriate for J?(Q)
with the ^-interpretation, then \A\ > K; that is, Qx(x = x) is a valid sentence. If
K = Ka, then &*(QJ simply denotes J£(Q) with the ^-interpretation.

Fuhrken [1964] introduced the reduction of these logics to cardinal-like
structures. We will consider the Fuhrken reduction in some detail, since it is quite
typical of other reductions. Finally, typical applications will be given in Section 1.3.
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1. The Notions of Transfer and Reduction 179

1.2.1 Definition. A linearly ordered set (A, <) is K-like iff (A, <) N Vx —i Qy(y < x)
under the /c-interpretation. A structure 91 = (A, < , . . . ) is K-like iff (A, <) is K-like.
91 is cardinal-like iff it is jc-like for some K. We let K(K) denote the class of K-like
structures.

Examples of /c-like linearly ordered sets are well-ordered sets with order type K.
If K is uncountable, then there are linearly ordered sets which are /c-like but not
well-ordered. On the other hand, (co, <) is (up to order-isomorphism) the only
No-like linearly ordered set.

To begin the Fuhrken reduction, let us fix a vocabulary x which includes neither
the binary relation symbol < nor the ternary relation symbol R. Consider the
first-order sentence a which is the conjunction of the universal closures of the
following three formulas:

R(xu y, z) A R(x2, y, z) -> xx = x2,

R(x, yu z) A R(x, y29z) -• yx = y2,

x2 < xi A R(xu yl9 z) -+ 3y2R(x2, y2, z).

The intention here is that o should express the fact that as z varies, R encodes a set
of bijections x\-+y whose domains are (possibly improper) initial segments.

With each if(Q)(r)-formula <j> we will associate a first-order (T U {R, <})-
formula <j>* having the same free variables as <j> by the following inductive procedure:

0* = 0, if (/> is atomic,

= 0* A

= 3z Vx 3y(R(x, y, z) A 0*).

We will also associate with each J^(Q)(i)-formula 0 a first-order T U {.R, <}-
sentence o^ by the following inductive procedure:

o^ = 0", if 0 is atomic,

(J(f>lA(f>2
 =

= <fy A Vx 3z Vy[0*(x, y) <r+ 3x£(x, y, z)]
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180 V. Transfer Theorems and Their Applications to Logics

The following two lemmas give the essential properties of the Fuhrken reduc-
tion.

1.2.2 Lemma.//(9l, #, <)isaK-like(z u {#, <})-structureand<i)(x)isan&(Q)(x)-
formula, then

(91, R, <) N a, ~ Vx(<Kx) ~ </>*(*))

in the K-interpretation. D

1.2.3 Lemma. J/91 is a x-structure with \ z \ < K = | A \, then 91 can be expanded to a
K-like structure (91, R, <) such that for every ̂ {Q){x)-formula 0,(91, #, <) 1= (fy. D

The proof of Lemma 1.2.2 can be obtained by a rather routine induction on
formulas. In Lemma 1.2.3, the expansion of 91 is done in the following manner.
First, let < be any well-ordering of A which has order type K, and let d^ be the £-th
element of A in this well-ordering. By the cardinality conditions imposed
on o and A, there are exactly K subsets of A which are 5£(0-definable. Let these be
{Df ^ < K}, and for each ^ < K let ff D% -* A be a one-one function onto an
initial segment of A (which may, of course, be all of A). Now let R ^ A3 be such that
R(a, b, c) holds iff there is £ < K such that c = d^beD^ and a = f^b). It is now
clear that (91, R, <) is a /c-like model of a. The problem of showing that (91, R, <)\=
o^ involves merely another rather routine induction on formulas.

13. Applications of Reduction

In this subsection we will describe some applications of the specific reduction that
was discussed in Subsection 1.2. We begin with the definition of transfer for
cardinal-like models which is in complete analogy with the definitions of transfer
given in Subsection 1.1.

1.3.1 Definition. Let A, fi and /c,-, for; e J, be infinite cardinals. Then {K/J eJ}-*X
fi-compactly iff every set of at most \i first-order sentences, each finite subset of
which has a Ky-like model for each j e J, has a A-like model.

We remark that by comparison with the corresponding definitions of transfer
given in Subsection 1.1, the meaning of each of K -* A, K -• X /z-compactly, and
{Kj'.j E J} -» X is obvious.

1.3.2 Proposition. The following two statements are equivalent:

(1) {X(Qaj):jeJ} - n<2J n-compactly;
(2) {Ka.:jeJ} -• Na \i-compactly.

Proof We will first show that (1) implies (2). Actually, this is the trivial direction.
Let V be a set of at most \i first-order sentences each finite subset of which has an
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1. The Notions of Transfer and Reduction 181

Naj-like model, for each; e J. Consider the set T u {Vx ~iQy(y < x)} u {"< is a
linear order"}, and apply (1) to it.

We will now show that (2) implies (1). Clearly, if (2) holds, then we can assume
fi < Xa. Let 7" be a set of at most fi L(g)-sentences each finite subset of which has a
model in each of the ^-interpretations. By Lemma 1.2.3, for each finite T'Q c T
and each; e J, we have that T'o u {G^ : (/> e T'o) has an Kaj-like model; and by Lemma
1.2.2, thismodelisalsoamodel of {(/>*: (j>e 7^}. By (2), we thus have that {(/>*: 0 e T}
u {G^: <j)€ T'} has an Xa-like model which, by Lemma 1.2.2, is also a model of

r. D

The preceding proposition and its proof remain valid even when both references
to the phrase "ju-compactly" are deleted.

1.3.3 Definition. Let K be a class of structures and \i an infinite cardinal. Then K
is fi-compact iff any set of not more than JJ, first-order sentences which is finitely
satisfiable in K is also satisfiable in K. Moreover, K is recursively enumerable for
validity iff for any recursive vocabulary T the set of all first-order sentences valid in
every T-structure in K is recursively enumerable.

1.3.4 Corollary. The following are equivalent:

(1) ^(QJ is fi-compact;
(2) X(Ka) is fi-compact.

Proof The proof for this result follows immediately from Proposition 1.3.2 upon
noting the following obvious equivalences: <£(QJ is /i-compact iff <£f(QJ
ju-compactly; K(Ka) is ^-compact iff Na -• Ka /i-compactly. D

It should be recognized that the Fuhrken reduction given in Subsection 1.2 is
effective. That is to say, if T is a recursive vocabulary, then both the functions
(j) i—• 0* and G\-^G(f) are recursive. This yields the following equivalence involving
the recursive enumerability for validity of J?(Q) under the cardinal interpretations.

1.3.5 Corollary. The following are equivalent:

(1) i?(6a) is recursively enumerable for validity;
(2) X(Ka) is recursively enumerable for validity.

Proof That (1) implies (2) is trivial. For the argument that (2) implies (1), we merely
note that any 5£(g)-sentence 0 has a model in the ^-interpretation just in case
G^ A (/>* has a /c-like model. D

1.4. Two-Cardinal Models

In Subsection 1.2 we saw how to reduce J?(G) to cardinal-like structures. A further
reduction to two-cardinal structures will be described in this subsection. The
symbol U will always denote a unary relation symbol.
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182 V. Transfer Theorems and Their Applications to Logics

1.4.1 Definition. A structure 91 is a (K, A)-structure if \A\ = K and \U\ = A.
Moreover, if K > A, then 91 is a two-cardinal structure, and if K = A+ > Ko, then 91
is a gap-1 two-cardinal structure. We will let K(K, A) denote the class of (K, A)-
structures.

1.4.2 Definition. (KU AX) -• (K2, A2) iff every first-order sentence which has a
(K19 A1)-model also has a (K2, A2)-model.

We will leave the details of the remainder of this subsection as an easy, and yet
instructive, exercise for the reader.

1.4.3 Proposition. There is a first-order sentence a in the vocabulary {<, U9S}9

where S is a ternary relation symbol, such that

(1) if 911= o is K-like, then for some A, K; = A+ and 91 is a (A+, X)-structure;
(2) if 911= a is a two-cardinal (/c, X)-structure, then K = A+ and 91 is K-like;
(3) ifx is a vocabulary not including either < or U or 5, then

(i) any k+-like (T u {< })-structure can be expanded to a model of a, and
(ii) any gap-1 two-cardinal (T U {U})-structure can be expanded to a model

of a. D

Obvious consequences of Proposition 1.4.3 equate transfer for gap-1 two-
cardinal models with the corresponding transfer for successor cardinal-like models.
This immediately yields that for cardinals K and /i, K(K+, K) is /^-compact iff K(K+)
is jU-compact. Similarly, K(K+, K) is recursively enumerable for validity iff K(K+) is
recursively enumerable for validity.

2. The Classical Transfer Theorems

This section contains what might be referred to as the classical transfer theorems.
Included under this rubric is the earliest of the two-cardinal theorems—the
fundamental one of Vaught. Also included are those results which are directly
inspired by Vaught's result, namely the transfer theorems of Keisler, Chang,
Fuhrken and R. B. Jensen. The reduction of the previous section will yield in-
formation about the logics S£(Q) under various cardinality interpretations. Some
applications and counterexamples are also included in this section. We will
conclude this section with a discussion of gap-n and multi-cardinal transfer
theorems.

2.7. The Gap-1 Transfer Theorems

The earliest of the gap-1 transfer theorems is the following one. This result, first
proven by Vaught in Morley-Vaught [1962], has already been discussed in Chapters
II and IV.
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2. The Classical Transfer Theorems 183

2.1.1 Theorem. For any cardinal K > No, (K + , K) -* (K1? Ko) i<0-compactly. U

A consequence of Theorem 2.1.1 is that X(Nl9 Ko) is N0-compact. Moreover,
Vaught's proof of Theorem 2.1.1 shows that K(Hl9 Ko) is recursively enumerable
for validity. Thus, the following corollary of Fuhrken [1964] and Vaught [1964]
follows.

2.1.2 Corollary. i?(2i) is compact and recursively enumerable for validity. U

Keisler's proof of Theorem 2.1.1 in [1966b] also yields Corollary 2.1.2. In fact,
his proof results in an elegant and comprehensible axiomatization for the class

). Corollary 1.4.6 suggests that there should also be an axiomatization for
l5 Ko). Such an axiomatization, although less elegant than that for KQti), was

indeed obtained by Keisler [1966a].
Theorem 2.1.1 is equivalent to K+ -> Kx K0-compactly. Fuhrken [1965]

noticed that the proof of Theorem 2.1.1 can be used to prove the following general-
ization.

2.1.3 Theorem. For any regular K > Ko, K —> Kx K0-compactly. D

Yet another proof of Theorem 2.1.1 was given by Shelah [1978] using the
method of identities. This method will be discussed in the next section.

The problem of the "converse" transfer of Theorem 2.1.1 was attacked by
Chang [1965a] with notable partial success.

2.1.4 Theorem. Assume GCH. For any regular cardinal K, (Kl9 Ko) -• (/c+, K)
K-compactly. D

One of the byproducts of Theorem 2.1.4—or of any other instance of (K1? Ko) -•
(Ka+1? Ka)—is that there is then a completeness theorem for if(Qa+ x) which is, of
course, the same completeness theorem as the one for S£(Q^) that is given in
Section IV.3.

2.1.5 Corollary. Assume GCH. / /Ka is regular, then ^(Qa + 1) is ^a-compact and
recursively enumerable for validity. D

In order to eliminate the requirement that K be regular in the statement of
Theorem 2.1.4, it is natural to replace the use of saturated models by special models.
In fact, R. B. Jensen [1972] did just that, but only with an additional set-theoretic
assumption which is a consequence of V = L.

2.1.6 Theorem. Assume V = L. For any K > Ko, (Nl9 Ko) -> (/c+, K) K-compactly.
D

2.1.7 Corollary. Assume V = L. For any a, £?(Qa+1) is ^-compact and recursively
enumerable for validity. D
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We will end this subsection with an application to combinatorics. Shelah
[1976a] proved the following result.

2.1.8 Theorem. There is a linear order of power Kx whose square can be covered by
countably many chains. D

We present the following simple exercise for the reader. Write down a first-order
sentence a with the property that for any cardinals K > X > Ko, a has a (K, X)-
model iff there is a linear order of power K whose square can be covered by X chains.
This done, the following, for example, becomes an immediate consequence.

2.1.9 Corollary. Assume V = L. For any K, there is a linear order of power K+ whose
square can be covered by K+ chains. D

2.2. Trees: Some Applications

In this subsection an application and a counterexample, both of which are related
to the previous subsection, will be presented. And both require special Aronszajn
trees. Since trees will be useful at later points in this chapter, we will devote the
first few paragraphs of the present discussion to the requisite definitions.

A tree is a partially ordered set (A, <) such that the set of predecessors a of any
element a e A is linearly ordered. Contrary to usual practice in set theory, we do not
require that a tree be well-founded. A well-founded tree (A, <) has associated with
it a rank function rk, where rk(a) is the ordinal of the order type of a. In the non-
well-founded case there are no such intrinsic rank functions. However, we will
overcome this deficiency by introducing ranked trees (A, <, ^ ) , where =̂  is a
quasi-order (that is, it is transitive, reflexive, and connected, although not necessarily
anti-symmetric) on A such that (A, <) is a tree and (A, <, < ) satisfies the following
two sentences :

x =^ y - • 3z(z < y A x ^ z A z ^ x ) .

A well-founded tree (A, <) has a unique expansion to a ranked tree; and the rank
order ^ is defined so that a ^ b iff rk(a) < rk(fr).

In order to make some definitions concerning ranked trees, we let (A, <, =Q be
an arbitrary ranked tree. For a regular cardinal *c, we say that (A, <, = )̂ is a K-tree
\i\A\ = K and, for every a e A. \ {b e A: b =̂  a} | < K. A branch B of (A, <, =Q is a
maximal linearly ordered (by <) subset of A which has elements of arbitrarily high
rank in the sense that for any aeA there is beB such that a < b. (A, <, < ) is an
Aronszajn K-tree if it is a K-tree which has no branches. At the other extreme, a
K-tree (A, <, = )̂ is a Kurepa K-tree if it has at least K+ branches. Suppose, now, that
(A, <, = )̂ is a X+-tree and that there is a function / : A -• X such that whenever
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2. The Classical Transfer Theorems 185

x < y are elements of A, then f(x) # f(y). Then (A, <, =Q is an Aronszajn/I+-tree.
A /I+-tree for which such a function exists is a special Aronszajn >l+-tree.

The proof of the following result is left as an easy exercise for the reader.

2.2.1 Proposition. There is a sentence o of S£(Q) such that for any regular cardinal K
the following are equivalent:

(1) there is a special Aronszajn K-tree;
(2) there is a well-founded special Aronszajn K-tree;
(3) there is a model for a in the K-interpretation. D

The existence of an Aronszajn K-tree was first established by Aronszajn. His
construction actually produced a well-founded special Aronszajn Ki-tree. The
construction is well-known and can be found, for example, in Jech [1978].

2.2.2 Theorem. There exists a special Aronszajn ^^tree.

Later—although still prior to Chang's two-cardinal theorem—Specker [1949]
proved the existence of special Aronszajn jc-trees, for some cardinals K > X^
Assuming GCH, we can arrive at the same conclusion by use of Theorem 2.1.4.

2.2.3 Corollary. (1) Assume GCH. IfK is regular, then there is a special Aronszajn
K+-tree;

(2) Assume V = L. For any K, there is a special Aronszajn K*-tree. D

Special Aronszajn trees can be used to show the failure of two-cardinal transfer,
or—to put it another way—the necessity of GCH in Chang's theorem (2.1.4).
Mitchell [1972] proved the following consistency result concerning the non-
existence of special Aronszajn trees. A different proof using iterated perfect
set forcing, was developed by Baumgartner and Laver [1979].

2.2.4 Theorem. //Con(ZFC + "there is a Mahlo cardinal"), then Con(ZFC +
" there is no special Aronszajn X2-£ree"). D

2.2.5 Corollary. //Con(ZFC + "there is a Mahlo cardinal"), then Con(ZFC +

2 " ) . D

Some further results along these lines, results which use generalizations of
special Aronszajn trees, can be found in Schmerl [1974].

We will conclude this subsection with a result indicating that V = L cannot be
eliminated from the hypothesis of Jensen's theorem (2.1.6) unless there does not
exist a certain kind of very large cardinal. This proof of Ben-David [1978a] and
Shelah also makes use of trees.
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2.2.6 Theorem. //Con(ZFC + GCH + " there is a strongly compact cardinal"),
then Con(ZFC + GCH + " t^ -r> Kw+ D- D

2.3. Gap-2 Transfer

The gap-1 transfer theorems of Section 2.1 suggest the possibility of "gap-2 transfer
theorems", that is, theorems of the sort (K++, K) -• (X++, X). Rather simple
versions need not be true. For example, if the continuum hypothesis fails and yet
2K = K+, then (K2, No) -» (K+ +, K). Even the GCH is not a sufficient hypothesis,
as we shall now see.

From the previous subsection recall the notion of a Kurepa /c-tree. The following
straightforward proposition relates Kurepa trees with gap-2 models.

2.3.1 Proposition. There is a sentence o such that, for any regular cardinal K, the
following are equivalent:

(1) there is a Kurepa K-tree;
(2) there is a well-founded Kurepa K-tree;
(3) there is a (/c+ +, K)-model of G. D

This result can be used to find examples of failure of gap-2 transfer. This is
exactly what was done by Silver [1971b] where the following is proven.

2.3.2 Theorem. //Con(ZFC + "there is an inaccessible cardinal"), then Con(ZFC
+ GCH + "there is a Kurepa N2-£ree but no Kurepa W^-tree"). D

2.3.3 Corollary. //Con(ZFC + "there is an inaccessible cardinal"), then Con(ZFC
"(K3,K1WK2,Kon. D

In Theorem 2.3.2 it would not be sufficient to assume the consistency of just
ZFC, for Solovay has shown that if there are no Kurepa jc-trees, then K+ is in-
accessible in the constructible universe L. A proof of this result can be found in
Devlin [1973a]. In particular, if V = L, then for every regular K there exists a
Kurepa /c-tree. This suggests the truth of the gap-2 transfer theorem assuming that
V = L. Indeed this was proven by R. B. Jensen. A proof of this can also be found in
Devlin [1973a].

2.3.4 Theorem. If V = L, then ( K + + , K) -• (A + + , X) X-compactly, for any infinite
cardinals K and X. D

The proof of Theorem 2.3.4 is quite difficult, using much of the intricate
machinery of the fine structure of L. A simple proof by Burgess [1978a] yields just
the consistency of gap-2 transfer relative to ZFC. A reduction of the type in Section 1
yields that V = L implies, for example, that if (Ql9 Q2) is K0-compact. The proof of
Theorem 2.3.4 also shows that V = L implies that &(QU Q2) is recursively
enumerable for validity.
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2. The Classical Transfer Theorems 187

2.4. Gap-n and Multi-Cardinal Theorems

In order to generalize the gap-2 transfer of the previous subsection to gap-n, it will
be useful to have the iterated successor function. For cardinal A and ordinal a > 0,
let N0(A) = A and Na(A) = sup{(N/A))+: p < a}. A gap-n structure is an (KB(A), A)-
structure, for some A. We will use Ul9 U2, U3,... to denote unary relations.

2.4.1 Definition. A structure 21 is a (fc0, *cl5... , /cw)-structure if \A \ = K0, \ Ut\ = K{

for i = 1,2,... , n and (for the sake of orderliness), K0 > K1 > • • • > Kn.

(KO,K19 . . . ,*„)->(A0, A1?..., AJ

iff every sentence which has a (K0, fcl5. . . , K,,)-model also has a (Ao, Al 9. . . , An)-
model.

There are other notions of transfer for multi-cardinal models which are
analogues of those in Definition 1.3.1.

Every gap-n theorem yields an ostensibly stronger multicardinal theorem. This
is a consequence of the following observation which the reader should be able to
prove.

2.4.2 Proposition. For each 1 < n < w and each first-order sentence a, there is a
sentence a' such that, for each infinite cardinal K, the following are equivalent:

(1) o has an (Kn(/c), K)-model;
(2) & has an («„(*), K-iW, • • •, *+, K)-model. U

The gap-2 theorem (2.3.4) has been extended by Jensen using techniques which
are of such extreme difficulty that to date the proof remains unpublished, although
it has been confirmed by rumor.

2.4.3 Theorem. Assume V = L. For any n < co and any infinite cardinals K and
A, (Kn(K), K) -• (Nn(A), A) X-compactly.

From Proposition 2.2.3 we can quite easily obtain the Ka-compactness of the
logic &(Qa+l, Qa+2,..., Qa+n\ assuming V = L. The proof of Theorem 2.4.3
also shows that V = L implies that i?(Qi, Q2, • • •, Qn) i

s recursively enumerable
for validity.

At this point it is interesting to take note of the Lachlan multi-cardinal theorem
for stable theories. The original proof is in Lachlan [1973] and a later, more simple
proof can be found in Baldwin [1975].

2.4.4 Theorem. Let T be a stable first-order theory which has a (KO,K19 ..., Kn)-
model, where K0 > KX > • • • > Kn. Then T has a (Ao, A 1 ? . . . , X^-model whenever
A o > K > > K-

Some multi-cardinal theorems have applications to the calculations of Hanf
numbers. This will be discussed at the end of Section 3.3.
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188 V. Transfer Theorems and Their Applications to Logics

3. Two-Cardinal Theorems and the
Method of Identities

This section will examine a powerful approach to analyzing two-cardinal transfer
and two-cardinal compactness. These developments will, of course, have important
implications for the logics 5£(Q) and for the various cardinal interpretations via
Proposition 1.3.2.

In its simplest form, this method is the familiar one of employing indiscernibles
as generators in such a way that throughout a very tight control is maintained over
the generated model. For example, subsequent to the original proof of Vaught's
gap-co theorem in Vaught [1965a], a result that is here formulated as Corollary
3.3.7, Keisler and Morley used indiscernibles obtained via the Erdos-Rado theorem
(see Example 3.1.2 below) to give an alternate and more simple proof of that result.
Generators which are only partially indiscernible can be used with nearly the same
resulting tight control. Moreover, there is an added flexibility that guarantees that
the distinguished subset and the model itself have the desired cardinality. It will
be seen that identities are used as a sort of local description of the partition of the
set of all finite subsets of a set.

3.1. Identities

We will begin this subsection with the definition of an identity and some rather
closely related notions.

3.1.1 Definition. An identity I is an equivalence relation on [D]<ca, where D is a
finite set, such that if X, Ye [D]< w and XIY, then \X\ = | Y\. The set D is the
domain of/, and \D\is the length of I.

In general, we will not distinguish between equivalent identities. Two identities
Ix and 12 are equivalent if there is a bijection a: Dl -> D2, where Dx and D2 are
domains of Ix and I2, respectively, such that whenever X, Ye [/)1]<ct), then XI\Y
iff a[X]/2a[Y]. Thus, for example, we will consider there to be only countably
many distinct, that is, inequivalent, identities. An identity Jx is called a subidentity of
12 if there is an injection a: Dx -• D2 from the domain of/x to the domain of I2 such
that whenever X, Ye [D1]<co, then XIXY implies a[X]/2a[Y].

Suppose that / : \_A~\<(O -> B is a partition of [^]<t0, and suppose also that
D e [A\ < (O. Then / induces the identity / with domain D if, whenever X,Ye [D] < ",
then XIY iff both f{X) = /(Y) and | X \ = \ Y |. The set of identities which are sub-
identities of those induced by / is denoted by . / ( / ) . For infinite cardinals K > A,
let J(K, A) be the set of all identities / which are in J'(f) whenever / : [K] <co -> A.

There is an immediate simple observation to be made regarding J(K, A): These
sets are monotone in K and A. Specifically, if/cx > K2 > A2 > Al9 then J(K2, A2) C
J(KU AX). The further apart K and A happen to be the larger will be J{K, A), and the
closer together they are, the smaller will be J(K, A). Thus, J(K, K) is minimal.
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3. Two-Cardinal Theorems and the Method of Identities 189

In fact, for every /c, the set J{K, K) consists merely of the trivial identities. Conversely,
whenever K > k, then J(K, k) contains some nontrivial identity, the simplest one
being the identity / with domain 2 in which {0} and {1} are equivalent.

The previous example will be generalized in Example 3.1.3 by using the iterated
successor function. A more instructive example is one which uses the iterated
exponential function defined in the following manner:

3o(A) = K

where a is any ordinal and /? a limit ordinal. When k — Ko reference to k will be
surpressed, resulting in the standard Ha for 3a(K0). This example indicates how
identities are to be used in place of indiscernibles when complete indiscernibility is
not possible.

3.1.2 Example. If K > H^A), then the partition theorem of Erdos and Rado (see
Chang-Keisler [1977]) implies that J(K, k) is the set of all identities. More
specifically, if K > 3M(/l), then all identities of length at most (n + 2) are in J>(K, k).
Conversely, by the Erdos-Hajnal-Rado [1965] converse to the Erdos-Rado
theorem, if k < K < 1n(k), then there is an identity of length (n + 2) which is not in
J>(K, k). The missing identity is the one in which all sets of the same size are equi-
valent.

Finally, we note that the reader should see Subsection 2.4 for the definition
ofN«(A).

3.1.3 Example. Let /„ be the identity, having domain Dn = {a0, au..., an-x,
b0, bu . . . , fcn-i), which is the equivalence relation that makes X, 76[DJ< c t )

equivalent iff either X = Y or else, for each i < n, \X n {ah bt}\ = \Y n {ah bt} \
< 1. It is left as an interesting exercise to verify that /„ e J(K, k) iff Kw(/l) < K.

Identities have a very close relationship with two-cardinal models. The pro-
position below indicates one direction of this relationship, the other direction being
the deeper connection that is revealed in the next subsection by Theorem 3.2.1.

3.1.4 Proposition. With each identity I one can effectively associate a first-order
sentence ot such that whenever K > k > Ko, then 07 has a (K, k)-model iff I $ J(K, k).

Proof. Suppose that / is an identity of length n. The sentence 07 will be in the
vocabulary i = {U, fl9 f 2 , . . . , /„}, where each ft is an /-ary function symbol, and
it will assert that each/) is a function on the set of subsets of cardinality /, that the
range of each ft is included in U, and that the identity / is not a subidentity of one
which is induced by the function /x u • • • u /„. It thus follows quite immediately
from the definition of J(K, k) that the sentence 07 has the required property. D
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190 V. Transfer Theorems and Their Applications to Logics

For instance, by applying Example 3.1.2 (or, respectively, Example 3.1.3) to the
preceding proposition we obtain, for each n < co, an example of a sentence an which
has a (/c, /l)-model iff X < K < 11n(X) (or, respectively, X < K < Kn(A)).

5.2. The Two-Cardinal Compactness!Transfer Theorem

We now come to the fundamental two-cardinal compactness/transfer theorem, a
result which was first enunciated by Shelah [1971d]. Some of its consequences will
be given in the next subsection.

3.2.1 Theorem (The Two-Cardinal Compactness/Transfer Theorem). Suppose that
K > X and that K} > XJor each) e J. Then each of the following is equivalent to each
of the others:

(1) {(KJ, Xj)\jeJ} -• (K, X) ^-compactly•;
(2) {(Kj, XJ): jeJ}-± (K, X) X-compactly;
(3) There exists a function / : [K] < W -• X such that«/(/) ^ (J {J(KJ9 Xj):j e J}.

Proof The implication (2) implies (1) is trivial. The implication (1) implies (3) is an
easy consequence of Proposition 3.1.4. To see this, we let {/,: i < co} be the set of
those identities not in each J{K^ XJ). Let 07. be the sentence from Proposition 3.1.4,
so that each 07. has a (KJ9 A^-model, for eachjeJ . Then, each finite subset of
{07.: / < co} has a (KJ, Xj)-modd, for each 7 e J. Thus, by (1) above, {07.: / < co}
has a (K, A)-model (A, U, fu / 2 , . . . ) . Assuming that A = K and U = X both hold,
we see that f = {f.; i < co} is the desired function.

The most interesting of the implications, and the one which demonstrates the
real strength of identities, is the remaining one, (3) implies (2). Here, let Tbe a first-
order theory in the vocabulary x such that each finite subtheory To c: T has a
(fCy, A^-model for each j e J. Because of the cardinality restrictions on T, it can be
assumed that |T| < X. The standard technique of adjoining Skolem functions can
be used, so that we may as well assume that T is a Skolem theory. Thus, to every
r-formula cj)(x0, xl9..., *„_ l5 y\ there corresponds an n-ary term / ( x 0 , . . . , xn- x)
in the vocabulary T such that the sentence

is a consequence of T.
The vocabulary x will now be augmented by the adjunction of some constant

symbols. For each £ < X, let b^ be a new individual constant; and, for each a < K,
let ca be a new individual constant, yielding the expanded vocabularies x1 =
x KJ {bf £ < X} and x2 = xx u {ca: a < K}. We will define a theory 7} in the
expanded vocabulary x2 which depends only on the function / : [K] <(O -> X, whose
existence is guaranteed by (3) and which consists of the following sentences:

(i) h *
(ii) U(bz)

(iii) ca ^

bn (£
1 (̂  <
c« (a

< n
:A);
</»

<A);

< K);
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3. Two-Cardinal Theorems and the Method of Identities 191

(iv) £7(/(cao,..., cam_JD -+ J(cao,..., cam.T) = / ( c ^ , . . . , c ^ . J , where / is a
ix-term, a0 < a2 < • • • < oim.1 < K, p0 < Pi < •• • < Pm-i < K> and

The key sentences are, of course, those occurring in (iv) above, and it should be
noted that the terms / appearing there are xt -terms so that they may include some
of the b%.

There are two crucial facts about 7} that together will complete the proof of the
theorem. The first is

Fact 1: Every minimal model of 7} is a (K, A)-model;

and the second is

Fact 2 : T u T / i s consistent.

By Fact 2, the theory T u 7} has a model; and, by Fact 1, the minimal submodel
of this model, which is also a model of T because T is a Skolem theory, is a (K, A)-
model. It now remains to supply the proofs of these facts.

The proof of Fact 1 is very easy. Suppose that 91 = (A, (7,...) is a minimal model
of Tf. Then | A \ > K holds, because of sentences (iii) above, and | A \ = K since 91 is a
minimal model for a vocabulary T2, where |T 2 | < K. Thus, \A\ = K. Also, \U\> X
holds, because of sentences (i) and (ii) above. Finally, to see that \U\ < X holds, we
observe that for each b e 17, there is some n-ary r^term / ( x 0 , . . . , xn_ x) and some
£ < X such that whenever a0 < a1 < • • • < aw_ x < K and / ( {a 0 , . . . , an_ J ) = ^,
then 91 h= / (c a o , . . . , c ^ . J = ft. Therefore, 1171 < A must hold since |TX | < X holds,
thus showing that 91 is a (K, /l)-model.

To demonstrate that Fact 2 holds, that is, that T u 7} is consistent, we will
show that every finite subtheory To ^ T KJ Tf is consistent. Thus, let {a0, a l 5 . . . ,
an_ x} be the finite set consisting of those a for which ca occurs in some sentence in
To, where a0 < ax < • • • < an_ x < /c. Then / induces an identity 7 with domain
{a0, a1 ?. . . , an_i}. Statement (3) of the theorem implies the existence of some
jeJ for which I e . / (K, , A,-). Let 91 be a (KJ, A^-model of To n T; such a model exists
by the assumption on T.

Let £0, £ i , . . . , £s < Aj be such that if b^ occurs in To, then <J is among £0,
^ l 9 . . . , £s. Expand 91 to a structure 9lx = (91, ft4o, b^,..., ft^), where each of the
b%. denote distinct elements of U. By very simple cardinality considerations, there is
a function g: \_A~]<(a -> Xj such that whenever {ao,al9..., an_ J , {af

0,a\,..., â _ J e
[A]", then 0({flo, «! , . . . , «„_ J ) = gf({fl'o, a ; , . . . , a'n-x}) iff

for each i^term t occurring in To.
Recall that IEJ(KJ9 XJ). Hence, there exists D ^ A such that the injection

h: {a0 , . . . , an«!} -* D demonstrates that 7 is a subidentity of the identity with
domain D induced by g. Expand 9lx to the structure 9I2 = (9ll9 c a o , . . . , cOCn_lX
where ca = /z(ai). Then 9I2 is a model of To, thus demonstrating the consistency of
To. D
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3.3. Some Consequences

The two-cardinal compactness/transfer theorem of the previous subsection has
many consequences. This subsection will be devoted to the most interesting and
important of them. One immediate consequence is that in statements (1) through (3)
it always suffices to consider just some countable subset Jo ci J.

3.3.1 Corollary. / / {(KJ9 kj): jeJ}-> (K, A) i<0-compactly, then for some countable
Jo c J, {(KJ9 Xj):jeJ0} -» (K, A) X-compactly.

Proof Consider statement (3) of Theorem 3.2.1. Since J(f) is countable, there is
some countable Jo c J such that J(f) c {S(KJ9 Xj):jeJ0}. D

A function such as the one whose existence is asserted by clause (3) of Theorem
3.2.1 is called a fundamental function for the relation {(KJ, Xj):jeJ} -> (K, A). If
/ : [K] < w -> A is a fundamental function for (K, A) -• (K, A), then we will say simply
that / : [K]<(O -> A is fundamental. Thus, as is very easy to see, / : [tc]<a> -> A is
fundamental iff«/(/) = ./(*, A).

The statement that (K, A) -• (K, A) /^-compactly is evidently equivalent to
K(K, A) being //-compact. Thus, Theorem 3.2.1 yields the following corollary.

3.3.2 Corollary. Ific > A > Ko, then each of the following is equivalent to each of the
others:

(1) K(K, A) is ^0-compact;
(2) K(K, A) is ^-compact',
(3) Tfere is a fundamental function f: [K:]<W -> A. D

The corollary thus characterizes compactness in terms of the purely combina-
torial property of the existence of fundamental functions. In general, the question
of the existence of fundamental functions remains unsolved. However, with some
very mild restrictions imposed upon the cardinals, their existence can be easily
demonstrated.

3.3.3 Lemma. IfK> AKo = A, then there is a fundamentalfunction f: \_K]<CO -• A.

Proof Let {/„: n < co} be the set of identities which are not in J(K, A). We pause at
this point to observe that if this set is finite, or even empty, then things become even
easier than is otherwise the case. For each n, let /„: [K] < w -> A be such that In $ J{Q.
Let g: Aw -> A be a bijection. Define / : [K]<CO -• A such that whenever A e |>]< c o

and n < co, then /(A) = g((fn(A)\ n < co». We immediately see that J(f) =
J(K, A), so that / is fundamental. D

The Shelah-Fuhrken two-cardinal compactness theorem, a result which was
first proven in Fuhrken [1965] with stronger hypotheses using ultraproducts and
which was later improved in Shelah [1971d], is an instantaneous consequence of
Lemma 3.3.3 and Corollary 3.3.2.
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3.3.4 Corollary. If K > ANo = A, then K(K, A) is X-compact. D

3.3.5 Corollary. J/K*° = Ka, then £>(Qa+1) is Ka-compact.

Proof. See Corollaries 1.3.4 and 3.3.4. D

Corollary 3.3.5 will be generalized later in Corollaries 4.2.1 and 5.1.3. There are
instances of compactness of J^(<2a+1) not covered by Corollary 3.3.5, the most
notable being ^(Qx) which is known to be K0-compact (see Chapter IV) even
though KQ° > Ko. In fact, no example is known for even the consistency of the
failure of K0-compactness of any if(ga + 1) . On the other hand, it is unknown
whether it is a theorem of ZFC that <$?(Q2) *

s K0-compact, although it does follow
from ZFC + CH.

The two-cardinal compactness/transfer theorem has two transfer theorems as
rather immediate corollaries. The first is the Chang-Keisler [1962] gap narrowing
theorem, a result that was originally proven using ultrapowers, and the second is
Vaught's gap-co theorem, a result originally proven by Vaught [1965a] using self-
extending models, a concept which will be discussed in Section 6.

3.3.6 Corollary. IfK>jn> AKo, then (K, A) -+ (/c, fi) jd-compactly.

Proof Since (ANo)Ko = AXo, we see from Lemma 3.3.3 that there is a fundamental
function / : [K]<CO -> A*0. Thus, we have that J(f) = J?(K, A*0) <= J(K, X). Since
AXo < [i holds, we can consider / to have range \i, so that / : [K]<(O -> \i is funda-
mental for (K, X) -* (K, JU). D

3.3.7 Theorem. / / K > X > Ko and if Kn > 1n(Xn) for each n < co, then {(KM, Xn)\
n < OJ} -> (K, X) X-compactly.

Proof Because of Example 3.1.3 any / : [K]<CO -> A is fundamental for {(*„, Xn):
n < co} -> (K, X). D

The following corollary can be extracted from the proof of Theorem 3.2.1.

3.3.8 Corollary. IfK{K, X) is W0-compact, then K(K, X) is recursively enumerable for
validity iff J{K, X) is recursively enumerable. D

If K > 2m(X), then J(K, X) is the set of all identities, and is therefore evidently
recursive. This observation yields the following corollary.

3.3.9 Corollary. IfK > ^(A), then K(K, A) is recursively enumerable for validity. U

The following three-cardinal theorem can be proven in a manner quite similar to
the one that was used to prove Theorem 3.3.7.

3.3.10 Theorem. IfK>^^and if Kn > 2n(Xn) and Xn > \in,for each n < co, then
{(*„, Aw, fin): n < co} -• (K, K1? K O ) ^-compactly. D
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194 V. Transfer Theorems and Their Applications to Logics

An immediate consequence of this theorem, a consequence that can be obtained
by setting each Xn = Kx and fin = Xo, is that the Hanf number of <5?(Qi) is D^. All
that was needed concerning J^CQi) was the K0-compactness of J^(Qi). Thus, the
more general result on Hanf numbers hk{^f{Qa)) can be proven by the same
technique.

3.3.11 Theorem. J/JSf(Qfl) is X-compact, then hx(^(Qa)) = ZUNJ. D

Consequently, Proposition II.5.2.4 yields the following characterization.

3.3.12 Corollary. h«0(&(QJ) = 3w(Ka) iff&(Qa) is ^compact D

In particular, Corollary 3.3.5 implies some specific Hanf numbers.

3.3.13 Corollary. //N*> = Ka, then hH£&(Qa+1)) = X(K\

3.4. Employing the Methodology of Identities

The two-cardinal compactness/transfer theorem (3.2.1) suggests a method for
proving specific two-cardinal transfer theorems. Suppose it is desired to prove the
transfer (jq, Ax) -• (K2, A2) K0-compactly. Using the methodology of identities, we
can employ the following three-step strategy:

(A) Define a set Jo of identities.
(B) Show that Jo c J(Kl, Xx).
(C) Show that there is a function / : [/c2]<w -> A2 such that ^ ( / ) c j 0 .

This procedure has been used successfully by Shelah to prove several transfer
theorems which will be discussed in this section. First, we will suggest an alternate
proof of Vaught's theorem (2.1.1) that is due to Shelah [1978e]. In this proof
we will only perform step (A), omitting steps (B) and (C) altogether. Second, we
will discuss Shelah's transfer theorem (Kw, Xo) -• (2No, Xo), which was proven in
Shelah [1977]. We will consider only steps (A) and (C).

Vaught's Theorem. Our first task will be to define a set </Vau of identities. To do this,
a method for building a new identity from an old one will now be described.
Let / be an identity with domain neco, and let E ^ n. The identity J obtained from I
by duplicating E is constructed as follows: The domain of J is (n + m), where m =
\E\. Let a: n + m -> n be the function such that a | n is the identity function on n and
a | {n, n + 1 , . . . , n + m — 1} is an order-preserving bijection onto E. Now J is
defined so that if X, Ye [n + m]<0), then XJY iff either X = Y or each of the
following three conditions is satisfied:

(1) X ^nor XnE = cj);
(2) Y^norYnE = 0;
(3) a[Z]
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3. Two-Cardinal Theorems and the Method of Identities 195

Define f* to be the smallest set of identities containing the identity with domain 1
and such that whenever / e / * has domain n and k < n, then the ordered identity
obtained from / by duplicating {/c, k + 1 , . . . , n - 1} is in </*.

Then ,/Vau can now be defined. It is the smallest set of identities which is closed
under the taking of subidentities and which also contains all identities / which
are in ./*.

3.4.1 Theorem. J(KU Xo) = ^vau •

This approach to Vaught's theorem is interesting since it yields a description of
the set / ( K b Ko). Now Theorem 2.1.2 and Corollary 3.3.8 predict that / ( K b Ko) is
merely recursively enumerable. However, since /(K1 ? Ko) = ^Yau, and this latter
set is evidently recursive, the following corollary results.

3.4.2 Corollary. The set J(Hi9 Ko) is recursive. D

Shelah's Theorem. The three-step strategy is the only known method for
proving the theorem of Shelah [1977] that (Kw, Ko) -• (2Ko, Ko) K0-compactly.
This theorem can be stated in a more general form for which a definition is
required. For an infinite cardinal K let ded*(/c) be the least cardinal X such that
every (well-founded) ranked tree (see Section 2.2) of cardinality K has fewer than A
branches. Note that ded*(K0) = (2*°)+ and that K+ < ded*(/c) < (2K)+. On the
other hand, Mitchell [1972] has shown that ded*(Kx) < 2Kl is relatively consistent
with ZFC.

3.4.3 Theorem. / / ded*(/l) > K > X and if Kn> Kn(Xn) for each n < co, then
{(/<;„, Xn): n < co} -• (K, X) X-compactly.

In order to execute step (A), we will first define a set «/* of identities as the small-
est set of identities containing the identity with domain 1, and such that whenever
/ e / * has domain n and k < n, then the identity obtained from / by duplicating {k}
is in «/*. Then ,/she can now be defined as the smallest set of identities which is
closed under the taking of subidentities and which contains all identities / which are
in./*.

Having completed step (A), we will now proceed to develop a broad hint for
Step (C). Let (A, <) be a well-founded tree which has at least K branches such that
| A | = A. Let B be a set of branches of (A, <) of cardinality exactly K. We will define
a function / with domain [B~\<(O. Suppose that bo,bl9...,btteB are distinct
branches. Then let a be the least ordinal such that the elements a0 G b0, ax e bu . . . ,
anebn each of rank a are pairwise distinct. Finally, set f({bO9bl9...9bn}) =
{ao,a , . . . , an}. It is clear that the range of/ has cardinality at most A. A rather easy
induction on n can be used to demonstrate that»/(/) £= JshQ.

The proof of step (B) can be found in Shelah [1977].

3.4.4 Corollary. Suppose 2No > Nw. Then K(2*°, No) is ̂ -compact and recursively
enumerable for validity. In fact, ./(2No, Ko) is recursive. D
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It seems appropriate at this point to mention a closely related theorem that is
due to Shelah [1975b], a result which is conveniently stated as a three-cardinal
theorem.

3.4.5 Theorem. For each n < co, let Kn, p n , qn be cardinals such that nn < qn
n <

pn < Xo < Kn. Also, let ded*(A) > K > X. Then {(/<„, pn, qn): n < a>} -+ (K, K, X)
X-compactly. D

To prove this theorem, a modification of the aforementioned three-step
procedure is used, steps (A) and (C) being almost exactly the same as in the proof
of Theorem 3.4.3. A proof of a suitable version of step (B) can be given inside of
Peano arithmetic, so the following corollary becomes a consequence of Theorem
3.4.5.

3.4.6 Corollary. Let Jt be a model of Peano arithmetic and I ^ M a proper initial
segment closed under multiplication. Then, whenever ded*(A) > K > X there is a
model (J^, J) = (</#, / ) such that \J\ = X yet every initial segment of Jf properly
containing J has cardinality K. D

For the case in which K = 2*° and X = Ko, this corollary was proven by Paris
and Mills [1979]. Corollary 3.4.6 thus also follows from their result using Theorem
3.4.3 and some absoluteness considerations.

4. Singular Cardinal-like Structures

The topic of this section is the transfer theorem for singular cardinals which was
obtained by Keisler [1968b]. This theorem and its proof have consequences con-
cerning the compactness and recursive enumerability for validity of the
language with cardinality quantifier Qa with 9Ia a singular, strong limit cardinal.

4.1. Keisler's Transfer Theorem

In the following discussion Keisler's transfer theorem, which is the main result of
this section, will be examined. To this purpose, we recall that a cardinal K is a strong
limit cardinal if 2A < K whenever X < K. We will begin our development with
a simple example limiting possible generalizations of the theorem.

4.1.1 Example. Let al be a first-order sentence in the vocabulary { <, R}, where R
is a binary relation symbol, describing the fact that there is an injection of the
universe in the power set of some proper initial segment. Then a1 has a /c-like
model iff K is not a strong limit cardinal.

4.1.2 Theorem (Keisler [1968b]). Suppose that K is a strong limit cardinal and that
X > fi > Ko, where X is a singular cardinal. Then K -+ X fi-compactly.
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Only the initial portion of the proof will be presented here. Thus, suppose that T
is a vocabulary of cardinality at most ji which contains the n-ary Skolem function
symbol fa for each (n + l)-ary T-formula </>. Let T' = T U {CI>7: i,j < co}, where the
ctJ are new, distinct, individual constants. Define a set F to consist of the following
r'-sentences :

(1) \fx[3y(f)(x, y) -> </>(x, /^(x))], for each r-formula </>;
(2) c u < cifJk, whenever i < OJ and j < k < co;
(3) t < ct j , where £ is any T'-term that does not involve any constant ck n with

k > i;
(4) Vxo, . . . ,xB_1[xo < cUr A -" A xn.1 < cUr

-> ((/>(x, cmjJO, cm > i l , . . . , cmJs) ^ 0(x, cm5ko, cm k i , . . . , cmfks))],

whenever / < m, j0 <jt < • • - < j s , k0 < k1 < • • • < ks and 0(x, y) is a
r'-formula which does not involve any cpq for p < m.

There are now two crucial properties that must be verified:

(I) Every set of t-sentences consistent with F has a A-like model;
(II) Any i-sentence which has a K-like model is consistent with F.

We end with a hint that in order to prove property (II) above, it is necessary to
apply the Erdos-Rado theorem several times.

4.2. Some Consequences

Theorem 4.1.2 and its proof yield some immediate consequences.

4.2.1 Corollary. / /Ka is a singular, strong limit cardinal and Ko < A < Na, then
is ^-compact. D

By using a different approach to handle regular K, we will see as a consequence
of Theorem 5.1.3 that the requirement of singularity can be dropped in this
corollary.

The upshot of (I) and (II) in the proof of Theorem 4.1.2 lies in the fact that if K
is a singular, strong limit cardinal and ex is a r-sentence, then o has a fc-like model iff
a is consistent with F. An inspection of the proof reveals that if T is recursively
enumerable, then so is F. Thus, the set of i-sentences true in every K-like model is
recursively enumerable. This proves the following result.

4.2.2 Corollary. //Ka is a singular, strong limit cardinal, then J^(8a) is recursively
enumerable for validity. •

As a consequence of Corollary 3.3.11, some more Hanf numbers can be com-
puted.

4.2.3 Corollary. //Ka is a singular, strong limit cardinal and X < Ka, then
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Corollaries 4.2.1 and 4.2.2 have immediate consequences with respect to the
logic J2?(gc) involving the Chang quantifier. (See Chapter VI.) Recall that the
syntax of this logic is the same as the syntax of the logic !£ (Q) with the cardinality
quantifier, and its interpretation in the structure 91 is that of ^(Q) using the \A |-
interpretation, with the restriction that 91 be infinite.

4.2.4 Corollary. Assume GCH. J£(QC) is recursively enumerable for validity and is
compact.

Proof. if (2i) is recursively enumerable for validity according to Theorem 2.1.2, and
so is !£(QJ by Corollary 4.2.2, since by GCH Kw is a strong limit cardinal. Now,
by Theorems 2.1.3 and 4.1.2, a is valid for &(QC) iff it is valid for both ^ ( g O and
if (Q J . Hence, if (Qc) is recursively enumerable for validity.

Let E be a set of K sentences of J£(QC) which is finitely consistent. Then either
every finite Eo ^ E is consistent for if (Qi), or every finite Eo ^ Z is consistent for
y(Qco)- Using Theorem 2.1.4 in the first case and Theorem 4.1.2 in the second, there
is a model 91 of X in the ^-interpretation for appropriate Ka > K. Since the
Lowenheim number /K(if(Qa)) = Ka, we can require that \A | = Ka. Thus, we have
that 91 is also a if (Qc)-model of I . D

5. Regular Cardinal-like Structures

By means of more elaborate forms of identities, /c-like anologues of some of the
results given in Section 3 can be obtained. The main interest occurs when K is
inaccessible. Some of these results will be discussed in this section.

5.7. The Compactness/Transfer Theorem

We will begin this discussion with the basic compactness/transfer theorem.

5.1.1 Theorem (The Regular Cardinal-like Compactness/Transfer Theorem).
Suppose that K > Ko and that Kj is regular for each j e J. Then the following are
equivalent:

(1) {KJ'.JGJ} -• K tf0-compactly;

(2) {KfjeJ} -• K X-compactly,for each X < K. D

5.1.2 Corollary. / /X a > X > Ko and Ka is regular, then

a) is K0-compact iff ^(QJ is X-compact.
A proof of Theorem 5.1.1 would yield the following instances of compactness

as a consequence.
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5. Regular Cardinal-like Structures 199

5.1.3 Corollary. / / Xa > X > Ko, for regular Na, and K£° < Xa /or £ < a, then
is X-compact. •

Combining this result with Corollaries 2.1.7 and 4.2.1 yields the following
general result.

5.1.4 Theorem. Assume V = L. If Ka > X > Xo, then ^(QJ is X-compact. D

This allows us to use Theorem 3.3.11 in computing Hanf numbers.

5.1.5 Theorem. Assume V = L. / / Ka > X > Ko, then h,(^(Qa)) = HJKJ. D

It is not known whether the V = L hypothesis can be eliminated from Theorems
5.1.4 and 5.1.5.

A cardinal K is O-Mahlo iff it is inaccessible. For a > 0, the cardinal K is a-
Mahlo if, whenever /? < a and C ^ K is closed and unbounded, then there is a
jS-Mahlo cardinal in C. The cardinal K is strongly a-Mahlo if it is strongly inac-
cessible in addition to being a-Mahlo. It is known that if K is weakly compact, then
K is K-Mahlo and also that there are many cardinals X < K which are A-Mahlo.

The following theorem was given a combinatorial proof in Schmerl [1972]. In
this connection we point out that there is also the beautiful Silver-Kaufmann
approach, which uses models of ZFC and which is detailed in Kaufmann [1983a].

5.1.6 Theorem. For each n < co there is an ££(Q) sentence on such that for each
regular TC, on is consistent in the K interpretation iffK is not strongly n-Mahlo. D

The following theorem of Schmerl and Shelah [1972] is a best possible result by
Theorem 5.1.6.

5.1.7 Theorem. For each n < w let Kn be strongly n-Mahlo, and let K> /I > K O .
Then {KK\ n < a)} -+ K X-compactly. D

One possible approach to proving this theorem uses generalizations of
identities. For another approach, which uses self-extending models, see Theorem
6.1.3. Either approach enables us to obtain the following corollary.

5.1.8 Corollary. / /Xa is strongly co-Mahlo, then ££(Q^) is recursively enumerable for
validity. 0

It is not known whether the hypothesis of the corollary can be weakened. For
example, whether or not j£?(QJ is recursively enumerable for validity when Ka is
the first strongly inaccessible remains open. Indeed, it is not even known whether it
is even consistent with ZFC that there be any a > 0 for which ^(Qa) is not re-
cursively enumerable for validity.
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200 V. Transfer Theorems and Their Applications to Logics

5.2. Strongly Cardinal-like Structures

Suppose we consider the vocabulary having only the binary relation symbol <
and the sentence of stationary logic which is the conjunction of a sentence asserting
that < is a linear order and the sentence

aa s 3x Vy(y es<-+y < x).

Then (̂ 4, <) is a model of this sentence iff it is K-like and there is a closed, un-
bounded subset of A which has order type co1. A well-ordered subset X c: A is
closed and unbounded iff whenever a e X is a limit point, then a is the least upper
bound of the set {xeX:x < a} in A. The next definition generalizes this type of
ordering.

5.2.1 Definition. A linearly ordered set (A, <) is strongly K-like, where K is a regular,
uncountable cardinal, if it is K-like and contains a closed, unbounded subset. A
structure 21 = (4, < , . . . ) is strongly K-like if (A, <) is strongly /c-like.

There is a reduction of if(aa) to. strongly Ki-like structures.

5.2.2 Theorem. With each sentence a o/JS?(aa) we can effectively associate a first-
order sentence a* such that the following are equivalent:

(1) a is consistent;
(2) o has a model of cardinality Xx;
(3) a* has a strongly Unlike model D

In order to get the ^-interpretation, where K is regular and uncountable, we
consider the set PK(A) which is the set consisting of just those subsets of A having
cardinality < K. A subset C ^ PK(A) is closed if it is closed under the union of
chains of length < K, and it is unbounded if, for every s e PK{A\ there is t e C such
that s c t. Let DK(A) be the filter generated by the closed unbounded subsets of
PK(A). The new clause in the definition of satisfaction in the ^-interpretation is now
clear:

21 N aa 5 (j)(s) iff {s e PK(A): ® N </>0)} e DK(A).

Compare this definition with Definition IV.4.1.1. Stationary logic with the K inter-
pretation, where K = Ka, will be denoted by J5?(aaa), so that ^ ( a a j = if(aa).

The following transfer theorem becomes apparent upon checking that all the
axioms for if (aa) are valid in arbitrary

5.2.3 Theorem. / /Na > Ko is regular, then if(aaa) -> ^ ( a a j K0-compactly. D

Instead of proving transfer theorems of the form suggested by Theorem 5.2.3,
we will concentrate on theorems concerning strongly K-like structures. This is
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justified by the following two observations. The first is that in the /c-interpretation,
the linearly ordered set (A, <) is a model of the j£?(aa) sentence displayed at the
beginning of this subsection iff (A, < ) is strongly jc-like. In the second observation
we state a theorem whose proof is identical to the proof of Theorem 5.2.2.

5.2.4 Theorem. With each sentence a of if(aa) we can effectively associate a first-
order sentence a* such that for each regular uncountable K, the following are equi-
valent:

(1) in the K-interpretation, a has a model of cardinality K;
(2) a* has a strongly K-like model. D

In light of the above, the next definition is natural.

5.2.5 Definition. For regular uncountable cardinals, K and A, K -J> A if whenever a
is a first-order sentence which has a strongly fc-like model, then o has a strongly A-
like model.

The customary variations on the above definition will be in force. For example,
for regular uncountable K, Theorem 5.2.3 implies that K ^ K J K0-compactly.

The following theorem is the compactness/transfer theorem for strongly
cardinal-like models. Its proof resembles the proofs of Theorems 3.2.1 and 5.1.1,
although it does use an even more elaborate notion of identity.

5.2.6 Theorem. Suppose that K and Kj are regular, uncountable cardinals, for each
j e J, such that for each n < co there is some j eJ for which Kj > Kn. Then the
following are equivalent

(1) {Kj'.jeJ} -J> K #0-compactly;
(2) {Kj'.jeJ} -^ K X-compactlyfor each A < K. D

Many corollaries of the same sort as those derived from Theorems 3.2.1 and
5.1.1 can be derived from this theorem. We will mention only one of them here.

5.2.7 Corollary. IfK > A > Kw, K is regular, and /iXo < Kfor each \i < K, then the
class of strongly K-like structures is X-compact. D

The subtle hierarchy of cardinals was defined in Baumgartner [1975] and in
Schmerl [1976]. A cardinal K is subtle iff whenever (Sa: a < K) is such that each
Sa c a and whenever C c K is closed and unbounded, then there are a < j8, both in
C, such that Spna = Sa. Subtle cardinals are large in the sense that they are all
strongly inaccessible. And yet, the first one—if it exists—is far larger than the first
strongly inaccessible. For each ordinal a, we will define a-subtle cardinals with 0-
subtle cardinals being regular, uncountable cardinals and 1-subtle cardinals
being the same as subtle cardinals. However, we will be even more general than
this by defining what is meant by a subset X ^ K being a-subtle. To this end,
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let us assume that K is a regular, uncountable cardinal and X c K. Then X is 0-
subtle iff X is stationary. Inductively, X is (a + l)-subtle iff whenever <SV: v < K> is
such that each Sv c v, then

{fisX: {veX n fi: Sv = v n S^} is a-subtle}

is stationary. If a is a limit ordinal, then X is oc-subtle provided it is /^-subtle for each
P < a. The cardinal K is a-subtle if it is a-subtle when considered as a subset of itself.

The following theorem was proven in Schmerl [1976] using combinatorial
techniques. However, for a much easier proof which uses models of set theory,
see Kaufmann [1983a].

5.2.8 Theorem. For each n < co, there is a first-order sentence on such that for each
regular, uncountable K, on has a strongly K-like model iffK is not n-subtle. D

Can this theorem be extended, for example, by finding a sentence o which has
a strongly /c-like model iff K itself is not co-subtle? The answer is no because of
the following theorem which is the analogue of Theorems 3.3.7 and 5.1.7. A proof
of this result will be given in Section 6.

5.2.9 Theorem. For each n let Kn be an n-subtle cardinal and K > X > Ko, where K is
regular. Then {Kn: n < a>} -^ K X-compactly. D

6. Self-extending Models

Models which have canonical, internal proper elementary extensions of themselves
will be considered in this section. By iterating these extensions many times,
taking unions at limit stages, we can construct models with particular properties
This method will be discussed in Section 6.1 where alternate proofs of Theorems
3.3.7, 5.1.7 and 5.2.9 will be indicated. This technique will be exploited in Sub-
section 6.2 to prove the MacDowell-Specker-Shelah theorem.

6.1. Self-Extending Theories

Consider the language J£?(g), and consider a consistent theory T in this language
which has the following two properties:

(1) T is a Skolem theory: For every formula 0(xo, • . . , xn-15 y) there is a term
/(x0, xl9..., xn_i) such that

, y)

is in T:
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6. Self-extending Models 203

(2) Q behaves as a nonprincipal ultrafilter: All universal closures of formulas of
the following form are in T:

(<Kx) -> Hx)) -> (QxtKx) -> QXI/J(X)),

Qxct>{x) A Qxxjj(x) -> Qx(<Kx) A <K*)).

A model of T has the form (91, q\ where q is a collection of subsets of A with the
obvious additional clause needed in the definition of satisfaction:

(%q)t=Qx<Kx) iff {aeA:(SH,q)\=<t>(a)}Eq.

A model (91, q) of T is reduced if every set in q is definable. Since replacing q by the
subset of itself which consists only of definable sets does not alter the satisfaction
relation, we can always assume that models of T are reduced.

There is a canonical elementary extension of (91, q) which is obtained by a
modified ultrapower construction. Let B be the set of definable functions/: A -> A
considered modulo q. That is, two definable functions / , g: A -• A are to be con-
sidered as equal if (91, q) t= Qx(f(x) = g(x)). There is a unique reduced structure
(93, r) such that for any formula 0(xo, . . . , xn_ x) and all functions / 0 , / l 5 . . . , /„_ t e £,

(®, r) |= <Kf0, • • •, L-1) iff («, «) \= Qx<Kfo(x), . . . , / „ - !(x)).

The set r consists of all those sets of the form

{geB: (91, q) \= Qx<KMx),...,/,_ x(x), flf(x))},

where (91, q) \= QxQy</>(fo(x), . . . , / „ - i(x), y). The structure (93, r) is an elementary
extension of (91, q) if the elements of A are identified with the constant functions.
Thus, the following definition is appropriate.

6.1.1 Definition. A consistent theory T satisfying (1) and (2) above is called a
self-extending theory.

One important fact about the canonical extensions of models of a self-extending
theory is that "large sets become larger." To make this precise, let / : A -> A
be the identity function so that if (93, r) is the canonical extension of the model
(91, q) of a self-extending theory, then

(93, r) \= Qx<Mx, a) -> <K«\ a),

f o r a n y f o r m u l a 4> a n d a O 9 a l 9 . . . , a n - x e A .
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These self-extending theories can be applied to give alternate proofs of Theorems
3.3.7, 5.1.6 and 5.2.9. We state the relevant results in this regard.

6.1.2 Theorem. Let T be a first-order theory such that, for each n < co, there are
cardinals K, A, with K > 1n(X), and a (K, X)-model of T. Then T can be extended to a
self-extending theory which contains all universal closures of formulas of the form

Qx 3j#(x, y) A U(y)) -> 3yQxcj>(x, y). D

6.1.3 Theorem. Let T be a first-order theory such that, for each n < co, there is a
strongly n-Mahlo cardinal K and a K-like model of T. Then T can be extended to a
self-extending theory which contains all universal closures of formulas of the form

VzQx 3j#(x, y) A y<z)-+ 3yQx<Kx, y). D

Actually, a theorem which was first proven in Schmerl [1976] and which is
slightly stronger than Theorem 5.2.9, will be considered here. In order to state it,
we need the following

6.1.4 Definition. Let K be a regular uncountable cardinal and X c K. A linearly
ordered set (A, <) is (K, X)-like if it is K-like and there is an increasing function
e: X -» A such that whenever aeX and a = sup({v eX:v<oc})eX, then
e(<x) = sup({e(v): v e X n a}). A structure 91 = (A, < , . . . ) is (K, X)-like if {A, <)
is (K, X)-like.

From this definition we see that 91 is strongly K-like iff it is (K, fc)-like.

6.1.5 Theorem. Suppose K is a regular uncountable cardinal and T is a first-order
theory such that \T\ < K. Also assume that, for each n < co, there is a cardinal Kn and
an n-subtle X <= Kn such that that T has a (KH, X)-like model. Then T has a strongly
K-like model.

In order to prove this theorem using self-extending models, we need

6.1.6 Theorem. Let T be a first-order theory such that for each n < co there is a
cardinal K, an n-subtle X c= K, and a (K, X)-like model of T. Then T can be extended
to a self-extending theory which contains the universal closures of all formulas of the
form

Qx 3y((/>(x, y) A y < x) -• 3yQx(j)(x, y).

To see just how Theorems 6.1.2,6.1.3 and 6.1.6 imply the corresponding transfer
theorems, let us focus attention on Theorem 6.1.6 alone as a typical example.
Suppose that T is a first-order theory satisfying the hypothesis of Theorem 6.1.6.
Thus, according to that theorem, T can be extended to a self-extending theory T
containing the required sentences. Without loss of generality, we can require that
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6. Self-extending Models 205

| JT" I = \T\ + No. The sentences in V imposed by Theorem 6.1.6 guarantee that the
canonical extension of any model of V is an end-extension. Furthermore, this
extension has a least new element. Thus, in order to form a strongly A-like model of
T, where A > \ T | + Ko is regular, we begin with a model (9l0, q0) of T with
|>401 < A. We then form an increasing chain of models <(2lv, qv): v < A> by letting
(9Iv+i, qv + 1) be the canonical extension of (2Iv,gv), and by letting (21 v, qv) be
the union of the previously constructed structures if v is a limit ordinal. Then 91 x is a
A-like model of T. In order to see that it is strongly A-like, we let av be the least new
element in the extension (2IV+1, qv + 1) of (2IV, qv). Thus, Av = {xsAk\x < av}.
Then {av:v < A} is a closed subset of Ak, demonstrating that {Ax, <) is strongly
A-like.

In order to see how to prove Theorems 6.1.2, 6.1.3 and 6.1.6, we will again
consider Theorem 6.1.6 as a typical example. Our aim here is to show that Tis con-
sistent with some theory, call it T", so by compactness we can assume that T is
countable, and then consider some finite To c= T and show the consistency of just
T u T 0 . T o this end, we choose an n < a> which is sufficiently large (depending on
To) and let SHn+1 be a (KH+ l5 Xn+ ^-like model of T, where Xn+1 is an (n + l)-subtle
subset of Kn+ v Moreover, let e: Xn +1 -> An+ x be the function which demonstrates
that (An+U <) is (fcn+1, Xn+1)-like. Inductively, we will thus obtain structures
9ln, SHn_ l 9 . . . , 9l0 and Sn , »„_ 1 ? . . . , 95O. Each 21; will be an expansion of JB£, and
y4t will be an initial segment determined by an element e(Ki\ where KL e Xn+1; that is,

^ i = {xeAi+1:x < K^)}-

In order to get SUn and 93M, let {0v(uo)- v < Kn+1) be a nonrepeating list of all
formulas with one free variable v0 in the vocabulary of (Un+ x allowing parameters
from i4n + 1 . There is a closed unbounded subset C ^ Kn+1 such that whenever
a e C n XJ+1and(/>v(f0) involves only parameters from the set {b eAn+1:b < e(a)},
then v < a. For each oceC n Xn+19 we let

We can also assume that if a e C n Xn+15 then 2In+11 {x G XM+ X : x < e((x)} < 2lM+ v

Using the definition of the subtle hierarchy, we find KneC n Xn + l such that if

Xn = { v e l n + 1 n Kn:Sv = v n SKn},

then Xn is an n-subtle subset of Kn. Let v4M = {b G ^M+1 : b < e(Kn)}, and let SM =
SHn+1\An so that ©„ •< 2IM+i. The important fact to notice here is that, for any
v e l n , both e(v) and e(Kn) realize the same type over {beAn+l:b < e(v)}.

Now let 3) be the collection of subsets D which are definable in 2In+ x using only
parameters from ^M and for which e(Kn) e D. Now, expand 93W to a structure 95; by
adjoining a binary relation Rn so that

{{XGAH: ®; 1= /?„(*, x)}: ftGylJ = {D n
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206 V. Transfer Theorems and Their Applications to Logics

Let 9ln be the expansion of 33J, obtained by adjoining all Skolem functions. The
structure 9ln is (Kn, XM)-like for n-subtle Xn c Kn.

The remainder of the % and 33, are constructed in exactly the same fashion.
Having finally obtained 2l0, we let q = {xeAo:Mot=Ro(b,x)9 beA0}. The
structure (9l0>Q) is clearly a model of T and, without much difficulty, it can be shown
to be a model of To also. This demonstrates the consistency of T u To.

6.2. 77*e MacDowell-Specker-Shelah Theorem

Our concern in this subsection is to use self-extending models to prove the following
theorem.

6.2.1 Theorem. / /Ko < \i < A, then Ko -• A [i-compactly. D

Fuhrken [1965] observed that this theorem is a direct consequence of the well-
known theorem of MacDowell and Specker [1961] which asserts that every model
of Peano arithmetic has a proper, elementary end-extension. There are two features
of Peano arithmetic that are used in the MacDowell-Specker theorem. One is that
there is a definable pairing function which allows the coding of finite sequences. The
other is that the induction scheme is true in Peano arithmetic, where by the
induction scheme is meant the sentence

"< is a linear order with a first but no last element"

together with all sentences which are universal closures of formulas of the form

[3x0Oc) A Vx 3 ) # 0 0 - 0(y) A x < y)-] - Vx ly^y) A X < y).

In words, this simply asserts that every nonempty definable set with no largest
element is cofinal.

Shelah [1978b] showed that only the induction scheme is necessary. Notice that
if we extend a theory which satisfies the induction scheme by adjoining all definable
terms, then the extended theory is a Skolem theory. Thus, we will consider such
theories to be already Skolem theories.

6.2.2 Theorem. Let The a consistent, countable first-order theory which satisfies the
induction scheme. To each first-order formula 0(xo, xl9..., xn-1, y) there is as-
sociated another first-order formula a^{x0, x l 5 . . . , xn_ x) such that T can be extended
to a self-extending theory which contains the universal closures of all formulas of the
form

x, y) <-* <^(x)

and of the form

MzQx 3y((/>(x, y) A y < z) -• 3yQx<p(x, y).
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Theorem 6.2.1 follows from this theorem. Furthermore, any model of the
induction scheme in a countable vocabulary has a proper, elementary end-
extension.

Proof. The first step in the proof is to observe that, for each n < &>, there is a 2n-ary
formula i//n(x0, xl9..., xn_ 1? y0, yl9..., yw_ 1)—which we will abbreviate by
x <n y—which defines a linear order on the set of rc-tuples and which satisfies the
induction scheme. These formulas can be obtained inductively by letting < x be <
and then allowing x <n+: y to be the formula

(max(x0, ...,xn)< maxO 0 , . . . , yn)) v [max(x0,. . . , xn)
= max(>0,..., yn) A (xn < yn v (xn = yn A ((X0, . . . , * „ - I)

Now consider a sequence (4>n(x, j;): n < co> of all formulas, where </>„ has its
free variable among x0, xu ..., xn, y. Our object is to find formulas on{x) and at
the same time formulas 6n(y) such that the following are all consequences of T:

Vw 3y > w0n(y),

3w Vy > w(9n(y) -+ ( W x ^ ) ^ aH(x)).

We will proceed by induction on n. For convenience, we will let 0_i(y) be
y = y. Having 9n_x(y) and on(x), we easily find an appropriate 8n(y). For
example, let 9n(y) be

0B. !(y) A 3z < y[Vx <fl+1z«+ H ^ x ) ^ 4>n(x, y)

A VW((VX < n + ! Z"+ ^ ^ ( X ) ^ 0B(X, W) A 0n_ X(W))

- • w < z v j ; < z) ) ] ,

where by zM+ x is meant the (n + l)-tuple (z, z , . . . , z).
We have now reached the crux of the proof: To define <rn(5c), knowing 8n(y). Let

E(x, y, z) be the formula

Vw <n+! *((/>„(w, y) ^ 0n(w, z)).

For fixed x, the formula E(x, y, z) defines an equivalence relation with only
"boundedly" many equivalence classes. As x gets larger (in the sense of <n + 1) ,
then the corresponding equivalence relation gets finer. Thus, the formula E(x, y, z)
can be viewed as defining a tree, the nodes of rank 3c being the equivalence classes of
the equivalence relation corresponding to x. For each rank x, there is an equi-
valence class containing an unbounded set of elements all of which satisfy 6n. Call
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208 V. Transfer Theorems and Their Applications to Logics

such an equivalence class large. Then, the following formula L(x, y, z) will assist us
in selecting a canonical large equivalence class of each rank:

3w < n + 1 x( -!(/>„(w, y) A 0n(w, z) A £(w, y, z)).

The formula L(x, y, z) linearly orders the equivalence classes of rank 3c. Thus,
we let S(x, y) be a formula selecting the first large one. Thus, let S(x, y) be

Vw 3z > w(0n(z) A £(5c, y, z)) A VU(L(3C, t;, y)
^3w\fz> w(6n(z) - -i£(x, / , z))).

The large classes selected in this way form a branch. That is, T implies w < w + 1

x A S(x, y) -• S(w, y). It is now evident that on(x) should be Vw 3y(S(w, y) A

7. Final Remarks

The final section of this chapter mentions some results which would have been
discussed in more detail had space allowed.

7.7. Other Logics

The logic of Magidor and Malitz [1977a] can be given cardinality interpretations
other than the Kx-interpretation discussed in Section IV.5. The logic if (Q, Q2,
Q3,...) which uses the ^-interpretation is denoted by J£?(Qa, Ql, Q%,.. .)• The
Magidor-Malitz completeness theorem (see Section IV.5.2) also proves the
following transfer theorem.

7.1.1 Theorem. Assume O. If K = Ka is regular, then ^(Qa, Ql, Ql,...) ->
i, Ql Ql • • •) Ko-compactly. D

A converse of the previous transfer theorem has been proven by Shelah [1980].

7.1.2 Theorem. Assume ONa and O«a+1. Then

&(Qi, Ql Ql ...) l !

y. D

Theorems 7.1.1 and 7.1.2 together with the the Magidor-Malitz completeness
theorem imply that J£?(<2a, Q

2, Ql,...) is recursively enumerable for validity under
the appropriate hypothesis on Ka.
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7. Final Remarks 209

The cofinality quantifier (see Section II.2.4) yields a logic which is fully compact.
We denote the quantifier by Qc{, and for regular cardinal K, its ^-interpretation is
defined so that Qcfxycp(x, y) holds iff cp(x, y) defines a linear order with cofinality K.
The logic with this quantifier with the ^-interpretation is denoted by J?(QCJ). A
proof of the following transfer theorem can be found in Makowsky-Shelah [1981].

7.1.3 Theorem. Let Ka and K̂  be regular cardinals. Then ^(QCJ) -+ &(Qf) X-
compactly for any cardinal X. D

Consequently, J^iQo) is fully compact. The proof also yields that <Sf(Qc
0
{) is

recursively enumerable for validity.

7.2. Infinitary Languages

Some of the transfer theorems we have discussed have extensions to infinitary
languages. For example, the proof of Keisler [1966b] of Theorem 2.1.3 yields an
ifWlC0 version.

7.2.1 Theorem. J/Ka is regular, then SemuJQ^ -> &mAQi\ •

Some theorems of Section 5 also have infinitary versions which can be proven by
the techniques of that section or those of Section 6. The reader should refer to
Definition II.5.2.1 for the notion of the well-ordering number w(J£) of a logic and to
Chapter VIII for ££ A, where A is an admissible set. If A is countable, then w(J£A) =
A n Ord.

7.2.2 Theorem. Let A be an admissible set and cp a sentence of'S£A.

(1) Suppose that for each a < w(J?A),thereisastronglyot-MahlocardinalKanda
K-like model of (p. Then, for each X > \A\, cp has a X-like model.

(2) Suppose that, for each a < w(JS?A), there is an a-subtle cardinal K and a
strongly K-like model of cp. Then, for each X> \A\, cp has a strongly X-like
model. D

Similarly, the Hanf numbers of admissible fragments can be computed.

7.2.3 Theorem. Let A be admissible and co < a = w(&A). Then h(&A) = 2a. D
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Chapter VI

Other Quantifiers: An Overview

by D. MUNDICI

Generalized quantifiers were introduced by Mostowski [1957] as a means of
generating new logics. In the meantime, their study has greatly developed, so that
today there are more quantifiers in the literature than there are abstract model
theorists under the sun. In any logic J5f = SZuvkQ^iei o n e does not need to in-
troduce specific formation rules for renaming and substitution; for, upon adding
to the finite set of logical symbols of JS?^ one new symbol for each Q\ all sentences
in !£ are obtainable by an induction procedure on strings of symbols, pretty
much as in JS?wa,. One can godelize sentences and start studying the axiomatiz-
ability and decidability of theories in j£f. One might even go as far as to write
down the proof of a theorem in $£ and then have it published in some mathe-
matical journal. For infinitary logics this all seems to be a bit more problematic.

There are several ways to introduce quantifiers. For instance, nonlinear
prefixes of existentially and universally quantified variables may be regarded as
quantifiers as is discussed in Section 1. Quantifiers are also used for transforming
concepts such as isomorphism, well-order, cardinality, continuity, metric com-
pleteness, and the "almost all" notion into primitive logical notions such as =
(see Sections 2 and 3).

There is no reason why quantifiers introduced via the above definability
criteria should also preserve the nice algebraic properties of ifwco. Indeed, in
many cases they do not. However, in a final section of this chapter we will briefly
describe a novel approach to quantifiers, an approach that is based on the fact
that every separable Robinson equivalence relation ~ on structures is canonically
representable as J^-equivalence, = ^ for if = J?(O(O{Q\ =^(Q) is coarser than ~ } .
In addition to this, <£ turns out to have compactness and interpolation: The open,
interior quantifiers and their ^-dimensional variants can be introduced in this
way, starting from a suitable approximation of homeomorphism.

We do not aim at an encyclopedic coverage here. Rather, we only aim to
present an anthology of the most significant facts and techniques in the variegated
realm of quantifiers. In line with this, highly developed quantifiers or special
topics are discussed in detail in Chapters IV, V, VII, and XV.

Throughout this chapter J^mI1 will be taken to mean second-order logic with
universal and existential quantifiers over unary relations. Moreover, we will also
write <£(Q*)isI instead of Z^JStliei-
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212 VI. Other Quantifiers: An Overview

1. Quantifiers from Partially Ordered
Prefixes

In this section we will present the logic if® with quantifiers which arise from
nonlinear prefixes (see Section 1.1). The logic if(QH) with the smallest such
quantifier often gives a full account of the whole if® (see Section 1.2). Further
topics on J5f(<2H) are discussed in Section 1.3.

1.1. Partially Ordered Quantifiers

Let (p be a first-order formula in prenex normal form. Each existentially quantified
variable x in the prefix of cp only depends on the universally quantified variables
which precede x. We can naturally consider formulas with nonlinearly ordered
prefixes such as, for example,

<•>

which is equivalent to 3/ , g, g' Vx, x', t \//(x, x\ t, f(x, x'\ g(t), g'(t)). Another
example is Henkin's prefix (see also Chapter II):

(2)

The smallest logic which is closed under this prefix is if(QH), where QH =
{(A, R}\R £ A* and R 2 / x g for some/, g: A-> A} = Henkin's quantifier.
Similarly, the prefix in (1) results in a quantifier Q which is given by

Q = {(A, R>\R c A6 and R 3 / x g for some/: A2 -> A and

We will agree to say that the (variable binding) pattern of Qn is {<1, 1>, <1, 1>},
and that the pattern of Q in the discussion above is {<2, 1>, <1, 2>}. More generally,
we set

1.1.1 Definition. Let n = {<nl5 m ^ , . . . , (nr, mr>} be a sequence of pairs of
natural numbers > 1. Then the partially ordered quantifier Qn with pattern n is
given by

Qn = {(A, R} \R c As and R ^ fx x • • • x fr for some

/ i : Ani -> Xmi, ...,fr:A
nr-> A"1'},

where 5 = n1 + m: + • • • + nr + mr. We will also say that QK has r rows.

Partially ordered quantifiers do express some genuine mathematical notion,
namely, uniformization. As a matter of fact, the quantifier Vx 3yRxy expresses
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1. Quantifiers from Partially Ordered Prefixes 213

the fact that the binary relation R can be uniformized, just as the quantifier

expresses the fact that the 4-ary relation S contains the product of two binary
uniformizable relations. Similar considerations hold for every partially ordered
quantifier.

The syntactical rules for forming formulas in if (g), with Q = Qn, are naturally
obtained by generalizing the rules for if (QH). Thus, Q binds s distinct variables,
and if we display Q as

(3) Q=\

[
then we immediately obtain the semantics of Q. In this development, the existen-
tially quantified variables in a row are thought of as only depending on the uni-
versally quantified variables in the same row. Let us denote by if ® the smallest
logic in which all partially ordered prefixes of the form (3) are allowed. If this is done,
we then have:

1.1.2 Theorem. For an arbitrary class K, if K is PC in Se^ then K is EC in if®.
Indeed, K = Mod^© ij/, for some \\i of the form Qx where Q is a partially ordered
quantifier as in (3) above, and % e j?'W£0 is quantifier free.

Proof. Upon replacing relations by their characteristic functions, K = Mod
3g1 ... gj6, where 9 is a first-order formula in prenex normal form. Using Skolem
functions, 6 becomes equivalent to 3/i .. ./„ Vxx . . . xma, where a is quantifier-
free. The terms in a can be safely assumed to have the form/(y1 . . . yk\ where
yu ..., yk are variable symbols, so that no function symbol occurs in the argument
of/. Indeed, one might use the equivalence between, for example, Vy, zfi(f(g(y, z),
h(y))) and Vy, z, t, u[t = g(y, z) A U = h(y) -> j8(/(r, M))]. By similarly adding new
universally quantified variables, we can also assume, without loss of generality,
that in the argument of any two different functions there are no common variables
and also that the n variables occurring in the argument of each «-ary function are
all distinct. We finally make sure that a function symbol does not occur in two
different terms. Thus, we replace, for example, 3/Vx, y, zcp(f(x, y), f(y, z)) by
writing 3/, g Vx, y, t, z{[x = t A y = z -+ f(x, y) = g(t, z)] A [r = y ->
(p(f(x, y\ g(t, z))]}. Now, K is reduced to the desired form. D

7.2. The Relationship Between &ml\ &® and

Walkoe [1970] observed that if Q is any partially ordered quantifier such that
^(Q) ^ g^, then ^(Qn) < &(Q). Thus, QH is the weakest partially ordered
quantifier. The two theorems of this subsection tell us to which extent QH alone
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can replace the denumerable set of all partially ordered quantifiers. We shall also
investigate the relationship between partially ordered quantifiers and second-
order logic. In this latter respect, Vaananen [1977c] proved that there is no gen-
eralized quantifier Q such that !£(Q) = full second-order logic.

1.2.1 Theorem. j£f® is equivalent to ^(QH) in first-order Peano arithmetic. That
is, for every cp in =£f®, there is a ij/ in ̂ (Q11) having the same models as cp among the
models of Peano arithmetic.

Proof. By making repeated use of pairing functions (say, by using formula #(x, y, z)
in the language of Peano arithmetic, which defines a bijection from M2 onto M
in each model 2JI of Peano arithmetic), we can safely assume that every quantifier
Q in cp has only one universally quantified variable and only one existentially
quantified variable in each row. Moreover, it is no loss of generality to assume
that Q has only two rows. As a matter of fact, we have the equivalence between

f V x 1 . - - x n 3 z
and H\\0

We can now use pairing functions again to contract the latter prefix into QH.
This concludes the proof of the theorem. •

Remark. Theorem 1.2.1 can be generalized (without altering the proof) to any
arbitrary first-order theory where a definable pairing function is available.

Recall the definitions of < RPC and of the A-closure AjSf of a logic !£ from
Chapter 11. Intuitive notions stemming from first-order logic might suggest that
AifmI1 = $£m11. However, this is not the case. Indeed, recall that in the definition
of <RPC, extra universes are allowed which, in settings where Lowenheim-Skolem
fails, cannot be coded as extra relations on some given universe.

1.2.2 Theorem. Aif(gH) = Aif® = AifmI1.

The proof proceeds through the following two claims:

Claim 1. JSP® <RPCifmI1.

Proof. It suffices to show that for every cp e if ®(T), Mod cp is in RPC^mn. For the
moment, assume that x has just one sort s, and that only QH occurs in cp. Now,
~i QH asserts the nonexistence of functions, while ifmI1 can only express the non-
existence of sets. To overcome this difficulty, we add a binary function symbol J
to T, and let the first-order sentence a assert that J maps the set of all pairs in s
one-one onto a new sort 5'. For X any set-variable of ifmI1, let j8(X) assert
that X represents via J (that is, J~l[X~\ is) a function: namely, /?(X) is
Vx 3! y 3z(z e X A Z = J(x, y)). If X represents a function X, then the fact that X
maps x into y, for short X(x) = y, is simply expressed by the ifmII-formula
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1. Quantifiers from Partially Ordered Prefixes 215

J(x, y) e X. Now, let cp' e ifm" be obtained from cp via the following inductive
procedure: \jj' = \jj if \jj is atomic, (~i^)' = ~i(^')> (i// A #)' = *A' A / , (3X^) ' =
3x(i/O- For the crucial QH-clause, where \// is given by

Vx' 3 /

we let i//' be given by 3X, X'[fi(X) A fi(X') A VX, X', y, y'(y = X(x) A / =
X'(x') -• 0')]. Clearly, the r-reducts of the models of a A cp' are exactly the models of
cp so that Mod cp e RPC^mn as required. If (/> has many sorts, or if cp has a p.o.
quantifier Q ^ QH, then we proceed similarly, using maps JQ\ An

s
 + 1 -> As» to code

into subsets of a new sort s" each n-ary function asserted to exist by Q.

Proof. If A =£ 0 and {0 , A} c 51 c P(v4), where P denotes power set, then
S # P(A) iff 3 / : X -> {0, 1} such that Vr e 5, r # / " ^ l ) ; that is to say, iff
3/ : ^ -» {0, 1} and 3g:S-+A such that Vr e S, Vx e X [x = g(r) -»(gf(r) e r ^
/(x) = 0)]. Using relativized QH we can equivalently say the following:

eA3ye{0, 1}
vreS3teA

Now, to prove our claim, it is enough to show that for every cp e J^"1"^),
Mod cp e RPC^QHJ . To this purpose, add to x new unary relations A and S, as
well as one binary relation E and the constants 0 and 1. Let the roles of S, A, 0,
1, E be described by sentence a which is given by the conjunction of the following
formulas: Vx((Sx v Ax) A H ( 5 X A AX)\ 50 A 51, VxO4x->£xl), i 3 x ( ^ x A £X0),

Vsr, VV [r = r' «-> V^x(£xr «-• Exr')], where Vzx0 as usual means Vx(Zx -• 6).
Let j5 be a reformulation of (1) without relativizations, that is,

Let cp' be obtained from cp by relativizing to A (that is, to {x| Ax}) each quantified
individual variable in cp, and by relativizing to 5 each quantified set variable in cp (we
can add more ^4's and 5's if more sorts occur in cp\ and finally by replacing yeX
throughout by Eyxx, where x* is an individual variable. By the above discussion,
the r-reducts of models of a A ~I/? A cp\ upon restriction to {x|^x}, are exactly
the models of cp. As a matter of fact, a A ~I /? ensures that in our transcription of
second-order variables as variables ranging over 5 we are missing no subset of A.
Thus, we have proved that ifmI1 <R P C^(6H)- Those who do care to relativize
classes may add one more sort 5" as well as a function symbol/and assert that /
is an isomorphic embedding of the structure on sort s" onto the restriction to
{x I Ax} of r-reducts of models of a A ~IJ8 A cp'. D
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1.2.3 Corollary. i?(gH), if® and i?mI1 have the same Lowenheim and the same
Hanf numbers. Moreover, they have recursively isomorphic sets of valid sentences.

Proof. The proof of this result is routine as it follows from standard facts of abstract
model theory and from an easy inspection of the above proof (see also Proposition

i)). D

1.2.4 Remark. The godelized set Vml1 of valid sentences in J^mI1 is not definable in
n-th order arithmetic. Indeed, it is not a E™ subset of the natural numbers, for any
n.meco (see Montague [1965] and also Tharp [1973]). For the Hanf number of
i? m " see Barwise [1972b] and Vaananen [1979b]. The reader should also consult
Theorem 2.1.5(i) of the present chapter for more on this notion.

1.3. Further Topics on

In the light of Theorem 1.2.2 the implicit expressive power of ^(QH) is very strong
(see also Theorem 2.1.1 and Proposition 2.1.3). Concerning the explicit expressive
power of J2?(gH), we first observe that i*(gH) > if (Go). Indeed,

Qoxq>(x) iff 3t{<p(t) A 3/, g Vu, v[(u = v <-*/(n) = g(v))

A (cp(u) -> cp(f(u)) A f(u) * t)]}.

1.3.1 Proposition. if(QH) is neither (co, a))-compact nor axiomatizable, nor does it
have the weak Beth property.

Proof. There is a sentence of $£(Qn) characterizing up to isomorphism the standard
model of arithmetic, since Qo is EC in if (QH). Thus, if (QH) cannot be countably
compact and, using Godel's incompleteness theorem, if (2H) is not axiomatizable.
Failure of the weak Beth property is now a particular case of a result in abstract
model theory which holds for every finitely generated logic in which the class
{91191 ^ <co, <>} is EC (see, for example, Makowsky-Shelah [1979b, Theorem
6.1], or Theorems XVII.4.1.1 and 4.2.9). D

1.3.2 Theorem. £>(QH) > £>(Q.) iff a = 0.

Proof. We must prove only the (=>)-direction. To this purpose, it suffices to show,
by induction on the complexity of formulas, that for each formula cp in the pure
identity language of if (QH)—that is to say, only the equality ( = ) occurs in cp—
there is a formula cp in the pure identity language of 5£mia equivalent to cp upon
restriction to infinite sets (that is, K N=^(QH) (p<^@, for each K > co). The only
nontrivial step in the proof arises in the case where cp has the form Q*ty. In this
case, one then uses upward and downward Ldwenheim-Skolem methods for
if'wco to establish that cp does not distinguish between infinite sets. By contrast,
for a > 0, Qa does distinguish between infinite sets. D
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1.4. Bibliographical Notes

Henkin's quantifier was introduced in Henkin [1961], while Ehrenfeucht proved
that J^(6H) is neither countably compact, nor axiomatizable (see Henkin [1961]).
Theorems 1.1.2 and 1.2.1 are proved in Enderton [1970] and in Walkoe [1970].
The proof of Theorem 1.3.2 given above is due to Lopez-Escobar [1969], who
also proved the failure of interpolation. Paulos [1976] proved that both A-closure
and Beth property fail for 5£(QH). Failure of the weak Beth property is proved in
Gostanian-Hrbacek [1976] who used general ideas from Craig [1965]. The
reader should also consult Kreisel [1967], Mostowski [1968] and Lindstrom
[1969] for more in this connection. Back-and-forth games for j£?(QH)-equivalence
are used by Krynicki [1977b] in connection with Theorem 1.3.2. Here the reader
should also see Krawczyk-Krynicki [1976] and Weese [1980]. Theorem 1.2.2 is
proved in Krynicki [1978] and Krynicki-Lachlan [1979]. In the latter paper,
the reader can also find decidability (undecidability) results on if((2H). Partially
ordered quantifiers are used in Barwise [1976] to find nice first-order axiomatiza-
tions for certain classes of structures such as, for example, the class of structures
having a nontrivial automorphism/ such t ha t / 2 = identity. In Walkoe [1970,
1976] and in Keisler-Walkoe [1973] partially ordered quantifiers are used to
prove the following result about ordinary model theory: Let Q' and Q" be first-order
prefixes, with Q' ^ Q" and Q' and Q" having the same length. Then, for some
quantifier-free formula cp in <£>

a)£0, there is no quantifier-free formula \j/ in $£roffl

such that Q'cp is equivalent to Q"\jj. See Harel [1979], Cowles [1981], and Barwise
[1979] for further information about QH.

2. Quantifiers for Comparing Structures

The quantifiers presented in this section express the fact that two structures 91
and 93 are isomorphic: In Section 2.1 both 91 and 23 are sets, and in Section 2.2
we add one binary relation; while in Section 2.3 we keep 91 fixed.

2.1. Equicardinality Quantifiers

Recall that Hartig's quantifier / is defined by / = {{A, R, S}\\R\ = \S\}9 so that
Ixycp(x\ \j/(y) says that |{x\cp(x)}\ = \{y\ij/(y)} |. Reseller's quantifier QR is given
by QR = {(A, R, S}\\R\ < \S\}. Chang's quantifier Qc binds only one variable
and Qcxq)(x) says that Ixycp(x\ (y = y). Clearly, jSf(Qc) < <£(!). Also observe
that i?((2o) ^ &(!)- As a matter of fact, we have

(1) Qo* V(x) iff 3z[<P00 A Ixy cp(x\ cp(y) A y ^ z].

These points clear, we can now consider
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2.1.1 Theorem. jSf(Q0) < JS?(J) < j£f(gR) < J§f(6H).

Proof. For the proof that JS?(Q0) ^ ^X*) holds we only need give due regard to
(1) above. It is trivially true that &(I) < ^(QR). Also, i?(QR) < ^(QH) holds, for
we have

(Ixy (p(x\ iKy)) v (QRxy cp(x\ ifr(y)) iff

3 / , / ' Vx, x'{(x = x ' ~ / ( x ) = f'(x')) A Icpix) -> iA(/W)]}.

if (Qo) is not equivalent to JS?(/), since the former—as a sublogic of S£mm—has the
Karp property, while the second logic does not. (Proof: The two-cardinal struc-
tures <co1? [/> and <co1? K> with 1£/| = co and | K| = |a>x ~ 7 | = OJ1 are partially
isomorphic, but not if (<2c)-equivalent, and hence not <£(J)-equivalent). The fact
that £?(!) is not equivalent to J£?(QR) has been proved by Hauschild [1981]
(In this connection, the reader should also see Weese [1981b]). The fact that J^(fiR)
is not equivalent to ^(QH) has been proven by Cowles [1981]. D

The following sentence of if(/) characterizes <co, <> up to isomorphism:

Vx -\Iuv(u < x), (v < x) A " < is a discrete linear order with first
element".

Using the above sentence, we immediately obtain

2.1.2 Proposition. &(I) and J£?(QR) are neither (co, co)-compact nor axiomatizable
nor do they satisfy the weak Beth property.

Proof. The proof is the same as that given for Proposition 1.3.1. D

As for the implicit expressive power of 5£(Y) we have

2.1.3 Proposition. The following are RFC in if (7) and, hence in i?(gR) also:

(i) the class of well-ordered structures;
(ii) the class of well-ordered structures which are isomorphic to some cardinal;

(iii) the class of well-founded structures;
(iv) the class {(A, E} | {A, E} £ <L(a), e>, for some ordinal a};
(v) the class {{A, E}\(A, E} = {L(K\ e},for some cardinal K}.

Proof, (i), we note that < well-orders its universe of sort s iff there is an additional
sort sf and a binary relation Rxx', where x E s and x' e s\ such that the function
f(x) = | {x' \Rxxf} | is strictly increasing; that is to say, we have formally that

x < y -+ [(Rxx' -> Ryxf) A -iIu'v'Rxu', Ryv'].

To prove (ii), we add the clause that Vz ~i Ixy(x = x\ (y < z) to the above sentence.
The proof of (iii) is the same as for (i). To prove (iv), we use Mostowski's collapsing
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lemma and standard results on constructible sets to exhibit a finite subtheory of
ZF + V = L whose well-founded models are exactly those that are isomorphic
to <L(a), e>, for some a € On. Now, recall that well-foundedness is RPC in $£(I),
by (iii). To prove (v), we use (iv) and (ii). D

2.1.4 Theorem. (V = L). Ai?(J) = A^(QR) = A^m". j?(J), £>(QR) and <£mlx have
the same Lowenheim number and the same Hanf number. Moreover, they have re-
cursively isomorphic sets of valid sentences.

Proof. That 5£{l) <RPC ^(QR) is trivially true. The fact that J2?(QR) <RPC J^mI1 is
proven by use of pairing functions, as in Claim 1 of Theorem 1.2.2. We must now
show that V = L implies that ifm" <RPC^(I). Let a be a sentence of JS?(J) of
type r whose £-reducts are exactly the structures that are isomorphic to <L(/c), e>,
for some cardinal K, as in Proposition 2.1.3(v) (E is meant as membership). Expand
T by adding a function symbol /, and let sentence /? assert that" / is increasing and
maps the ordinals one-one onto the infinite cardinals." By 2.1.3(i)(ii), ordinals
and cardinals are true (up to isomorphism) ordinals and cardinals, so that / is
isomorphic to the aleph function and K is a fixed point, coK = K. Hence, using
GCH—a consequence of V = L—we have that K = 3K. Now add two constants
c and p and let sentence 6 assert that "c is a cardinal and p is the power set of
c". In every model of cc A /? A 9, c is indeed isomorphic to a cardinal, and p is
isomorphic to the set of constructible subsets of c (use, for example, Theorem
7.4.3(vii) in Chang, Keisler [1977], to the effect that, since K = 1K9 then L(K) =
R(K) n L; recall also that c < K). NOW, given cp e ifmI1 of type T^, we construct
cp' G if (/) as is done in Claim 2 of Theorem 1.2.2 by relativizing each quantified
individual variable to {x\x < c}, i.e. to {x\Exc}, and relativizing each set variable
to {r\Erp}, and using E instead ofe. By V = L, p is the power set of c, so that the
t^-reducts of models of cp' A a A /? A 6, upon restriction to {x \ Exc} are exactly
the models of cp. Whence we have that j£?mI1 <RPC ^i}\ The proof of the theorem
is completed by using standard tools. D

Remark. Thus, we see that under the assumption that V = L, the godelized set
Vj of valid sentences of J^(/) is not a EJJ1 subset of co, \fn,mG co (see Remark 1.2.4).
As was remarked by Vaananen [1980b, p. 198], A^(I) = Aj£?mI1 continues to
hold if V = L is weakened to V = L[0#], or even to V = If.

2.1.5 Theorem, (i) / / X is the smallest inaccessible (hyperinaccessible, Mahlo,
hyper-Mahlo) cardinal, then the Hanf number ofJ?(I) is >A.

(ii) The godelized set Vt of valid sentences of Z£(l) is neither a H\, nor a W\
subset of co.

(iii) The fact that the Lowenheim number of 5£(l) is < 2W and Vl is a A3 subset of
CD is consistent, if ZF is consistent.

(iv) The fact that <£(!) and Aj£?(/) have different Hanf numbers is consistent,
if ZF is consistent.

Proof, (i) Let cp be a sentence of if(/) of type x = {£,...} such that the £-reducts
of the models of cp are the well-founded models of ZFC + "there are no inaccessible
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cardinals". The existence of cp then follows from Proposition 2.1.3 together with
standard results from axiomatic set theory. Now, <#(A), £> \= cp, where A is the
first inaccessible cardinal and E means membership. Note that \R(X)\ = A. We
claim that for no \i > A, cp has a model of cardinality \i. Otherwise (absurdum
hypothesis) let 95 = <B, £,. . .> 1= <p with \B\ = fi. By Mostowski's collapsing
lemma, we have that 95 [ E is (isomorphic to) a transitive model of ZFC. Also,
XeB holds; for otherwise, by the assumed inaccessibility of A, we would have
| B | < \i. For a suitable transitive well-founded (end) extension T> of 95 we have
that J | = " A is inaccessible". Now, "x is not inaccessible" is a Sx predicate.
Hence, we cannot have 23 \= "A is not inaccessible", by a familiar persistence
argument. Thus, 95 \= "A is inaccessible and there are no inaccessibles"—a
contradiction. In case A is hyperinaccessible, etc., the proof is the same, since we
only need the fact that each of these properties is inherited by transitive submodels.

(ii) Assume that V1 is either Y.\oxX\\ (absurdum hypothesis). By Shoenfield's
absoluteness lemma, V1 is an element v of, say L{(DX). Let ^ be a sentence in JSf(/)
of type T ={£ , . . . } such that the £-reducts of the models of \jj are the sets (L(k), E}
as in Proposition 2.1.3(v). Let % assert further that an uncountable ordinal is in
the universe so that K > co1. Now, x e Vl holds true i f f ^ A / - ^ x e t ; holds true.
Proceeding as in Tarski's diagonal argument, we now let y e W mean that y is
the Godel number of a formula /?(x) having one free variable such that jS( y) is
false. By the above discussion, W is an element w of Lico^ and x eW holds true
i f f ^ A / - » x e w holds true. Let z be the Godel number of the formula 9(x)
which asserts that " i ^ A ^ x e w." Then zeW \R z$W. This is, of course, a
contradiction.

(iii) This is proven in Vaananen [1980b, Corollary 3.2.3]. The reader should
see Example XVII.2.4.3 and Proposition XVII.2.4.7 of this volume.

(iv) is proven in Vaananen [1983]. See also Theorem XVII.4.5.4 of the present
volume. D

Let us end this subsection with a brief examination of Qc. On finite structures,
Qc may be replaced by V. On structures of cardinality coa, Q

c behaves like Qa\
indeed many of the techniques used for the Qa—notably for 2i~aPPty equally
well to gc, as is shown in detail in the textbook by Bell and Slomson [1969, Chapter
13]. These techniques are also extensively discussed in Chapters IV and V of this
volume. We will thus limit ourselves to stating, without proof, the following
results about Qc.

2.1.6 Theorem, (i) Let T be a countable set of sentences in ^(Qc) having a de-
numerable model Then T has a model of every infinite cardinality.

(ii) Assume that all singular cardinals are strong limit. Then J£(QC) is both
axiomatizable and (co, (o)-compact relative to infinite structures.

(iii) Assume GCH, then ^(Qc) is compact relative to infinite structures. D

The logic <Sf(Qc) is not closed under relativization (and hence, it is not A-closed).
Indeed, if <£(Qc) allowed relativization, then the relativization of Qcx cp(x) to
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{y I <K.y)} would be equivalent to Ixy cp(x) A ij/(x), \jj{y\ and we could then charac-
terize the standard model of arithmetic in J^(QC) as is done in if(/) by using
Section 2.1(1). Thus, we would contradict Theorem 2.1.6(i).

Evidently, J?(QC) is not (&>, co)-compact, for Qoz(z = z) can be expressed as
3xQcz(z ^ x). In the above theorem, compactness relative to infinite structures
means that for every set T of sentences in if (<2C), if each finite 7" ^ T has an
infinite model (that is, a model whose universe is infinite), then T itself has an
infinite model.

2.2. Similarity Quantifier and Its Variants

The quantifier / says that two sets are isomorphic; the similarity quantifier S says
that two structures with a binary relation are isomorphic; that is,

91 N= Sxyuv <p(x, y\ ij/(u, v) iff (A, cp™} ^ (A, ^®>,

where q>* = {(a, b} e A2 | 91 \= <p(a9 b)}. Let a be given by

Vm, n, p\m < n < p -> ~\Sxyx'y'(m < x < y < p), (n < x' < y' < p)].

Then a discrete linear ordering with first element is a model of a iff it is isomorphic
to O , < >. By arguing as in Proposition 1.3.1, we see that i?(S) is neither (<x>, co)-
compact nor axiomatizable, nor does it have the weak Beth property.

Concerning the implicit expressive power of J£(S\ in Vaananen [1980a] it is
proven that Ai?(S) = Aj5fmI1. The easy direction of this theorem uses pairing
functions as in Claim 1 of Theorem 1.2.2. For the other direction, we first show that
well-foundedness is RPC-definable in if (S). As a matter of fact, the quantifier / is
clearly RPC in jSf(S). But / is also the complement of an RPC-class in J^(S), since
<A, U, V) {= -ilxyUxVy iff the disjoint sum B of U and V satisfies <£, U2)£
<B, V2}. Therefore, / is EC in Ai%S) and, by using Proposition 2.1.3, well-
foundedness is RPC in i?(<S), as was required. To conclude the proof that
AJSf(S) = Ai?m!I, we now try to express genuine power set in Aj£?(S), and, finally,
argue as in Claim 2 of Theorem 1.2.2.

Thus, if we try to express isomorphism as a primitive logical notion, we may
well attain the implicit expressive power of ifmI1 by means of a single quantifier.
Note here the analogy with the case of if (QH) in the framework of partially ordered
quantification.

2.2.1 Variants of S. We can consider isomorphism between certain binary
relations such as orderings or equivalence relations. Thus, we might define, say,
SDLO and 5EQ as follows :

y),iKv,w) iff (A, <p*y £ (A, tfr«>,
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and xjj® is a dense linear ordering over its field;

91 N SEQxyvw <p(x9 y), ^(v, w) iff {A, q>*} * {A, ^*>,

and i/̂ 91 is an equivalence relation over its field.

The list of such variants of the quantifier S is potentially infinite. However,
we shall limit our attention to SDLO and SEQ. It is not difficult to see that AJSf (SEQ) >
AJSf (7) (\A\ = | B | iff the equivalence relation given by equality on A is isomorphic
to equality on B\ and that Aif(SEQ) < Aif(7) (two equivalence relations 91 and
95 are isomorphic iff for every A, 91 and 93 have the same number of equivalence
classes of power X). Therefore, assuming F = Lwe can apply Theorem 2.1.4 to
the effect that Aif(SEQ) = AifmI1. Turning to SDLO, we immediately see that
if(Qi) < Aif(SDLO) ( | 4 | > « ! iff there are two nonisomorphic dense linear
orders without endpoints on A). It is also proven in Vaananen [1980a] that
-Sf(6o) ^ Aif(SDLO) and that if(SDLO) < Aif(SEQ) is an independent statement
ofZF.

2.3. The Quantifiers Ql* and Qpm

For 91 an arbitrary structure of finite relational type T, let Qm have as its defining
class /9I = {95193 s 91}. Clearly, 2{Qm) = <£„„ iff 91 is finite iff £>(Qm) is
compact. Next, we will consider the denumerable case.

2.3.1 Theorem. Let & = &(Qm\ with \A\ = co. Then <£ does not have the Craig
property. Furthermore, $£ is (co, a))-compact iff there is a first-order sentence a with
no finite models whose denumerable models are exactly the models in 791.

Proof. The proof is by cases. We will begin with

Case 1. 3a e JS?^ whose denumerable models are exactly those in 791.
Then, let \\i e jSf be defined by © \= i// iff 93 has two sorts s and s' and / maps
95 Is s one-one into 95 [ sf and 95 [ s' e 791. Then we see that the class of countable
sets is RPC^. Now, let cp e if be defined by X) 1= cp iff D <£ 791 and X) f= a and g
maps 7) one-one into D' §c 7). We then see that the class of uncountable sets is
RPCV Therefore, Qt is EC in Aif so that AJSf > A^QO- The proof for Case 1
can now be completed as follows:

Subcase 1.1. a may be assumed to have no finite models.
Then 95 e 791 iff 95 N^( Q l )a A - I ^ X ^ C = x). Hence, 79teEC^( ? l ) . Whence
if < if(6i). By the above discussion, we have AJS? = Aj^XQi). This shows that
if is (co, co)-compact (as is if(Qi) and A-closure preserves compactness) and that
$£ does not have the interpolation property (Aif(2x) does not, see Hutchinson
[1976]).

Subcase 1.2. every a as in Case 1 has some finite model.
Then a need have arbitrarily large finite models; let 6 s if be given by © |= 6 iff 95
has sorts 5,5', s" and/maps 95 f s one-one into 93 [" 5', g maps © f 5' one-one into
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95 {s", 95 p s" e 791, 95 {sf $ 791, 95 f s ' N a ; thus 95 P s can be of every finite (but
of no infinite) cardinality and —\Q0 is RPC_^; trivially Qo is RPC^, so that Aif >
Aif (Qo) and if cannot be (co, co)-compact (as Aif is not, and A-closure preserves
compactness). Actually we can find a recursively enumerable (r.e.) set of S£-sen-
tences which is a counterexample to compactness, i.e. if is not r.e. compact. Then
if does not have the Beth property (hence interpolation fails for if), by a well-
known general fact in abstract model theory, to the effect that the Beth property
implies r.e. compactness in every finitely generated logic (see, for example,
Vaananen [1977b], or Makowsky-Shelah [1979b, Theorem 6.1], or Theorem
XVII.4.2.9 of the present volume).

Case 2. ~~13a e if ww whose denumerable models are exactly those in 791.

Subcase 2.1. 395 denumerable such that 95 = 91 and 95 ^ 31.
Let {In}n<(O: 91 ̂ w 95, as given by the Frai'sse-Ehrenfeucht characterization of =
(see Chapter II.4.2). Rename the sorts and symbols of 95. Let 9M = <9I, 95, 70, co,
<, L, J , />, where Lmnp iff p e In (for p e 70, n e OJ), Jmpab iff p(a) = b (for a e A,
b e B\ fm maps A one-one onto B. Take a finite subtheory T of Th^ 901
such that for every W N T, W = <9T, 95', 7'0, D\ <', L', J ' , / '>, <£', <r> is still
a discrete linear order with first element, L\ J\ still codes in W a D'-sequence of
sets of partial isomorphisms with the back-and-forth property so that 9T = S',
/ ' maps A one-one onto B', 91'e 791 and 95^791. For details about T, see,
for example, Flum [1975b, proof of Lindstrom's theorem]. If if is (co, co)-compact
(absurdum hypothesis) then it would be consistent to assume that <D', <'>
has an infinitely descending chain. Hence, 8T = p 95'. Whence, 91' = ©' by Karp's
back-and-forth argument, since / ' ensures that SB' is denumerable also. But, then,
the basic isomorphism axiom for J^ implies that 95' e 791—a contradiction. We
have thus actually proved that ^£ is not r.e. compact. Hence, by the well-known
general results quoted above (see Theorem XVII.4.2.9), ^£ does not have the Beth
(resp., Craig) property.

Subcase 2.2. —1393 denumerable such that 95 = 91 and 95 g 31.
For n = 1, 2 , . . . , there are 95n ^ 91, \Bn\ = (o, and {/0 /„} such that
{70 , . . . , 7J:9I ^n 2?M (otherwise 3 a e i f ^ whose denumerable models are
exactly those in 791, by the Fra'isse-Ehrenfeucht characterization of =, thus,
we contradict our assumptions). So let 9W,, = <9I, 93n, 70, co, < ,L , J , / , 5> as
in the above proof of Subcase 2.1, where 5 is the successor function. Let Tn be a
finite theory such that for every Wn N Tw, L and J' code a finite sequence of
sets of partial isomorphisms {7Q, . . . , 7̂  S(O)}:91'=„ S^, with \B'n\ = \A\,
91' G 791, 95; $ 791. Now, T = \J Tn is inconsistent, by the Fra'isse-Ehrenfeucht
characterization of = as well as by our assumptions, and T yields a counter-
example to the r.e. compactness of 5£. Thus, the Beth property also must fail for
5£, for we can argue as at the end of Case 1. The examination of Subcase 2.2 con-
cludes the proof of our theorem. D

For 91 a structure of finite relational type T, let Qpm have as its defining class
P791 = {95195 ^p 91} = {95195 = ^ _ 91}. Clearly, we have that ^(Qpm) = ^ ^
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2.3.2 Theorem. Assume that PIS&^EC^^, where 91 need not be denumerable.
Then, A<£(Qpm) > AJ&?(QO). In particular3, &(Qpm) is not (co, co)-compact and
does not have the Beth property. Moreover J?(Qpm) is not axiomatizable.

Proof. The proof is by cases. We begin with

Case 1. 393 such that 93 = 91 and 93 £p 91.
Let {/„}„<„: 91 ^ w 93 and 9M = <9l, 93, Io, co, <, L, J> with L and J coding
{In}n<(a as in the proof of Subcase 2.1 of Theorem 2.3.1. By a similar argument,
we exhibit a finite subtheory T of Th ̂  90? from which a counterexample to r.e.
compactness can be obtained. Hence, the Beth property fails also for <£ = J?(Qpm).
A closer examination of T shows that <co, <> is RPC^; and, hence, <£ is not
axiomatizable, by GodePs incompleteness theorem.

Case 2. 93 = 91 implies 93 ^p 91.
Then, for n = 1, 2 , . . . , there is a »„ such that 93n £„ 91, and 93n <£ P/9I (otherwise,
P/9I would be EC in i ? ^ ) . Now argue as in Subcase 2.2 of Theorem 2.3.1, to
obtain a counterexample T to r.e. compactness and hence to the Beth property in
&(Qpm). Indeed, T is a recursive set of sentences so that, by a trick method which
goes back to Craig and Vaught [1958], one can code T into a single sentence
whose < -reducts are all isomorphic to <co, < >. Thus, {co, < > is RPC in <£(Qpm),
and the proof is concluded by arguing as in Case 1. D

Remarks. Barwise [1974a] proved that A<S?(Q0) = J ^ +, where co+ = cô K is the
smallest admissible set to which co belongs (see also XVII.3.2.2). More generally,
for U ^ co, let {co, U}+ denote the smallest admissible set having co and U as its
elements: then we have

2.3.3 Theorem. A^(QPI<(O'<U>) = A^{QI<(O<^y) = ^<(O,U>+.

Proof. The reader is referred to Makowsky-Shelah-Stavi [1976, Theorem 4.1].
See also Theorem XVII.3.2.3 of this volume. D

2.4. Bibliographical Notes

The quantifiers QR and / were introduced respectively by Rescher [1962] and
Hartig [1965]. Failure of (co, co)-compactness and axiomatizability for 5£{l) was
proven by Yasuhara [1969] and Issel [1969]. The latter author also proved that
(Dw is the Hanf and the Lowenheim number of the fragment of if (/) with equality
and otherwise only unary relation symbols. Proposition 2.1.3(i) goes back to
Lindstrom [1966a, p. 192]. For Theorem 2.1.4, see, for example, Vaananen
[1978] and Pinus [1979b]. Lower bounds for the Hanf number of JS?(/) were also
discussed by Fuhrken [1972] and Pinus [1978]. Further information on i?(/)
can be obtained from Vaananen's papers quoted in Section 2.1 as well as from
Vaananen [1978, 1979b]. Named after C. C. Chang, the quantifier Qc is studied
in detail in Bell-Slomson [1969]; the fragment containing = but otherwise only
unary relations, was studied by Slomson [1968], who proved that co is both its
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Lowenheim and its Hanf number. He also proved the decidability of this frag-
ment—a proof of the decidability of the corresponding fragments of if(QH) and
if(/) can be found in Krynicki-Lachlan [1979]. An axiomatization of the frag-
ment of if(Qc)—without equality—was given by Yasuhara [1966a]. The quan-
tifiers S, SDLO, SEQ and their relativized versions are presented in Vaananen
[1980a]. The quantifiers Qm and Qpm are studied in Makowsky-Shelah-Stavi
[1976]. The reader should also see Makowsky [1973] for more in this connection.

3. Cardinality, Equivalence, Order
Quantifiers and All That

In this section, we will consider quantifiers which assert that a structure has a
certain property. In Section 3.1 we will study properties of sets and equivalence
relations. In Section 3.2, we shall focus attention on linear orderings. Other cases
are examined in Section 3.3.

3.1. Cardinality and Equivalence Quantifiers

Let Q have a class of sets as its defining class. By the isomorphism property, Q
must express some property of cardinals. As a typical example, consider the
quantifier Qa which asserts that "there are at least coa-many elements", where a
is an ordinal > 0. The Qa's are extensively studied in Chapters IV and V. The
following result extends to quantifiers of the form Qxx . . . xn(jp1(x1),..., (pn(xn).

3.1.1 Theorem. Assume that each quantifier Ql occurring in (i) through (iii) below
is a class of sets. Furthermore:

(i) Let if = &(Q!)ieI. ifSe is (co, co)-compact and A-closed, then <£ = i ^ w .
(ii) Let <£ = $£(Q}, . . . , Qn). If & obeys interpolation, then <£ = if>(O(O.

(iii) For a > 1 a fixed ordinal, let if = ^ ( g a , Q*)ieJ. Then & is not A-closed.

For the proof of this result we need the following

3.1.2 Lemma. For K, X> CO, let 91̂  = <̂ 4, E}, where E is an equivalence relation
on A having X equivalence classes, each of cardinality K. Let £?° = ^(Qj)jej, where
each Qj is a class of sets. Then 2I£ =^o 51* .

Proof of Lemma 3.1.2. Let J^c = ^^(QXeOn- Then, 91* =^c 2l£, as was observed
by Caicedo [1979, p. 93] with the help of a back-and-forth argument (this refines
Keisler's proof that 2 C =<?iQl) 2I£J; see II.4.2.8). We also have that ^-equiv-
alence is finer than if °-equivalence, as was proven in the same paper by Caicedo
([1979, Lemma 4.2]). Also see Vaananen [1977c].
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Proof of Theorem 3.1.1. (i) Assume that ^ # &)
(a(O. Then, by definition of if, there

is a sentence cp in the pure identity language of 5£ which is not equivalent to any
ifwco-sentence. We now consider

Case 1. For some A > co, A and co are separated by cp (say, co \= & cp and X\£#cp).
Using a choice function from A into 91^ (that is, a bijection from A onto 91 ̂ /E) and
a choice function from co into 91*, we see that 91* and 91* belong to complementary
RPC classes in i£. So, if we use A-closure, 91* and 91* can be separated by some
sentence in if—thus contradicting Lemma 3.1.2.

Case 2. For every A > co, co^=^>cp iff X\=^cp (say, co \=&(p).

Subcase 2.1. In < co such that cp has no model of cardinality > n.
Then, without loss of generality, cp has no finite models, so that 5£ > ^(Q0X and
^£ is not even r.e. compact.

Subcase 2.2. Both cp and -i cp have arbitrarily large finite models.
Then, the theory whose sentences are ~icp, 3~1x(x = x), 3-2x(x = x) , . . . is a
counterexample to r.e. compactness.

Subcase 2.3. cp has arbitrarily large finite models, but —i cp does not.
Then cp is first-order, contradicting our assumption.

(ii) By inspection of the proof of (i), we see that r.e. compactness and A-closure
are actually sufficient to imply that ^£ = ifwco. But, if 5£ obeys interpolation,
then JS? has both Beth and A-closure. Hence, 5£ is r.e. compact, since 5£ is finitely
generated by assumption.

(iii) Using choice functions, we see that 91^ and 9l^a belong to complementary
RPC classes of if(Qa), and hence of if also. If if were A-closed, then some sentence
in ^£ would separate these two structures, thus contradicting Lemma 3.1.2. This
completes the proof of the theorem. •

Let X = {{A, £> \E is an equivalence relation on A}. Then Q is an equivalence
quantifier iff its defining class is a subclass of X.

3.1.3 Theorem. Let if be a compact logic with the interpolation and the Feferman-
Vaught property (FVP). Let Q be an equivalence quantifier which is EC in ££. Then
Q is EC in &„„.

Proof. We pose a denial, and let K be a class of equivalence relations which is EC
in !£ but not in !£<»<» • Then K must separate two elementarily equivalent structures
91 = (A, E} and 91' = <4', F> (say, 91 e K and 91' £ K) by a familiar open cover
argument using the compactness of ^£ (for a similar argument see, for example,
Theorem III. 1.1.5). We now proceed by cases:

Case 1. Each equivalence class of 91 and 91' has infinitely many elements.
Thus, let JV and M be infinite sets such that |JV| = co, |M| > \A u A'\, N =<?M.
Such sets JV and M clearly exist by the assumed compactness of !£. By FVP, we
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have that [91, 9T, AT] = ^[91, 91', M] (as three-sorted structures). By adding two
functions/and/', we can expand [91, 91', M] to a model of the sentence cp which
asserts that " / a n d / ' are injections of A and A' respectively into the third sort s3".
On the other hand, [91, 91', N] can be expanded to a model of the conjunction i//
of the sentence asserting that "sort s3 is injected by h and h into each equivalence
class of 91 and 91', respectively" (where h is, for example, a binary function h(x, z\
x in the first sort, z s s3, and /i(x, •) maps s3 one-one into the equivalence class of
x in 91) and of the sentence which asserts that "either g0 is a bijection of 9t/£ onto
9T/F, or g and #' are injections of s3 into 9I/JE and 9I'/£', respectively". Since if
has compactness and interpolation, then if satisfies Robinson's consistency, to
the effect that cp A \j/ has a model [23, 95', P , . . . ] which is also a model of
Th^[9I, 91', AT] (that is, a model of Th^[9l, 91', M]). In this model, we have that
95 £ 93' by the Cantor-Bernstein theorem, and 95 =^9t , 95' =^91 ' , thus con-
tradicting the isomorphism axiom for if, since K separates 91 and 91'.

Case 2. Each equivalence class of 91 and 91' has finitely many elements.
Then let n = 1, 2 , . . . . Let TCM, K'H be such that in 91 there are Kn equivalence classes
with n elements and in 91' there are Kf

n such classes. If Kn is finite, then Kn = K'n
(since 91 = 91'). If Kn is infinite, then co can be injected into 9I/£ and into 9l'/£'.
Let [91, 91', AT] = ^ [91, 91', M] be as above. Then [91, 91', AT] can be expanded to
a model of the sentence asserting that " / is an injection showing that there are
more (>) than | N | equivalence classes with n elements in 91, and/ ' does the same
for 91', or else g0 is a bijection showing that such classes are as many in 91 as in
91'". On the other hand, [91, 91', M] can be expanded to a model of the sentence
which asserts that "h and b! show that there are less (<) than \M\ equivalence
classes in 91 and 91' with n elements, or else g is a bijection showing that such
classes are as many in 91 as in 91'". Using Robinson's theorem as was done in Case
1, we exhibit a model [23, 23', P , . . . ] of all these sentences together, and of
Th^[9l, 91', N] as well so that © ^ 25' (since Kn = Kf

n for all n e col), 91 = ^ 25 and
91' = ^ 23r, again contradicting 91 e K and 9T <£ K.

Case 3. Neither Case 1, nor Case 2 occurs.
Then let 91 x be the substructure of 91 only containing the equivalence classes
having infinitely many elements, and let 9I2 be the substructure of 91 containing
the equivalence classes with finitely many elements. Let 9li and 91'2 be similarly
defined with regard to 91'. Then 9IX = 9l'l9 and 9I2 = 91'2 (by using standard
results of first-order model theory, as 91 = 91'); so, by the arguments given for
Cases 1 and 2, we see that 9Ij = ^ 9i; and 9l2 = ^ 9l2. By FVP, we have that
[211, 2I2] =<? [2I'i, 2I2]. Now consider structure 2R = [9I1? 9t2, 91,/, g\ where/
and g are the canonical embeddings of 91 x and 9I2 respectively into 91. Let W be
similarly defined, using new symbols for / ' , g' and 91'. If 91 ^ # 91' (absurdum
hypothesis), then [9Il9 9I2] and [9i;, 91'2] have expansions TO and W with
Th^ 901 u Th^ W inconsistent. Hence, by Robinson's consistency, they are if-
inequivalent, thus contradicting the fact that [9l1? 9l2] = ^ [91;, 9l2]. Therefore,
91 and 91' must be if-equivalent. This, in turn, contradicts our initial absurdum
hypothesis according to which K separates 91 and 91'. D
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As actual examples of equivalence quantifiers, consider the Q% (a > 0), which
are defined by Q% = {<A, E}\E is an equivalence relation on A with at least
(oa distinct equivalence classes}. See Feferman [1975]. We thus have

3.1.4 Theorem, (i) jS?(Qa) ^ i?(Q*), whenever a > 0;
(ii) AJS?(QJ = Aif(ea

E);
(iii) JS?((?a) and S£{($) have recursively isomorphic sets of valid sentences, the

same Hanf and same Lowenheim numbers (the latter being equal to coa),
and equal compactness spectrum;

(iv) interpolation fails for J?(Q%), ifcoa is regular.

Proof, (i) Immediate from Lemma 3.1.2.
(ii) Using choice functions, one sees that AJ?(Q%) < Aif(Qa); on the other

hand, using the equivalence relation given by identity ( = ), one also sees that

(iii) Immediate from (ii), together with standard results of abstract model
theory; there is no problem for the Hanf number in this case, see Corollary
XVII.4.3.4 and Section 4.5 in the same Chapter.

(iv) for cDa regular, Aif(Qa) does not obey interpolation (see Hutchinson
[1976b]). D

Thus each J^(6«) is closely related to S£(Q^\ the latter logics are studied
extensively in Chapters IV and V.

3.2. Order Quantifiers

Let X = {{A, R}\R is a partial ordering relation}. Then Q is an order quantifier
iff its defining class is a subclass of X. One notable example of an order quantifier,
Qcf<o _ | ^ <> | < is a linear ordering of cofinality co}, has been discussed in
detail in Chapter II, where it is proved that ^(Qc{(O) is compact, axiomatizable
and has Lowenheim number equal to co1. From a general result due to Ebbinghaus
[1975b] one can infer that j£?(Qcft0) does not have the interpolation property
(Counterexample II.7.1.3(c)). It is an open problem whether there exist extensions
of J£?(Qcf w) generated by a set of quantifiers and satisfying Robinson's consistency
theorem. Such extensions (if any) would have many syntactic and algebraic
properties in common with first-order logic.

The order quantifier QD gives rise to a logic having many properties in common
with ^(QiX where QD = {{A, < > | < is a dense linear ordering with a countable
dense subset}. As a matter of fact we have:

3.2.1 Theorem, (i) <Sf(QD) is (co, co)-compact, axiomatizable and its Lowenheim
number is co1;

(ii) j£?(QD) does not have the interpolation property.

Proof, (i) QDxy q>(x, y) iff {<x, y} | q>(x, y)} is a dense linear ordering and aa s "s is
dense in the ordering (p(x, y)". Now refer to Section IV.4.

(ii) From Ebbinghaus [1975b]. D
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By contrast with QD, an order quantifier having many properties in common
with the quantifier / is R = {<4, < > | < has the order type of a regular cardinal}.
Note that Ai?(gR) < A^(R) < Aj^mI1 (for the first inclusion, note that \A\ < \B\
iff there is a regular cardinal, namely \A\ + , and injections of \A \+ into B and of A
into an initial segment of | A \+; for the second inclusion, proceed as in Claim 1
of Theorem 1.2.2). Also, by saying that a discrete linear ordering with first element
has the order type of a regular cardinal, we can characterize <co, < > in if (R).
Hence, the latter is not (a>, co)-compact, not axiomatizable, and does not have the
weak Beth property (see Proposition 2.1.2). In addition, Proposition 2.1.3 and
Theorem 2.1.5 above can be applied to JS?CR) as well.

3.2.2 Theorem, (i) IfV = L, then A^(I) = A^(R) =

(ii) the fact that A^(R)^ A<£(1) is consistent, if "ZF + there are uncountably
many measurable cardinals" is consistent;

(iii) the fact that A^(R) # Aj^mI1 is consistent, ifZF is consistent.

Proof. The argument for (i) is by the above discussion and by Theorem 2.1.4.
(ii) See Vaananen [1978, 3.1];

(iii) See Vaananen [1980b, Corollary 3.2.5 and the remark following it]. See
also Chapter XVII, passim. D

Our final example of an order quantifier is the well-order quantifier W, which
is defined by 911= Wxy cp(x, y) iff {<x, y) e A2 |9I |= cp(x, y)} well-orders its field.
Clearly, we have that <co, < > can be characterized by a sentence of£f(W\ whence
<£{W) is not (co, a/)-compact, not axiomatizable, and does not have the weak
Beth property. Theorem 2.1.5(i) can be applied to <£{W) with the same proof.

3.2.3 Theorem. Let <£ = &(W). Then we have:

(i) The godelized set of valid sentences of J£ is the complete H\ subset ofco;
(ii) the Lowenheim number of $£ is co;

(iii) Aif < Aj§?wia)1, and Aif < Aif(7);
(iv) assuming that V = L, the Hanf number of <£ equals the Lowenheim number

of J^m";
(v) the smallest logic $£'>££ having the Beth property is not A-closed;

(vi) the smallest logic 3?" > <£ having the weak Beth property is not a sublogic

Proof (i) follows from Kotlarski [1978, p. 126]. In this connection, the reader
should also see Corollary XVII.4.3.7 of the present volume.

(ii) We extend the usual proof of the downward Lowenheim-Skolem theorem
for &mm by witnessing also that -i Wxy(p(x, y) with the help of an infinitely
descending chain of constants.

(iii) is immediate from (ii).
(iv) See Vaananen [1979b, p. 316].
(v) See Makowsky-Shelah [1979b, p. 222]. Note that, as a consequence, the

Beth property does not imply Craig interpolation.
Finally, for (vi) see Theorem XVII.4.1.3. D

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.010
https://www.cambridge.org/core


230 VI. Other Quantifiers: An Overview

Let us conclude this subsection with a note on some general facts about binary
quantifiers. Assert that Q is binary iff Q has the form Qx^^ . . . xnyn (Pi(x^ yx),...,
(pn(xn, yn). Krynicki-Lachlan-Vaananen [1984] have proven negative results con-
cerning binary quantifiers along the lines of the negative results about monadic
and equivalence quantifiers that were given in Section 3.1 above. For example,
binary quantifiers cannot count the dimension of a vector space in much the same
way as monadic quantifiers cannot count the number of equivalence classes of an
equivalence relation. Furthermore, there exists a ternary quantifier which is not
definable by using binary quantifiers only.

3.3. Other Quantifiers

In this subsection we briefly deal with other quantifiers occurring in the literature.
The reader is referred to Chapter IV for the "almost all" quantifier aa, as well as
for the Magidor-Malitz quantifiers. Other classes of quantifiers are considered in
Chapter III. Quantifiers arising in connection with infinitary languages are dealt
with in Part C. For second-order quantifiers see Chapters XII and XIII. Quantifiers
for enriched structures are studied in Chapter XV (but see also Section 4 below).

To introduce our next class of quantifiers we need the following:

3.3.1 Definition. A class K of structures is inductive iff it is closed under unions of
chains (with respect to the substructure relation ^ ) . For A a cardinal, K is A-
inductive iff K is closed under A-unions, where 91 = {Jp<a 91̂ (910 ^ 9Ii £ , . . . ) is
a X-union iff for every B c A{= (J Afi) with \B\ < A, there is /? < a such that
B^AP.

This notion clear, then we have

3.3.2 Theorem. IfK is an arbitrary class of structures of type T, with K closed under
isomorphism, and if A is an arbitrary cardinal the following are equivalent:

(i) Both K and its complement K are X-inductive;
(ii) V91 e Str(r) 39IO c 91, with \A0\ < X such that V9J, 9I0 <= 93 c 91 implies

Proof See Makowsky [1975b, Theorem 2.16]. D

Following Makowsky [1975b], we call any class (or quantifier) Q, X-securable
iff Q satisfies either of conditions (i) or (ii) in Theorem 3.3.2 above, co-securable
classes are called continuous by Tharp [1974]. From the definition it follows that
3 and V are 2-securable, Qa is coa+1-securable, W is avsecurable, Qc is never
A-securable. Moreover, QD is co2-securable if there is no Suslin tree (see Makowsky
[1975b]). We also have

3.3.3 Theorem. Let K be an arbitrary class of type T, with K closed under iso-
morphism:

(i) K is n-securable, for some n e co, iff both K and K can be defined by V3-
sentences of &„„;
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(ii) K is co-securable iff both K and K are inductive;
(iii) if K is co-securable and has type x' = {Uu ..., Um}, where each Ut is a

unary relation, then K is EC in J^wco;
(iv) for X a regular cardinal, let J? = ^(Ql)ieI, where each Ql is X-securable;

then, if X < co, the Lowenheim number of J£ is co; if X > co, then each con-
sistent sentence of J£? has a model of cardinality < X; in particular, the
Lowenheim number of <£{W) is co;

(v) J£?WlC0 is the smallest A-closed logic containing all the co-securable quantifiers.

Proof (i) See Makowsky [1975b, Corollary 3.11]. Observe here that Tharp [1973]
proved that if K is rc-securable, then K is EC in JSfWC0.

(ii) See Makowsky [1975b, Theorem 2.14]; but also see Miller [1979].
(iii) See Tharp [1974, Theorem 5].
(iv) See Tharp [1974, Theorem 7], for the case X = co; see Makowsky [1975b,

Theorem 2.1], however, for the general case. Recall that W is an co-securable
quantifier.

(v) See Makowsky [1975b, Corollary 5.6]. D

We now deal with quantifiers which are used to express the fact that "there
exist large sets of indiscernibles". Given a structure 91 e Str(r), let q^ = {B c A \B
contains an infinite set of order indiscernibles in 91}, and let q& = {B c A \ B con-
tains arbitrarily large finite sequences of indiscernibles in 91}. The resulting logics,
j£?(27) and S£(QF) are syntactically the same as, for example, J£(Qi). Moreover,
their semantics is obtained by letting, for instance,

911= Q*x cp(x) iff {x e A \ 911= cp(x)} e g£.

Notice the dependence of Q1 on the whole of 91, rather than on its universe only.
Steinhorn [1980] has a number of categoricity and quantifier elimination results
on Q1 and QF (see also [1981]). He also proves that ^(QF) does not have the
interpolation property.

Thomason [1966] introduced a logic <£q with free variables for quantifiers.
The idea here was to examine those properties which are common to all generalized
quantifiers. If Q is any such variable, then Qxx . . . xn cp^Xi),..., cpn(xn) is a
formula of jg?€. If \j/{... Q) is a sentence of &q9 then a model of \jj{... Q) consists
of an ordinary structure 90? together with a quantifier (in the sense of Mostowski)
Q which serves as an interpretation of Q. Sentence i//(... Q) is valid in £fq iff (901, Q)
satisfies \j/(... Q) for all structures 901 and all interpretations Q. Yasuhara [1969]
wrote down a sentence characterizing the natural numbers in S£r Therefore, J^
is neither (co, co)-compact, nor axiomatizable. The sets of valid sentences of <£(1)
and J£q are recursively isomorphic.

Now let i£Q be just as S£q, but with quantifier variables to be interpreted over
binary quantifiers. Then, in Vaananen [1980a], it is proved that S£Q and <Sf(QH)
have recursively isomorphic sets of valid sentences. Roughly speaking, JS?€ is to
2(I) as &Q is to H
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3.4. Bibliographical Notes

Theorem 3.1.1 is due to Caicedo [1979]. Using the Feferman-Vaught property,
Makowsky [1978c] proves a stronger form of Theorems 3.1.3 and 3.1.1 for arbitrary
monadic and equivalence quantifiers. The equivalence quantifiers Q^ were first
introduced by Feferman [1975], after Keisler's counterexample to Craig's inter-
polation in J^Cgi). The quantifier Qcfw is studied in Shelah [1975d]. For other
compact quantifiers, see Rubin-Shelah [1980], where it is proved that compactness
does not imply axiomatizability (if V = L). For the quantifier R, see Vaananen
[1978, 1979b, 1980b]. For further information about QD see Makowsky-Shelah-
Stavi [1976]. For free quantifier variables and their associated logics, see
Thomason-Randolph Johnson Jr. [1969], Yasuhara [1966b], Bell-Slomson
[1969], Vaananen [1979d, 1980a], and Anapolitanos-Vaananen [1981].

4. Quantifiers from Robinson Equivalence
Relations

Although compactness and interpolation are often regarded as desirable properties
of logics, in general quantifiers do not take care of such properties. For example,
none of the logics described in the preceding sections has the Robinson
property. A logic i? = if(<2')iej has compactness and interpolation iff if has the
Robinson property (see Chapter XIX): the latter only depends on =#. Thus, we
may naturally ask which equivalence relations ~ with the Robinson property
(for short, Robinson equivalence relations) do generate a nice logic if = JSfCQOie/-
Recall that ~ is bounded iff for every type T there is KX such that the number of
equivalence classes of ~ of type T is KX. ~ is preserved under reduct iff 91 ~ 93
implies 91 [T ~ 93 [T, for each, T ̂  % = T^. Preservation under renaming is
defined analogously. A quantifier Q belongs to hull(~) iff =^{Q) is coarser
than ~ (that is, 91 ~ 93 implies 91 = #iQ) 93). We say that ~ is separable by
quantifiers iff whenever 91, 93 are structures of type % and not-9l ~ 93 there is
T' C T and Q e hull(~) of type T' such that 91 [ %' e Q and 93 { T' £ Q (intuitively,
Q separates 91 and 93). We finally let j£f(~) = J2?{<2|Qehull(~)}. These ideas
clear, we now recall the following results from Chapter XIX:

Theorem. Let ~ be an arbitrary bounded Robinson equivalence relation on the
class of all structures and assume that ~ is preserved under reduct and renaming,
is coarser than ^ and finer than =. Then, adopting the above notation we have:

(i) JS?(~) is the strongest logic if such that =# is coarser than ~ ;
(ii) if, in addition, ~ is separable by quantifiers, then i f ( ^ ) is the unique (up

to equivalence) logic if such that =•# = ~ . Furthermore, ^(^) is compact
and has the Craig interpolation property. D
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Corollary. The following hold up to equivalence:

(i) SPnw *s the unique logic $£ such that =# = = ;
(ii) topological logic S£t is the unique logic <£ such that =# — =l holds, where

=f is topological co-partial homeomorphism; the open and the interior
quantifiers and their n-dimensional versions are in hull(=r);

(iii) the same as the first part of (ii) for n-dimensional monotone logic (n =
1,2,3,...). •

Note that in two-dimensional monotone logic we have a model-theoretical
framework for such notions as uniform continuity and metric completeness (see
Robinson [1973, p. 511]). For topological and monotone logic see Chapter XV,
and Flum-Ziegler [1980]. The equivalence "Robinson Consistency = Compact-
ness + Craig Interpolation" was first proved in Mundici [1982b] (and was
announced in Mundici [1979a, b]) and, independently, in Makowsky-Shelah
[1983]. The above theorem, as well as (i) of the corollary were first proven in
Mundici [1982a]. Parts (ii) and (iii) of the corollary can be found in Mundici
[1982c, Hand 198 ?b].

By the above theorem, any separable Robinson equivalence relation ~
canonically generates a nice set {Q*};e/ of quantifiers. In order to eliminate re-
dundancy, we may restrict attention to subsets of hull(~) of minimal cardinality
but which are still capable of generating J£?(~). Once JS?(~) is written out as
^{QIQ e B}, f°r B any such minimal set, the quantifiers in B are enough to give a
full account of all the syntactic as well as algebraic properties of jSf (~).

In the absence of a Kreisel-like program for quantifiers, the above theorem
and corollary may also give some hints in the search of (sets of) quantifiers such
as B. One might, for instance, investigate whether letting Q range over the ele-
mentary classes of Aif(Qcfw), one can encounter an element of hull(~), for ~ a
bounded separable Robinson equivalence relation # =. As a first step in this
direction, one would check whether the compact logic J^iQ) obeys interpolation.
The progression from the open and the interior quantifiers, to their multi-
dimensional versions, and from the latter to topological logic <£t shows that this
program is feasible. Incidentally, the role played by restricted second-order
quantifiers for <£t shows that the usual first-order quantifiers do not have the sole
right of producing good syntaxes (see also Chapters XII and XV in this respect).

In Mundici [1982e], the author tried to obtain Robinson equivalence relations
and their associated quantifiers as a byproduct of more fundamental objects, such
as (suitably generalized) back-and-forth approximations of isomorphism. Indeed,
this can be done for = and ='. In addition, back-and-forth techniques already
pervade (abstract) model theory.
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Chapter VII

Decidability and Quantifier-Elimination

By A. BAUDISCH, D. SEESE, P. TUSCHIK, and M. WEESE

The decidability of the elementary theory for a given class K of structures reflects
a certain low expressive power of the elementary language with respect to that
class. Therefore, it is natural to look for stronger logics L such that K has a decid-
able L-theory. The rigorous establishment of decidability for the L-theory of K
often provides results about the L-definable properties and L-equivalence of struc-
tures in K. This means, then, that investigations into the decidability of the L-
theory of K are closely related to the L-model theory of K.

In this chapter we will investigate the decidability of such logics. We will
concentrate on Malitz quantifiers (particularly on cardinality quantifiers) and
Hartig quantifiers as well as on stationary logic. The first result in this direction
was the decidability of the theory of unary predicates without equality in the logic
with the quantifier "there are Ka many". This result was proven in a fundamental
paper by Mostowski [1957]. Topological and monadic second-order logics are
treated in other chapters of this volume; and, we therefore, will not consider
them here. However, we wish to emphasize at this point that results concerning
the latter do have important consequences for the material that will be presented
in our discussions.

Our chapter is basically organized along the lines sketched below. First, with
respect to three main methods of proving decidability, there is a division into three
sections which are respectively entitled Quantifier-Elimination, Interpretations, and
Dense Systems. In each of these the general method is introduced and then clarified
with respect to several concrete classes of structures. These classes are: the class of
modules and abelian groups (Section 1), the class of well-orderings (Section 2), and
the classes of linear orderings and boolean algebras (Section 3). At the end of
each subsection we refer to some further results without making any claims that
the discussions given present a complete picture of the material. However, the
reader will find references to most of the corresponding investigations in the
bibliography given at the end of the volume.

Much of the material of this chapter is related to our text (see Baudisch-Seese-
Tuschik-Weese [1980]), in which the reader can find more detailed proofs as well
as some similar investigations on the class of trees.

We wish to express our gratitude to Philipp Rothmaler who contributed so
many of his ideas and so much of his time and energy to the creation of this chapter
that we can justly say that he is a co-author of this study.
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236 VII. Decidability and Quantifier-Elimination

1. Quantifier-Elimination

1.1. The Framework

In general an extended language has a more expressive power than the original
language. However, in many cases there are model classes which cannot be
further distinguished in the extended language. Such model classes often have
interesting properties, and it is this very fact that leads us to the following

Definition. Let L be a sublanguage of a language L' and K a. class of L'-structures.
We say that L is reducible to L with respect to the class K if for every formula
cp(x) of L' there is a formula if/(x) of L such that K |= cp{x) <-• ij/(x). L is said to be
effectively reducible to L with respect to K if i// can be found effectively (depending
on cp).

An important special case arises from extensions obtained by adding certain
quantifiers. And this case we will examine more closely in the

Definition. Suppose L' arises from L by adding (in the canonical way) an arbitrary
quantifier Q to it. If L' is reducible to L with respect to a class K, we say that
K admits the L-elimination ofQ, or Q is L-eliminable in K. If K is an L'-elementary
class, that is, if K = Mod(ThL,(iC)), then we also say that ThL(K) admits the
elimination ojrQ, or Q is eliminable in ThL(K).

The examples below show that important model-theoretic properties are
reflected by the notion of reducibility.

Example. Let L' be a first-order language, K an L'-elementary class.

(1) Let L be the set of all open L'-formulas. Clearly, L is the extension of L
by adding the quantifier 3.

(a) ThL'(K) is substructure complete iff 3 is eliminable in ThL^(X).
(b) If, in addition, L is the language of fields, then ACF—the class of

algebraically closed fields (or ThL'(ACF) since ACF is L'-elementary)—
admits the elimination of the quantifier 3 (see Sacks [1972]).

(2) Let L be the set of all existential L'-formulas. Then ThL (X) is model-
complete iff L' is reducible to L with respect to K (see Sacks [1972]).

For quantifier-elimination there are two ways to look at the problem. On the
one hand, we can regard the existence of a quantifier-elimination as a certain
model-theoretic property, this being reflected, for instance, in Example (la)
above. On the other, we might be interested more in the manner of elimination
itself. This is especially true when decidability is under consideration. If we take
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1. Quantifier-Elimination 237

the first position, then we will speak of "eliminability ". The case in which L is an
elementary language and L is L(Q\ the language obtained from L by adding a
certain generalized quantifier Q (or even a set of them), is then of particular interest.
In the second subsection, we will consider precisely this situation, admitting the
following abuse of language.

Let K be an elementary class axiomatized by the theory T in a first-order
language L, and let Q be a certain generalized quantifier. We say Q is eliminable in
K (or in T) if L(Q) is reducible to L with respect to the class Mod(T u {Qx(x = x)}
or, equivalently, if Q is L-eliminable in the class {9KGK:9M |= QX(X = x)}.
Notice then that for eliminability of Q in T it will suffice to eliminate Q in expres-
sions of the form Qx cp(x, z), where cp is first-order.

If we take the second of the positions we have noted, we will speak of "elimina-
tion procedures". Observe that by an "elimination procedure for a class K" we
do not mean a procedure providing a complete elimination of a given quantifier
in K, but rather one that is applicable only up to a certain set of sentences (and,
in some cases, formulas also)—the so-called core sentences—which should be
easy to survey. Thus, finding an elimination procedure will, in most cases, include
finding an appropriate set of core sentences (and definable predicates); and, of
course, it will yield eliminability results for those subclasses on which the truth
values of the core sentences are constant. In the third subsection we will consider
this problem for the class of modules as well as the class of abelian groups. Finally,
we emphasize that throughout this section we will be mainly concerned with the
Malitz quantifiers Q™ (m < a>, a an ordinal), where in the next subsection we will
concentrate on the cardinality quantifiers Qo( = Ql) and Qt (= Q\) and the Ramsey
quantifiers Q™ (m < co).

As concerns other generalized quantifiers, we would like to draw the readers'
attention to the results of Steinhorn [1980], results which once again fortify our
conviction that the method of generalized quantifiers can be an excellent tool for
investigations into first-order model theory.

Convention. Throughout this section the length of the sequence x is assumed to be
equal to the arity of the given quantifier and, if not stated otherwise, this to be
equal to m.

Recall that a set D is (weakly) homogeneous for a formula cp(x, a) in a structure
9W, a e 351, if every m-tuple d of (distinct) elements of D satisfies cp(x, a) in SOi For an
ordinal a, the ^-interpretation Q™ of the m-placed Malitz quantifier Qm is defined
for a structure 9W of power not less thanXa by "9W f= Q™x0 .. .xm_x (p(x0,.. .,xm_!)
iff there is a set of power Xa in 9W which is weakly homogeneous for cp".

Warning. As to the elimination procedure given in the third subsection of this
chapter, it is essential to interpret Qm in the way in which it was there interpreted,
with emphasis on "weakly". This attribute does not play any role in the investiga-
tion of eliminability, since the corresponding two quantifiers (one as given above,
and the other having "weakly" omitted) are expressible one by the other. This
the reader can easily verify. Accordingly, in the next subsection we will use this
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238 VII. Decidability and Quantifier-Elimination

quantifier with "weakly" omitted, in the interpretation the omission being for the
sake of simplicity.

The reader should consult Chang-Keisler [1973] or Shelah [1978a] for the
fundamental concepts of stability theory.

7.2. Eliminability of Generalized Quantifiers

As we have already mentioned, our aim here is to find model-theoretic properties
of first-order theories which are equivalent to eliminability of certain generalized
quantifiers.

Convention. In this subsection "theory" means "first-order theory having infinite
models only ", and T will denote such a theory. Moreover, terms such as " definable "
or "formula" are used for "first-order definable" or "first-order formula". Two
other points are worth mentioning at this juncture.

First, remember the warning given in the first subsection; and, second, we
note that although the general concept to be treated here is due to Tuschik, the
material was unfortunately, not published in full detail until the work of Baudisch-
Seese-Tuschik-Weese [1980]. In this connection, the reader should also see
Tuschik [1975, 1977a].

We will begin our exposition with the unary quantifier Qo having the interpre-
tation "there are infinitely many", examining first the following

Definition. A formula cp(x, zl9..., zn) is said to have a degree relative to T if there
is a natural number k such that, for every model 9W of T and elements al9 . . . , an

of 5R, the following holds:

if cp(x, au . . . , an) has finitely many solutions in 9JJ, then it has at most
/c-many.

T is said to be graduated if every formula has a degree relative to T.

The facts stated in the following examples can be derived from the correspond-
ing elimination of (elementary) quantifiers.

Examples. The first-order theories of the following classes of structures are gradu-
ated:

(1) The class ACF of algebraically closed fields;
(2) The class RCF of real closed fields;
(3) The class DCF0 of differentially closed fields of characteristic 0,
(4) The class DLO of dense linear orderings;
(5) The class ABA of atomless boolean algebras;
(6) The class AGp of infinite elementary abelian p-groups, where p is a prime.
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1. Quantifier-Elimination 239

Ryll-Nardzewski's theorem (see Chang-Keisler [1973, Theorem 2.3.13])
yields a wealth of graduated theories:

Proposition. Every countable tfQ-categorical theory is graduated. D

Examples (4), (5), and (6) above are special cases of the assertion in the propo-
sition. The next result shows what graduatedness is related to our general topic.

1.2.1 Theorem. T is graduated iff Qo is eliminable in T.

Clearly, in a graduated theory, Qo is eliminable by 3> n, where n ranges over
the degrees of all formulas. If Qo is eliminable in such a simple manner, then we
say that Qo is definable in T. The theorem just stated thus asserts that if Qo is
eliminable, then it is definable. This is, mutatis mutandis, true for Malitz and other
"Malitz-like" quantifiers; and, moreover, it is basic for eliminability investigations.
For more on this, the reader should see Baldwin-Kueker [1980]; Baudisch-
Seese-Tuschik-Weese [1980]; Rothmaler-Tuschik [1982]; Vinner [1975]. We
will prove it here in the following general form, a form which is appropriate for
our purposes. The reader may extend it to a more general concept of quantifiers,
including that of Steinhorn [1980]. Before proceeding further in this direction,
however, we need some additional notation.

For the m-placed Malitz quantifier Qm, we also introduce finitary interpreta-
tions: for a given natural number n, the ^-interpretation of Qm, in terms Q™n), is
given by "9W 1= Q^)X0 . . . xm_ 1 cp(x0,..., xm_ x) iff there is a set of power n in
501 which is homogeneous for cp(x0,..., xm-ly\

Definition. The quantifier Q™ is called definable in T if for every (first-order) formula
cp(x, z), there is a number n^ such that

T u {Q?x(x = x)} h- Vz(<2J"vx <p(x, z) - Q7x <p(3c, z)).

Notice that if cp is first-order, then Q™n}x <p(x) is first order also. Hence, Q™ is
eliminable in T, if it is definable in T. The definability lemma given below asserts
that the converse is true.

The Definability Lemma. A Malitz quantifier is eliminable in Tiff it is definable in T.

Proof. One direction has been already mentioned. As for the other direction, sup-
pose that <p(x, z) and i/^z) are (first-order) formulas such that, for T = T u
{Q™x(x = 3c)}, the following holds:

We have to show that a number n^ exists with
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240 VII. Decidability and Quantifier-Elimination

Thus, we assume the contrary. Then, for arbitrarily large numbers n, there are
models 5Rn of V containing sequences an with yjln \= ~i \l/(an) and sets An homo-
geneous for cp(x, an) which have power not less than n. Let C = {ct: i < NJ be a
set and a be a sequence of new and distinct constant symbols, and let S denote the
union of the following sets of sentences in the corresponding inessential extension
of the (first-order) language of T:

(1) {Ci*Cj:i<j<K}',

(2) {cp&ay.ceC™};

(3) T u { n « 5 ) } .

By assumption, every finite subset of S can be realized in some Wln. Thus, the
compactness theorem (for first-order logic) implies the existence of a model 9M
of T consisting of a sequence a with 9J? \= —i \jj(a) and a set A which is homogeneous
for cp(x, a) and has power Ka. But this contradicts the assertion in (*). D

Having proven the definability lemma in the most general form, we now
return to unary Malitz quantifiers = usual cardinality quantifier. Theorem 1.2.1
is a special case of that lemma. Together with the proposition above, it implies
that Qo is eliminable in every countable K0-categorical theory as well as in all the
theories of Examples (1) through (6). Let us turn now to the Kx -interpretation.
We are going to prove a theorem which is due to Tuschik and which links the
eliminability of Qx with the following well-known property of first-order model
theory. First, recall that T has the Vaught property if it has a model 5R containing
an infinite definable set of power less than 12R |.

We need also Vaught's two-cardinal theorem which asserts that a countable
theory having the Vaught property possesses a model of power Kx containing an
infinite countable definable set. For a proof of this, consult Chang-Keisler [1973,
Theorem 3.2.12] or Sacks [1972, Section 22]. Interestingly enough, a good portion
of it yields the next lemma; and, in fact, does so without any restriction on the
cardinality of the theory.

Lemma. A nongraduated theory has the Vaught property. D

Now we are able to prove the promised theorem.

1.2.2 Theorem. Let T be countable, then Qx is eliminable in TiffT does not have the
Vaught property.

Proof. If T has the Vaught property, then, by the two-cardinal theorem, Ql is not
definable. Hence, it is not eliminable in T. For the other direction, suppose Q1

is not eliminable in T. Then, by the definability lemma, there is a formula cp(x, z)
and models 9WM of T containing sequences an such that K: > \(p($Jln, an)\ > n, for
every number n. If one of these latter sets is infinite, then we are done.
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1. Quantifier-Elimination 241

If not, then T is not graduated. Thus, by the above lemma, again T has the
Vaught property. D

Vaught's two-cardinal theorem implies no Kj -categorical countable theory has
the Vaught property. Thus, a corollary follows which was independently obtained
by several investigators (see Tuschik [1975], Vinner [1975], or Wolter [1975b]).

Corollary. Q± is eliminable in every countable ̂ ^categorical theory. D

Together with the above lemma, the preceding theorems on Qo and Qt yield
the next result.

Corollary. Let T be countable. IfQi is eliminable in T, then Qo is also. •

Similarly, two-cardinal considerations show that the eliminability of Q1 is
equivalent to the eliminability of each of the following quantifiers in a given count-
able theory: Chang's quantifier Qc (= the unary cardinality quantifier in the equi-
cardinality interpretation) and Hartig's quantifier /. As a further consequence,
we remark that QY (and also Qo) is eliminable in the theories of Examples (1), (2),
and (6). For ACF and RCF, this fact was also shown by Vinner [1975].

In the remainder of this subsection, we will present some material that is due
to Baldwin-Kueker [1980]. This material concerns the eliminability of Ramsey
quantifiers (= Malitz quantifiers in the K0-interpretation) in complete theories.
Moreover, we will eventually prove a theorem describing this eliminability within
the class of stable theories in terms of the following notion of first-order model
theory, a notion that was introduced by Keisler [1967b]. The reader should also
see Shelah [1978a] in this connection.

cp(x, z) has the finite cover property (abbreviated f.c.p.) in T if, for arbitrarily
large numbers w, there are models 9Wn containing sequences a0, ..., an-l which
satisfy

mn N= -i3x/\<p(x9 aj) A f\3x /\ <p(x, aj).
j <n i<n iJ1 j<n

T is said to have the f.c.p. if some formula has. Note that

\j/(x, v"u)^(q>(x, v) A x # u)

has the f.c.p. if cp(x, v) is not graduated.
By Keisler [1967b] a countable Kt -categorical theory does not have the f.c.p.

On the other hand, Shelah proved that every unstable one does have this property
(See Shelah [1978a]). The first half of the theorem of Baldwin and Kueker is con-
tained in the next lemma.

Lemma. If T does not have the f.c.p., then all Ramsey quantifiers are eliminable in T.

Proof Assume Q% is not eliminable in T. By the definability lemma, we then have
a formula cp(x0,..., xm_ 1? z) as well as models 9Wn of T containing sequences an
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and finite sets An of power not less than n such that An is homogeneous for cp(x, an)
in $Rn and maximal with respect to that property (n < co). Let i/<x, z'"z) be the
formula <p(x, z l 9 . . . , zm_ 1? z) A X ^ zl9 where z' = (z l 5 . . . , zw_ J. We will show
that \jj{x, z'~z) has the f.c.p.

To this end, let Bn denote the set of all (m — l)-tuples from An. Choose a subset
Cn of Bn minimal with respect to the property

ceCn

This is possible, since Bn itself is a finite set having that property, for An is maximally
homogeneous for cp(x, an). Thus, the following holds:

(2)n WlH\= /\3x /\ iKx9c"aJ.
c'eCn c'^ceCn

For every subset of Bn consisting of less than n elements, we can choose an element
of An different from all first components of elements of that subset. Hence, no such
subset has the property given in (l)n. Consequently, Cn has at least n elements.
This conclusion, together with (l)n and (2)n, for all n, shows that \j/(x, z'^z) has
the f.c.p. in T. D

In the other direction of the theorem below we shall utilize Shelah's f.c.p.
theorem which asserts that a stable complete theory has the f.c.p. iff there is a
formula cp(x, y, z) satisfying the following: For every number n there is a sequence
cn of elements in some model 9Wn of T such that <p(x, y, cn) defines on the universe
of 2Rn an equivalence relation having not less than n, but only finitely many
equivalence classes (see Shelah [1978a; Chapter II, Theorem 4.4]).

1.2.3 Theorem. Let T be stable and complete. Then All Ramsey quantifiers are
eliminable in T iff the Ramsey quantifier Ql is eliminable in TiffT does not have
the f.c.p.

Proof. For the remaining implication, assume T has the f.c.p., then we must show
that Ql is not definable in T. To this end, we choose a formula (p(x, y, z), as well as
sequences cn and models 9Wn according to the f.c.p. theorem. Then, clearly we have
that

9W* 1= Qfn)xox1 -i<p(x0, Xi, cn) A "H60*0*1 ^</>Oo, *i, cn)

holds for all n. Whence, the assertion follows. D

Using the aforementioned observation of Keisler, we can easily derive the
following

Corollary. All Ramsey quantifiers are eliminable in every countable ^^categorical
theory. D
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1. Quantifier-Elimination 243

This corollary generalizes the corresponding result for ACF0 as proven by
Cowles [1979a].

Further Results. We will close this section with a few brief remarks sketching some
further pertinent results.

(1) Tuschik has provided some further results with regard to the relative
strength and effectiveness of eliminability of the unary cardinality quantifiers
Qa. The reader should consult Tuschik [1977a or 1982a]; or Baudisch-Seese-
Tuschik-Weese [1980]; or Rothmaler-Tuschik [1982]. Vinner [1975] is also
informative.

(2) In Rothmaler [1981 or 1984] it is shown that Qo is eliminable in every com-
plete first-order theory of modules. Baudisch [1984] extended this to all Ramsey
quantifiers. See the next subsection for more on this.

(3) Further algebraic results can be found in the papers of Cowles, Pinus, and
Rothmaler that are cited in the bibliography.

(4) Baudisch [1977b or 1979], and Baldwin-Kueker [1980] prove inde-
pendently that all Ramsey quantifiers are eliminable in a countable K0-categorical
first-order theory, thus showing that the stability assumption made in Theorem
1.2.3 of this section is necessary.

(5) Schmerl-Simpson [1982] provided an effective elimination of all Ramsey
quantifiers in Presburger arithmetic. In contrast, however, Kierstead-Remmel
[1983] constructed decidable first-order theories admitting elimination of these
quantifiers which cannot be made effective.

(6) Baldwin-Kueker [1980] proved the eliminability of the Malitz quantifiers
Q™ (in the equi-cardinality interpretation) in countable K r categorical first-order
theories. Clearly, this is then true for all other interpretations. This result generalizes
the corresponding result for ACF0 which had been proven by Cowles [1979a].

(7) Rothmaler-Tuschik [1982] generalized the result that is here given as
Theorem 1.2.2 to Malitz quantifiers Q™ (m < co) so as to obtain an analog of
Theorem 1.2.3 for these. Furthermore, as a corollary, they independently obtained
the result mentioned in the preceding remark.

(8) Theorem 1.2.3 asserts, among other things, that in stable theories the
eliminability of Ql implies that of all Q™ (m < co) in the case a = 0. Rapp [1982 or
1983] proved that this is also true in the case a = 1. Moreover, he showed that in
stable theories the eliminability of Q\ implies that of all Malitz quantifiers Q™
(m < (JO, a > 0; for a = 0 this was already noticed by Rothmaler-Tuschik [1982]).

1.3. Elimination Procedures for Modules and
Abelian Groups

The elementary theory of groups is undecidable (see Tarski in Tarski-Mostowski-
Robinson [1953]). Furthermore, a good number algebraically interesting classes of
groups have an undecidable elementary theory. From Ershov [1974] and Samjatin
[1978], it is known that the elementary theory of every non-abelian variety of
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groups is undecidable. In contrast to this, however, Szmielew [1955] proved the
decidability of the elementary theory Tz of abelian groups. Extending the ordinary
language ( + , - , 0) of group theory by predicates "pn\x" and defining some core
sentences, she gave an effective elimination procedure: every formula is equivalent
modulo Tz to a boolean combination of Szmielew core sentences and atomic
formulas. One can extend this elimination procedure to the logics J^wco(<2a),
^coa/2a<coX <^WaXaa)> and i?wco(/), provided the set of core sentences is extended
in an appropriate way. For concrete results and references, the reader should see
the list below. Moreover, one can find corresponding elimination procedures for
arbitrary ^-modules. Here we will present just such a procedure for Malitz
quantifiers in regular interpretations (Baudisch [1984]).

Convention. Throughout this subsection R is an associative ring with unit 1,
91 is a left K-module, and a is a sequence from 21. As is usual in first-order model
theory of modules, we will consider the first-order language having the following
nonlogical symbols: 0, +, and, for every reR,a unary function symbol expressing
the left multiplication by r.

For the sake of simplicity we will use LR to denote the set of all first-order
formulas in this language. Then the elementary theory of all (unital) left ^-modules
can be axiomatized by a set of L^-sentences. Let LK(ga

<w) and TR(Q*<O) denote the
extensions of LR and TR respectively to the logic S£^JUt**)-

A positive primitive (abbreviated p.p.) formula is a formula of the form Ely \j/(x, y),
where ^ is a finite conjunction of equations (with coefficients from R). Notice that
a p.p. formula #(x0 , . . . , xm_ x) defines an additive subgroup %(2lm) in the module
2lm (and if R is commutative, this is even a submodule), and a p.p. formula x(x; a)
defines a coset of the subgroup x(2Iw; 0) in 2lm.

Notation. Throughout this discussion we will let x(x; z) be a p.p. formula. Moreover,
we will use xj(x) to denote the formula x(0,. . . , 0, x, 0 , . . . , 0; 0) obtained from
X(x; 0) by substituting x for x} and 0 for the other components of x, / (x) to denote
f\i<m lKx\ a n d Xd(*; a) to denote the formula / (x , . . . , x; a).

Note that by the additivity of p.p. formulas, /\j<m xj(x) implies /d(x;0). The
following implication can be easily derived from additivity of the p.p. formula
X(x;z):

(!) TR h- x ( 0 , ,

[X(xo,..., X;_ 1? v, xj+ u ..., xm_!; z) <-• xj(v - w)].

It can be easily seen from the first part of the next lemma that, for a p.p. formula, a
sufficiently large set is homogeneous if it is weakly homogeneous.

Lemma. Let %(x; z) be a p.p. formula, then we have

(i) A set C of power greater than m which is weakly homogeneous for #(x;a)
in 21 is contained in /d(2I; a) and in c + x'(2I),/or every ceC; and

(ii) Every subset Cofc + /(2l), for some c e / (2 l ; a), is weakly homogeneous
forx(x;a).
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Proof. To establish (i), we let {co,...,cm} be an (m + l)-element-subset of C.
Since it is weakly homogeneous for y(x; a) in 91, it is not difficult to derive 91 N
/\i<m Xj(ci — ck)> where i, k < m. Hence, all elements of C lie in the same coset of
#'(91). Using (1), C ^ #d(9I;a) follows. The proof of part (ii) is an immediate
consequence of (1). D

Key Lemma. Let C be an infinite subset of 91 of regular cardinality such that for
every j < m, there are less than \C\ elements of C in every coset o/#J(9T). Then C
contains a subset of the same cardinality which is weakly homogeneous for ~i#(x; a).

Proof We first note that by definition a set of power less than m is weakly homo-
geneous for arbitrary m-placed formulas; this fact provides the initial step of the
following induction

It suffices to show that to every subset E of C of power less than | C | which is
weakly homogeneous for —i#(x;a) one can add some ceC — E and still not
disturb the weak homogeneity for -ix(x;a). To do so, however, we must prove
that the set of elements in C which one cannot add to E has power less than \C\.
To this purpose, then, let c e C — E such that E u {c} is not weakly homogeneous
for ~HX(X; a). Then there are j < m and distinct elements e0,..., £,_ 1? ej+ u . . . ,
em_1 in E such that

(*) 211= x O o , - - , e j - ! , c, e j + l , . . . , e m - l ; a) .

By (1) above, all c's satisfying (*) lie in the same coset of xJ(9t). Hence, by hypothesis,
there are less than | C | such elements.

Since C is infinite and |£ | < \C\, there are less than \C\ (m — l)-tuples in E.
Consequently, the whole set of elements that one cannot add to E must have
power less than | C | also. D

This lemma enables us to prove a strong "Ramsey-like" property for p.p.
formulas.

Lemma. Every infinite subset of 91 of regular cardinality contains a subset of the
same cardinality which is weakly homogeneous either for #(x; a) or for ~iz(x; a).

Proof Using induction on m, we can clearly assume the assertion is true for m — 1
> 1. Let C be an infinite set in 91 not containing a subset of cardinality | C | which
is weakly homogeneous for —i/(x;a). By the Key Lemma there are some; < m
(for the sake of simplicity, say j = 0), some ceC, and some subset E of power
\C\ in x°(9l) with c + E c C. By the induction hypothesis, E contains a subset
D of power | E | = | C | which is weakly homogeneous for #(c, c + x x,..., c + xm _ x; a)
or for its negation. Since D ^ Z°(2l)? by (1) above, c + D is then weakly homo-
geneous for %(x; a) or ~i/(x; a), respectively. D

Corollary. Let <P/(x;z) be a conjunction of p.p. and negated p.p. formulas (i < n).
Then every infinite set of regular cardinality weakly homogeneous for \Ji<n (p^x; a)
in 91 contains a subset of the same cardinality which is weakly homogeneous for some
<pfo(x;a), i0 < n.
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Proof. Let C be infinite and weakly homogeneous for \/i<n (/>f(x; a). Using induc-
tion on n, we assume that there is no subset of C of power | C | which is weakly
homogeneous for \J0<i<n <P;(x;a) in 21- Let (po(x;a) be /\i<k xix\a\ where the
Xt are p.p. or negated p.p. formulas. Step by step, we will construct a subset of C
of power | C | which is weakly homogeneous for q>0(x; a) in 91. For this, assume that
C ^ C is weakly homogeneous for /\f<J- /£(x; a) and \C\ = |C|, where j < k
(if j = 0, let C = C). By the preceding lemma, it suffices to show that C contains
no subset of power \C\ which is weakly homogeneous for -i%/x;a). But this is
clear, since every subset D of C that is weakly homogeneous for ~i^/x; a) would
be weakly homogeneous for \fo<i<n (pt(x; a), thus contradicting the assumption.

D

Using an infinitary version of B. H. Neumann's lemma, we obtain the next
lemma. (See Baudisch [1984]).

Lemma. Let %, nt be p.p. formulas (i < n). Then

/ \

~Ae«2

Before we prove the main theorem of this subsection, we will introduce some
more notation and state a theorem on the existence of an elementary elimination
procedure which is due to Baur [1976] and Monk [1975] and which is basic for
the the first-order model theory of modules.

If x a n d n are p.p. formulas with TR \- rj(x) -• x(x)tnen let (xA/X^O denote the
cardinality of the factor group x(9l)/f/(9l). Clearly there are elementary 3V-
sentences expressing (X/J/X^O > k for every natural number k. Call these ele-
mentary core sentences. Now the theorem of Baur and Monk states that every
formula of LR is equivalent modulo TR to a boolean combination of elementary
core sentences and p.p. formulas.

Our goal is to prove an analogue to this theorem for the language LR(Q^W).
First note that in this language we can express (x/rjX^H) > Ka by SaXo^iO^o) A

~~"7(xo ~ xi))- Those sentences, together with the elementary core sentences, will
be called Ql-core sentences.

Theorem. Every formula o/LR(Qa
<co) is equivalent modulo T^Q^03) to a boolean

combination of Ql-core sentences and p.p. formulas. This boolean combination
can be effectively found relative to the elementary procedure provided by the Theorem
of Baur and Monk.

Proof. We show the theorem for regular oja only. For a complete proof, see
Baudisch [1984]. By the theorem of Baur and Monk and induction on the
complexity of formulas, it suffices to consider the case Q™x cp{x\ z), where cp{x\ z)
is a boolean combination of p.p. formulas. The above corollary thus reduces this
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to the case in which cp is a conjunction of p.p. and negated p.p. formulas. Since a
conjunction of p.p. formulas is equivalent to a p.p. formula, we can further suppose
that cp(\; z) is of the form /(x; z) A /\i<k ~î 7i(x; z), where x and r\i are p.p. (i < k).
We will now construct the desired boolean combination in the following develop-
ment.

Let//be the set of all partitions!/, J}of {(/,/): i < kj < m}. For each {/, J} eH
define F(I) = {i < k: for all7 < m (ij) e / } . Now let \j/{z) be the disjunction of the
following formulas, where {/, J} runs over all the partitions in / / :

L (iJ)el d,j)eJ J

Using the preceding lemma and the elementary elimination procedure, it is not
difficult to show that \j/ is indeed equivalent to a boolean combination of p.p.
formulas and Q^-core sentences. Thus, it suffices to verify that

7i(2a<w) h- Vz(Q?x <p(x; z) ̂  ^f(z)).

To prove this in the direction from left to right, we let C be a set of power Ka

which is weakly homogeneous for cp(x; a) in 21. By part (i) of the first lemma, C is
weakly homogeneous for #'(x0 — x j . Thus it is trivially so for

V u ( x o - * i ) A A ii(xo - *i
{/,i}eH \ (i,j)e/

The corollary above yields some {/, J} eH and some set C ^ C of power Ka

which is weakly homogeneous for

Xf(x0 - xx) A A ^ 0 - xx) A A " ' ^ o ~ *i).
(i,j)el (i,j)eJ

Let ceC and E a set with c + E = C.By (i) of the first lemma, 21 N= / ( c ; a).
Further,

(2) E is weakly homogeneous for A ~l^Kxo — *i)
(iJ)eJ

and

(3) £
(i, j )e/

Notice that (3) implies

(4) E c ;̂.(2I) for all f G F(/),
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since I- /\j<n *7f(x) <-> ^(x). Then 31 N / \ i e F ( / ) ~if/f(c; a); for, otherwise 211=
nd

t(c; a) together with (4) and (ii) of the first lemma would imply that c + E were
weakly homogeneous for rjt(x;^). Recalling that c + E c= C, we thus have a
contradiction.

To establish the other direction of the above equivalence, we first choose a
partition {/, J} e H, a set E of power Ka satisfying (2) and (3) (and hence, must
satisfy (4) also), and an element c e 21 with

2 l N / ( c ; a ) A / \ -i*j?(c;a).
ieF(/)

We will eventually show that c + E contains a subset of power Ka which is weakly
homogeneous for cp(x; a). By (ii) of the first lemma, c + E is weakly homogeneous
for /(x; a) as well as for f\ieF(i) ~~i*7i(x; a); since, otherwise, by additivity, (4) would
imply 21 f= nd(c; a), thus contradicting the choice of c.

It thus remains to prove the following

Claim. For every subset E of E of the same power and for every i < n with i $ F(I),
c + E contains a subset of the same power which is weakly homogeneous for

To establish this claim, we fix some i $ F(I) and, without loss of generality,
assume that (i, m — 1) e J. That done, we first consider the case {(i,j):j < m) ^ J.
Then, by (2), all the elements of c + E lie in different cosets of n{(SH) for allj < m.
Thus, the hypothesis of the Key Lemma is trivially satisfied. Thereby establishing
the claim for this case.

Turning now to the general case, we let the variables be ordered in such a way
that "0 ,7 ) e I iff j < k" f°r some k < m. We then apply the same argument to the
formula rj^c,..., c, xk,..., xm_ i; a) in order to obtain a subset c + E" ^ c + E
which has the same power and which is weakly homogeneous for its negation.
Since E" c f^]j<k f/f(2I) by (3), it is easy to see that c + E" is weakly homogeneous
even for ~i^t(x; a); whence, the claim is proven. D

Corollary. For modules, ^wai{Ql) has the same expressive power as S^^JiQa <°)- D

Corollary. All Ramsey quantifiers Q™ (m < co) are eliminable in every complete
(first-order) extension ofTR. D

By Baur [1975], every complete first-order theory of modules is stable. Hence,
the preceding corollary, together with Theorem 1.2.3, has as a consequence the
following

Corollary. No complete first-order theory of modules has the fie.p. D

Finally, we specify the theorem to the case of abelian groups. We begin by
making a general remark.
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Assume Zx to be a set of p.p. formulas that is closed under substitution of
free variables by 0 and Z2 to be a set of elementary core sentences such that the
elementary elimination procedure only needs formulas from Zx and Z2. Then, the
theorem holds true for boolean combinations of formulas from Za u Z2 and
Q^-core sentences of the form Qa^o^iW^o) A ~-"7(xo - *i)X where ^ is a con-
junction of formulas from ltl and rj is in Zx.

Now let R be the ring Z of all integers, Zx the set of all atomic Lz-formulas and
all formulas 3y(p"y = Y,i<k rixi% where p is a prime, n a natural number, and rt an
integer. Furthermore, let E2 be the set of all Szmielew core sentences; that is,
Z2 is the set of all sentences (x/n) > k, where

( # ) either x(x) is px = 0 A pn~i |x and rj(x) is x = 0;

or x(x) is Pn ~11x a n ( l wi*) is p" | x;

or ^(x) is px = 0 A p"~x |x and ^(x) is px = 0 A pn\x;

or /(x) is rx = 0 and ^(x) is x = 0,

for some prime p and natural numbers n and r, with 1 < n.
Call all sentences of Z2 and all sentences 6aXoxi(x(*o) A "^(^o ~ xi)X f°r

( ,̂ ?y) from (#) , Q^-Szmielew-core-sentences. The new sentences express that
the corresponding Szmielew invariants are of power at least Ka. By Szmielew
[1955], the elementary elimination procedure for Z-modules (= Abelian groups)
only needs formulas from Z : and Z2. The above theorem can be sharpened in this
context.

Theorem. For every formula ofLz{Q^m\ we can effectively find a boolean combina-
tion of formulas from Zx and Ql-Szmielew-core-sentences to which it is equivalent
modulo Tz(Qa

<C0). D

Corollary. Tz(ga
<co) is decidable. D

We now collect corresponding results into the following table.

Table of Elimination Procedures and Decidability

° ^ COO)

&mot(Qtt)

^wto(aa)

Abelian Groups

Szmielew [1955]
Baudisch [1976]
Baudisch [1983]
Eklof-Mekler [1979]
Baudisch [1981a]
Baudisch [1977b or c]

Decidability Problem

Modules

Baur [1976], Monk [1975]
Rothmaler [1981 or 1984]
Baudisch [1984]
Eklof-Mekler [1979]

Similar to Baudisch [1977c]
is open
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That TZ(I) is decidable iff the /-theory of all finite abelian groups is decidable
follows from Baudisch [1977c]. Moreover, in Baudisch [1980] the /-theory
of abelian p-groups is shown to be decidable. In the same vein, Schmitt [1982]
has shown the decidability of the if(Qa)-theory of ordered abelian groups for
a = 0 and a = 1. Furthermore, in the language, considered, he allows quantifica-
tion (with 3 and QJ over convex subgroups generalizing Gurevich [1977a]. By
adding suitable definable predicates, an elimination procedure for first-order
quantifiers is given. In order to decide the remaining sentences, the order structure
of the convex subgroups is considered in appropriate elementary languages.

In the logics that we have mentioned above, elimination procedures are also
applied to other classes of structures. Thus, for example, Cowles has results
for certain fields (see Cowles [1977, 1979a, b]) and Wolter for Pressburger
arithmetic and for well-orderings (see Wolter [1975a, b]).

In the case of the Henkin-quantifier (the reader is referred to Section VI.2.13 of
this volume), Krynicki-Lachlan [1979] used this method to prove the decidability
of the corresponding theory of finitely many unary predictes with equality. For
more on boolean algebras, the reader should also see the results of Molzahn [1981b]
that are cited at the end of the third section of this chapter. Finally, some material
on the elimination of quantifiers in stationary logic and its applications are given
in the next subsection.

1.4. Elimination of Quantifiers for Stationary Logic

The reader should consult Chapter IV for the basic notions concerning L(aa).
Throughout the present subsection, L will be taken as a countable elementary
language and T as an L(aa)-theory. Since generalization over second-order vari-
ables is not allowed in L(aa), the appropriate notion of eliminability of quantifiers
is the one that is defined below (see Eklof and Mekler [1979] where it is called
strong elimination of quantifiers).

Definition. T is said to admit elimination of quantifiers if, for every formula cp(s9 x),
there is a quantifier-free formula ^(s, x) such that T\- aa s Vx(<p(s, x) <-> \j/(s9 x)).

By generalizing ideas of Eklof-Mekler [1979], Mekler [1984] found the follow-
ing criterion for eliminability of quantifiers in L(aa)-theories. This criterion is an
analogue of that for the elementary case and the notation " =°" is used to denote
equivalence with respect to quantifier-free formulas.

Theorem. T admits elimination of quantifiers iff whenever 21, 93 1= T and |2I|,
1331 < Xl5 there are cubs C and Dfor 21 and 93 such that for all AeC, and BGD and
a e 21 and E e 33, i/<9l, A, a) =° <93, 5, 5> holds, then <2l, A, a} =aa <93, S, E>.

Proof We will present the proof for the nontrivial direction. Assume, then, that
<p(s, x) is not equivalent to a quantifier-free formula. Let {^n(s, x): n < w} be an
enumeration of all the corresponding quantifier-free formulas. For t e k2, define
<Af = At<k Ms, x)m, where ift = x\jt and $\ = i ^ .
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Let % be the tree of all t e <Oi2 such that for all t' < t

neither (i) 7 h a a s Vx(i//(s, x) -• <p(s, x))
_ _ _

nor (ii) T h a a s Vx(i/f' (s, x) -> ~i cp(s, x)).

Then 2 must be infinite, because otherwise there would be some k < co such that for
all t'€k2 either (i) or (ii). This would imply T h a a s Vx(<p(s, x)<-• \ / t , e / ^''(s,5c)),
where / is the set of all t' e k2 with property (i). By Konig's lemma, there is an
infinite branch rj e W2 of X. So, by (*) and the construction of £, we have

TKJ {stat s 3 x ( ^ lfc(s, x) A - I ^ ( S , X))} and
(**)

7 u {stat s 3x(il/ri l k(s, x) A cp(s, x))}

are consistent for every k < co. Assume now that s = ( s l 5 . . . , s j and x =
(x1 ? . . . , xw). We will introduce new predicates Ui(sl9..., sf) and functions fj(s\
where 0 < i < n, 0 < j < m. We also define T' to be the extension of T by the
following axioms:

stat sx UiisJ, aa sx stat s2 U2(sl9 s2),.. •;

aa sxaa s2...aa sn_l stat sn t / n ( s ! , . . . , sn); and

aa 5X • • • s^L^iCsi) A U2(sl9 s2) A • • • A l / ^ , . . . , sn)

. . , /M(s)) for every /c < co.

Using compactness, we see that (* *) implies the consistency of

To = T u {aa sx... s^l/^Si) A • • • A Un(sl9..., sn)

and

Ti = T u {aa s x . . . sJJJ^s^) A • • • A t /^Si , . . . , sn)

Now let 91 and © be the reducts to L of models of To and Tl9 and let C and D
be the cubs in 21 and 23, given by the criterion. By the axioms of T, there are chains
A1 ^ " - ̂  An of elements of C and chains B^ c . . . c £„ of elements of D all of
which fulfill U^Si) A • • • A C/W(5l5..., sn). Furthermore, A and B can be chosen
so that

) , . . . ,fm(A)} E » <®,

and

91 N -i <?>(!,/!(!),... ,/m0S)) and » 1= cp{BMB),... ,fm(B)).

However, this contradicts the condition of the criterion. D
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Applying this notion to modules, Eklof-Mekler [1979] found an elimination
procedure for the L(aa)-theory of all ^-modules. They used L(aa)-core-sentences
of the form

a a s Vx(*(x) - • 3y(y es A x(x - y) A rj(x - y)))9

where x and n are p.p. formulas. It is easy to see that such a core sentence is equiva-
lent to (xA7)(W) < Ko—which is the negation of a Q^-core sentence—so that
L(aa)-equivalence and (^-equivalence coincide. To verify that the criterion does
indeed hold on modules, Eklof and Mekler used the work of Fisher [1977] on
injective elements in abelian classes, which continues the work of Eklof-Fisher
[1972] on the description of saturated abelian groups to give a model-theoretic
proof of the results of Szmielew [1955].

Specifying this development to abelian groups, Eklof and Mekler proved
decidability of the L(aa)-theory. Similar results on abelian groups were inde-
pendently obtained by Baudisch [1981a]. Along these same lines, we note that
further applications of this method to fields and orderings can be found in
Eklof-Mekler [1979]. There decidability is shown for the L(aa)-theories of
complex, real, and p-adic numbers.

2. Interpretations

The method of syntactic interpretation was used by Tarski-Mostowski-Robinson
[1953] to deduce decidability or undecidability of theories from other theories (see
also Rabin [1965]).

The actual method has many applications to decidability problems, and we will
give a short description of it here. Let K and K' be model classes in languages L
and L respectively, where L and L are not necessarily elementary. Then, we say
that an interpretation I assigns to every relational symbol R of L a formula \jjR of
L', and the formula x = x corresponds to a formula cp{x) of L. The interpretation
of the basic symbols of the language L is inductively extended to all formulas x of
L. The interpreted formula is then denoted by x1 and is built according to the
following rules, where, for the sake of notational simplicity, we let L be an element-
ary language with only one binary relation symbol R.

(i) (x = yY:=(x = y);
(ii) (R(x,y)y:=^R(x,y);
(iii) (-ix)/«=-«(z/);
(iv) (Xi v XiY'^X1! v zi;and
(v) (3XXY--=M<P(X) A / ) .

If © = (£,. . .) is a model of K\ then we obtain—with the help of /—a model S37

for L. The domain of S37 is simply the set of all elements of the domain of 93 satisfying
the formula cp(x). The symbol R of L is interpreted by the relation

{(a, b) e £2/33 |= <p(a) A <p(b) A \j/R(a, b)}.
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The next lemma is easily proven by induction on the complexity of formulas.

Lemma (Rabin [1965]). For each formula x ofL and for each structure 93 ofK'\

» N Z7 Of®11= Z. D

The theory ThL(K) is said to be interpretable in ThL(K') if

(i) for every structure 91 e K there is a 95 e K' so that 937 and 31 are isomorphic;
(ii) for every structure 93 e K', the structure S37 is isomorph to a structure of K.

The main property of interpretations with respect to decidability is expressed
in the following result.

2.1 Theorem (Rabin [1965]). Let K and K' be model classes and let L and L, re-
spectively, be suitable languages, where L is assumed to be elementary. IfThL(K) is
interpretable in ThL,(Kf\ then the decidability ofThL,(Kf) implies the decidability
ofThL(K). •

The proof is a straightforward application of the preceding lemma. There are
obvious generalizations of the notion of interpretability, and a result similar to
Theorem 2.1 can be proven for them. Thus, for example, we may admit

(a) any finite signature;
(b) the identity can be handled as a non-logical symbol; that is to say, it is

interpreted by a congruence relation;
(c) rc-tuples of elements from the domain of 93 can be used as individuals of

937;and
(d) both languages can be non-elementary.

In the next subsection, we will give some examples that show how to apply inter-
pretability in investigations on decidability. In particular, we will embed these
examples in an investigation of well-orderings.

Well-orderings. The elementary theory of the class WO of all well-orderings was
proven to be decidable by Mostowski-Tarski [1949]. The proof uses the method
of elimination of quantifiers and was published in Doner-Mostowski-Tarski
[1978].

One of the simplest methods used to prove the undecidability of a theory is
that of trying to show that a theory which is known to be undecidable is interpret-
able in it. This holds also for extended logics.

The following example shows that the expressive power of the logic with the
equicardinality quantifier / is great enough to make the theory of well-orderings
undecidable.

Let K = {91}, where 91 is the structure of natural numbers with addition and
multiplication, and let K' = {9JI}, where 50J = (M, <) is a linear ordering of order
type co2. Furthermore, L and L, respectively, will denote the corresponding
elementary languages. L'{I) arises from L by adding the equicardinality quantifier
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254 VII. Decidability and Quantifier-Elimination

/. We shall show that ThL(K) is interpretable in ThL{I)(K'). In fact, the interpreta-
tion J is defined as follows:

(i) (x = y)J -= 3y(y < x A ~i3y(y < x A ^Z{Z < y v x < z))) = cp(x)\

(ii) (x + y = z)J := Iu(cp(u) A u < x, cp(u) A y < u A u < z); and

(iii) ( x • y = z)J . • = Iu(cp(u) A u < z , 3 v 3w((p(v) A v < y A v < u

A U < XV A Iw'((p(w') A W' < X, V < W A W < w))).

Here cp defines the elements of 91 as limit-elements of 9W (see Fig. 1). The formula

I I 1 I I I I I I I ••• o i I I I I I I 1 I 1 ••• o I I I 1 I I I I 1 I ••• o I I I 1 I I 1 I 1 I •••
" 0 " " 1 " " 2 "

F i g . 1

on the right side of (ii) defines the addition by using the fact that between b and
a + fo there must bejust a elements. See Fig. 2, where the addition "2" + "4" = "6"
is presented.

" 0 " " 1 " " 2 " " 3 " " 4 " " 5 " " 6 " " 7 "

Fig. 2

To illustrate the meaning of the formula on the right side of (iii), we present the
example "2" • " 3 " = "6" in Fig. 3. Here x = 2, y = 3, and z = 6.

x y z
" 0 " " 1 " " 2 " " 3 " " 4 " " 5 " " 6 " " 7 "

I i i i i m m . ^ X • i • * . A A I I X A , i i . . . A i i i i . _ _ A i i i i . . . A i i i i . _ . A \ i i i i /*k i i i i » • «

I i * i i • • • y Y ! ' y j j ' y y ' i V Y i i i i Y i i i i y i i i i • • • v^-t i i i

V W V W V W

Fig. 3

The solid circles are precisely points satisfying the formula:

3v 3w((p(v) A v < 3 A IW(cp{W) A w' < 2, v < W A W < w)

A V < U A U < W).

But there are just x • y = 2 • 3 points u, satisfying this formula. ThL(X) is inter-
pretable in ThU(I)(K') iff (M, < ) J ^ 91. But this can be easily verified if we regard
the meaning of the formulas (x = x)J, (x + y = z)y, and (x • y = z)J. Hence, we
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2. Interpretations 255

obtain the undecidability of ThL7/) by Theorem 2.1, since it is well-known that 91
has an undecidable elementary theory.

From the above example, we infer the following result from Weese [1977c].

Lemma. ThL'(/)(WO) is undecidable.

Proof. An easy way to prove the lemma is to use the fact that 91 is strongly un-
decidable (see Shoenfield [1967, Theorem 2 and Theorem 3 on pages 134 and 135,
respectively]). We go another way in demonstrating how to extend the notion of
interpretability to languages containing the quantifier /.

We first show that ThL<9W) is interpretable in ThL<WO), where, as above, 9W
is a well-ordering of order-type co2. Let cpo(

x) be a formula in L expressing the
notion

"x is the least limit-point which is a limit of limit-points ".

Assume that W is a well-ordering of order-type greater than co2 and let a be an
element of 9W' with W |= (po(a). Then obviously

W\ {b/b e\W\ and b < a}

has order-type co2. Hence, we get the desired interpretation, an interpretation
defining cp(x) to be 3y(q>0(y) A X < y) and defining i^<(x, y) to be x < y.

Now we can extend this interpretation to an interpretation of ThL(/)(9W) in
ThL'(/)(WO). To this, we add rule (vi) as given below to rules (i) through (v) in the
definition of x1:

(vi) (Ix(xu Xi)Y := Ix((p(x) A xi, <p(x) A xi)-

It is easy to prove Theorem 2.1 as well as the lemma preceding it for this notion of
interpretation. Hence, we obtain the undecidability of ThU{I)(WO) by the above
example. D

The strongest result for the decidability of classes of well-orderings in extended
logics are the results for monadic second-order theories (see Chapter XIII, Section
4.2 of this volume). They imply many other results using the method of interpret-
ability. The following result was proved first by Slomson (see Slomson [1976]) using
the method of dense systems and a game-theoretical examination of the structure
of well-orderings.

2.2 Theorem. ThQr(WO) and ThQfa,(WO) are decidable.

Proof. Shelah [1975e] proved the decidability of the monadic theory of the class of
all well-orderings <co2, which is briefly denoted by Th/7({(oc, <)/a < co2})- (The
reader should also see Chapter XIV, Section 4.2 or this volume for more on this).
We will use this result to prove Theorem 2.2 by interpretability. Obviously the
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256 VII. Decidability and Quantifier-Elimination

following relations are expressible by formulas in the monadic language for
ordinals:

" Y c l " i s expressible by Vy(y sY-+yeX);

"X ^ 0 " is expressible by 3x x e X;

"x has a successor in Y" is expressible by 3y(y e Y A X < y)\

"x is not the first element of Y" is expressible by 3y(j < x A yeY);

"x is a limit in Z" is expressible by

Mz(zeZ A z < x -> 3y(yeZ A Z < y < x));

and

"Z is confinal in Y" is expressible by Vy(y e Y -* 3z(y < z A Z e Z)).

Then define io(X) and XiĈ O a s follows:

A Vx(x e 7 -> "x has a successor in Y"));

^ ( X ) : = ] y ( " y c I M A / O ( Y ) A VZ("Zc Y" A "Ziscofinalin Y"

-* 3x(xeZ A "x is limit in Z"))).

For each well-ordering 9W and each subset B of the domain of 9W, the following
holds:

(*) m \= Xi(B) iff |B| > Kf for each i = 0, 1.

The downward Lowenheim-Skolem Theorem for ^wo>(8i<ca) gives

ThQi<4WO) = ThQf<co({(a, <)/a < co2}) for i = 0, 1.

We will show that ThQ.*«({(a, <)/a < co2}) is interpretable in

<)/a < co2}).

To this end, let <p(x) be the formula x = x and define i^<(x, y) to be x < y. We
extend the rules (i) through (v) by one of the following sets of rules

(vi)o (Qo *xY '-= 3X(xo(X) A V x x e l - ^ r i for each 0 < n e co;

(vi)i (QlxxY '-= 1X(XI(X) A V x x e I - > r f for each 0 < n < co.
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2. Interpretations 257

Condition (*) guarantees that (Qn
oxxY and (Q^xx)1 get the correct interpretation

by (vi)0 and (vi)x. We will leave it to the reader to verify that Theorem 2.1 also
holds for this notion of interpretability, which proves Theorem 2.2. D

At first sight stationary logic is a strengthening of ^w c a(2i) which stands
closer to monadic second-order logic than does ^ww(6i<co). Although the theory
of well-orderings in stationary logic is decidable, there are models of set theory
in which monadic second-order theory is undecidable (see, for example, Chapter
XIII of this volume).

The former was proven by Mekler [1984] who used elimination of quantifiers
and by Seese [1981b] who employed dense systems. Hence, it would be interesting
to know whether or not this result might be inferred by interpretability from the
decidability of Th/7({(a, <)/a < co2}). For each natural number n, this is indeed
the case for Thaa({(a, <)/oi < col - n).

Exercise. Show that Th^dco, -n, <)) is interpret able in

Th7/({(a, <)/a < co2) for each neco.

Hint. Extend the interpretability result Theorem 2.1 to j£?wco(aa) and then use the
definability of co, • n in the monadic second-order logic and the fact that the
initial-intervals of to, build a canonical closed and unbounded set-system for
(col9 <).

Aside from what has already been pointed out, this interpretability result gives
the decidability of the theory of (co, • n, <), for all n e co, in the language j£?7/(aa).
It is not possible to extend this interpretability to (co, -co, <), as the following
example will show. Moreover, the theorem given below shows that even an exten-
sion of Thaa((cox -co, <)) by unary predicates yields an undecidable theory.

2.3 Theorem. Let WOP denote the following class of structures

{(a, <, P)/(a, <) e WO and P c a } .

Then Thaa(WOP) is undecidable.

Proof. The proof falls into three steps. First, we prove that the elementary theory of
countable, symmetric, and reflexive graphs, a theory that is known to be undecid-
able (see, for example, Rabin [1965]), is interpretable in

T h j j y K , <, Pd: 7 < co, Pt c co, (i < y)\\

Moreover, we should here remark that (J is the disjoint union and not the sum of
orders. The basic idea used here is the following.
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258 VII. Decidability and Quantifier-Elimination

Let © = (G, R) be a countable, symmetric, and reflexive graph. We assume that
G = y, for some y < co, and show that © can be defined in a uniform way in a
structure of the above class. By a theorem of Ulam [1930], there is a set

of pair wise disjoint stationary subsets of col. For i < y, let

Then each At is stationary on (DX and

( # ) i4f n Aj is stationary iff (/, j) E £.

This is used to define © in (Jt< y (co1?<, A,) by the following formulas:

and

, y) := <po(x) A (^0(^) A (stat 5) 3z 3w("sup(5 n {v:v < z}) = z"

A "sup(s n {u:i; < w}) = u"

A X < Z A ^ < W A P ( z ) A

Here "sup(s n {v: v < z}) = z" and "sup(s n {1;: 1; < M}) = M" are abbreviations
of the corresponding formulas, cp^x, y) expresses just the left side of (#) , while
(po(x) defines the domain of ©. Hence, by using as cp(x\ cpR(x, y) the formulas
(po(x\ (Pi(x, y), respectively, we get the desired interpretation. Moreover, we must
have to add the rules (vi) and (vii) to the rules (i) through (v):

(vi) (s(x)Y := s(x) A cp{x)\ and

(vii) (aa sx)1 : = aa sx-

Theorem 2.1 also holds for this notion of interpretability. Thus,

Thaa({ 0 (cou <, Pd: 7 < co, P ^ cox (i < y)

is undecidable.
The second step in our argument is to interpret this latter theory in

T h a a ( { ( ^ l ' CO, < , P ) : P ^(Or CO}).
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3. Dense Systems 259

This can be easily done using the notion of interpretability given above for
stationary logic and we leave the details of it to the reader. Finally, we notice that
this theory is interpretable in Thaa(WOP). We give only a hint for this third inter-
pretation: For each well-ordering (a, <) with a > co1 -co the point CD1 -CO is
uniformly definable that is, it is definable independently of a in (a, <) by a formula
from ^couiQi). This completes the proof. D

We will conclude this subsection with a few additional facts and some historical
notes.

Further Results. In addition to Theorem 2.2, Slomson [1976] proved that
ThQ< co(WO) is decidable for all ordinals a. He used the method of dense systems
and a game-theoretical examination of the structure of well-orderings. Moreover,
he proved that for all a, /? > 0 the theory ThQ<co(WO) equals the theory
ThQ<a,(WO), while The<co(WO) differs from these theories. These results had
already been proven by Vinner [1972] for Se^JQ^ rather than for J^ww(6a

<co).
The reader should also consult Lipner [1970] and Slomson [1972] for more on
this. A further generalization of Theorem 2.2 was proven in Tuschik [1982b]. In
particular, let A be a set of ordinals, and let L(A), L(A) < w, respectively, be the
language L with the additional quantifiers Qa (for aeA) and Q", for aeA and
n > 1, respectively. Assuming GCH, Tuschik [1982b] proceed to prove that
ThL(A)(WO) is decidable for each finite set A of non-limit ordinals. In this connec-
tion we note that Wolter [1975b] proved this for A = {0, a}. Moreover, assuming
GCH, Tuschik [1982b] proved that, for any finite A, L(A)<C0 is reducible to L(A)
with respect to the class WO and that ThL(A)<w(WO) is decidable. By performing
ordered sums of finitely determinate linear orderings, the proof of the decidability of
Thaa(WO) given in Seese [1981b] used the method of dense systems and an in-
vestigation of the preservation of =„ (L(aa)). Interestingly enough, the proof
yields that all well-orderings are finitely determinate, a fact which was also proven
by Mekler [1984]. Moreover, Mekler [1984] proved that a simple extension of
Thaa(WO) by unary predicates and defining axioms for it admits elimination of
second-order quantifiers.

Some further results on this can be found in Caicedo [1978], Kaufmann
[1978a, b], and Mekler [1984], as well as in Seese-Weese [1982]. The reader should
also see Chapter XIII of this volume for material on these notions. Finally, we
note that the results cited at the end of the next section also provide some material
on boolean algebras.

3. Dense Systems

The method of dense systems was used by Ershov [1964b] and by Lauchli-Leonard
[1966] to obtain the decidability of the theories of boolean algebras and linear
orderings, respectively. The method used in these studies can be formulated in a
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260 VII. Decidability and Quantifier-Elimination

general form, a form which is applicable both to axiomatizable and non-axio-
matizable logics. In order to develop this form, we first let X b e a class of models
and L any logic, and then make the following

Definition. A countable subset M c AT of models is:

(i) dense for K (with respect to L) if any sentence of L which is satisfiable in
K already has a model in M; and

(ii) is uniformly recursive with respect to L if the relation "A \= cp" is recursive,
where A varies over models of M and cp over sentences of L (we assume a
fixed Gddel-numbering).

3.1 Theorem. Suppose K and L are as above and M is dense for K and uniformly
recursive with respect to L. Then the theory ThL(K)is decidable if either:

(i) L and K are (recursively) axiomatizable; or
(ii) there is a recursive function f so that for each sentence cp ofL having a model

in K, there is a model Ae M, A |= cp with \A~\ < f(\cp\). Here, the notation
\A] and \(p^\ denote the corresponding Godel-numbers.

Generally, to obtain a Gddel-numbering, the set M is generated from simple
structures by some operations such as sums, products etc. A logic L which pre-
serves L-elementary equivalence for these operations is especially convenient to
obtaining decidability. If it preserves L-elementary equivalence for the direct
product it has the product property. For instance, the elementary logic has the
product property as well as the logic with the additional quantifier Qa. But, on
the other hand, the logic with Malitz quantifiers Q" (n > 1) and stationary logic
do not possess this property. However, stationary logic does have the product
property if only finitely determinate structures are considered.

In the following two subsections, the sets M are constructed for the classes of
linear orderings and boolean algebras, respectively. This will clarify the abstract
notions that are given above. Furthermore, we obtain some insight into the
expressive power of cardinality quantifiers for these two classes.

3.1. Linear Orderings

Let us consider the class of linear orderings LO in the logic L(QX) which has the
cardinality quantifier Qx. The decidability of the elementary theory of LO was
established in Ehrenfeucht [1959b].

3.1.1 Theorem. The theory ThQl (LO) is decidable.

This result was shown by Tuschik [1977b] and by Herre-Wolter [1977]. The
proof closely follows the line given by Lauchli-Leonard [1966] for the elementary
case, but with some important exception: the Ramsey theorem cannot be used,
since it is no longer valid in the uncountable case. However, Shelah's theorem for
additive colourings [1975e] is a useful substitute.
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3. Dense Systems 261

As to Theorem 3.1, it follows that it is enough to have a dense set M which is
uniformly recursive. The models in M are called term-models. In order to define
M, we need some special dense linear orderings om'n which we will briefly describe
as follows: The om-n are uncountable dense linear orderings with finitely many
predicates Xl9 . . . , Xm9 Yl 5. . . , Yn which form a partition of the underlying set of
(im'n, so that Xl9..., Xm are countable dense subsets and Yl9..., Yn are avdense
subsets, where Yt is said to be condense if between any two elements there are
uncountably many elements of Yt. Suppose that F = (Al9 . . . , Am) and G =
(Bl9..., Bn) are two finite sequences of linear orderings, then a(F, G) results from
Gm,n ^ replacing each point from Xt or Yj by a copy of At or Bj, respectively.
G(F, G) is thus called the shuffle of (F, G).

Now, the set M is the smallest set containing 1 (the unique one-element order),
so that we have the following:

(i) If A, Be M then A + BeM;
(ii) If A e M, so are A- co,A- co*, A • col9 and A- cof; and

(iii) If F and G are finite sequences of models from M, then cr(F, G) belongs to
M also.

The operations above are defined as usual for linear orderings. To show that M
is dense, it is convenient to use n,l-isomorphisms, these having been introduced in
Chapter II, Section 4.2. In the original papers, the game-theoretic equivalent of
^M : was used (see Lipner [1970], Brown [1972]). To mark this difference we will
denote ^ x by ~ in the following. The proof of the following lemma is omitted.

Lemma. The operations which generate M preserve ~ • D

A linear ordering A is called n-term-like iff there is a term-model B such that
A ~ B. The crucial point consists in proving the following fact:

Lemma. Suppose every bounded convex subset of A is n-termAike, then A itself is
n-term-like.

Proof. We may suppose that A has a least element (otherwise, we can partition
A = B + C + D, where B and D have a greatest or least element, respectively,
and C is bounded and convex). By the Lowenheim-Skolem theorem for L(2i),
we can assume A has cardinality Kt.

However, A then possesses an increasing cofinal ^-sequence* where K is 1, co,
or co1. In the first case, the stated property follows immediately, since then A is
bounded. To establish the other two cases, we remark that the equivalence relation
~ has only finitely many equivalence classes. Hence, ~ induces a colouring by
assigning to the pair <a, b} the equivalence class of the interval (a, b~\ (as an ordered
set) with respect to ^ . This colouring is additive since + preserves ~ as was stated
in the lemma above. Now, we can apply Shelah's theorem on additive colourings
to choose homogeneous subsets. Hence, there is a subset X ^ A of order-type col

(or co in the second case, respectively) so that for any element a < b and c < d of
X we have
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We refer to the original papers concerning the relation

A ~ Ao + Ax • (to* + to) • col9

where Ao and ^ are bounded segments of A (namely, Ao = A~xo and Ax =
(x0, x j and x0 and xx are the first two elements of X).

By the hypothesis, Ao and ^ are rc-term-like, say Ao ~ Bo and Ax ~ B1 with
B0,Bls M. Thus, we also have

A ~ Bo + Bi • co + #! • (a;* + to) • toi.

However, the right side itself is a term-model. Thus, A is n-term-like, and the lemma
is proven. D

From the following lemma we can easily conclude that M is dense in LO.

Lemma. Every linear ordering A is n-term-like.

Proof. By the Lowenheim-Skolem theorem for L{QX\ we may again suppose that
A is of cardinality <Kj. We define an equivalence relation « on A as follows:

x « y iff every segment of the closed interval [x, j/] is n-term-like. Clearly, «
is convex. Furthermore, by the preceding lemma, every equivalence class itself is
n-term-like.

Claim. There is only one equivalence class.

Assume there are two different equivalence classes C < D in A/&. If D is a
successor of C, then we can prove that the elements of C and D are equivalent, since
M is closed under addition. However, this would contradict the assumption
about C < D. But otherwise A/ « has to be dense. The elements of A/& are
themselves linear orderings, and, as we have already proven, they are n-term-like.
Thus, there are term-models Au...,Ak so that every CeA/& is equivalent to
some Ai9 1 < i < k. For C < De A/&, we let F(C, D) c {Al9..., Ak} be the sub-
set of those term-models At which are ^-equivalent to some E between C and D.
Similarly, let G(C, D) ^ {Al9...9 Ak} be the subset of all term-models At so that
there are uncountably many E between C and D, with E ~ At. Now, choose
C < D in A/& with F(C, D) and G(C, D) minimal. Clearly, this implies that, for
C < E < F < D, F(C, D) = F(E9 F) and G(C, D) = G(E9 F). Then, it is not
difficult to prove that

(J N ~ (j(F(C, D), G(C, /))),
Ne(£,F)

for any £ and F, with C < E < F < D. Before continuing our argument, we should
remark that (£, F) is the open interval in 4 / « with endpoints £ and F. Returning
to our line of argument we note that by definition, cr(F(C, D\ G(C, D)) is again a
term-model. Thus, we may conclude that the elements of C and D are «-equivalent.
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3. Dense Systems 263

But this would be a contradiction to C < D. Thus, the claim holds and the lemma
is proven. D

Corollary. If some sentence (p of L(Q1) has an ordered set as a model, then it also
has a term-model as a model

Proof. Let A be a model of cp. By the Lowenheim-Skolem theorem, we may assume
that A has cardinality <KX. Suppose the quantifier rank of cp is n. Then, by the
preceding lemma, there is a term-model B, so that A £ B. However, using claim
(*) from the proof of Corollary 4.2.4 in Chapter II, this implies B \= cp. D

From the definition of the set M, we know that its members have a very deter-
mined structure. This idea is used to prove that M is uniformly recursive with
respect to L(g1).

Lemma. M is uniformly recursive with respect to L(QX). U

The proof of the above lemma can be accomplished by induction on the
complexity of the term-models and the sentences.

Now, using Theorem 3.1 we obtain the decidability of ThQl(LO), and hence
Theorem 3.1.1 is proven.

We have illustrated the main idea in order to prove the decidability of the
theory of linear orderings in a language with the quantifier Qv Now, let us mention
some further results about the class of linear orderings for logics with other
generalized quantifiers.

(1) First of all, we refer the reader to Chapter XIII where second-order
quantifiers are considered.

(2) (GCH) ThQa(LO) is decidable for every ordinal a. The case a = 0 follows
from Laucnli [1968]. Since, for regular Ka, this theory is the same as ThQl(LO),
it is clear that its decidability follows from Theorem 3.1.1, Herre-Wolter [1979b]
provides a proof of it for singular Ka.

(3) Let A be a finite set of ordinals such that for all a e A, Ka is regular. LA

denotes the language of linear orderings with the additional generalized quantifiers
Qa, aeA. Under some conditions that are weaker than GCH, Tuschik [1980]
proved the decidability of ThLA(LO).

(4) Let L2 W be the language L with the additional Malitz quantifiers Q™, for
all a G A. If we only add the binary Malitz quantifier, the extended language will
then be denoted by L\. Suppose that, for all aeA, Ka is regular, then Tuschik
[1982b] has shown that L^03 is reducible to L\ for the class of linear orderings.
Furthermore, ThL< o,(LO) is decidable. For the limit cardinal number Kw, it is also
shown that L^ is reducible to L ^ for linear orders.

(5) In contrast to the results mentioned above, the theories Th7(LO) and
Thaa(LO) are undecidable. The undecidability of Th/LO) follows immediately
from that of Th7(WO) (see Section 2), while that of Thaa(LO) is proven in Seese-
Tuschik-Weese [1982].
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3.2. Boolean Algebras

The decidability of the elementary theory of boolean algebras Th(BA) was proved
by Tarski [1949]. Some years later, Ershov [1964b] showed that the theory of
boolean algebras with a distinguished prime ideal is also decidable. Here we will
consider the class of boolean algebras in the logic with the additional cardinality
quantifier Qa, for arbitrary ordinals a.

First, we will compare the various cardinality quantifiers with each other.
Therefore, throughout this subsection we will work in a fixed model of set theory,
where S is that ordinal which satisfies K5 = 3W. Weese [1976b] showed the following

Theorem. For every ordinal a > 0, we have

(i) ThQa(BA) = ThQl(BA) iff there is some ft < a, with 2*p > Ka;
(ii) ThQ*(BA) = ThQ<5(BA) iff 2*' < Ka,for every fi < a. D

Remark. In fact, L(QJ and L(Qp) represent one and the same language L(Q). The
ordinal subscript only serves to mark the different interpretation. If we make
comparisons such as the above, we can consider the theories ThQ as subsets of

From the theorem, we see that there are at most three different theories of
boolean algebras in logics with cardinality quantifiers, namely ThQo(BA), ThQl(BA),
and ThQ<5(BA). The connection between these theories is illustrated in the next
proposition.

Proposition. ThQl(BA) £ ThQd(BA) £ ThQo(BA).

Proof. We will only prove that the inclusions are proper. Let At(x), at(x), and
atl(x) be formulas of the elementary language of boolean algebras which express
the properties "x is an atom", "x is atomic", and "x is atomless", respectively. Set

cp .= Vx(atl(x) -> Qy(y < x)),

and

iA »= Vx(at(x) A Qy(y < x) -+ Qy(At(y) A y < x)).

Then it is immediately seen that

^eThQo(BA)\ThQd(BA) and xj, e ThQd(BA)\ThQl(BA). D

Now, to prove the decidability of these theories, we want to establish dense
sets Mo, M1? and Ma-. For the sake of simplicity, we will restrict ourselves to the
construction of Mo in the following discussion. The constructions of M1 and Md

would require some further operations, so that we will omit them entirely and
refer the reader to the literature. Before we can define the set Mo, we must introduce

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.011
https://www.cambridge.org/core


3. Dense Systems 265

two operations for boolean algebras. Let n be the set of rational numbers. Then
©,, B and J~p B are subalgebras of the Cartesian product Ylieti Bt> where Bt = B
for all ierj. ©^ B is the subalgebra generated by the elements {at\ ierj}, where
{i erj: a{ # 0} is finite. This kind of product is also called a direct sum.

Let /(n) be the boolean subalgebra of the power set of rj, which is generated by
the intervals. Then J p B is generated by the elements {a,: i e rj} with the properties
that {ierj-.cii ^ 0} belongs to /(n), and {z e r\\ at # 0 and a ^ 1} is finite.

We are now ready to define Mo • Let 2 be the unique boolean algebra with only
two elements and let P be any fixed countable atomless boolean algebra. Then, Mo

is the smallest set containing 2 and P such that the following hold:

(i) if A and B belong to Mo, then so does their direct product A x B;
(ii) if B e Mo, then 0 ^ B and f]" £ also belong to Mo.

The algebras in Mo are called term-models. To show that Mo is dense it is convenient
to use n, 0-isomorphisms, these latter having been introduced in Chapter II,
Section 4.2. In the original paper the game-theoretic equivalent of ^n 0 was used
(see Lipner [1970] and Brown [1972]). We observe that it has an especially simple
form for boolean algebras. To mark this difference, we denote £Wf 0 by ^ in the
following discussion. The proof of the lemma given below is omitted.

Lemma. The operations which generate Mo preserve ~ also. D

A boolean algebra A is n-term-like iff there is a term-model B so that A ~ B.
If a is an element of the boolean algebra B, then the ideal generated by a is denoted
by (a)B = {beB: b < a}. If no confusion can arise, we omit the subscript B
altogether. By interpreting the constant 1 by the element a, we see that the structure
(a)B becomes a boolean algebra. For each boolean algebra B, we can thus define
the subset Dn{B) of n-term-like elements as

Dn(B) = {a e B: for every non-zero b e (a), (b) is n-term-like}.

Lemma. Dn(B) is an ideal.

Proof. Clearly, if a 6 Dn(B) and b < a, then b e Dn(B). Let be a, b e Dn(B). If a < b
or if b < a, then obviously aubeDn(B). Otherwise, a u b = a u (b\a) and
a ^ O and b\a # 0. Since a and (b\a) are n-term-like, there are term-models Al

and A2 such that (a) ~ Ax and (b\a) ~ A2. However, since a and (b\a) are
disjoint, we get that a u(b\a) ~ Ax x A2. By definition, Ai x A2 is again a
term-model. Hence, a u b is n-term-like. If c < a u fo, then we can repeat the
proof for a n c and (fc\a) n c. Hence, the element aub belongs also to Dn(B). D

From the next lemma we can easily conclude that Mo is dense in BA.

Lemma. Every boolean algebra is n-term-like.

Proof. By the preceding lemma, we know that Dn{B) is an ideal for every boolean
algebra B. We will show that Dn(B) is not proper. Then B = (1) is n-term-like
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and the lemma is proved. Assume that l£Dn(B). Since ~ has only finitely many
equivalence classes, there are Al9 . . . , Ak e Mo such that any n-term-like boolean
algebra is ^-equivalent to some Ai9 1 < i < k. For each b e B\Dn(B\ let

Tn(b) = {i: there is some c e Dn(B) with c < b such that (c) £ At}.

Let a e B\Dn(B) be minimal. That is, for every b e B\Dn(B) n (a) Tn(fe)
Clearly, we may assume that either a/Dn{B) is an atom or atomless. We will show
that in either cases a is n-term-like.

Case 1. a/Dn(B) is an atom.
If Dn{B) restricted to (a) is the zero-ideal, then a is an atom in B also; thus (a) ~ 2
and a is n-term-like. Otherwise, Dn(B) is not the zero-ideal and we can prove that

(a) ~ © A, where A = f| At.
t] ieTn(a)

Since M0 is closed under direct product, the algebra A belongs to Mo. Furthermore,
Mo is also closed under the direct sum of an algebra. Hence, 0 ^ A is a term-model
and (a) is n-term-like.

Case 2. a/Dn(B) is atomless.
If Dn(B) restricted to (a) is the zero-ideal, then a is atomless in B also. Thus, (a) ~ P
and a is n-term-like. Otherwise, Dn(B) is not the zero-ideal, and we can prove that

(a)Z>Yl"A, where A= f ] At.
ieTn(a)

As in the first case, YY A is a term-model, and hence (a) is ^-term-like.
If fo < a, then either beB\Dn(B) or beDn(B). In both cases b is rc-term-like

(in the first case, the proof is the same as for the element a above). However, a
must then be an element of Dn(B), which is a contradiction. Hence Dn(B) = B. U

Corollary. Mo is dense for BA with respect to L(Q0). •

The proof is similar to the corresponding proof of the corollary of Theorem
3.1.1.

An easy construction of the term-models is used to prove the following

Lemma. Mo is uniformly recursive with respect to L(Q0).

Proof The proof is by induction on the complexity of the term-models and the
sentences. D

As a conclusion we obtain the following theorem, a result that was proved by
Pinus [1976] and by Weese [1977a].
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Theorem. The theory ThQo(BA) is decidable. D

In a similar way (by using rather complicated term-models), we can prove the
decidability of the theories ThQl(BA) and ThQd(BA). In connection with the first
theorem of this subsection, we may conclude the following result due to Weese
[1976b].

Theorem. For every ordinal number a, the theory ThQa(BA) is decidable. U

Now, we want to compare the expressive power of L(Q0) with those of the
elementary language L and weak second-order logic Lws. Let F be the boolean
subalgebra of the power set of co generated by the finite sets. Then F = F x F (L);
however, in L(Q0), they can be distinguished by the sentence cp, where

q> := 3x 3y(x n y = 0 A QOZ(Z < X) A QOZ(Z < y)).

Hence, L(Q0) is really more expressive. On the other hand, we have, for any boolean
algebras A and B,

A = B(LW) iff A = B(L(Q0)).

Thus, Lws and L(Q0) are of the same expressive power. However, while ThQo(BA)
is decidable, Thws(BA) is not, as was proved by Paljutin [1971].

In the following discussion, we will mention further decidability results for the
class of boolean algebras.

(1) First of all, we refer to the results of Rabin [1969, 1977], who proved the
decidability of the theory ThL/(P), where P is a countable atomless boolean algebra
and LI is a second-order language appropriate for boolean algebras whose set
variables range over ideals. Rabin interpreted this theory in S2S, the monadic
theory of two successor functions. Using the fact that for each countable boolean
algebra A there is an ideal / on P so that A ^ P/7, he concluded that the theory
of all countable boolean algebras in the logic LI is also decidable. As a corollary,
he obtained the decidability of the elementary theory of boolean algebras with a
sequence of distinguished ideals, an accomplishment generalizing the result of
Ershov that was mentioned at the beginning of the subsection.

(2) In this discussion, CH is assumed. Using a result of Sierpinski on the exist-
ence of special families of linear orderings, Rubin [1982] established the undecid-
ability of ThQ2(BA), the theory of boolean algebras in the logic with the binary
Malitz quantifier in the Kx -interpretation.

(3) In contrast to the preceding fact, Molzan [1981b] proved the decidability
of ThQg(BA) by a quantifier elimination procedure.

(4) The undecidability of the theory Th7(BA) in the logic with the Hartig
quantifier / was proved by Weese [1976c] by means of interpretation.

(5) Interpretability also yields the undecidability of the theory Thaa(BA) of
boolean algebras in the stationary logic. This fact was proven by Seese-Tuschik-
Weese [1982].
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Open Problems

(1) Find appropriate "first-order" conditions equivalent to the eliminability
of all Ramsey quantifiers QJJ or to the eliminability of all Malitz quantifiers Q?
(m < (o) in unstable (countable) complete first-order theories. For stable theories
this is known (see Theorem 1.2.3 and Remark 7 at the end of Section 1.2).

(2) Investigate the relative strength of eliminability of Q™ for various ordinals
a and fixed m < OJ. For stable theories, this is known in the case m = 1 (see
Remark 1 at the end of Section 1.2). In the case m > 1, only some partial informa-
tion is presently available (see Remark 8 at the end of Section 1.2).

(3) Investigate the relative strength of eliminability of Q™ for various numbers
m (and fixed ordinals a). For stable theories, this is known in case a = 0 and a = 1
(see Theorem 1.2.3 and Remark 8 at the end of Section 1.2, respectively).

(4) Is Tz(/), the theory of abelian groups in the logic with the Hartig quantifier,
decidable?

(5) Is the theory of well-founded trees in the logic with Qt decidable?
(6) Is it consistent with ZFC that ThQ2(BA) is decidable? Under CH it is not

(see Remark 2 at the end of Section 3.2).
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PartC

Infinitary Languages

This part of the book is devoted to languages with infinitely long formulas and
their applications. Again the structures are of the sort studied in first-order model
theory. Languages with richer structures and infinitely long formulas are studied
in Part E. The study of infinitely long formulas is more developed than some of
the other parts of extended model theory. In particular, there are several books
treating various aspects of the subject, notably Keisler [1971a] and Dickmann
[1975]. This part of the present book was planned with the existence of these
references in mind, containing chapters that give an introduction to the subject
leading into these books as well as chapters that discuss more recent advances.

Chapter VIII presents a wealth of material on if^^, and some of its sublogics.
Starting with the original motivations for studying languages with infinitely long
formulas, the chapter provides both a basic introduction and an explanation of
many of the developments that have taken place since Keisler's [1971a] publica-
tion. In addition, it discusses extensions of 5£(ax w by new propositional connectives.
The importance of these extensions is not for their intrinsic interest so much, as for
the fact that they seem to have all the nice properties of JSfWl0,, and so make it
difficult to find a characterization of =2^^ by its model-theoretic properties.

Chapter IX presents an introduction to the stronger logics JSfKA, one that leads
into Dickmann's book [1975] on this topic but also goes beyond it with the presen-
tation of some more recent results. Special emphasis is given to partial isomor-
phisms and their applications, and to Hanf number computations.

One of the more recent developments in infinitary logic is that dealing with
game quantification which has grown out of the work of Svenonius [1965],
Moschovakis [1972] and Vaught [1973b]. The logic ^W i Wand JS?^ allow only
finite strings of quantifiers at any stage in the transfinite process of building
formulas. <2?

(Ol(Ol and ^?
aD(Ol permit infinitely long strings of the forms

and

3x1 3x2
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270 C. Infinitary Languages

The logics if ooG and jSf^ studied in this chapter are stronger than <£'„„ but
are not comparable with JSf«,«,,. They contain more powerful forms of infinite
quantification, by allowing infinite strings with alternations.

V x i 3 ^ V x 2 3y2 . . . <\>(xu y l 9 x 2 , y 2 , . . . ) .

However, they are more restrictive in terms of the form of the matrix <j> that can
follow the quantifiers. As the name "game quantification" suggests, a basic
motivation comes from game theory. We imagine a two-person game of perfect
information played by "V" and "3" . They are allowed to play in turns. The formula
is true in some structure if " 3 " has a winning strategy. The restriction on the matrix
<\) represents a restriction on the complexity of the games they are allowed to play.
Basically, the games should be "open" or "closed", so that one of the players has
a winning strategy. As a consequence, one has

-|(Vx! 3yt Vx2 3y2 ...(/>)

logically equivalent to

3x1 Vyx 3x2\fy2 . . . 1 0

and equivalence which would fail without some such restriction. It is also exactly
these open and closed games that arise in the analysis of inductive definitions, as
Moschovakis showed. Vaught showed how these game formulas can be ap-
proximated by formulas of jSfa>1<0, leading to interesting proofs of results about the
latter logic. Svenonius' theorem relates the logics to the study of second-order
logic on countable structures. All of these results are covered in Chapter X, as
well as some of the connections with generalized recursion theory and descriptive
set theory.

Chapter XI, the final one in Part C, presents several applications of infinitary
logics to algebra. The chapter is organized by algebraic subject matter. The first
two sections, on universal locally finite groups and on subdirectly irreducible
algebras, respectively, contain "pure" applications, applications of infinitary logic
to prove results that can be stated in standard algebraic terms without reference
to concepts from logic. The remaining sections, on Lefschetz's principle, abelian
groups, almost-free algebras, and concrete constructions, present the conceptually
more interesting kind of application where concepts from logic are brought in to
enrich some domain.
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Chapter VIII

j£?WlC0 and Admissible Fragments

by M. NADEL

Of the many strengthenings of first-order logic that the reader will encounter in
the course of this book, i f ^ and its admissible fragments have attracted the most
attention by a wide margin. Unlike many of the others, these logics are often
studied by investigators who are not otherwise involved with questions of abstract
model theory. A large body of "hard" model theory has already been developed,
and it continues to grow. Such a wealth of material, when coupled with stringent
space limitations, creates obvious difficulties for any researcher aiming to present
an exposition of this fascinating and ever-growing theory. We have attempted to
contend with these difficulties in as reasonable a way as possible while all the
time fully recognizing that even the catalog of results that we do present here is
indeed far from complete. In fact, entire areas are omitted. We have tried to com-
pensate for this, at least to some extent, through an appendix. Moreover, of the
topics we do cover, we try to mention at least the most basic results and then
direct the reader to other sources for further information.

In keeping with the procedure sketched in the preceding paragraph, we have
tried to strike a reasonable balance between "hard" and "soft" material, but have
steered clear of results in the direction of stability theory. Sections 3 and 6 are
concerned mainly with "softer" considerations, while Sections 4 and 7 deal mainly
with those "harder" aspects that are particularly characteristic of infinitary logic.
The distinction here is not absolute, of course, nor is it strictly observed. Sections
1 and 5 provide the necessary background material while Section 2 is concerned
with elementary equivalence. Section 8 deals with propositional extensions, and
is, perhaps, the "icing on the cake"—a part which some may like best, but which
others may prefer to avoid. In any event, the methods used in that section make it
a worthwhile discussion even for the reader whose interest in abstract logic is
quite limited.

Again, we would like to emphasize that within the limitations imposed by
strict space requirements and an already large (and rapidly growing) body of
theory, it is hardly possible to completely eliminate one's own prejudices and
preferences either with respect to the topics to be treated or to the treatment they
are to receive. Fully aware of this, we have nevertheless tried to present a reason-
ably orthodox treatment of the subject. We hope we have succeeded.
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PART I. COMPACTNESS LOST

1. Introduction to Infinitary Logics

1.1. Why We Need Infinitary Logic

In the practice of model theory, and in more general mathematics as well, it often
becomes necessary to consider structures satisfying certain collections of sentences
rather than just single sentences. This consideration leads to the familiar notion
of a theory in a logic. For example, in ordinary finitary logic, $£^^ if <Pn *s a sentence
which expresses that there are at least n elements, then the theory {cpn: new}
would express that there are infinitely many elements. Similarly, in the theory of
groups, if \j/n is the sentence Vx[x" ^ 1], then {ij/n: ne co} expresses that a group
is torsion free.

Suppose we want to express the idea that a set is finite, or that a group is
torsion. A simple compactness argument would immediately reveal that neither
of these notions can be expressed by a theory in JS?^. What we need to express in
each case is that a certain theory is not satisfied, that is, that at least one of the
sentences is false. While theories are able to simulate infinite conjunctions, there
is no apparent way to simulate infinite disjunctions—which is just what is needed
in this case.

A similar phenomenon occurs with respect to the description of the elements
in a structure. In order to specify that there is some element satisfying a certain
set of formulas—for instance, x # 0, x ^ 1, x ^ 2, and so on—we might simply
introduce a new constant symbol, say c, and then consider the theory in the
language augmented by c, containing c # 0. c ^ 1, c # 2 , . . . . Suppose, however,
that we want to consider structures, say models of set theory, in which the set of
natural numbers is standard. Here we must introduce the notion of a type; that
is, a consistent set of formulas in some fixed finite set of variables. We say that a
model 9W realizes the type O(x) = {(pk(x): keco} if there is some me M, such
that for each k e co, 5R t= (pk[rn\, or simply, 9K \= 3>(m). Otherwise, we say that SR
omits O. In the example above, we want our structures to omit the type {x e co,
x ^ 0, x # 1,...}. Of course, this is the same as requiring that each element
satisfy at least one of the formulas x $ co, x = 0, x = 1 , . . . . The original results
on omitting types are due to Henkin [1954,1957], Orey [1956], and Morley [1965].

The logics we will consider allow us to replace some or all types in the logic
by formulas of the logic. Thus, the notion of omitting a type may be equivalent
to satisfying a certain sentence. In fact, these logics may be viewed as being formed
by closing under "omitting types" as well as the other standard logical operations.
Somewhat earlier, model theorists considered co-logic (See Keisler [1966]) in
which there is a fixed unary relation symbol, say % whose realization in all co-
models is taken to be the same, viz., the set of standard natural numbers. However,
as research developed, attention has moved from co-logic to the more flexible
setting which we will discuss in the remainder of this chapter.
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1. Introduction to Infinitary Logics 273

1.2. Definition of the Infinitary Logics

We now formally define the formulas of the logic £* ̂  as the smallest class closed
under the usual connectives and quantifiers of finitary logic and, in addition,
under the conjunction of arbitrary sets of formulas. Thus, if <D is a set of formulas
of if O0(O, SO is / \ <D. The semantics for / \ O is the obvious one, and the disjunction
\/<J> may be defined using de Morgan's law as —\/\{~\cp: cpe <£}. We assume
that the reader can supply correct definitions for such standard concepts as sub-
formula, free variable, sentence, etc. In cases of doubt, the reader should consult
Keisler [1971a] or Barwise [1975].

Formulas, as we have so far defined them, may have infinitely many free
variables. However, from now on we will restrict our discussions to those formulas
with only finitely many free variables. It should be noted that a subformula of
such a formula—and specifically of a sentence—will again have only finitely
many free variables.

For any infinite regular cardinal K we define the sublogic <£KiO of I£ ̂  by
restricting the conjunctions to be of sets of cardinality less than K. For K singular,
the definition is a bit different. This is so in order to prevent the conjunction of
conjunctions from simulating a conjunction of cardinality K, and we omit it here.
Of special interest is JSf^c, in which only countable conjunctions and disjunctions
occur. JS?^ is simply the familiar finitary logic. For the sake of later comparison,
we also introduce the stronger logic !£^^ which, in addition to arbitrary con-
junctions and disjunctions, allows either existential or universal quantification
over an arbitrary set of variables; that is, if cp is a formula of i f o^ and X is a set
of variables, then 3Xcp is a formula of ^?

oooo. Again, we leave the standard defini-
tions to the reader, if ooA is the sublogic of if ^ in which the quantifiers are over
sets of variables of cardinality less than X. By analogy to the situation for if'„„,
one only considers those formulas of if '^ having fewer than X free variables.
The reader should consult Chapter IX for further details.

The structures for these logics are simply the structures of ordinary model
theory, and we assume that the notions of satisfaction are self-explanatory.
Structures will generally be denoted by SO? or 91 with their universes denoted by
M and N, respectively. We save the letters A and B for other purposes. As is the
custom in this book, when we wish to call attention to a particular vocabulary T,
we write 5£^Jx) instead of jg?^, etc.

1.3. Expressive Power

We next offer a few examples of the expressive power of the various logics that
have been introduced. Some of these are quite simple; others take considerable
ingenuity. It is easy to write a sentence of 5£0,xiO in the language with just equality
that says that a structure is finite. Similarly, we can write a sentence of i f Wlft) that
says a group is torsion or finitely generated, or that a structure with distinguished
unary predicate and constant symbols for the natural numbers is an co-model. In
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fact, given any countable type in i ? ^ or i^1 ( 0 , it is easy to write a sentence in
&?(o1(a expressing that the type is omitted.

That an abelian group is Xrfree, i.e. every countable subgroup is free, can be
expressed by a sentence of £fm<o (see Barwise [1973b]). On the other hand, whether
or not there is a sentence of if ^^ defining the class of free abelian groups depends
upon the particular universe of set theory. See Chapter XI for more details. The
Ulm invariants for a countable abelian torsion group can be "written" in ifWlC0

(see Barwise [1973b]). One can do the same for uncountable groups, obtaining
sentences of if ^ which, rather than characterize the group up to isomorphism,
characterize its i f '^ elementary class.

Turning now to the vocabulary of linear orderings, it is easy to characterize
the well-orderings (at least when the axiom of choice is assumed) by a sentence
of ifWlCOl. However, it can be shown (see Lopez-Escobar [1966a]) that no sentence
of if ooco characterizes the well-orderings. In fact, this class is not even PC. As an
exercise, the reader should show that for each ordinal a there is a sentence cp
°f & oow characterizing it up to isomorphism. This can be accomplished by induc-
tion on a. While it is true (see Nadel [1974b]) that for any scattered linear order-
that is, any linear order without a dense subordering—there is a sentence of 3?^
characterizing it up to isomorphism, there is nevertheless no sentence in !£ ^
that characterizes the scattered linear orderings, though obviously there is one in
eg

Finally, we mention that for each countable structure (and we will always
assume the underlying vocabulary is countable as well) there is a sentence of
^coyo which characterizes it, up to isomorphism, among countable structures.
This very early and very fundamental result is due to Scott [1965] and will be
considered in Section 4. We point out here that more generally, in the context of
any logic ^£, we may speak of a Scott sentence cp of a structure $R as a sentence of
^ which characterizes M up to elementary equivalence in ^£. The reader should
consult Chapter IX for a more complete discussion of the examples.

1.4. Reduction to Omitting Types

In this section we will give a paraphrase of a result which once again emphasizes
the connection between if'^^ and omitting types in 3?^' See Chapter XI of this
volume for details.

Let 5£B(z) be a countable fragment of if WIC0(T) (in a sense to be made precise
later). Then, by adding countably many new symbols, x can be expanded to a
larger vocabulary T' in which there is a set of types such that each i-structure has
a unique expansion to a r'-structure omitting these types; and, on these restructures,
each formula of ifB(T) is equivalent to a formula of if ^ ( T ' ) , and vice versa.

Remark. A similar result holds for arbitrary 5£KW and is discussed in Section 1.3
of Chapter IX.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.013
https://www.cambridge.org/core


1. Introduction to Infinitary Logics 275

7.5. JSf̂ o, of an Abstract Logic

Let if* be some abstract logic. Beginning with if*, can be form an infinitary
version of if*? For the sake of this discussion, let us consider a version which we
will call JS?*l£0 and which allows closure under countable conjunctions and dis-
junctions, rather than the full JS?^ analogue. A naive approach would be to close
if* under countable conjunctions and disjunctions, negation, and existential and
universal quantifiers as well. However, this is really not what is wanted here.
Suppose i^* is i^Cd). Then in if *lW we would like to be able to have sentences
of the form Qxxcp, where cp is already a formula of ^%X(O. In this situation, it is
clear how to proceed. In addition to the above closure conditions, we also close
J£*1(O under the "closure operations" of J^*. The problem arises in the general
context in which ^ may not be given in terms of "closure operations".

While the method we will use here and later in Section 6.6 is based on Barwise
[1981], there are some difficulties involved in the treatment given there. First of
all, the definition for J?Z1(O used in that work does not seem to be adequate for the
intended purposes; accordingly, we modify it slightly. Even more importantly, the
discussion given there purports to include the case of logics involving second-, as
well as, first-order variables, e.g. L(aa). As a matter of fact, however, the argument
there does not really include this case. We will limit our attention to the first-
order case, with the case of L(aa) being considered only briefly in Chapter IV.

In addition to requiring that J£%1(O include J^* and be closed under countable
conjunction and disjunction in the obvious way, we impose a further condition
in order to simulate "closing under J^* itself". This condition is as follows:

(*) If (p(9lu . . . , 5Rk) is an ^ sentence, and ^ ( c f l , . . . , cin), are &%l(O sen-
tences, where 9t; is an nrary relation symbol which does not occur in
i//h and ctl, ...,cin do not occur in cp, for i = 1 , . . . , /c, then
(p(\//i/9li,..., ifrk/yik) 1S a n ^ZKo-sentencz *n which neither R( nor
ch . . . , cin occur, for i = 1 , . . . , k.

The corresponding semantical clause is given by

iff W,Rl,...,Rk)t
where Rt = {(ah,..., ain): (9K, ah,..., ain) \= ^-} , for i = 1 , . . . , k.

Using the above definition we have now formally introduced £?Z1(O- However,
yet another point remains to be considered. Suppose 5£^ itself were not closed
under the analogue of (*). Barwise [1981] refers to the closure condition as the
substitution axiom. Then, even without adding any infinite conjunctions or dis-
junctions, new sentences may be added because of (*) and this may ruin certain
properties of J^*, e.g. compactness. Thus, we will only consider ^*l(O for ^*
satisfying the substitution axiom.

It is now easy to see that ^*1(o is closed, for example, under the conjunction
of two sentences (for future use it is important to distinguish finite from infinite
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conjunctions and disjunctions), viz. the correct semantics for 9 & \j/ will
apply to <Rl & 9*2(0/9^, ^/9l2). Since in (*) cp is required to be an J2?*-sentence,
rather than an i^*lC0-sentence, it is not clear, a priori, that J?*lW will satisfy the
substitution axiom. However, a simple argument by induction on the formation
of (p shows that J^*lC0 does.

Now, having obtained the definition of J£?*lC0 in working order, an entire new
aspect of abstract model theory presents itself. Suppose i \ and P2 are properties
of logics. We can then hope to prove theorems of the following form:

"Suppose that if* satisfies Pl9 then J£?*l£0 satisfies P2 ."

We will mention some impressive results of this type in Section 6.6. In the mean-
time, let us note that the result we mentioned in Section 1.4 holds in the general
context of i?JlC0. It would be a worthwhile exercise for the reader to fill in the
extra step in the proof for (*) and note where the substitution axiom is needed.

2. Elementary Equivalence

One reason that if ^ is such a fruitful logic is that its elementary equivalence
relation =a00) (we write this instead of = 2^ is very natural. Below we will give
two useful characterizations of = ^M. Lest the inexperienced reader jump to un-
founded conclusions, we point out that there are logics other than i ? ^ with the
same elementary equivalence relation (for example, see Keisler [1968a]).

2.1. The Back-and-Forth Property

A function/from a structure 9W to a structure 91 (for the same vocabulary) is said
to be a partial isomorphism from 9M to 9i if/extends to an isomorphism of the
substructure of SR generated by dom / onto the substructure of 91 generated by
range / .

Let K be a cardinal. A set F of partial isomorphisms from 9W to 91 is said to be
a K-back and forth set if for any / e F:

(i) VXciM[|X| <K^3geF[f ^ g & X ^ dom gj];
(ii) VY c JV[| YI < K -> 3h e F [ / c h & Y c ra fc]].

If such a set F exists, then we say that 901 and 91 have the K-back and forth property
or are K-partially isomorphic, and write J5f =p>lc 91.

It is easy to see that if we take K = co, we get the same condition as by taking
K = n, for 2 < n < to. In this case we will simply omit K from the notation. This
property was first studied by Karp [1965], and for that reason a logic is said to
have the Karp property if whenever 9W ^p 91,9JJ and 91 are elementarily equivalent
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2. Elementary Equivalence 277

in that logic. The uninitiated reader should become more familiar with these
notions by convincing himself that if 9)1 and 91 are dense linear orderings without
endpoints, then 9)1 ^p 91. But if 9)1 and 91 are algebraically closed fields of trans-
cendence rank distinct natural numbers, then 9)1 ^p 91.

The first characterization of = «,<», given below in Karp's theorem, is proved
by a straightforward induction on the formation of formulas [see Chapter IX for
a detailed discussion]. It should be mentioned that an earlier characterization
°f =000 m a similar way has been given by Ehrenfeuct [1961] and Fraisse [1954b].
The reader should consult Section IX.4 for a more detailed historical survey.

2.1.1 Theorem (Karp's Theorem). 9)1 =^91 iff 9)1 ^p9l.

If 9)1 and 91 are countable, then, in the process of going back-and-forth between
them, we can use all the elements of each and obtain the following weak form of
Scott's theorem.

2.1.2 Corollary. If\M\ = \N\ = Ko and 9)1 EE^ 91, then 9)1 ^ 91.

2.1.3 Remarks. (1) The analogue of Karp's theorem for arbitrary infinite K holds.
However, the analogue of the corollary given in Corollary 2.1.2 does not—except
for the case cf(/c) = &>, a result which is due to Chang [1968c]. Quite early in the
development of this area, Morley gave an example of two structures $R and 91
of cardinality Kj such that 9)1 =00(Ol 9t, but 9)1 ^ 91. The reader may consult Nadel-
Stavi [1978] for a fuller description of such examples. However, we note that
contrary to the assertion there, the question of finding non-isomorphic structures
9)1 and 91 of power A, for A-singular, cf(A) > co, Aw = A, such that 9)1 E ^ 91 has
only recently been solved by S. Shelah. Given a structure 9)1 of cardinality A, let
n(M) be the number of non-isomorphic models 91, such that | N | = AandSR =0^91.
Under the assumption that V = L, Shelah [1981b] has shown that if A is regular
and not weakly compact, than n(9)l) = 1 or 2A. However, if A is weakly compact,
then n(9)l) can be any cardinal \i < A, as shown in Shelah [1982b].

(2) There are results analogous to Theorem 2.2.1, as well as for certain other
results to follow, for the properties of a structure being embeddable in or a homo-
morphic image of another structure. These results can be found in Chang [1968c],
or Nadel [1974b], or Chapter IX, and we will not discuss them further here.

2.2. Potential Isomorphism

The notion of partial isomorphism is of an algebraic nature. The characterization
of ^ ^ we present in this section is metamathematical and involves the set-
theoretic notions of forcing or boolean-valued models (see Jech [1978]). It is due
independently to Barwise [1973b] and Nadel [1974b].

We say that structures 901 and 91 are potentially isomorphic iff they are iso-
morphic in some boolean extension of the universe, that is, iff for some complete
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boolean-algebra £, [SR ^ 91] B = 1. It is quite easy to show the equivalence given
in

2.2.1 Theorem. 9W ^ ^ 9t #f 9Jt and 9t are potentially isomorphic.

To prove the equivalence one must first observe that ^ ^ is absolute. To see
that SR =00^ 91 is preserved in a boolean extension, we use Karp's theorem (2.1.1).
To see that 9W ^^$1 is preserved in a boolean extension, we merely use the
absoluteness of satisfaction for sentences of i ? ^ . Now, if 9K E E ^ 91, to make TO
and 91 isomorphic, go to a boolean extension in which both 9W and 9t are countable
and then use Corollary 2.1.2.

We have found the notion of potential isomorphism to be a very useful con-
ceptual tool. As simple examples, note that it is now obvious that well-ordered
structures of distinct order types are not =0^, while any two algebraically closed
fields of infinite transcendence rank are =0^.

2.2.2 Remarks. It is natural to wonder if there are notions of potential isomorphism
corresponding to =ooA for A > co. This question is investigated in some detail in
Nadel-Stavi [1978] where it is shown that, for X a successor cardinal, there is no
such notion in quite a general sense. It is also suggested that one could begin with
some very natural notion of potential isomorphism and then use it to fashion a
logic with a corresponding notion of elementary equivalence. This idea was the
motivation behind the paper by Nadel [1980a]. The investigation begun there was
developed much further by D. Mundici and is described in Chapter V.

3. General Model-Theoretic Properties

In this section we will consider the most fundamental results in the model theory
°f ôoco> or> more accurately, in J^WlC0, since as we shall see, countability will
make a very big difference. In fact, we will need to consider countable pieces of
^ l W . To this end, we now define our first—and quite weak—version of a "nice"
piece of S£^m. Later in Section 5, we will give a much stronger version.

3.1. The Model Existence Theorem

3.1.1 Definition. A fragment of JSf^CO is a set LB(T) of formulas and variables of
^Jf) such that:

(i) ^ ( T ) C LB(T);

(ii) if (p e LB(T), then every subformula and variable of cp is in LB(T);

(iii) if cp(v) e LB(T) and a is a term of T all of whose variables lie in LB(x\ then
(p(o/v) e LB(T); and
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3. General Model-Theoretic Properties 279

(iv) if cp, \j/ and v G LB{x), so are ~\cp, 3vcp, Vvcp, cp & \jj, cp v \// and ~<p, where
~cp is defined inductively as follows: ~6 is —10 if 0 is atomic, ~(—10) is
6, - (A©) is y { ~ 0 : 0 G 0 } , - (V©) is /\{~6:6eG}, ~(3vcp) is
Vt; icp, ~(yvcp) is 3

Closure under ~ is merely to guarantee that LB(T) is closed under taking equivalent
formulas of a certain simple type. (A convention on terminology will be helpful
here: We will use LB rather than LB(T) to represent a fragment when the vocabulary
T does not come into play. In particular, we will speak of LWlC0 and Lwco as frag-
ments, where the former corresponds to an arbitrary LCOIW(T), etc. Moreover, we
may speak of LB rather than T, having certain symbols).

The following definition and the subsequent theorem due to Makkai [1969b]
is the principal tool for building models. The precise formulation given here is from
Barwise [1975].

3.1.2 Definition. Suppose that the fragment LB contains a set of constant symbols
C = {cn: n e co}. A consistency property for LB is a set S such that each 5 e S is a
set of sentences of LB and such that the following hold for each seS:

(CO) 0 G S; if 5 c sf e S, then s u {cp} G 5, for each cp e s';
(Cl) If cp e 5, then ~i(p $ s;
(C2) If -i<p G s, then s u {~q>} G S;
(C3) If/\ O e s, then for all cp e O, s u {cp} e S;
(C4) If Qjv(p{v)) G 5, then for every ce C,s u {<p(c)} e C;
(C5) If Y <D G s, then for some cp G O, 5 u {cp} e S;
(C6) If (3v(p(v)) G s, then for some c e C , s u {<p(c)} G S;
(C7) Let r be any term of the form F{ch,..., cin),

F an /?-any function symbol of LB, and ctl,..., cin, c, d, G C

(i) If (c = d) e 5, then sv {d = c}eS;
(ii) If {(/)(0, (c = t)}es then s u {<̂ (c)} G S;

(iii) For some e G C, S U {e = t) G S.

Condition (CO) is not essential at this stage, although it does come into play later
when we are trying to obtain more refined results. The remaining conditions are
just what is needed to build a canonical model in co stages using the Henkin
construction, where a canonical model is simply one in which each element
interprets a constant. The point here is that unlike the case of Lwco where com-
pactness holds, one must actually have constructed the entire model after co
stages. It is usually not possible to iterate a construction beyond a limit stage.

3.1.3 Model Existence Theorem, (i) Let LB be a countable fragment, and let S be
a consistency property for LB. For each s e S, there is a canonical model

m\= /\s.
(ii) (Extended Version). / / in addition, T is a set of sentences of LB such that,

for each se S and cp e T,s u {cp} e S, thenjor each s G S, there is a canonical
model of T u {5}. D
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We mention at this point, that the model existence theorem does not hold in
the absence of the assumption of countability (allowing, of course, an uncountable
set of constants in C). We will point out an example of this later.

3.2, Provability and Completeness

The first completeness result for LWlW was given by Karp [1964]. To the usual
Hilbert style proof system for LW(a one adds for each sentence / \ <I> and (joeO, the
axiom

(A ®) -> v

and the rule of inference

From \jj -• cp, for all cp e <D, infer \// -> / \ O.

Since an application of this rule involves infinitely many premises, proofs may be
infinite in length. We now consider an extended form of completeness that is
appropriate for countable fragments, and in Section 6 we will consider a more
subtle version. We fix a fragment LB and require that all formulas involved in
proofs be in LB as well as that the proofs be of countable length. We use the standard
provability symbol I— LB in the usual way to refer to this system.

3.2.1 Completeness Theorem. Let LB be a countable fragment of J ^ ^ . Then for
any sentence cp ofLB and set of sentences T of LB, T \= cp iff T \- LB cp. D

Karp's original proof was boolean-algebraic. Alternatively, we can add to the
vocabulary a countable set C of new constant symbols and show that the set
S = {s: s is a finite set of sentences of LB each containing only finitely many con-
stants from C and not T h L B n f\s} is a consistency property, and then appeal
to the extended version of the model existence theorem.

3.2.2 Remarks. As a result of the completeness theorem, we see that the validity
of a sentence of if^^ is absolute (for models of ZFC). On the other hand, it is
easy to give examples showing that validity for sentences in JS?^ is not generally
absolute and thus no similar absolute notion of provability could give a complete-
ness theorem. For uncountable fragments, being provable in the obvious gen-
eralization of the above sense is equivalent to validity in boolean-valued extensions
of the universe rather than validity in V itself. That is, cp is provable iff "t=q>" has
value 1 in every boolean-valued extension of V. It is easy to see that provable
sentences are boolean valid. To see the other direction, one needs the absoluteness
of provability which shall be obtained in Section 6.

Alternatively, (see Mansfield [1972]), there is a completeness theorem for
JSP̂ o, where the models themselves (rather than the set-theoretical universe) are
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taken to be boolean-valued. Thus, provability as above is equivalent to boolean-
validity in this second sense also.

3.3. Interpolation

The interpolation theorem for J£?WlC, was first proved by Lopez-Escobar [1965b].
Since the idea involved in his proof can be used in other settings, we shall say a
few words about it. The first step—which is the more difficult one—is to find a
cut-free Gentzen system which is complete for if aia. This can be done either purely
semantically as in Lopez-Escobar [1965b], where completeness is simply proven
directly for the cut-free system or, more proof-theoretically, as in Feferman
[1968a] where completeness is shown for the system with cut (another name for
modus ponens), and then "cut elimination" is proven by examining proofs. This
second method provides certain ordinal bounds as well.

The idea of the proof is to find the interpolant by induction on the derivation
of the implication. For example, suppose the final step in a derivation uses the
so-called (=> /\-rule):

• for all i e CD.

Suppose, by induction, that for each i e CD there is some interpolant 6t such that
cp ID 0t and 6t => i/̂  are each derivable. Then, using the (:=>/\-rule) we may obtain
cp z) /\ {9t: i e co). By using the matching (/\ :=>-rule), we may obtain, for each
i e a>, J\ {di'. iEco} => i/fj. Using the (=> /\-rule) again we obtain / \ {0t-: ieco} ID
/ \ {\jji\ i e co}. It is now easy to check that f\ {9t: i e co} is an interpolant. The
problem with the cut-rule is that this sort of induction step simply does not work,
and that is why cut must be eliminated.

An alternate proof for a countable fragment LB using the model existence
theorem is given in Keisler [1971a]. We describe it very briefly. Suppose \=q> ^n//.
First, we add an infinite set of new constant symbols C = {cl9 c2, . . .} to the
alphabet. We define S9 to be the set of all sentences cp' ofLB such that every symbol
of the original alphabet that occurs in cp' also occurs in cp; and, in addition, finitely
many of the cn's may occur. S^ is defined analogously. We let S be the set of all
finite sets of sentences which can be written as sx u s2, where sx ^ S^, s2 £ S^;
and, if 0l9 92E S^ n S^ and |= f\ sx -> 0l91= / \ s2 -> 02, then 6X & 62 is consistent.
We then show that S is a consistency property and apply the model existence
theorem. Since \=cp -> i//, we have that {cp, -ii//} $ S. But this means there must be
0l9 92eS(pn S^ such that \=q>^>0l9 \= -ii// -+62 and 0X &62 is inconsistent.
Thus, \=9l -+ —\02. Now, since \= —\02 -> <A, we have \=6l-^\j/. Now, by quan-
tifying out the new constants in 0x we get the desired interpolant.

There are other more refined interpolation results of Lopez-Escobar [1965b]
and Malitz [1969]. A good reference is Keisler [1971a].

The automatic consequences of interpolation, such as the Beth property,
naturally hold. Robinson joint consistency fails, but a weaker version of it, a
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version in which the joint theory T is complete for LWl£0 rather than just for LB,
does hold.

3.3.1 Remarks. The reader should consult Chapter IX for a full discussion of
interpolation and definability results for infinitary logics. In particular, it is worth
emphasizing in this context that interpolation fails for !£ o0(a.

3.3.2 Remarks. One of the main uses for interpolation results is in obtaining
preservation theorems. As in the case of ifW£0, the more refined interpolation
theorems alluded to above give rise to preservation theorems. For example,
Malitz's interpolation theorem shows that a sentence cp of L^^ is preserved
under submodels relative to some other sentence \jj of LWlC0 (that is, if 9W, 91 N ij/,
9R <^9l and 91 \= cp, then 9R 1= (p) iff there is some universal sentence 6 such that
\jj N <p<^6. By a universal sentence we mean a sentence which is formed from
atomic and negated atomic formulas using only / \ , \ / and V. For a fuller dis-
cussion of preservation results the reader should consult Chapters 6 and 7 of
Keisler [1971a].

3.4. Kuekef s Filter

The reader will have noticed by now that many fundamental facts about J^wica

fail to extend to J^7^. Some outstanding examples of this are the corollary to
Karp's theorem; completeness, and interpolation. D. Kueker [1972, 1977, 1978]
(see also Barwise [1974b]) found a way of reformulating these and other results
so that they do extend to J ^ ^ . Kueker's reformulation involves countable
approximations to structures and formulas as well as a notion of "almost every-
where" corresponding to the closed unbounded filter on 0><(Ol(X). A description
of this very interesting approach can be found in Chapter XVII.

3.5. Omitting Types

Given a fragment LB, we speak of types over LB just as we do for Lwco, that is,
sets of formulas in LB in some fixed finite set of free variables. Then, using the
model existence theorem (see Keisler [1971a] for details), we see that an omitting
types theorem can be proved in much the same way as the original Henkin-Orey
result for Lwco. Since the infinite disjunction is now officially available, it is cus-
tomary to use it in the statement.

3.5.1 Theorem (Omitting Types Theorem). Let LB be a countable fragment of
LWlC0 and let T be a set of sentences of LB which has a model For each nG co, let
<£„ be a set of formulas of LB in the free variables vl9..., vkn. Assume that for each
nG co and formula il/(v1,..., vkn) of LB, if T u {3vx . . . vkj/} has a model, so does
T u {3Vi . . . vkn(\j/ & (p)},for some <p G On. Then there is a model of

Tu\/\yVl...vkn
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The omitting types theorem is, of course, closely related to the co-completeness
theorem. The latter—especially the co-rule, viz., from cp{n), for each n e co, infer
Vx(JV(x) -> (p(x))—is an important precursor of the study of infinitary logic in
its present form.

3.5.2 Remarks. Shelah [1978a] has shown that a stronger version of omitting
types is true. In that version there are fewer than continuum many O's over the
fixed countable fragment LB. The proof of this may be gleaned from the proof
of Lemma 8.2.2 and, hence, we will omit it here.

It should be mentioned that because of the omitting types theorem, we are
able to obtain the equivalence of prime models with countable atomic models,
just as can be done for J^wco. We shall have more to say about omitting types in
Section 6.6.

5.6. Lowenheim-Skolem Results

Since the model existence theorem produces a countable model, we have, in
effect, already shown that jSfa>lCl, has Lowenheim number Ko. That is to say, if a
sentence of j£?WlC0 has a model, it has a countable model. The upward Lowenheim-
Skolem result is more complicated. Unlike i ^ w , the Hanf number of J^WlC0 is
not Ko. Examples showing this are easy to find. The proof for $£ww is simple
enough using compactness, but that is not available. It is not surprising that
the results for ££Wl£0 resemble rather the Hanf number results for omitting types
over JSf̂ o,, results which were proven slightly earlier by Morley [1965b]. The next
result first appeared in Lopez-Escobar [1966a] who credits it to Helling.

3.6.1 Theorem (Upward Lowenheim-Skolem Theorem). The Hanf number of
^co1(o is la>r Tnis means,

(i) if q> is a sentence of <£'WlC0 with models of all cardinalities 1a, a < col, then
cp has models of all infinite cardinalities',

(ii) for each K < 3 W l , there is a sentence cp with a model of cardinality at least
K with no model of cardinality HWl. D

3.6.2 Remarks. There is also an upward Lowenheim-Skolem theorem for arbi-
trary 3?K(O given in Lopez-Escobar [1966a]. This result is discussed in Chapter IX.

Part (i) of Theorem 3.6.1, the difficult part of the result, is proven by using the
hypothesis, together with a combinatorial property known as the Erdos-Rado
theorem (Erdos and Rado [1956]), to produce a model generated by indiscernibles.
The reader should consult Kunen [1977] for a nice treatment of the Erdos-Rado
result.

To obtain (ii) for each a < co1? Morley gave a sentence cpa that had models in
all cardinalities up to 2a. In essence, cpa says that the model is a subset of Va9 the
set of all sets of rank < a. Morley also shows how to get (pa for Ka instead of 1a.
To do this, one "says" of a linear ordering that it is Ka-like.
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3.6.3 Remarks. We can ask a similar question about sentences that are complete
for SemxiO. Trivially, the Hanf number is at most 3Wl. Malitz [1968] using GCH
showed that it is 3Wl and found a sentence (pa for each 3 a as above. Later,
Baumgartner [1974] was able to accomplish this without the GCH. Shelah [1974a],
in a related result, showed that the Hanf number for omitting complete types
over j£?wa) is DWl and obtained a complete type for each 1a. Can a complete sentence
of JSf̂ a, be obtained for Ka? At this time the only result in this direction is due to
Knight [1977] who has found a complete sentence for Kx.

3.6.4 Remarks. There is an attractive result of Landraitis [1980] on linear
orderings that is worth mentioning at this point, and this we do in

3.6.5 Theorem. Let Wlbea denumerable linear ordering and let cpbea Scott sentence
ofWl in ifrojo," The spectrum ofcp, S(cp) = {K: K = \9l\for some 9t \= cp) is either

(i) Ko iff each (isomorphism) orbit o/2ft is scattered;
(ii) all infinite cardinals iff 2ft has a self-additive interval or

(iii) {K: KO < K < 2Xo}, otherwise;

and each case occurs. U

4. "Harder" Model Theory

4.1. Scott Sentences

Certainly the most striking of the early results in infinitary logic was Scott's
theorem which is stated without proof in Scott [1965].

4.1.1 Theorem (Scott's Theorem). For each countable structure 2ft/or a countable
vocabulary x there is a sentence (p oj5£'WIW(T) such that for any countable x-structure

We will now proceed to sketch a proof of Scott's theorem. We will assume that
the reader can supply the obvious inductive definition of the quantifier rank of a
formula of J ^ ^ . We write SR =a 91 to mean that 2ft and 9i agree on all sentences
°f ôoco of quantifier rank at most a. Karp [1965] gave an algebraic characteriza-
tion of = a .

4.1.2 Lemma. For any structures 2ft and 91 for the same vocabulary, and any ordinal
<x the following are equivalent:

(i) 2R=a9l.
(ii) There is a sequence Io 3 j \ 3 • • • 2 /a of partial isomorphisms from 2ft to

9i such that if /? + 1 < a andf e Ifi + 1, then for each me M (resp. n e N),
there is some g e Ip, g 3 / with m e dom g (resp. n e r a g).
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The proof of Lemma 4.1.2 is by induction on a and is very similar to that of
Karp's theorem (2.1.1).

Now, for each structure SR, ml9..., mk e M, and ordinal a, we define a formula
Gm,m1,...,mk(

xu • • •> xu) of =̂ ooco by induction on a.

4.1.3 Definition, (i) For a = 0, (7jl,OTlf...fmk(x1,..., xk) = / \ {0(xl9..., xfc): 0 is
atomic or the negation of an atomic formula and 9M |= 0(ml9..., mk)}.

(ii) For a = )8 + 1,

t7SW,mi,...,mk(-Xl» * * * > Xfc) = (79W,»ii,...,iiife(:>cl> • • • 9 xk)

& \/Y \ / AT̂  ^V V V \̂
v x k + l V (J^fl,m1,.,mk,m\xl^ • • • 5 Xfc, Xk+1)

meM

meM

(iii) For a a limit,

It is obvious from inspection that ^ mi mk has quantifier rank a, and that
Wl 1= °att,mi,...,mfc(

mi> • • • > m/c)- More importantly, this formula is complete for
formulas of quantifier rank of at most a.

4.1.4 Lemma. For any structures 2R, 91, for the same vocabulary, elements ml9...,
mke M,nY,... ,nke N and ordinal a, the following are equivalent:

(i) m r n l 9 . . . 9 m k ) = a ( % n l 9 . . . 9 n k y 9

The only non-trivial step in the proof is that of showing that (ii) implies (i).
This fact follows from Lemma 4.1.2 if we define for each /? < a,

Ifi = {/: dom / = {ml9..., m , } , / ^ ) = nj9 for; < i and

Two observations are now needed to find the sentence which will characterize
a structure up to = 0 ^ . First, if it happens that /a = Ja+1 for some a, then /a is
easily seen to be a back-and-forth set. Second, for any 9M, there is an ordinal a,
such that for any k e co, m1 ? . . . , mfc, mi , . . . , m'k e M,

implies

(9M, m l 9 . . . , mfc) = o^ (9M, mi , . . . ,
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The least ordinal for which this happens is called the Scott height of 90? and is
denoted SH(SR). Using the first observation, we see that the Scott height of 9K is
the first ordinal a such that, for all k e co, ml9..., mk9 m\,..., m'k e M,

($R, mu . . . , mk) =a ($R, mi , . . . , m'k)

implies

(SR, m1 ? . . . , mk) =a+! (9R, mi , . . . , mk).

Thus, it is easy to see that the Scott height of 9K is below |9M| + . In Section 7 we will
obtain a better bound.

4.1.5 Definition. We now define the sentence <T(5R) to be

(7^& /\ Vxx . . .
fceco

mi, . . . , mkeM

where a = SH(9K).

This sentence appears first in Chang [1968c] and is called the canonical Scott
sentence of SR in view of the next theorem.

4.1.6 Theorem. For any structures 9W and 91 for the same vocabulary, the following
are equivalent:

(ii) 91 \= (j(SR);
(iii) a(Sn) = <j(9i). D

The non-trivial implication from (ii) to (i) is established much as in Lemma
4.1.4.

We see from Theorem 4.1.6 that (7(9)1) characterizes 9JJ up to = ^ and depends
only on the ,£? ̂ -theory of 9R. If SR is countable, then, by Corollary 2.1.2, a(W)
is the sentence required in Scott's theorem (4.1.1). The quantifier rank of cr(90?)
is SH(9M) + CD and there are often Scott sentences for 9JI of lower quantifier rank.
However, it will be observed in Section 7 that at least for countable 9JJ, (j(W) cannot
have quantifier rank too much above any other Scott sentence for 9K.

4.2. Automorphisms and Local Definability in
Countable Models

It was observed by Scott [1965] and follows quite readily from the preceding
discussion that a countable model 9W is rigid (that is to say, has no non-trivial
automorphisms) iff each element of 9W is definable in 9W by a formula of J^WlC0.
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A similar result holds for countable models having fewer than continuum many
automorphisms. This result has been shown by Kueker [1968].

4.2.1 Theorem. Let 90? be a countable structure. The following are equivalent:

(i) 9M has countably many automorphisms.
(ii) 9JJ has fewer than continuum many automorphisms.

(iii) There is some tuple of elements nu ..., nj e M such that (502, nl9...9nj) is
rigid.

(iv) There is some tuple of elements nu ... , fty e M such that for each me M
there is a formula (p(x1,..., xj9 y) ofi^lC0 such that

M |= 3! y<p(nl9..., nj9 y) & <p(nl9..., nj9 m),

that is, m is definable from nu ..., n^ in 9W by a formula o

The main step in the proof comes in showing that (ii) implies (iii). This can be
accomplished by using the negation of (iii) to construct a full binary tree all of whose
branches give rise to distinct automorphisms of 9W. It should be observed that the
equivalence of (i) and (ii) can be obtained via general descriptive set-theoretic
considerations, since the set of automorphisms of $R forms a £} set. In Section 7
we will also get a better bound on the defining formulas in (iv).

It follows easily from Theorem 4.2.1 that if 2R is countable, 9t uncountable
and 501=^91, then 9K will have 2Ko automorphisms.

Another result that was already noted in Scott [1965] is that if 901 is countable
and R is a relation on 9JJ, then R is definable by a formula of if ^ ^ iff every auto-
morphism of SR is an automorphism of (9M, R). This is a local version of Beth
definability and follows from Beth definability for ifwica together with Scott's
theorem, if one assumes the vocabulary is countable. However, there is an even
more elementary proof. For the non-trivial direction, if each automorphism of 9K
is an automorphism of (9K, R\ then for each m = (ml9..., mk) e R and m' =
(mi, . . . , m'k) $ R there is some cpmm in JSf̂ o, such that 9M 1= (pm,mf (mi> • • • > mk) but
2R N ~^(Pm,fn' (m'u • • •, m'k)' Now R is definable by \/meR f\WsR q*mtW.

By analogy to the case for rigid models that was considered above, Kueker
[1968] and Reyes [1967] have shown the result given in

4.2.2 Theorem. Let 9W be a countable structure. Let Rbea k-ary relation on M and
define S = {Q: (9K, R) £ (9K, Q)}. The following are equivalent:

(i) |S| = N0-
(ii) \ S \ < 2«°.

(i i i) There is some formula ( p ( x l 9 . . . , xj9 y± . . . yk) in JSfct>lCI> and n u . . . , n } e M
such that

R = { ( m l 9 . . . , mk): 9K 1= < p ( n l 9 . . . , nj9 m l 9 . . . , mk)}. D

In Section 7 we will give a better bound for this result also.
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PART II. COMPACTNESS REGAINED

5. Admissibility

In passing from S£ffl0) to !£^ a very substantial gain in expressive power is achieved.
As is to be expected, however, there is a considerable price to pay. Many of the
very useful properties of S£mfO—most notably compactness—are no longer enjoyed
by ^oow If w e restrict our attention to S£mxfO, then some of these properties are
salvaged. For example, interpolation, and a reasonable form of completeness can
be thus regained. Compactness, however, clearly still fails. To obtain an omitting
types result, we considered countable fragments LB of SPmim. Though completeness
looks even better in this framework, interpolation, for example, fails. Thus, while
on the one hand we want to deal with parts of £?mxto small enough to be manage-
able, on the other hand, we would nevertheless like them to be large enough to be
closed, for example, under finding interpolants. For this latter consideration, it
would be preferable if the pieces that we deal with were given in some absolute
way, since then, using them to give bounds would be more meaningful from "the
first-order" point of view. LWlC0 itself, as a fragment of i ? ^ , is given by cardinality
conditions, and so is certainly not "first-order".

In order to introduce the notion that has proven fruitful in this respect, we will
assume, first of all—without doing any of this explicitly—that the syntax and
semantics of !£ ̂ m are given within set theory. That is, we assume that sentences
are sets, structures are sets, satisfaction is a ternary relation between structures,
formulas, and functions from variables, etc. For any transitive set B we will thus
be able to define LB = L ^ n B; that is, the formulas of LB are those formulas of
L^o in B. Mild assumptions on B will guarantee that LB is a fragment in the sense
we have been using. Somewhat stronger conditions will give us a great deal of
closure, and, when combined with countability, will even give a form of com-
pactness.

5.7. KP and Admissible Sets

An admissible set is a transitive set A9 such that {A, e> is a model of a certain
theory KP, the initials standing for Kripke and Platek. Kripke [1964a, b] and
Platek [1966] were engaged in trying to generalize recursion theory to the ordinals.
They were following the earlier work of Takeuti [1960], [1965] and Tugue [1964]
who were studying recursion on the set of all ordinals, and Kreisel-Sacks [1965]
whose metarecursion theory, in turn, followed from earlier work of Kleene [1955b]
on recursive ordinals and hyperarithmetic sets. For a more complete history, the
reader should consult the introduction to Barwise [1975].

In order to present the theory KP, we must first recall the Levy hierarchy of
formulas of a language containing the binary relation symbol e and perhaps other
symbols as defined in Levy [1965]. The collection of A0-formulas is the smallest
collection of formulas containing the atomic formulas, closed under the boolean
connectives of —i, & and v, and under bounded quantification. (That is, if cp is a
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5. Admissibility 289

A0-formula and u and v are variables, 3u e vcp and Vw e vcp are A0-formulas, where
3u e vcp stands for lulu ev&cp'], etc.). The X^formulas are formulas of the form
3v<p, where cp is a A0-formula. The collection of Z-formulas is obtained from the
A0-formulas by closing under &, v , bounded quantifiers, and existential quan-
tifiers. A relation on a structure is said to be E-definable, or simply Z, if it can be
defined by a E-formula. A relation is £, if it can be defined by a Z-formula using
parameters. A relation is II if its complement is £, and is A if it is both £ and II.
All other similar definitions should follow easily from this sample.

The reason that the above classes of formulas are important is related to the
notion of an end extension. A structure <£, F , . . .> is an end extension of a structure
{A, E,.. .>, where E and F are binary, if (A, £,. . .> is a submodel of <£, F,.. .>
and whenever a e A and (c, a) e F, then c e A. In words, elements of A do not get
any new F-members in B. It is then quite easy to show inductively that E-formulas
are preserved in going to end extensions. We call such formulas persistent. If we
insist that all the structures involved be models of some theory T we arrive at the
notion of persistent relative to T. A formula is absolute relative to T if it holds in a
model of T iff it holds in any end extension which is a model of T. Clearly cp is
absolute relative to T iff both cp and ~i cp are persistent relative to T. There is a
converse to the simple observation that E-formulas are persistent. Feferman and
Kreisel [1966] (see Feferman [1968b]) have shown that if cp is persistent relative
to T, then there is a Z-formula \jj such that T \- cp^ijj. Hence, if cp is absolute
relative to T, then in T cp is provably equivalent to both a E- and a II-formula.

We can now give a set of axioms for KP. First, there are the axioms of ex-
tensionality, pairing and union, and the foundation scheme for arbitrary formulas
(since the set existence axioms are weak). In addition, we have the following two
schemes:

A0-Separation: 3v Vx(x ev^xeu& cp(x)), for each A0-formula cp in which v
does not occur free.

A0-Collection: Vx e w lycp(x, y) -• 3t; Vx Gu3y e vcp(x, y\ for each A0-formula
cp in which v does not occur free.

Now, a structure 91 = (A, e , . . .> is admissible if <A, e> is transitive and
{A, e , . . .> N KP. A transitive set A is admissible if <^, e> is an admissible struc-
ture. It is often of interest to consider structures {A, e, ^>, where SP is the power
set operation, and A is closed under power set. Even if <v4, e> is admissible and
A is closed under power set, {A, e, ^> need not be admissible. As a notational
convention, we write LA to denote such an admissible fragment even when con-
sidering an admissible structure 91 = (A, e, . . .>.

For later use, we mention two classes of sets given by conditions weaker than
admissibility. Transitive sets <5, e> satisfying all axioms of KP-except perhaps
that of A0-collection—are called rudimentary. The primitive recursive set functions
of Jensen-Karp [1971] contain certain innocuous functions, such as the zero
function, the pairing function and the union function, and are closed under com-
position and recursion. Transitive sets closed under these functions are called
primitive recursively closed sets and are easily seen to be rudimentary, though
they are not necessarily admissible.
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5.2. Some Admissible Sets

It will be useful to have some examples of admissible sets. The first example is
from the set-theoretic point of view. For x a set, let TC(x) denote the transitive
closure of x; that is, it is the smallest transitive set with x as a subset. For K an
infinite cardinal let H(k) = {x\ |TC(x)| < K}, the set of all sets of hereditary
cardinality less than K. If K is regular, then H(K) is easily seen to be admissible. If
K = Ko all axioms of ZF except infinity hold, while if K > Ko, all axioms except
perhaps power set hold. (Note that H(3W) is closed under power set, but (H(HW)),
E, &) is not admissible.) if(K0) and / / (KJ are usually denoted by HF and HC,
respectively. Assuming that the underlying language is coded appropriately, then
LH(K) is s imply LK(O.

The other example is of a more recursion-theoretic flavor. Let cô K denote the
first non-recursive ordinal. That is, it denotes the first ordinal whose order type
is not given by a recursive relation. Then, the set L(a>^K) of all sets constructible
before the co^K-th stage is an admissible set. In fact, it is the smallest admissible set
containing co. It is quite easy to see that no smaller set containing co would be
admissible. For a proof that it actually is admissible the reader should see Barwise
[1975]. We note, for use later, that the subsets of co in L(co^K) are exactly the hyper-
arithmetic sets.

An extremely important fact—and one about which we will have more to say
in Section 5.4—is that for each set x there is a smallest admissible set containing
x as an element. This set is denoted HYP(x). For B transitive, we let o(B) denote
the least ordinal not in B. Given an arbitrary set x—particularly if x happens to
be some structure $R—we can associate with x the ordinal o(HYP(x)). As we shall
see, this ordinal will have a strong model-theoretic relation to 5R.

5.3. Some Theorems of ¥LP

KP is, of course, a weakened version of ZF, a version with separation and collection
limited to A0-formulas and power set totally eliminated. However, it turns out
that collection actually follows for Z-formulas, while separation holds for A
subsets. In addition, replacement holds for Z-formulas, as does the reflection
principle; that is, if <p is a Z-formula, then cp «-* 3u<piu) is a theorem of KP. As a
consequence, every Z-formula is equivalent to a Zx -formula.

In KP we can show that for any set x, its transitive closure TC(x) exists, and
then prove the following scheme for definition by L recursion:

5.3.1 Lemma. Suppose G is an (n + 2) place H-function. An (n + 1) place IL-function
may be defined by:

F(xl9 ...,xH,y) = G(xu ...,xn9y, {<z, F(xl9..., xn9 z)>: z e TC(y)}).
U
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There is an analogous scheme for relations, and it is given in

5.3.2 Lemma. Suppose P, Q are A-relations of (n + 1) and (n + 2) places, respec-
tively. An n place \-relation may be defined by:

R(xl9...9xn90)<r+P(xl9 . . . , * „ )

R(xu . . . , * „ , y) ~ Q(xu ...9xH9y,{ze TC(y): K ( x 1 ? . . . , *„ , z)}). D

These schemes guarantee that certain important functions and relations are,
respectively, I or A definable. For example, the usual operations of ordinal
arithmetic or the rank of a set are 2. In addition, by a straightforward argument
it is possible to show that if (X9 < > is a well-ordering of order type a and (X9 < >
is an element of the admissible set A, then as A. Specifically, A can contain only
well-orderings of order type < o(A).

If <£, E) (= KP and b e B, then TC(fc) will be well-founded in the sense of the
real world V just in case the rank of b in the sense of <!?; E} happens to be well-
ordered in V. The set of all ae B which satisfy the condition (which is not expressible
in <£, £>, unless all elements of B satisfy the condition) is called the well-founded
part of <£, E} and denoted WF(£, E). A result originating with Ville (see Barwise
[1975]) states that if <£, E} |= KP, then WF(£, E) is isomorphic to an admissible
set. This is often called the "truncation lemma".

Returning now to more model-theoretic concerns, suppose that A is admissible.
Then, if the underlying vocabulary is A on A, so also will be the set of formulas of
LA and the set of sentences of LA. The satisfaction relation will be A, while the
quantifier rank of a formula will be given by a 2-formula.

5.3.3 Application. Suppose 93? is a structure, ml9.. .,mke M, and a is an ordinal.
It is quite easy to see that the function taking (901, m1 ? . . . , mk, a) to o-&,m1,...,mk is
defined by a 2 recursion; and so, in particular, the relation "x = cr(StR)" is 2 on
any admissible set containing co. Of course, this does not mean that an admissible
set need be closed under a.

Now, if A = HC, and if cp is any sentence of JSf^o,, then since, as was noted
earlier, every countable structure $R (for a countable language) has its canonical
Scott sentence <J(9M) in &man the set S = {a(9W): $R \= q>} is 2 on HC and in
one-to-one correspondence with the isomorphism types of countable models of (p.
Now, by the general set-theoretic result of Mansfield [1975], S has cardinality
< Kx or = 2**°. This, of course, is simply the result of Morley [1970] on the weak
form of Vaught's conjecture for J^Wl£0. The same argument also works for PC
classes. On the other hand, it is known that the Vaught conjecture itself fails for
PC classes. In fact, using the "truncation lemma", it is not difficult to see that the
order types of the ordinals in countable models of KP must be of the form a or
a + n • a, where n is the order type of the rationals and a is a countable admissible
ordinal. (To see that all the "non-standard" values are obtained one can appeal,
for instance to Theorem 7.2.7. H. Friedman originally noted this for ZF in place
of KP. However, by using KP, we get all the standard a immediately, which is
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what we need here). There are other proofs of this result and others relating to
Vaught's conjecture. A good reference is Steel [1978]. More recently, Shelah (see
Harrington-Makkai-Shelah [198?]) proved the Vaught conjecture for co-stable
theories in J^7^.

5.3.4 Remark. A next step up from the theorems we have discussed would be
E-separation. This principle is not provable in KP and is, in fact, quite strong.
For example, if {A, e> [= "E-separation", then it is easy to see that <̂ 4, e> is a
fl-model i.e., if (A,e) \= "<x, <> is a well-ordering", then <x, <> really is a
well-ordering. If <4, e> t= "L-separation" and is locally countable. That is, if for
each a e A, there is some bijection from a into a>, then <X, e> is recursively in-
accessible, which means that if a e A, then there is some admissible <£, e> such
that as Be A. However, the smallest recursively inaccessible admissible set does
not satisfy E-separation. For {A, e> locally countable, it is shown in Nadel
[1974b] that {A, e> is a j?-model iff <4, e> is recursively inaccessible. Though the
implication from right to left holds without local countability, there are jS-models
that are not recursively inaccessible; for example, consider

5.4. Urelements

When a model theorist studies a model 9K = <M, R,.. .>, the only structure he
wants to consider is that imposed upon the elements of M by R,... . The particular
elements forming the universe M are irrelevant and regarded as atoms or ur-
elements. Unfortunately, with ZF as metatheory, there are no urelements and M
will consist of sets, each with its own internal structure. While this may not be
aesthetically pleasing, in most instances the model theorist is able to simply
ignore the fact. However, in the present rather sensitive context, this is not possible.

For the current purpose, there are two main considerations. First, the set
HYP(90?) should depend only on the isomorphism type of 2R. In fact it would
also be reasonable to expect that if 501 and 91 are potentially isomorphic, then so
are <HYP(SR), e> and <HYP(9l), e>. It should be apparent that even the first
version would never be literally satisfied. One might then try to patch things up
as follows: assign to each isomorphism type the intersection of all admissible
sets containing models of that isomorphism type. This would work to some
extent for countable structures (see Nadel-Stavi [1977]); but, as we shall mention
later, even here there would be the difficulty that there need be no copy of 9K in
the intersection. However, suppose we consider even the simplest example of a
structure, a set M with no relations or functions at all. Suppose M has cardinality
HWl. Then any admissible set containing M must contain an uncountable ordinal.
Clearly this would violate the stronger version.

The second consideration is that by allowing urelements, there are more
admissible sets; and, consequently, a finer classification becomes possible. For
example, so far HF is the only admissible set with ordinal co. Allowing urelements
will provide many others, and these will turn out to be a significant class which
will be considered in more detail in Section 7.4.
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5. Admissibility 293

Having presented some reasons why doing without urelements would cause
problems, we go ahead and permit them from now on. This requires some changes
in terminology and a slight modification of the axioms of KP to form the analogous
theory KPU. We omit the precise details, all of which are carefully presented in
Barwise [1975]. We also omit the precise construction of HYP(5R), which is via
the Godel operations beginning with 9W, a structure on urelements. Suffice it to say
that HYP(SER) is the smallest admissible set containing SR as an element, and that
the first consideration mentioned above holds in the strong version.

Now, having insisted on the need for urelements, we must confess that in
terms of our presentation here—because we are considering admissibility more
from the model-theoretic point of view than from the recursion theoretic, and we
will be omitting most of the details—urelements will really not play a significant
role, except in Section 5.5 and in our discussion of recursively saturated structures
in Section 7.4. The results we will be considering usually carry over from ad-
missible sets without urelements to the more general setting allowing urelements
with little or no change. Thus, we will simply suppress mention of urelements
except where they really do make a difference. However, there is one restriction
that we should make clear at this point. In exchange for having additional ad-
missible sets with ordinal co, it is sometimes necessary to restrict the underlying
vocabulary to be finite.

5.5. The Pure Part of HYP(M)

In this section we discuss some results concerning admissible sets with and without
urelements. Assume that {A, e> is an admissible set which may contain urelements.
Those elements of A other than the urelements are called sets. Among the sets
are distinguished the pure sets whose transitive closures do not contain urelements.
We call admissible sets without urelements (that is, those containing only pure
sets) pure admissible sets.

One urelement is like any other. And that is just the point. Consequently,
distinct sets may only be distinguishable by reference to the specific urelements
involved and might even be images of each other under some e-automorphism.
This cannot happen to pure sets. In some sense, then, pure sets have a real identity
while arbitrary sets need not. This is especially evident in comparing elements
from different admissible sets. For this reason, the set of pure sets in an admissible
set A, denoted pp(v4), the pure part of A, plays a special role. For example, the set
of sentences of LA would be taken to be a subset of pp(>l), so that these sentences
would form a subset of the sentences of i f ^ as viewed from "the real world"
where we need not have urelements.

The following easy result is from Barwise [1975].

5.5.1 Theorem. If (A, e> is admissible, then <ppO4), e> is a pure admissible set. D

The next result, which is due to Makkai (see Nadel-Stavi [1977]), gives some
idea of the "internal" relation between pure sets and sets of urelements.
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5.5.2 Theorem. Let M be a countable structure on urelements. Then the following
are equivalent:

(i) 9M has only countably many automorphisms.
(ii) HYP(9K) contains a pure structure 91 which is an isomorphic copy of 9)1 and

an isomorphism between 9R and 91. D

In Theorem 5.5.2, HYP(9K) might contain an isomorphic pure copy, but not an
isomorphism. Moreover, HYP(9P?) could be replaced by the class of sets con-
structible from 9W, or even hereditarily symmetric over 901 The next result from
Nadel-Stavi [1977] shows how pp(HYP(50t)) can be described without reference
to urelements.

5.5.3 Theorem. pp(HYP(9W)) is the smallest admissible set containing o4, for
each p 6 HYP(2R).

A case can be made for using pp(HYP(x)) as a measure of the information
contained in x. If we begin with a pure set x, rather than with a structure on urele-
ments, then we denote by x+ the smallest pure admissible set containing x as an
element. The next result, which may be appreciated more after considering
canonical Scott sentences again in Section 7.1, shows that 9JI and a(9R) contain
about the same information.

5.5.4 Corollary, (i) Ifo{W) e HYP(SR), then pp(HYP(9K)) = (<r(SR))+;
(ii) / / a(m)4 HYP(SR), then (pp(HYP(SR)) u W(9R)})+ = ((T(9R))+. D

Since admissible sets of the form pp(HYP(TO)) might have special properties,
it is natural to ask which pure admissible sets can be represented as pp(HYP(9CR))
for some 9JI. First, some terminology is needed. An ordinal OL is called admissible if
L(a) is admissible. This is the same as saying that a = o(A) for some admissible
set A. Sacks (see Friedman-Jensen [1968]) showed that a countable admissible
ordinal is of the form <D\ for some x c co, where OJ\ denotes Church-Kleene cot

relativized to x. In a similar spirit, Nadel-Stavi [1977] showed that every ad-
missible L(a) is of the form pp(HYP(9K)) for some 9Jt, as well as some other repre-
sentation theorems. Not all pure admissible sets could be represented as
pp(HYP(2R)). An admissible set A is said to be resolvable iff there is a function
F:o(A)->A such that A = [jpeAF(p\ and {A, e, F> is admissible. It is not
difficult to see that if A is resolvable, we can always find F, such that, for each
a < /? G A, F(a) e F(j8), and F(a) is transitive. If F can be chosen A on A, we call
A, A-resolvable. Clearly pp(HYP(9R)) is resolvable, using F(P) = pp(L(jB, 2R)),
but there are non-resolvable countable admissible sets. Nadel-Stavi [1977] asked
if this is the only constraint. Using structures M motivated by Steel forcing in
place of the simpler structures used in the partial result of Nadel-Stavi [1977],
S. Friedman [1982a] has shown this to be the case.
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5.6. Barwise Compactness

As we remarked earlier, compactness fails for ifWia) even for the simplest infinitary
fragments. However, the following variant of compactness does hold.

5.6.1 Theorem (Barwise Compactness Theorem). Let Vibe a countable admissible
structure and let T be a set of LA sentences E definable on 21. Suppose that each
T' <= T, Tf e A, has a model. Then T has a model. D

This result can be proved directly using the model existence theorem, or it
can be obtained as a corollary to the extended Barwise completeness theorem
which will be treated in Section 6.1. Barwise compactness resembles ordinary
compactness, except that the theory T is restricted to be E on A, rather than
arbitrary, while the hypothesis requires more than just finite sets being satisfiable.
Nonetheless, Barwise compactness is a very powerful and important tool. It is
safe to say that this result is what established admissible sets as an ongoing feature
of model theory and started a second wave of interest in infinitary logic.

5.6.2 Remarks. It is easy to see that ordinary compactness for ifww follows from
Barwise compactness. The restriction to E-theories is really no restriction here
since, for any set X c HF, <HF, e, X} is admissible.

We will have more to say about Barwise compactness in Section 6.2 and will
end this chapter with a brief application of it.

5.7. An Application of Barwise Compactness

In this section we will give a simple example of how Barwise compactness may
be used. There are numerous applications to model theory. For a striking example
of a more set-theoretic nature the reader should see Barwise [1971]. Barwise
compactness is an especially potent tool used in conjunction with the omitting
types theorem, as, for example, in Keisler [1971a, p. 58]. We will give a simple
recursion-theoretic application which we will use later for model-theoretic pur-
poses.

Kleene [1955b] gave an explicit definition of a recursive linear ordering that
is well-ordered with respect to hyper-arithmetic subsets, but is not really well-
ordered. Later, in Section 7.1 we will be interested in the canonical Scott sentence
of such an ordering. We now will use Barwise compactness to show that such an
ordering indeed exists. Once that is established, it is relatively simple to see what
its order type could be. The object we construct is, by model-theoretic standards,
quite refined, since we are insisting that it be recursive. Although Barwise com-
pactness may seem at first glance to be much more restricted than ordinary
compactness, the far greater expressive power of j£?WlC0 allows Barwise compactness
to provide more subtle models than can be obtained from ordinary compactness.
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Now, to begin the argument, let A = L(co^K). We will use a language with a
binary relation symbol e, a constant symbol a for each ae A, and an additional
constant symbol SO? (the symbols a are really expendable). Consider now a theory
T in LA that expresses the following:

(i) KP;
(ii) atomic diagram of (A, e>;

(iii) "every ordinal is recursive";
(iv) "9K is a recursive binary relation on co which is a well-ordering";
(v) "9W has an initial segment of type a", a e A

It is not difficult to see that T could be chosen to be 2 on A. It is also easy to see
that every subset T" ^ A, T e A has a model. Thus, T has a model if =
<£, a, 2R>flei4. Finally, there is sufficient absoluteness to guarantee that M really
is a recursive linear ordering with initial segment of type cô K and is also such that
every hyper-arithmetic subset of co has a least element. 9K cannot really be well-
ordered, since, if it were, it would be of order type some non-recursive ordinal.

6. General Model-Theoretic Properties
with Admissibility

In this section we will deal with aspects of the model theory of LA, for A admissible,
where the syntax is somehow bound to the set A, but the models involved need
not be.

6,1. Barwise Completeness

In Section 3.2 we introduced the notion of provability I - L B , and stated a com-
pleteness theorem for it in Theorem 3.2.1. Now, we would like to use a stronger
notion of provability, a notion in which the proof itself—as well as the formulas
in the proof—are elements of an admissible set A. In order for this stronger notion
to be complete, however, we will need to modify the definition of proof slightly.
Without going into all the details here (these can be found, for instance, in Barwise
[1975]), we modify the clause for conjunctions by taking as a proof of \jj -> /\ Q>
a function / with domain <D such that for each <p e<&, f{cp) is a set of proofs of
\jj -> cp. Basically, this change is necessary because the axiom of choice need not
hold within an admissible set. Let us denote this new notion of proof by \-'LA . It
is then quite easy to see (using the axiom of choice in the universe) that for any
sentence of LA, \-'LA(p\S\-LAcp. Finally, let \-Aq> mean that there is some proof
in A, in the sense of \-'LA, of cp. This is equivalent to saying "(A, e> 1= \-'LA<P"

since the notion that p is a proof of cp in the sense of I- 'L is absolute for admissible
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sets. In particular, if T is a L^-theory, that is, a theory in LA ^-definable on A,
then{<p:T\-A<p}isXA.

Barwise [1967] (also Barwise [1969b]) was able to prove

6.1.1 Theorem. For any admissible A, and cp a sentence of LA, \~LA<P iff\- Acp.
Moreover, if T is a H*A-theory, then T \- LAcp iff T \- Acp. D

Now, as an immediate consequence of Theorem 6.1.1 and the Karp com-
pleteness theorem (3.2.1) we have the following sharpening.

6.1.2 Theorem (Barwise Completeness Theorem). Let Abe a countable admissible
set and cp a sentence ofLA, then \= cp iff \~ A cp. Moreover, if T is a H*A-theory, then

cp. D

We now obtain the following generalization of the fact that the set of valid
sentences of L,rtm is r.e.-'coco

6.1.3 Corollary. Let A be countable admissible and T a *LA-theory. Then {cp: cp is
a sentence ofLA and T \= cp} is YLA. D

6.1.4 Remarks. The Barwise completeness theorem must clearly fail in general
for uncountable A, since the Karp completeness theorem already fails. In fact,
the extended version is easily seen to fail, even for subsets of HC of power Xj.
The fact that Theorem 6.1.1 holds without cardinality restriction does show that
provability is absolute for models of ZFC, and this allows us to finish the argument
that was begun in the remarks of Section 3.2.2 that provability is equivalent to
validity in boolean-valued extensions of the universe. If cp is boolean-valid, we
simply pass to a universe in which cp is countable. In this universe cp is valid, and
we now appeal to the Barwise completeness theorem.

Corollary 6.1.3 also fails for uncountable A. We will consider this subject
further in Section 6.3.

There is a converse to the Barwise completeness theorem due to Stavi [1973]
and extending partial results of Barwise [1967]. It is stated in reference to Theorem
6.1.1 instead, since, it then may hold for all cardinalities.

6.1.5. Let B be a transitive primitively recursively closed set such that if\-LBcp,
then \— B cp. Then B is a union of admissible sets. U

This result could be stated in a more general framework using certain classes
of abstract provability predicates rather than the particular ones we have used.
In contrast to Theorem 6.1.5, however, Stavi [1973] has shown that there is a
countable transitive primitive recursively closed set A such that the set of valid
sentences of LA is Lx on A, but A is not the union of admissible sets.
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6.2. Barwise Compactness (Continued)

Recall that for A admissible, S c A, S is E on A iff S is Ex on A. We say that a
transitive set A is lLx-compact if LA satisfies the Barwise compactness theorem for
Ex sets of sentences (rather than E). There are also relativized notions where
additional predicates are mentioned. The next result is due to Barwise [1967] and
shows that admissibility is the weakest assumption one can make to get Ex-
compactness.

6.2.1 Theorem. Suppose A is rudimentary. Then if A is H^compact, A is admis-
sible. D

The subject of compactness for admissible fragments of JS? ̂ a will be considered
in Section 6.3.

6.3. Uncountable Admissible Sets

In considering Barwise compactness on uncountable admissible sets, or in trying
to determine the uncountable admissible fragments LA for which the LA validities
are Ex on A, there are basically two sorts of results. The first sort involves impli-
cations between these properties and other conditions that seek to strengthen
the notion of admissibility. We will not pursue this line here. The interested reader
should consult Barwise [1975] for an introduction to these matters. The second
sort establishes the existence (in a "concrete" way) of uncountable admissible
sets satisfying Barwise compactness, or on which the validities are Ex. Specialized
results in this direction were obtained earlier by Barwise [1968], Chang-
Moschovakis [1970], Green [1974], Karp [1972], Makkai [1974b], Nyberg
[1974, 1976] and perhaps others. More recently, S. Friedman [1981] and
Magidor-Shelah-Stavi [1984] have obtained more general treatments. Our
presentation here is based upon the latter of these. The idea is simply to assume
that in some reasonably nice way, the admissible set in question is the union of
countably many "small" sets. For simplicity, we will assume our admissible sets
are pure and give

6.3.1 Definition. Suppose 51 is admissible. S ^ A, is said to be a smallness predicate
for 91 if

(i) Sis Li on>4;
(ii) i fxeS , then^ (x )eA;

(iii) the relation {(*, &(x))\ x e S} is Ex on A.

A is said to have the first decomposition property (DPI) if for some smallness
predicate S for 21, every member of A is a countable union of members of 5 (in
the real world).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.013
https://www.cambridge.org/core
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6.3.2 Definition. A binary relation R on A is a decomposition relation for A if

(i) KisLj on ,4;
(ii) VX 3YR(X, 7);

(iii) whenever R(X, 7), then for some sequence (Xn: neco} such that Xn e 7,
and 0>(Xn) c 7 for n e co, X = (J {*„: n e co}.

4̂ is said to have the second decomposition property (DP2) if it has a decomposition
relation. 91 is said to have the decomposition property (DP) if 91 has (DPI) and
(DP2). A set B ^ A is said to be a-small if it is a countable union of elements of
A. If 91 is ex-small and has (DP), it is said to be countably decomposable.

Using the above notions, Magidor-Shelah-Stavi [1984] obtain their main
result in the next theorem and its corollary.

6.3.3 Theorem. Let A satisfy (DP) and assume T ^ LA is cr-small and £x on Av

Then

(i) {cpeLA: T \= cp} is^ onM;
(ii) / / T has no model, then some To ^ T, To e A has no model. U

6.3.4 Corollary, (i) If A satisfies (DP) then {cp e LA: (= cp} is Jl1 on A.
(ii) / / A is countably decomposable then A satisfies Barwise compactness and

for a theory T, Hl on A, {cp e LA: T \= <p} is H1 on A. D

All of the specialized results on Barwise compactness and completeness alluded
to above are consequences of Theorem 6.3.3 and Corollary 6.3.4, including the
original results for A countable.

6.3.5 Examples, (i) If A is closed under (real) power set and the relation
{<x, ^(x)>: x E A} is Zx on A, then, letting S = A and R = {<*, 0>(x)): x e A},
we have the Barwise-Karp cofinality co compactness theorem (see Barwise [1968]
and Karp [1972]).

(ii) Let A be an admissible set containing some element b, such that in the
sense of A, every element of A has cardinality at most the cardinality of b, and that
for some sequence (bn\ neco} e A, where (J {^(ftj: neco} e A, b =
(J {bn: n e co}. Then, if we take S = {x e A: x has cardinality at most bn in the
sense of A, for some neco} and R = {(X, 7): 3 / e A [ / is a function from a sub-
set of b onto X and 7 = {/"Z: Z e (J {^(bn): n e co}} we obtain Makkai's com-
pactness theorem, Makkai [1974b], which generalizes Green [1974].

To what extent is the above decomposition property necessary? Magidor-
Shelah-Stavi [1984] gives the following partial converse to Corollary 6.3.4(i).

6.3.6 Theorem. Assume that V = L, then for oc> co admissible, {cp e La: 1= cp} is
^ on <La, G> iff <La, G> satisfies (DP).
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The situation for Barwise compactness is more complicated. Results of Barwise
[1975] and Stavi [1978] show, for example, that for K regular, there is a closed
unbounded subset of a < K such that <La, e> satisfies Barwise compactness. The
idea here is that, for "soft" reasons, there are many <La, e> satisfying Barwise
compactness, and some of these will not be countably decomposable. Magidor-
Shelah-Stavi [1984] realized that by strengthening the notion of Barwise com-
pactness to stable 2^compactness, where we call 91 stably Lx-compact if all ad-
missible expansions of 91 satisfy Barwise compactness, a result would be forth-
coming. And this result we give in

6.3.7 Theorem. Assume that V = L. Let A be an admissible structure of the form
<La, G, Ru ..., Rn}. Then 91 is stably £ ^compact iff either A is countably de-
composable or a is a weakly compact cardinal D

There is an analogous result for the second part of Corollary 6.3.4(ii) and other
interesting results which the reader can find in Magidor-Shelah-Stavi [1984].

6.4. Interpolation

In Section 3.2 we mentioned that &mfO satisfies interpolation. However, countable
fragments LB of LWlC0 do not, in general, satisfy interpolation. Barwise [1967]
has nevertheless shown that for A countable admissible, LA does satisfy inter-
polation; and, hence, its consequences such as Beth definability. His proof in
Barwise [1975] is similar to the consistency property proof of the Lopez-Escobar
interpolation theorem for Lmito9 except that in order to show the set under con-
sideration is a consistency property, it is necessary to appeal to the Barwise
completeness theorem. We point out here that no analogous appeal is needed
in the earlier result.

There is a converse result due to H. Friedman (see Makowsky-Shelah-Stavi
[1976]).

6.4.1. Theorem. Let A be a transitive primitive recursively closed set. If LA is A-
closed, then A is the union of admissible sets. D

6.5. Hanf Numbers

Barwise [1967] was able to obtain a finer Hanf number result for countable
admissible fragments LA. The results we state here are for Ex-theories rather than
single sentences and originate in Barwise-Kunen [1971].

6.5.1 Theorem. Let A be countable admissible and T a H,A-theory. If for each
P < o(A\ T has a model of cardinality at least 1fi, then T has a model of each infinite
cardinality. D
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There is a generalization of Theorem 6.4.1 to arbitrary admissible sets, but for
these some preliminary discussion is required.

6.5.2 Definition. Let T be a L^-theory for some admissible fragment A. Assume
the vocabulary has among its relation symbols a binary relation symbol < . T is
said to pin down the ordinal a if

(i) For any model M of T, <m is a well-ordering of its field and
(ii) T has a model with <aw of order type a.

The least ordinal not pinned down by some EA-theory T is denoted hz(A).

6.5.3 Theorem. Let A be admissible andn = | A |. The Hanf number (for T,A-theories)
ofLA is supP/zc): p < h^A)}.

In Section 7.2 we will give a very short proof of the following important fact.

6.5.4 Theorem. Let A be countable admissible, then h^(A) = o(A). D

See Chapter IX for information about the size of h^A) for A uncountable.

6.6. Global Definability

In Theorem 4.2.2 we mentioned an interesting local definability result. Here, we
give an important global definability result of Makkai [1977b]. The version we
will give first appeared in Barwise [1975], and it involves Lj-sentences of J£?Wlft)

which are simply sentences of the form 3Qcp where Q is a set of symbols and cp is
a sentence of JS^^. The semantics is the obvious one.

6.6.1 Theorem. Let 3Qcp(P, Q) be a Y\-sentence of the countable admissible frag-
ment LA(T). For a countable structure SR define S(SR) = {P: 2R |= 3Q(p(P, Q)}.
The following are equivalent:

(i) For each countable SR, \S(M)\ = Ko-
(ii) For each countable 2R, \S(M)\ < 2N°.

(iii) There is a sentence i// of LA{%) of the form

V 3yx ... yh V*!,.. . , xk[P(xu . . . , x k)

which is a logical consequence of cp(P, Q\ where each i/̂  contains only
symbols ofi not in Q u {P}. D

The proof of this result is somewhat involved and uses the interpolation
theorem. It has a number of important corollaries, all of which can be found in
Barwise [1975].
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6.7. Omitting Types Revisited

We now continue the thread that we began spinning in Section 1.5. Barwise
[1981] has shown that the facts that ifWlC0 and &aiJiQ,{) each satisfies an omitting
types theorem as well as Barwise completeness and compactness results are not
isolated events, but rather are part of a general result of the type described at
the end of Section 1.5. Recall that we assume that the logic if* satisfies the sub-
stitution axiom and admits only first-order variables. In the subsequent discussion
we will assume that 91, S 1 ? . . . , ®m are relation symbols, and cl9..., cn are con-
stant symbols not contained in the vocabulary under consideration, while "true"
is some valid sentence in that vocabulary.

Barwise [1981] generalizes the notion of an omitting types theorem by the
following string of definitions.

6.7.1 Definition. A sentence cp(R) of L* is said to be a test sentence if for all struc-
tures SR, (SR, {]„ <(a Rn) N * (p(R) implies there is some n < co such that (9R, ${„) |= *
(p(R). A test set is a set of test sentences.

For $£wco the relevant test set is just the set of all sentences of the form 3x[cp(x) &
#(3c)], for (peifwco, while for Z£(Q^ it is the set of sentences of the form
S 33c(cp(y, 3c) & R(x)) where S is a string of 3yt's and Qy/s and cp is a sentence of

6.7.2 Definition, (i) For any theory T of if* and set Z(c l 9 . . . , cn) of ^-sentences,
we say that T accepts E(c l 9 . . . , cw) if there is a model of T u

V
(ii) T locally accepts Z(c l 9 . . . , cn) with respect to a test set y if for all cp(R) e &~,

if T u {(p(true/.R)} has a model, so does T u {(p(a/R)} for some a e l .
(iii) if* has the Omitting Types Property (OTP) with respect to a test set F

if for all theories T of if* and all countable sets {Sf(cf,..., nt): i < oo},
if T locally accepts each Sf, then T accepts all the Zf simultaneously;
that is to say, there is some

M\=Tu {V*!,..., xn, V
 zi(*i> • • • > xHi): i < co}.

(iv) ^ has the OTP if ^ has the OTP for some test set ^

We need one final definition before the results can be stated.

6.7.3 Definition. Let 3~ be a test set. By a ^-closed fragment of JS?*l0> we mean a
sublogic L | which contains 5£^, is closed under subformulas, satisfies the sub-
stitution axiom, if f\ O e LJ so is V {-19: cp e <D}, and such that if cp(K) e ^" and
^(V W/: f < °>}/K) G L B t h e n V {w^ilRY i <oj}sL%.k ^-closed fragment L |
is said to be countable if for each countable vocabulary T, if ?(T) is countable.
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6.7.4 Theorem. Let <£* be ^-compact and have the OTP with respect to *T. Let
L% be a countable ^-closed fragment of^*l(O. Then $£% has the OTP with respect
to the set 3~B of <£% sentences of the form cp(R, ^fJSu ..., \l*JSn), where
cp(R, Sl9..., Sn) e 3T, and ^ l 5 . . . , i//n are sentences ofL%. D

This result follows easily from the proof of the next completeness result, a
result which gives an alternate axiomatization for J ^ ^ .

6.7.5 Theorem. Let <£* be an ̂ -compact logic and if* have the OTP with respect
to the test set 3". Then the following proof system is complete for JS?*1<0:

Axioms:

(Al) For each cp(R) e 3~, all sentences of the form

cp(\/ {^: i < co}/R) -

(A2) All valid sentences of <£*.
(A3) All sentences ofJ?*l(0 of the form

t'.i <co}^\l/j, j < co.

(A4) All sentences of J£%1(O of the form

V M : i<(o}^ i / \ {-i^: i < co}.
Rules:

(Rl) Modus ponens.
(R2) Generalization.
(R3) From cp -• ij/tfor all i < co infer cp -> / \ { t̂-: i < co}.
(R4) From cpi^fi^ . . . , SRfc) infer <p(ajyiu . . . , <rJ9lk), for all formulas

We will not give a complete proof of Theorem 6.6.5 (the reader should consult
Barwise [1981] for this), but will merely sketch the main lines of argument. The
proof is based on an idea from Keisler [1970]. Beginning with LJ, we first form
LJ(T') in which we allow finitely many occurrences of some countable set of new
constants. Then, for each infinite disjunction \J <bj[cl9..., cni) of LJ(T'), we add a
new unary relation symbol Rt which will interpret \J <b£cl9..., cn). The vocab-
ulary obtained by adding on these Rt

9s will be called T". The idea is that for each
ij/ oiL%(xf) we will define some \j/* of L*(T") which will play the part of ij/ and will
be "finitary" also. Specifically, \j/# is defined inductively by the following four
clauses:

(i) if 0 is inj&?*(T'), 6* = 6.
(ii) Os/Qfa,...,^)* =R£cl9...,cJ.

(iii) (/\®)* = ^(\/{-icp:cpe<I>})*.
(iv) viaJRu . . . , oJKk)* = cp(G*/Mu . . . , at/%).
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An appeal to the K0-compactness of $£% is then made in order to prove the
key lemma to follow, where 7 u {cp} is a set of sentences of ^B{T'\ T* —
{Q* \ 6 G T}, and I- denotes provability in the above system:

( # ) T#t=(p* iff T\-cp.

Next, by making use of ( # ) and the fact that if* satisfies the OTP with respect
to ST (recall that h- depends on <T\ we can then prove Theorem 6.7.5. Finally,
by adding admissibility, Barwise [1981] obtains the result given in.

6.7.6 Theorem. Let 5£* be K0-compact and have the OTP with respect to the test
set ST. Let L | be a countable admissible fragment where the admissible structure
A = (A, e,...) has the property that the set of valid sentences ofL* and the set 2T
are each Lx definable on A. Then:

(i) The set of valid sentences ofL% is H1 on A;
(ii) L% is Hi-compact; that is to say, ifT<^L% is L on A, and if every To ^ T

with To e A has a model, then T has a model;
(iii) If(peL%, then the least ordinal not pinned down by cp is in A.

The proofs of all parts of the above follow from Theorem 6.7.5 in the same way
that the analogous results for S£A follow from the Karp completeness theorem for
JSfcjc the hypothesis on the validities of if * being required to manage the axioms
of the form (A2).

7. "Harder" Model Theory with
Admissibility

In this section we will consider aspects of the model theory of countable admissible
fragments LA in which the structures themselves are restricted to the set A or its
environs.

7.7. Scott Sentences and Admissible Sets

Suppose A is admissible and 9M is a structure with We A. How much can we
say about 351 or its complete i ? ^ theory th^SWt) by just knowing its complete
LA-theory, th^STO)? The first result asserts that th^SK) tells you all you need to
know to distinguish 9M from other structures 91 e A.

7.1.1 Theorem. Suppose A is admissible and 2R, 91 e A with 2R=L^9t. Then

7.1.2 Corollary. Suppose A is countable admissible and 9W, 91 e A with M =LA 91.
Then 2K s 9i. D
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For the easy proof of Theorem 7.1.1 see Nadel [1974b] where a slightly weaker
hypothesis is used. Scott's theorem then easily gives Corollary 7.1.2. From Theorem
7.1.1 we can obtain the better bounds promised in Section 4.2. Specifically, the
formula (p in Theorems 4.2.1 and 4.2.2 can be taken to be in HYP(2R). For the
remainder of this section let us ignore all structures SR such that o(H YP(90?)) = co
since the questions we consider are of no interest for them.

Can Theorem 7.1.1 be improved by dropping the restriction that 91 e A, or—
even better—by showing that 9JI has a Scott sentence in A; or—still better—that
the canonical Scott sentence a(A) is in Al Any of the possibilities would actually
imply Vaught's conjecture for ^(OlCO. The results are due to Sacks, Harnik-
Makkai [1976], Makkai [1977b], and Steel [1978] who showed that Vaught's
conjecture holds for sentences whose models have these properties.

However, all of these possible strengthenings fail to hold, as the following
example will show. It has long been known (see Nadel [1974b]) that there is a
recursive ordering 90i of order type co^K + a>̂ K • n. (In fact, the example in Section
5.7 can be strengthened to provide this.) $R is obviously an element of L(co^K);
and, moreover, it can be shown that 9M = WCK (CO^K, <). This latter fact follows
from general results found in Karp [1965] or from a more specialized argument
given in Nadel [1974b], an argument which is based on the fact that L(co^K)
"thinks" that SR is well-ordered.

On the positive side, by applying Theorem 7.1.1 to expansions of 901 by finitely
many constants, we easily obtain the following result of Nadel [1974b] on Scott
heights.

7.1.3 Theorem. Let A be admissible and suppose We A. Then SH(9W) < o(A),
whence cr(90t) has quantifier rank at most o(A) + co, and is in HYP(^l). D

Let us call a structure SR such that SH(9K) < o(HYP(2R)) tame. Otherwise,
they will be termed, wild. It is easy to see that 9K is tame iff a(W) e HYP(9W).
Practically speaking, one has to go out of one's way to find a wild structure. On
the other hand, there are not many positive results saying that various types of
structures are tame. We mention three. Nadel [1974b] shows that every scattered
linear ordering is tame. Nadel [1974a] shows that if cp e LA, A countable, and cp
has only finitely many non-isomorphic countable models, then, for every 901 \= cp,
SH(90?) < o(A); and, if (p is countable in the sense of A, then a(W) e A. Thus, in
the above situation, if o(A) = co^K, then every model of cp is tame. Finally, if $R
is countable and has < 2*° automorphisms, then 90? is tame (see Nadel [1974b]).

Now we state the result of Nadel [1974b], a result which was alluded to earlier
in Section 4.1 and which, in some sense, helps justify the choice of CJ(W) as the
"canonical" Scott sentence of 901.

7.1.4 Theorem. Let A be countable admissible with co, JSf e A. Suppose cp e A is a
Scott sentence of some model 90J (not necessarily in A). Then <J(W) e A. In fact,
811(901) is at most the quantifier rank ofcp + co.

We will return for additional comments on wild structures after discussing
Gregory's result on uncountable models in Section 7.3.
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7.2. Lowenheim-Skolem Results and HA -saturated Models

In this section we briefly treat some downward Lowenheim-Skolem or, alter-
natively, "basis"—results, that are more subtle than the standard results dealing
only with cardinality. We assume all theories T mentioned are consistent.

7.2.1 Theorem. Let A be admissible and LB a countable fragment of L ^ in the
sense of A. Let T e Abe a complete LB theory. Then T has a model TO e A. D

The proof of the above result is straightforward and can be found in Nadel
[1974b]. If LB is not required to be countable in the sense of A the result does
not hold, nor does it hold if T is not required to be complete. In the latter case, a
model can always be found in A+, even if T is a theory in LA which is £ on A, so
long as A is countable in A + . If the theory T in Theorem 7.2.1 happens to have a
prime model, then a prime model can be found in A. Instead of looking for a
model in a set A, we can also try to find one in a "fattening" of A, that is to
say, in a set B 3 A such that o(A) = o(B). The next result, which is in this direction,
is due to Barwise-Schlipf [1976], Nadel [1974a], and Ressayre [1977] and is
only one aspect of an equivalence we shall discuss later.

7.2.2 Theorem. Suppose A is countable admissible and T is a HA-theory. Then there
is a countable admissible set B =2 A, with o(A) = o(B) and a model Wl\= T, with
WleB. D

In the special case that o(A) = to, TO will be a model on urelements. Otherwise,
TO could be composed of urelements or sets. (The results in Nadel [1974a] and
Ressayre [1977] were formulated before the re-introduction of urelements.) We
can give now a very short proof of Theorem 6.4.3 as we promised earlier.

Proof of Theorem 6.5.4. First, modifying the example we discussed in Section 1.3,
we define by induction formulas \j/a{x) in the vocabulary of linear orderings that
express that the predecessors of x have order type a. Note that the formulas i//a

can be found in LA whenever cue A. This already shows that h^(A) > o(A).
Now, suppose hz(A) > o(A). In particular, suppose the L^-theory T pins

down some a > o(A). Consider the E^-theory T ' = T u {3x\l/p(x): p < o(A)}. T
is clearly consistent by Barwise compactness and by Theorem 7.2.2. T has a
model TO in some admissible set B with o(B) = o(A). Now, if <m is a well-ordering,
then T insists it have type at least o(B). However, we observed in Section 5.3 that
an admissible set C cannot contain a well-ordering of order type > o(C), and so
< m is not well-ordered. D

The three papers Barwise-Schlipf [1976], Nadel [1974a] and Ressayre [1977]
were written with different purposes in mind and employed different terminology.
We will try to employ the terminology that seems to be in current use. The next
definition, which is due to Ressayre [1977], with modifications by Harnik and
Makkai, appears, at first glance to be more complicated than one might expect.
We will point out the reason for this presently.
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7. "Harder" Model Theory with Admissibility 307

7.2.3 Definition. Let A be admissible. A structure 901 is said to be JLA-saturated if,
for each ml9..., mk e M it satisfies

(i) if r (x 1 ? . . . , xk9 v) is a X^ type in Z^, then

\r£r,r'

->3v/\r(ml9...,mk9v);

(ii) if / e A, q is L^, and for each i e /, gf denotes {<p: (p is a formula of LA in
the free variables xl9...9xk9 such that (i, 9) e q}9 then

«•=( A VA«i)-VA«.-

Condition (i) alone is what one might expect as the definition. Models satisfying
(i) alone are sometimes called L^-compact. Both conditions are needed, however,
to prove Theorem 7.2.6, which explains much of the importance of E^-saturated
models.

7.2.4 Theorem. Let A be countable admissible and let T be a consistent JLA-theory.
Then T has a T*A-saturated model.

The proof of this result can be obtained from the proof of Lemma 8.2.2. D

7.2.5 Definition. Let A be admissible and suppose (901, ml9..., mk) is a structure
for a vocabulary z e A. Wl is said to be T.A-resplendent if, whenever z' 3 z9 z' e A
and T is a 2^-theory in LA(z') consistent with the LA(z) theory of (901, ml9..., mk),
then (901, ml9..., mk) can be expanded to a model of T. If the expansion can always
be taken to be itself Z^-saturated we say 901 is strongly HA-resplendent.

7.2.6 Theorem. Let A be countable admissible. If 901 is a countable HA-saturated
structure, then $R is HA-resplendent. In fact, 901 is strongly *LA-resplendent.

In building the expansion, condition (i) in the definition of 2^-saturation is
used to realize types and witness existential formulas, while condition (ii) is needed
to handle disjunctions. We can obtain, with little difficulty, the converse of
Theorem 7.2.6, which holds without any cardinality restrictions. Now, we can
relate L^-saturated structures to the earlier Lowenheim-Skolem results. This
result was first obtained by Ressayre [1977], with Schlipf [1977] examining the
case in which A = HF.

7.2.7 Theorem. Let A be admissible and 9W a TLA-saturated model. Then there is
some admissible B => A with o(B) = o(A) such that 901 £ B. U
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To prove Theorem 7.2.7 we use, for the countable case, strong 2^-resplendency
to build a model of KP around 9JI, with standard ordinals the same as A, and then
use Ville's result to take its well-founded part. Levy's absoluteness gives the
general result.

Does Theorem 7.2.7 have a converse? The answer is "almost". Nadel [1974a]
and Ressayre [1977] were able to show that countable 901 satisfying the conclusion
of Theorem 7.2.7 were almost 2^-resplendent. The problem occurs because 2^
sets need not be LB sets. This does not occur if A is LB; for instance, if A = L(a),
for some a. More recently, Adamson [1978] has been able to find a complete
converse, by slightly strengthening the notion of "fattening" used.

Most often in practice, rather than use the property of ^-saturation directly,
we use instead the properties given in Theorems 7.2.6 and 7.2.7. However, TtA-
saturation has a distinct advantage over the other two notions: It is easy to see
that ^-saturation is preserved under the union of an LA-elementary chain. This
point is quite important for the proof of the main result of the next section.

7.3. Uncountable Models

As we noted earlier, a consistent sentence of LW1W with an infinite model need
not have an uncountable model. The following important result is from Gregory
[1973] and it tells us when certain countable theories have uncountable models.

7.3.1 Theorem. Let A be countable admissible and suppose T is a HA-theory ofLA.
Then the following are equivalent:

(i) T has an uncountable model
(ii) There are models of T SR, 91 such that SR -< ^ 91.

Using the results of the previous section Ressayre was able to give a proof of
Theorem 7.3.1, a proof which was much simpler that Gregory's original argument
and which we can present quite briefly. The difficult direction is in showing that
(ii) implies (i). The idea here is to build an L^-elementary chain of countable models
whose union will be the desired uncountable model. Using (ii), the fact that T is
1LA and the appropriate expansion theory, it is possible to find L^-saturated models
Wlo\= T and (SR1 such that $R0 <+L 9TOi- Now, using strong resplendency, we
can find a 2^-saturated SR2 such that SRi -< ±L 9W2. This shows how to take care
of any successor stage in the chain. To manage limit stages, we need only use the
fact that the union of an L^-elementary chain of LA-saturated models is ZA-
saturated.

The requirement that T is L^ in Theorem 7.3.1 is necessary, as was shown by
an example of Gregory mentioned in Gregory [1970].

We will now return to the subject of Scott sentences for a few additional
remarks. Since most familiar structures were tame, and wild structures were only
found with difficulty, various conjectures concerning wild structures naturally
arose from this limited experience.
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7. " Harder " Model Theory with Admissibility 309

Of the original wild structures 9W, each had a proper LHYPm elementary sub-
model, and so ThLHYP(Sm)(9W) had an uncountable model. It was thought that this
might always be the case. However, Makkai [1981] has given a counterexample.
He also gives an example of a sentence cp of J ^ ^ with models of Scott height
cofinal in a> l5 but no uncountable model.

Again, for all the original wild structures it was the case that / \ ThLHYP(aR)(2R)
was not a Scott sentence. Makkai [1981] also gives a counterexample to the obvious
conjecture here as well. It should be pointed out that the examples mentioned
above, even with the alternate proofs by Shelah, are quite complicated.

7.4. Recursively Saturated Models

We now specialize our consideration of 2^-saturated models to the case in which
A = HF, the case originally considered by Barwise-Schlipf [1976]. In particular,
T will now be finite.

Here, condition (ii) in the definition holds automatically, since / must be
finite, and so the definition looks more like what we might have first guessed.
Furthermore, LHF is essentially the same as r.e. in the sense of ordinary recursion
theory. Thus, a structure is £HF-saturated iff every r.e. 1-type over the model is
realized. By Craig's theorem, this becomes no weaker if we restrict to recursive
types. In fact, such models are called recursively saturated. On the other hand, a
recursively saturated model will realize every type over the model r.e. in the com-
plete theory of any simple expansion of the model by finitely many constants.

The notion of £HF-resplendent is actually equivalent to the weaker looking
condition on 9W, that if 9W is a i-structure and R is relation symbol not in T such
that for some 91 > 9JJ, 91 \= 3R(p(R% then 9K \= 3R<p(R\ where (p is any sentence,
possibly with parameters from M. Without admitting parameters, the notion
becomes strictly weaker for 9M uncountable. For 9M countable, the parameters are
not necessary.

The corresponding condition on fattenings is that o(HYP(W)) = co, and so,
of course, we must have 90? a model on urelements.

Finally, it follows from our earlier discussion, that these three conditions are
equivalent. We should also point out that, from Theorem 7.1.1, it follows that
recursively saturated models are co-homogeneous.

It has been noticed that the class of recursively saturated models appears in
certain natural applied situations. For example, Barwise-Schlipf [1975] showed
that the recursively saturated models of Peano arithmetic are exactly those models
that can be expanded to models of A}-PA, a certain natural fragment of analysis.
Lipshitz-Nadel [1978] show that if (A, + , •> is a model of Peano arithmetic,
then both (A, + > and (A, •> must be recursively saturated. If <^, + > is a count-
able recursively saturated model of Presburger arithmetic, then resplendency
allows us to expand it to a model of Peano. This is not true in the uncountable
case; but, as shown in Nadel [1980b] for groups of cardinality X1? recursive
saturation together with a simple group theoretic condition is enough, at least
for the "integer" version of Presburger arithmetic, and is also necessary.
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The notion of recursive saturation has already become an object of great
interest and many results have been forthcoming concerning it. While space does
not permit its further consideration here, it is safe to say that recursive saturation
seems likely to enter the permanent repertory of the model theorist.

It seems especially fitting to end our study of <=Sf WlC0 with the topic of recursive
saturation, which, after all, can be expressed quite simply in JS?^. The investiga-
tion of finitary logic led to the investigation of infinitary logic, which in turn en-
gendered the study of admissible sets, a study which has since come back to enrich
the study of J^wt0.

8. Extensions of <£^m by Propositional
Connectives

The objective of this concluding section is threefold. First, there is the matter of
considering propositional connectives other than simple conjunction and dis-
junction. The second objective will be achieved as a by-product. In the course of
obtaining the results we will have occasion to employ techniques which help to
illustrate some of the ideas of the earlier sections. The third objective, which we
will consider first, involves more abstract considerations, namely the problem of
characterizing J^Wl£0.

The reader has no doubt been already struck by Lindstrom's characterizations
of <£m<o as a maximal logic satisfying various sets of conditions in Chapter II.
<£ ̂  can also be characterized as a maximal logic in several different ways, ways
that are described in Chapters III and XVII. Can S£ux<o b e characterized in this
way? It is obvious how to characterize &m(O as a minimal logic, but not as a
maximal logic. A natural question to ask would be whether JSfct>lCt> is the maximal
logic whose syntax lives on HC and which satisfies certain basic model theoretic
properties, such as interpolation, some natural completeness result, and perhaps
some others. The results of Section 8.3 will show that this would not seem to be
the case.

8.1. Propositional Connectives

Our presentation in the remainder of this section is based on Harrington [1980]
which continues earlier work of H. Friedman [1977] and unpublished work of
Kunen. We will be concerned with the logic obtained by adding to JSf̂ ^ a new
countable propositional connective.

First, we add to the definition of the formulas of &ai(0 the clause

(*) if cpi is a formula for i < co, in some fixed finite set of free variables, then
so is C«<J0J: ie-co}).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.013
https://www.cambridge.org/core
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The semantics corresponding to this clause depends on the choice of a fixed
function P: 0>(co) -+ {0, 1}. We denote the resulting logic by if(P). Specifically,
we have the clause

/eco» iff P({i:

Though the syntax of if (P) looks rather different, it is easy to see that i?(P) is a
sublogic of if oolo. In fact, it is a sublogic of i f ^ + o -

There is a natural proof system for J*f (P) which is obtained from the usual
Hilbert-style proof system for ifWlC0 by adding the following axioms:

la. A ({<Pi- ieX}u {^cpt: i e co\X}) -> C « % : i e co»,
for each X ^ co such that P(X) = 1;

lb. / \ ( { ^ : x 6 J Q } u { - i ^ : i 6 Q ) \ J f } ) -
for each X c co such that P(X) = 0;

2. A fat ++ <Pt: iE M) "> (c«<Pi: * G w »
for each pair of sequences <(p,-: i e co>, <<pj: i e co> of formulas.

We write h- P for provability in this system and reserve \- for provability in our
standard system for JSf^a,. We use I=P and 1= in a similar way for validity in the
two logics as well as for satisfaction. We say that P—or, more properly J£(P)—is
complete if for every sentence cp of J£f(P), \- P (p iff \= P (p.

Just as for if^^, since each rule of proof has only countably many hypotheses,
if I— j , q>9 then cp has a countable proof. This point will be essential for what comes
later and so we simply require that proofs be countable. As usual, one direction
in completeness is easy to verify, that is, that, I- cp implies t= cp.

It will be necessary to consider partial proposition connectives, which are simply
(partial) functions from a subset of ^(co) to {0, 1}. If D is a derivation in the above
system, then there is a natural associated partial propositional connective PD

defined so that PD{X) = 1 if some axiom of type la for X is used in D, and PD(X) = 0
if some axiom of type lb for X is used. Otherwise, PD(X) is undefined.

Very much as in Section 6.6, the general technique employed here will be to
treat the extra connective as a new atomic formula. Specifically, writing <cp,> in
place of the longer C({cpj: ieco», for each (cp;} we introduce a new relation
symbol SR^ of the appropriate number of places. Given a formula \jj of JSf(P),
we define \jj* in such a way that \jj* = \jj for \j/ atomic, (C«(p;: i e co»)* = ^R^),
and so that * commutes with the other connectives and quantifiers. Notice also
that ^* is always a formula in if^^. A structure for the new relation symbols will
be called an expanded structure.

There is a small technical problem which must be overcome before we proceed:
Not every jSfG>ia> formula in the new symbols is of the form \j/*, for some formula
of ££{P) (in the original symbols). This arises because if, for example, 9l<<Pi>(x) is
1-place and x is a term we may form 5R<V.>(T) and this will not be of the form \//*.
However, SR^^Cr) "ought to be equivalent" to R<(Pi(t)y(x). We make this official
by adding a set of axioms T to this effect, for each 9t<Vi> and appropriate sequence
of terms. Then, relative to F, each cp in &mi(O is equivalent to some i//*, where the
jSf(P)-formula \\t is found by tracing back through the recursive definition of *.
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We denote this ij/ by cp*; and, similarly, we let T # = {0#: 0 e T}, for a set T
°f ^wico formulas. We use a similar convention for derivations.

By a fragment we will mean a subclass & of the formulas of i?(P) that is closed
under subformulas such that if C« t̂>£: is co}) and C«<p;.: i e co}) are in J* so is
the corresponding axiom of type 2. Now, given a fragment J^ we let S(3F) be the
collection of all ifr* such that i/f in 3F is an instance of the axiom scheme 2. An
expanded structure is called an ^-structure if it is a model of S(^). If P is a partial
propositional connective, we let S(P, J^) be the collection of all \j/* such that xj/
in 3F is an instance of the axiom scheme 1. An ^-structure 5R gives rise to a partial
propositional connective Pm as follows: Suppose SR N (p^a] iff / e X. Then let
Pm(X) = 1 if m \= W<qft>(a), and let Pm(X) = 0 if SR 1= -iM<9l>(5). Since TO is an
J^-structure, P ^ is well-defined. The next result mentions some basic facts about
the notions we have just introduced. These facts are easy to check.

8.1.1 Lemma. Let 3F be a fragment and 9K an 2F-structure, then

(i) suppose T c= Jfr is a set of sentences and 9011= T*. Then, for any proposi-
tional connective P ^ P^ , 9K |=P T;

(ii) if P is a partial propositional connective, then P and P ^ are compatible;
that is to say, P u Pm is a partial propositional connective, iffWl \= S(P, #");

(iii) for T c: ^ and P a partial propositional connective, if D is a derivation in
^cco from T* u S(V) u S(P, 3?), then D* is a derivation from T in
&(P),mthP$ <=P;

(iv) ifD is a derivation in J£(P) using axioms a0, a l 5 . . . , then D* is a derivation
ag, a j , . . . . D

8.2. The Main Lemma

The next result deals with J ^ ^ and is the main lemma we will need to derive
the desired results about Z£(P\ It mixes omitting types with 2^-saturated models
and its proof—which we will only sketch here—will nevertheless fill in some earlier
omissions.

8.2.1 Definition. Let A be an admissible structure and let O> be a type over LA.
We say that <I> is semi-complete over A iff <I> u {~icp: cp e O} is A on A.

It is obvious that complete types are semi-complete. If a semi-complete type
<D is principal over a L^-theory, then <X> is A on A.

8.2.2 Lemma. Let S&bea countable admissible structure, T a consistent HA-theory,
and F a collection of LA types, each semi-complete over A, such that no member of
T is A on 91 and \T\ < 2N°. Then there is a JLA-saturated countable model of T
which omits all the types in F.

Proof. For each/ s 2W, we build a countable 5^-saturated model yjlf of T such
that for/ / g, the only semi-complete types realized in both Wf and 90^ are A
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over A (and hence not in F). Thus, since | F \ < 2No and any O e F can be realized
in at most one SRj, some ffllf must omit all types in F.

Let D be a countable set of new constant symbols to use in the ensuing Henkin
construction. For each a e 2<co, we construct by induction a theory Ta satisfying
the following conditions:

(i) Ta is a consistent £x-theory, involving only finitely many constants from D;
(ii) T0 = T and for a c= & Ta <= Tp;

(iii) For each step of a complete Henkin construction, there is some HE co
such that for all a e 2", Ta has carried out this step.

(iv) For each S^-type O(x) that mentions only finitely many constants from
D, there is an n e a> such that for all a e 2", if Ta u <D(x) is consistent, then
there are constants d l 9 . . . , dk e D such that O(d1?..., dk) e Ta.

(v) For each I e A,q, and i as in Definition 7.2.3(ii), there is some neco such
that for all a e 2", if for some i e J, Ta u {/\ g j is consistent, then there
are constants d l 5 . . . , dk e D such that qt(du . . . , dk) c 7 .̂

(vi) For each sequence of variables 3c = xl9..., xk and collection F of formulas
in the free variables 3c closed under negation and A on 91, and each
c l 5 . . . , cfc, d1?.. . , dk from D, there are infinitely many ne co such that
for all a, /? e 2", if a # ]8, then either (1) for all <peF,Ta\=<p (c 1 ? . . . , ck)
or TaN ~i^(c1 ? . . . , ck) or (2) for some cp e F, Ta\= cp(cu . . . , ck) but

Using the fact that T and the types in F are E, Barwise completeness allows
us to carry through a construction with the above properties. Now, for each
/ e 2W, (J {Tf[n: n e co} is a complete Henkin theory by (iii) and so gives rise to a
countable model 9KF of T. Conditions (iv) and (v) guarantee that W,F is L^-
saturated. (Observe that to verify part (ii) in the definition of L^-saturation, we
must appeal to some property of admissibility such as L-refection). Finally,
condition (vi) guarantees that if/ ^ g, and SRj and 90?̂  realize some type O semi-
complete over 91, then )̂ is A on 91. D

8.3. &{Pys with Nice Properties

Armed with Lemma 8.2.2, we are now able to begin our construction of logics
y(P) which are complete and enjoy other desirable properties. For P a partial
propositional connective and 91 = {A, e, P [ A} a countable admissible structure,

n A is a fragment and S(JS?(P) n ,4) and S(P t X, i?(P) n A) are each E^,.

8.3.1 Lemma. Let P be a partial propositional connective with \P\ < 2Ko and let
91 = <X, 6, P { A} be a countable admissible structure. Suppose T is a set ofJ£(P)
sentences of A, E on 91. T/zen eif/zer

(i) £/zere w an J?(P) derivation D e A of a contradiction from T with PD c p or
(ii) r/ier^ is a countable ^-saturated &(P) n A-structure 5R swc/z r/i«r 9K t= T*

anrf P ^ and P are compatible.
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Proof. Suppose that the L^-theory T = T* u S(J§?(P) n A) u S(P f 4,
JSf(P) n ,4) is consistent. Let F be the set of all types O of the form O = {<p? :ieX}v
{^i(pf:ieco\X} where X e (dom P)\A and ( ^ e A Then each <D is semi-
complete but not A on A, since X $ A. |F | < 2*° since |P | < 2Xo. Now, by
Lemma 8.2.2, we obtain 9W as in option (ii) since our choice of F prevents Pm from
clashing with P.

If, on the other hand, V is inconsistent, then since T" is just a E^-theory of
^coto, w e maY apply Barwise compactness to obtain an if^^-derivation D in
A of a contradiction from T. Now, Lemma 8.1.1(iii) gives us option (i). D

8.3.2 Theorem. There is a complete &{P).

Proof. We will build an increasing chain of partial propositional connectives Pc,
C < 2*° such that Po = 0, PA = (J {Pc: C < A} for A a limit, and such that
|PC| < IC • Q)| for all C < 2Ko. P will then be (J {Pc: C < 2*°}.

First, we enumerate all sentences of £?(P) as <cpc+i: ( < 2*°>. Suppose we
have already constructed Pc. Choose a countable A such that cp^+1eA and
(A, G, Pc f A) is admissible (this is no problem using, for example, the downward
Lowenheim-Skolem theorem). Now, applying Lemma 8.3.1 there is a partial
propositional connective P' compatible with Pc such that either P 3 PD for some
JSf(P)-derivation D of -i(pc+l, or P' 3 P ^ for some JSf(P) n A-structure SR N
^ + 1 . We then take P c + 1 = Pc u P'. It is easy to see that P = {Pc: £ < 2^°} will
be complete. D

8.3.3 Remarks. At each successor step £ + 1 of the construction there would be
no problem in fixing P arbitrarily on some X not in the domain of Pc. This would
allow us to construct 2(2*O) different complete P's.

Now that we know complete P's exist, the next result sheds a great deal of
light on the problem of characterizing &mm as a maximal "nice" logic whose
syntax "lives" on HC, a goal that we mentioned at the outset of this section.

8.3.4 Theorem. Let P be a complete propositional connective and let 91 =
{A, e, P { A} be a countable admissible structure. Then S£{P) n A satisfies each
of the following:

(i) Extended Barwise completeness.
(ii) Barwise compactness.

(iii) Interpolation.

Proof. Suppose T c S£{P) n A is Ex on A and inconsistent. Then, since P is
complete, there is some derivation D in JSP(P) of a contradiction from T. Now, if
we apply Lemma 8.3.1 to P \ A u PD then option (i) must hold, since otherwise
we have the contradictory situation that Wl\= T* and PD and P ^ are compatible,
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whence 9W |= S(PD, &(P) n A), and 9K \= ~ i / \ T* since D was a derivation of a
contradiction from T.

(ii) Barwise compactness for !£(P) n ^ now follows immediately as usual
from extended Barwise completeness.

(iii) Harrington [1980] describes two different proofs of interpolation for
<£(P) n A.

The first is via a cut-free proof system for if(P). The second also gives a new
proof of interpolation for if A as well. It makes heavy use of the details of the con-
struction of HYP(9K) and so is beyond the scope of our presentation here. In
particular, it uses the fact that every element of HYP(9Jl) is denoted by some "term"
with parameters from M and, furthermore, that the behavior of A0-formulas over
HYP(SR) is already "mirrored" back in 2R. A rather detailed treatment of these
matters can be found in the final section of Nadel-Stavi [1977]. D

8.3.5 Remark. An alternate approach to if(P) was given earlier (although not
published) by Kunen. It involves the notion of a selective ultrafilter on co which is
an ultrafilter Ql on co having the property that if/: co -> co then either/" 1(n) e <%
for some ne co or f {X is 1-1 on some l e i Though the existence of selective
ultrafilters on co follows from the continuum hypothesis or Martin's axiom, Kunen
has shown that it is independent of ZFC.

Given an ultrafilter % on co, we define a propositional connective P® by
Py(X) = 1 iff X e (Jll. Kunen strengthens the usual proof system for LWlC0 by adding
the following axioms where ^cp^ieco} and <<pf:ietw> are any sequences of
if(P) formulas:

i'. (A{VW:i^}: i 6^)^V{c(^: i 6 w>): i^}' for each Xem

and ne co; and
2'.

Now, with respect to this proof system, Kunen shows that P^ is complete iff °ti
is selective. Kunen is also able to prove a Barwise completeness and compactness
theorem, as well as interpolation for admissible fragments &{P) n A, but only
under the added hypothesis that every member of % that is S on 91 has a subset
in ^l that is A on 91. This extra hypothesis is actually necessary. Kunen's proof is
naturally more set-theoretic, and we will not go into it here. It can, however, be
found in Harrington [1980].

8.3.6 Exercise. A good review of the material in this section, as well as of much that
is in the entire chapter, can be had by working out the following problems. It is
assumed that A is as in Theorem 8.3.4.

(i) Prove that the Hanf number for 5£(P) n A is ^20iA).
(ii) State and prove an omitting types theorem for J?(P) n A.
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Appendix

In this short section we will briefly note some of the major omissions of our article
and give some references for each.

We have said nothing at all about the work done on categoricity theory for
££WlCO- The interested reader should consult Keisler [1971a], Kierstead [1980], and
Shelah [1975c].

Some work has been done on model-theoretic forcing in J^Wl£0. The reader who
is interested in this aspect of the subject might want to consult Keisler [1973] and
Lee-Nadel [1977].

Game sentences are closely connected to the subject of this article. Relevant
information is available in Vaught [1973b], Harnik-Makkai [1976] and, to some
extent, in Chapter X of the present volume. The reader should also be aware of
Makkai [1977a] in which game sentences play a very basic role in the presentation
of the general theory of admissible fragments. Another important connection
involved here is that between SH^m and descriptive set theory.

Venturing off more in the direction of recursion theory proper, we come to the
subject to inductive definability, the study of which could naturally be begun
with Chapter X of the present volume. More "classical" recursion theory on
admissible sets has become an object of much interest, and a study of this area
might well begin by consulting Barwise [1975] and Shore [1977].

Finally, information about the "soft model-theoretic" aspects of the logics
we have considered, including the relevant Lindstrom type results, can be found
in Chapters III and XVII of the present work.
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Chapter IX

Larger Infinitary Languages

by M. A. DICKMANN

1. The Infinitary Languages <£Kk and ^£^k

The motivations underlying the study of infinitary languages which are given in
the introduction to Chapter VIII will also serve well here, thereby relieving us of
the need to make further comments.

Recall that for infinite cardinals K, A, with K > A, the language <£KX is con-
structed by prescribing a stock of individual variables of cardinality K and a list
x of finitary non-logical symbols called the vocabulary. Furthermore, <£KX contains
connectives and quantifiers permitting the formation of:

(i) the negation of any expression;
(ii) conjunctions and disjunctions of any number (strictly) fewer than K

expressions;
(iii) existential and universal quantifications over any set of fewer than A

variables.

The formal definition of the set of expressions of JS?KA is left as an exercise.
Formulas will be expressions containing less than A free variables. This restriction
is made in order to provide the means for "quantifying out" all free variables in
a formula.

The class-language if ooA will have as its formulas those formulas of all the
languages 5£Kk, for K > A (with the same vocabulary); that is, ifooA allows con-
junctions and disjunctions of any set of its formulas but permits quantifications
only over fewer than X variables. The language $£ ̂  contains as formulas those
formulas of the languages S£ ̂ x for all infinite cardinals X.

The semantics of 5£Kk, ^nx a n d ^oooo a r e defined by straightforward extra-
polation of the first-order definition of satisfaction, for instance, by declaring
that /\ieI cj)i is true iff each <̂  is true, etc..

In the remainder of this section, we will present a number of examples illus-
trating the use and the expressive power of the languages we have just introduced.
They were chosen so as to provide a foretaste of what general results we may
or may not expect from the model theory of these larger infinitary languages.
Indeed, some of the model-theoretic results in Section 3 are elaborations on some
of the examples which follow.
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318 IX. Larger Infinitary Languages

LI The Notion of Cardinality

It is well known that in the first-order language for x = 0 a fixed finite cardinal
can be characterized by a single sentence while, by compactness, no characteriza-
tion of the notion of finiteness is possible by any set of sentences.

In S£K+K(0) we can express the notion of cardinality less than K by the sentence:

: v & r
XeCN I y,d<X y<k 1

X 6 CN means that X is a cardinal, and v [ X — (vy\y < Xs) denotes a block of X
variables. This sentence is in J?K+K, because the number of cardinals < K is at
most K. Whenever this number is strictly smaller than K, for instance, when K = CO1

or K = cow, oK is in JS?KIC.
This example shows that an infinitary formula may not have a prenex normal

form. Indeed, if K is a limit cardinal, then aK is not even equivalent to a conjunction
of prenex formulas of if 00K. This follows from the following simple fact.

1.1.1 Fact. A pure equality sentence of $£ ̂ k either holds in all structures of power
> X, or it holds in none. D

For the proof of this statement, see Dickmann [1975, p. 139]. The reader
should also see Theorem 4.3.1.

Assume now that {<j>i\i e /} is a set of prenex =^ooK(0) formulas, say:

where each Q is V or 3, and \jjt is quantifier-free. Let Xt be the largest of X\,..., X{
nr

Since K is a limit cardinal, then X? < K. By its very definition, cK has a model of
power X?; hence, if N oK <-» /\ieI(pi9 so does each < .̂ By Fact 1.1.1, ^ is true in all
structures of power > Xf. Hence, oK has a model of power > K, which, of course,
is absurd. D

This example leaves undecided the question of the validity of a prenex normal
form theorem for S£KK, when K is a successor cardinal, for example, for J ^ ^ .
But this is false too, as has been proven by M. Jones. Roughly speaking. Jones'
argument runs as follows: He gives a coding of JSfcaiCOl-formulas on one binary
relation symbol e by hereditarily countable sets; and, using this, he then defines,
for each n e co, a formula Tn(z, y) which expresses the notion

"z is (the code of) a prenex j5fCOlCOl(e)-formula with n alternations of
quantifiers satisfied by y in

A standard diagonal argument then shows that the formula \Jne(O Tn(z, y) cannot
have a prenex form. For details, see Dickmann [1975, Appendix B].
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1. The Infinitary Languages £?Kk and SP^ 319

1.2. Well-orderings

(1) We leave as an exercise for the reader to construct an ^WlC0l( < )-sentence axio-
matizing the class of non-empty well-orderings. We will, however, observe that
the description of well-orderings needed here uses the axiom of choice.

(2) What of well-orderings in J^K£0? Consider the following formulas (j)Jiv\
(a < K\ which contain only the symbol < and are defined by transfinite induction:

0oOO: ~~l3w(w < V) A <7,

(pa(v): Vw(w < v <-> \ / $%(w)) A a for a > 0,

where o stands for the (first-order) axioms for linear order. The reader can easily
verify that for a e A:

<^, <> \= 0a[a] iff < is a total order on A and {x e A\x < a} is
of type a.

Let

1.2.1 Exercise. If ^ is of power < K, then <̂ 4, < ) is a model of the J$fKW-theory
{9a | a < TC} iff it is well-ordered. D

In particular, the proper class {6a | a e ON} of sentences does characterize
well-orderings. On the other hand, {0a|a < K} has non-well-ordered models in
every cardinal > K (Exercise).

As a matter of fact, Lopez-Escobar showed (Theorem 3.2.20 below) that
there is no set of sentences in any language S^KiO—that is to say, no single sentence
of S£oo^—which characterize well-orderings. This remains true if by characterizing
is meant not simply being an elementary class in j£?KC0(<) but also the much more
comprehensive notion of being a relativized projective class in ^K(a{<)\ see
Chapter II, Definition 3.1.1 for more on this notion.

(3) We want to have at hand the notion oit]x-set (or set of type rjj for later use.
These are totally ordered sets {A, <> with the following property: Whenever X,
Y are subsets of A of cardinality < X such that each member of X is smaller than
every member of 7, X < 7, there is an a e A such that X < a < Y. Observe that
here X or Y may be empty. If k = Ka, sets of type rjx are frequently called f7a-sets.

1.2.2 Exercise. Show that the notion of f^-set is axiomatizable by
sentence if A < KA, and by an if A+A(<)-sentence otherwise. D

an
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320 IX. Larger Infinitary Languages

1.3. Some Infinitary Theories of Trees

(1) The notion of a (well-ordered) tree is axiomatizable in if(OlCOl by the sentence:

Vx Vt; r co\ /\ (vn < x) -• \/ (vn< vn+1) A " < is a partial order".
\_n e co neco J

Various special notions of tree of mathematical interest admit natural infinitary
axiomatizations; following are some examples:

(2) /c-Souslin trees, that is, trees of power K in which every chain and every
antichain is of power < K, can be characterized in &K+K +:

(3v r fc)[ A (va # vp) AV
a,/3eK

Qfv t K)V A (V* < v p v v p < v a ) ^ V (V* = % ) ] '
L

(Vi; r K ) - I /\ ( v ^ V p A v p £ va).

Based on these examples, the reader might try to find appropriate axioms for the
kinds of trees given in

1.3.1 Exercise, (a) Trees in which all branches have power < K, and each element
has < K immediate successors (in J?K + K+).

(b) K>Aronszajn trees, that is trees of height K in which every level and every
branch have power < K (in J?K+K+).

(c) Trees with only one root, finite branching, and all branches of length < co,
in the language having an individual constant 0 for the root, and the function P(x)
giving the node preceding x (in <£'a)1C0). This example was proposed by Lopez-
Escobar. D

1.4. Examples From Set Theory

Certain set-theoretical notions can be formulated in the infinitary languages we
are dealing with.

(1) Transitive sets (or, rather, structures isomorphic to them), coincide with
the models of an if ^^(iTj-sentence expressing extensionality and well-founded-
ness; this follows from the Shepherdson-Mostowski collapsing theorem (see
Dickmann [1975, Appendix A]). We leave as an exercise for the reader to write
out this sentence.
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1. The Infinitary Languages S£Kk and ifQoA 321

(2) The class of sets hereditarily of power < K can be characterized in ifK+K +

by the sentence of (1) in conjunction with:

(Vi? r K) 3y Vzlz Ey^\J{z = vA
\ S<K )

VjLz(z Ey)^ (3v [ K) VZ(Z Ey~

(3) Certain substructures of <#(a), e [ #(a)>, a e ON, can be axiomatized in
JS?KC0, where K is the first cardinal larger than a. [Recall that R(0) = 0 and R(oc) =
[Js<a P(R(€)\ for a > 0.] Indeed, if we set

V0(x): x T* x,

VJLx):Vy(yEx-+ \/ V;(y)\
\ ^<« /

and

aa\ Vxy[\/z(z Ex<^zEy)^>x = y~\ AVX \J

then any model of aa can be isomorphically embedded in R(oc) [Exercise: Use the
Shepherdson-Mostowski collapsing theorem]. In particular, any such model
has cardinality < 2(X(= the cardinality of R(a\ for a infinite).

This example is interesting, since it sets some limits on the possibility of
extending the upward Lowenheim-Skolem theorem to the languages J?K(O.
Recall that a set of first-order ( = i f j sentences which has an infinite model or
models of arbitrarily large finite cardinality, also has models of arbitrarily large
cardinalities. Naively, we may try to generalize this to S£KfO by replacing "infinite"
for "power > *c"; the preceding example shows that one ought to go as high as
HK. We will see later (Section 3.2) that, in general, we ought to go considerably
beyond this cardinal, although, in the important case in which K = co^ we need
not do so.

Incidentally, questions of this type and many other model-theoretic problems
concerning the languages if K(O are of interest only when K is a regular cardinal.
For, if K is singular and X < K, then the languages J5fKA and J5fK + A have the same
power of expression: Every ifK+A-formula can be converted into an j^fKA-formula
with the same meaning by transforming, for example, a conjunction of K formulas,
say / \ ig/0i , into an iterated conjunction of < K formulas, /\a<Cf(K) A*e/«^»'
where </a|a < cf(?c)> is a decomposition of / in cf(/c)-many sets, each of power
< K. For more details on this, see Dickmann [1975, p. 85J.
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7.5. Examples From Algebra

We will only mention here that many widely used algebraic structures and notions
can be axiomatized or treated in various other ways in the infinitary logics J5? Kk

and jSf ooA although they cannot be treated in the same way in first-order logic.
Some outstanding examples of this are shown in Chapter XL

For instance, common algebraic structures such as torsion groups, simple
groups, characteristically simple groups, finitely generated algebras, archimedean
fields, etc., can be axiomatized in $£1

(Ol(O. For more on this, see Dickmann [1975,
pp. 74, 78-82].

The most important application to date of infinitary model theory to algebra
is a far-reaching extension of Ulm's theorem on the classification of abelian
/^-groups, due to Barwise-Eklof [1970]. Due attention is given to this application
in Chapter XI, Section 4. The technique employed—the so-called back-and-forth
method—is treated in detail in Section 4 of the present chapter, where other
relevant algebraic examples (for instance, real closed fields) and the infinitary
behaviour of some algebraic constructions are also discussed.

7.6. Examples From Topology

There are several possible ways of formalizing the notion of a topological space
in a language. Here we shall regard them as structures of the form <X u T, X,
T, £>, each of which is isomorphic to a structure < Y u 3T, Y, y, e>, where y is
a topology on the set Y and e is the standard membership relation. The correspond-
ing vocabulary, v, will have unary predicates Pt (for "point"), Op (for "open"),
and a binary predicate E.

The following topological notions, among others, can be expressed in this
formalism:

The class of spaces with a countable base (= separable) is axiomatized by the
conjunction of the following sentences of JS?a,ltOl(v):

\/xy[x E y -> Pt(x) A

Vyz 3w[Op(y) A Op(z) -* Op(vv) A Mu[u Ew*^uE y A UE Z] ] ,

(3v r co)\/\ Opfa) A Vyfc^) ~ Vx(x Ey->\J(xEvt

A Vu(u E v( —• u E y))

together with the (first-order) extensionality axiom for the relation E. Indeed, by
extensionality, a model J = ( I u T , I , T, £> is isomorphic to <X u ST, X,
y9 e>, where & = {Oy\y e T} and Oy = {x e X\9C N x E / } , and the first three
axioms guarantee that ST is a topology on the set X.
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Further topological notions axiomatizable in this formalism are given in

1.6.1 Exercise, (a) Write down an axiom for compact, separable spaces in the
vocabulary v (but not necessarily in &m<od'

(b) Show that the complete, separable metric ( = Polish) spaces form a PC-
class in the vocabulary v, for an appropriate &Kx- [Hint: For each positive rational
number, q, use a new binary predicate Rq with the meaning:

1.7. Counterexamples From Topology

In all the preceding examples, a second-order quantifier which only needs to
range over sets of some bounded cardinality has been axiomatized in an infinitary
language. A priori, there is no reason for this to be true of other topological notions
which have an unbounded second-order definition, such as those of topological
space, compact space or, say Hausdorffor regular space. In Section 3.1, we shall
apply the infinitary downward Lowenheim-Skolem theorem to show that these
and many other classes of topological spaces are not characterizable by infinitary
sentences. Indeed, they are not even RPC in J5fKA(v), for any K, X\ and, therefore,
they are not RPC in JSP\Jy) either. Among such classes we have the following:

Topological spaces.
Compact spaces.
Discrete spaces.
Tt spaces (i = 0 , . . . , 5).
Regular, completely regular, normal, completely normal spaces.
Compact and any of the preceding separation axioms.
Metrizable spaces.
Stone spaces, extremally disconnected spaces.
Complete uniform spaces.

Similar non-axiomatizability results hold for certain algebraic-topological
notions such as topological groups, rings, modules, etc.

1.8. Further Counterexamples

(1) Variants of the general method used to prove the preceding results can be
used to prove that the following second-order notions are not RPC in any in-
finitary language 5£Kk:

Complete partial and linear orderings.
Complete lattices and complete distributive lattices.
Complete boolean algebras and complete atomic boolean algebras.
Completely distributive boolean algebras.
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The general method used to prove these results as well as those of Section 1.7, is
due to Cole-Dickmann [1972].

(2) Let us briefly reconsider the last example. Saying that a boolean algebra
B is completely distributive involves, a priori, two different second-order assertions:

(a) (completeness): For every subset X c= B, the supremum \f X exists;
(b) (complete distributivity): For every family {Xt\i e 1} of subsets of B,

A(V^)= V
iel

and dually.

A result of Ball [1984] shows that only the first is genuinely a second-order
assertion. Let us call a lattice relatively completely distributive if only condition
(b) is required to hold, and this when all the indicated suprema and infima exist.

1.8.1 Proposition (Ball). Relative complete distributivity is expressible in the first-
order language of lattice theory. D

Ball proves similar results for other forms of (relative) infinite distributivity as
well.

(3) As a last counterexample, we mention the class of free abelian groups, a
class which is not axiomatizable by any class of J27 ̂ -sentences in the vocabulary
for groups (this result is due to Kueker and Keisler). However, this class is PC in
ifWlC0. For details, see Dickmann [1975, pp. 379-384]. Further ramifications of
this example are treated in Chapter XI, Section 4.

7.9. Omitting First-Order Types

In the introduction to Chapter VIII it is noted that J5fWl£0 can express in a single
sentence the realization or omission of a first-order type—indeed, even of count-
ably many of them. Likewise, ifK+w can express the realization or omission of up
to K first-order types.

An interesting result of Chang [1968c] shows that a kind of converse holds as
well. To be precise, we have

1.9.1 Proposition. Given a sentence (j) of J£K + (O(T\ where x has cardinality < K,
there is an enrichment %' of T, also of cardinality < K, and a set S of power < K of
<&(o(o(T:')-types such that for every structure 21,

^1 ^ $ iff there is an expansion 21' of 21 to %' such that 2T omits S.

That is to say, the result asserts that "satisfaction in J^K+£0 is PC in the omission
of up to K first-order types ".
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Proof of Proposition 1.9.1. We proceed in two steps:

(1) We construct x' and a particularly simple formula ft of JS?K+G)(T') such that

911= </> iff there is an expansion 9T of 91 to %'

so that 9T |= 0';

and then,

(2) We construct the required set S of types so that

33 1= 0' iff 95 omits S,

for every T'-structure 33.
Construction (1). In order to get T', we add to T a new n-ary relation symbol i?ff

for each subformula a of 0 with « freee variables. This is possible since each sub-
formula of (j) has finitely many variables. Since there are < K such subformulas,
T' has cardinality < K. If u has no free variables, then we regard Ra as a proposi-
tional variable. If we do not like these (I personally do not!), then we take Ra to
be a unary predicate, being careful to add the clause

Vx Ra(x) <-• 3x Kff(x),

where <\> is constructed so that Ra takes only two values in each model.
As we want Ra to reflect the structure of a, we prescribe:

(i) Vv(Kff(v) <-• o-(v)), if o is atomic;
(ii) Vv(#ff(v)~ -i/J^v)), if (7 is i^r;

(iii) Vv(Rff(v) ^ A^<K «^(v)), if <T is A^<K ^
(iv) Vv(Ka(v) ̂  3y K,(v, y)), if ex is

If a does not have free variables, replace (i) and (iv) by:

(i') a^VxRa(x\

and

(iv') VxRo(x)~3yR+(y).

Finally, we set

(v) Vx R+ix).

Let (j) be the conjunction of all these formulas; it is routine to check that (1) holds.
Construction (2). The set S contains a one-formula type for each axiom of the

form (i), (ii), (iv) or (v): the negation of the axiom with the outer quantifiers erased.
Furthermore, for each axiom of the form (iii), we throw into S the following K
types :

{-|(K,(v)->/^(v))} for each £ < K,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.014
https://www.cambridge.org/core
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and

The verification of (2) is easy and is left as an exercise. D

2. Basic Model Theory: Counterexamples

We will now begin to examine the model-theoretical behaviour of the larger
infinitary logics. As a first step, we will want to analyze the validity or the failure
of the most important properties arising from first-order model theory. By
Lindstrom's theorem (see Chapter III) we cannot expect too many of these proper-
ties to hold simultaneously in any one of our languages. In fact, while some of
them fail very badly throughout the hierarchy of the larger infinitary logics, there
is a reasonable generalization of some of the others.

The present section collects those model-theoretic properties which tend to
fail in the infinitary context. From an organizational point of view, the more
optimistic side of the picture is left for the next section, and the heart of the subject
is postponed until the final section. In spite of the essentially negative tone of
the panorama we have given here, not everything is lost. Occasionally, something
can be salvaged by moderating the level of our ambitions.

2.1. Completeness and Definability of Truth

In the most general terms, the completeness problem for a language cSf is the
question of knowing whether there is a Hilbert-type system of axioms and rules
of inference so that for any set Z u {(/>} of =£?-sentences the following are equivalent:

(a) </> holds in all models of Z; and
(b) <j) can be deduced, using the axioms and rules of the system, from the set

Z of premises.

Let us say that a system is adequate for deductions if the equivalence between (a)
and (b) holds for all (j> and Z. It is well known that one can construct such systems
for first-order logic. But this is not possible for ^£^m—and, a fortiori, for any of
the larger infinitary logics ifKk—even if the rules allow inferences from any
number of premises smaller than K, as does the rule:

<ftp, <fti,..., 0g, . . . (<!; < 8)

The impossibility of constructing such a system follows at once from the existence
of sets Z of JSf ̂ ^-sentences which have no model, but every countable subset of
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which does have a model (setting cj> to be any false statement violates the implica-
tion (a) => (b)). We give a simple example: The vocabulary has individual con-
stants ca, for all a < col, and a unary function symbol F, and the set £ is:

(0 ca ^ ĉ  for a < j8 < co1?

(ii) F is an injection of the universe into {cn\n e co}.

The reader should consult Dickmann [1975, p. 136] for more details and other
examples.

In view of this situation, one possible line of retreat is to ask only for an axio-
matic system adequate for proofs, that is, such that a sentence 0 is valid iff it is a
theorem of the system. In other words, the equivalence between (a) and (b) above
holds for arbitrary </>, but only for Z = 0 (equivalently, for any Z of cardinality
< K, if we are dealing with the logic JSfKA). Deductive systems with this weaker
property do exist for various ££Kk. The known results are as follows, and all are
due to Karp [1964], who first examined the matter in that book.

2.1.1 Completeness Results. (1) ^WlC0 admits an axiomatic system adequate for
proofs. D

This system is a straightforward extrapolation of the usual deductive systems
for first-order logic and is discussed in Chapter VIII, Section 3.2. Keisler [1971a,
Lecture 4] gives a nice proof of the theorem.

(2) For the logics listed below there are deductive systems of axioms and rules
of inference adequate for proofs:
(a) For £?K + x, whenever K<X = K (the exponent denotes weak cardinal

exponentiation); note that this includes the case J5fK+w.
(b) For 5£Kk, whenever, (i) K is strongly inaccessible, or (ii) K is weakly in-

accessible, X is regular and fT < Kfor all cardinals pi < K, V < X. This
applies, in particular, to S£KiO with K (strongly or weakly) inaccessible. D

These deductive systems are all built by taking as axioms the version for S£KX

of the basic deductive system of (1), the axiom-schemes expressing certain infinite
distributive laws, and a combination of rules of inferences expressing various
principles of choice and of dependent choices. In particular, this means that as
soon as we go beyond the countable level, non-trivial set-theoretical principles are
needed to deal with the elementary infinitary predicate calculus.

These completeness results imply that the corresponding set Val(^f) of valid
if-sentences lies low in an appropriate hierarchy of definable sets. The situation is
quite analogous to that of first-order logic, where the Godel completeness theorem
implies that Val(ifWJ is recursively enumerable.

In order to make sense of this assertion, we need a coding machinery for
j£?Krformulas. The simplest and most natural coding structure is the structure
(H(K), e [ H(K)), of all sets hereditarily of power less than K. This reflects the idea
of conceiving of J5fKA-formulas as set-theoretical objects, rather than as (linear)
strings of symbols. We also need a coding map, that is, a one-one map from formulas
into the coding structure which, moreover, should satisfy some requirements of
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simplicity (we want to avoid complications due to a bad choice of the coding map).
A reasonable requirement is that the set of codes of formulas (that is, the range of
the coding map) be a A-definable subset of the coding structure. Here, and in the
rest of this section, "definable" means definable in the language of set theory (by a
formula of the indicated complexity).

Fortunately, such simple coding maps do exist—the reader might try to con-
struct one as an exercise. In any case, he will find such constructions described in
detail in Dickmann [1975, pp. 412-413]; the reader should see also Keisler
[1971a, pp. 40-41].

2.1.2. Definability Results. (1') Val(^W lJ is ^-definable over

(2') In the cases 2(a) and 2(b) (ii) of Section 2.1.1, Val(if KA) is "L2-definable over

(2") In the case 2(b)(i) of Section 2.1.1, Val(ifKA) is ^-definable over
\H(K)y D

The result given in (T) is proven in Keisler [1971a, Lecture 9]; the result in (2')
can be proven by methods similar to those presented in lectures 8 and 9 of that
book. It is the presence of the infinite distributive laws among the axioms which
forces the use of S2 (= 3V) formulas in (2'). In (2") the strong inaccessibility of K
makes it possible to bound the universal quantifier and, hence, to go down again
to Zt-definability.

The positive results discussed above leave open the question whether a Hilbert-
style system adequate for proofs exists for the language JSf KK, when K is a successor
cardinal. The impossibility of constructing such systems was shown by Scott in
1960, although it first appeared in print in Karp [1964, Chapter 14]. The method
consists in proving that the set Val(ifK + K + ) is not definable in any reasonable way
over the coding structure <if(/c+), e [ H(K+)}. Since a completeness result would
imply some kind of definability of Val(ifK + K+), this will suffice to establish that the
logics J^K + K+ do not admit a satisfactory complete axiomatization.

2.1.3 Scott's Undefinability Theorem. Let E be a binary relation symbol. The set
Val(i?K + K+(£)) is not definable over <#(/c+), e { H(K+)} by any formula of
<?K + K+(E). D

The method of proof is an adaptation of Tarski's argument proving that the
set of sentences of first-order arithmetic valid in the standard model <N, +, •, 0,1>
is not first-order definable over the coding structure <M, + , - ,0 , 1>. However,
there is one crucial difference: While, in the arithmetical case, the coding structure
<M, +, •, 0, 1> is not characterizable up to isomorphism by any set of first-order
sentences, in the infinitary case, the coding structure <H(/c + ), e { H(K+)} is
characterized up to isomorphism by the ^K+K + -sentence of Example 1.4(2). This
observation accounts for the additional strength of Scott's theorem—it applies to
all valid sentences, not just the arithmetical ones. The proof of this theorem is
given in Dickmann [1975, pp. 425-430].
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2.2. The Failure of Compactness

Any reasonable analogue of the compactness theorem of first-order logic fails
very badly in all infinitary languages. Let us begin with some simple examples.

2.2.1 Example (Propositional incompactness). Consider the following proposi-
tional formulas of J£?KC>5 where K is such that K < AM for some cardinals ju, A < K:

(i) AVw

(2) ~i f\ pU(^ for each map / : [i -• A.

If (1) holds, let/0(£) be the smallest rj which makes p^ true. Then
true, that is, (2) fails for/ = / 0 . But there is a model for all sentences of form (2),
for we can make p^ false for all £, rj; and, if we omit just one sentence of form (2),
then the remaining sentences (of both forms) also have a model. Observe here that
if the omitted sentence is given by the map/1? we can make p^ true if rj = fx(£)
and false otherwise. •

This example takes care of the case when K is a successor cardinal (fi = A =
the predecessor of K). However, it does not exclude the possibility of compactness
holding for a set of J^KC0-sentences of power exactly K (unless some set-theoretical
assumption is made). Consider then the following:

2.2.2 Example (An incompact set of $£K£0-sentences of power /c, when K is a
singular cardinal). Let K be the limit of the sequence <)^|£ < cf(?c)> of smaller
ordinals, and set

(3) < is a total ordering,

(4) y \

(5) 3x((j) (x) A P(x)) for rj < K,

where P is an additional predicate, cf)n are the formulas of Example 1.2(2), and the
superscript denotes relativization to P.

In any model 21 of (3) through (5), Pm contains elements determining an initial
section (of 91) of any given order type < K. Hence, Pm has power > K. But (4)
above asserts that for some f < cf(fc), the subset Pm is well-ordered in type < yv

Hence, P® has power < K, a contradiction. Thus, (3) through (5) do not have a
model. We leave to the reader to construct a model of (3) and (4) and an arbitrary
subset of (5) of power < K. D
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2.2.3 Example (An incompact set of ^KW-sentences of power /c, when K is a
successor cardinal). Let K = A+. Consider then the language containing the
symbols P, < (as before) and a new binary relation symbol, F. The required set
of sentences consists of (3) above and

(6) F is a one-one function with domain containing (x|P(x)},

(7) Vx(P(x) -> V U*))>
r]<X

(8) 3x(P(x) A V)<F(x, y) - 0,(y))) for f| < fc.

Let 91 be a model of these sentences. By (7), each element of Pm determines (in 91)
a section of type < 1 Hence, Pm has cardinality < X <K. But (8) asserts that for
every rj < K there is an element of Range(Fa [ Pm) which determines a section of
type rj. Hence, R a n g e d [ Pm) has cardinality > K\ and, by (6), P* also has
cardinality > K. AS an exercise, the reader might try to construct a model for (3),
(6), and (7) as well as any subset of (8) of power < K. Should this not be successful,
he can fall back on Dickmann [1975, pp. 163-164]. D

The Failure of Compactness for Inaccessible Cardinals

The preceding examples show that the only possible chance for S£KX to be compact
is that K be (at least) weakly inaccessible. For some time, there was hope that a
restricted form of compactness could hold in <£KK for at least some reasonably
sized inaccessible cardinals (for example, for the first such K). In a celebrated
paper W. Hanf [1964] crushed any such hope. He showed that the compactness
theorem for sets of if KK-sentences of size K is false whenever K belongs to any one
of a whole panoply of ever increasing classes of (strongly) inaccessible cardinals.

Let us briefly describe the extent and the significance of Hanf's results. He
considers the inaccessible cardinals which belong to some member of a certain
increasing transfinite sequence <Ma|aeON> of classes of cardinals. In a certain
sense, Ma+1 is "constructibly defined" from Ma. This method of construction of
larger and larger classes of inaccessible cardinals was invented by Mahlo in
1911-1913. Hanf proves:

2.2.4 Theorem. If KG NT* for some a < K, then 5£KK contains a set of sentences of
power Kfor which compactness fails. D

In order to give an idea of the comprehensiveness of the classes Ma, we will
consider the following hierarchy of inaccessible cardinals: We will say that K is
hyperinaccessible of type 1 if it is inaccessible and there are K inaccessibles below
K. In other words, if <0a | a e ON> enumerates the inaccessibles in increasing order,
then the hyperinaccessibles of type 1 are the 0a's such that 6a = a. We can iterate
this definition into the transfinite by saying that K is hyperinaccessible of type
a + 1 iff it is hyperinaccessible of type a and there are K hyperinaccessibles of
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type ot below K, and taking K to be hyperinaccessible of type a, for a limit > 0, iff
it is hyperinaccessible of type /? for all /? < a. The hyperinaccessibles of type 0 are
simply the inaccessibles. Now, all the hyperinaccessibles K of some type oc < K are
in the first Mahlo class M1.

As a matter of fact, it is impossible to find inaccessible cardinals outside the
classes M1, M 2 , . . . , unless a very powerful axiom of infinity is added to the axioms
of ZFC, namely:

"Every normal function has a regular fixed point".

The reader may try to convince himself that this is a very powerful axiom indeed,
by deriving, as an exercise, the following consequences:

" The class of inaccessible cardinals is cofinal with the ordinal numbers ",

and also:

"For every ordinal a, the class of hyperinaccessible cardinals of type
a is cofinal with the class of all ordinal numbers."

Hanf's counterexample can be adapted so as to show the incompactness of
inaccessible cardinals belonging to even larger classes. Thus, if we set

KEMA iff K e (J Ma

!X<K

(so that Theorem 2.2.4 holds for all K e M A ) , we can start iterating the operation
M on the class MA again to get (MA)A = M(A'2), then M( A ' 3 ) , . . . . We obtain, then

2.2.5 Theorem. If KG M(A'a)/or some a < K, then the compactness theorem fails for
some set of J?KK-sentences of size K. D

The process of diagonalization sketched above can be iterated without an end,
producing larger and larger classes of inaccessible cardinals K for which J£?KK will
be incompact. However, this does not suffice to prove that compactness fails for
all J£KK. But the cardinals K for which S£KK does have compactness (for sets of
sentences of size K)—the so-called weakly compact cardinals, if any—must be of
a size defying imagination. Incidentally, observe that we will not be any better
off by reducing the length of quantifications; the compactness property for sets
of JS?KJC-sentences of size K is equivalent to the same property for sets of 5£K(a-
sentences of size K (see Dickmann [1975, p. 185]).

After Hanf's work the study of the compactness property for infinitary logic
departed the realm of the model-theorist to enter that of the set-theorist, or rather—
that of the mystic.
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2.2.6 Comment on Bibliography. There is a vast literature concerning weakly
compact cardinals. The equivalences of this notion with many other properties
appear in Dickmann [1975, Chapter 3, Section 3C] where we tried to adhere to
the model-theoretic aspect of the question, in Drake [1974, Chapter 10, Section 2],
and in Keisler-Tarski [1964]. The fastest road to weak compactness is via the
equivalent notion of Il}-indescribability. This road can be followed in Drake
[1974, Chapters 9, 10], which also contains a thorough study of the hierarchies of
n^- and E^-indescribable cardinals; Devlin [1975] is also devoted to this subject.
The most important classes of large cardinals studied to date—Ramsey, measur-
able, compact, etc.—all find their place in this hierarchy.

The reader wanting to proceed along the set-theoretic road is urged to consult
Drake's excellent book [1974] and the very readable and witty survey paper of
Kanamori-Magidor [1978]. Devlin [1975] and Boos [1975] are also good sources
of information.

23. Interpolation and (Beth-) Definability

The interpolation and (Beth) definability properties of a logic have been defined
in Chapter II, Sections 1 and 7. Among the infinitary languages, these properties
hold only for JS?€OaCO and the countable admissible fragments of <£ ̂  (see Chapter
VIII, Sections 3.3 and 6.3.8). They fail rather badly for all the others, as we shall
soon see.

In order to capture the exact extent of this failure (and then save what is left),
we will consider relative notions of interpolation and definability. A logic JSf'
allows interpolation for ££ if every valid sentence o0 -> ax of !£ has an interpolant
in if'. Here, the definition of interpolant is as usual, and we are implicitly assuming
that <£" is at least as strong as 5£. Modifying in a similar way the definition of the
(Beth) definability property (see Chapter II, Definition 1.2.4(i)) we arrive at the
notion of $£' allows {Beth) definability for !£. The usual proof of "interpolation
implies definability" also works in this relativized context.

We will begin with a simple example which due to Malitz [1971] and which
shows:

2.3.1 Example (The failure of the interpolation property in J£K(O, for K > a^).
Furthermore, we will exhibit a valid if KC0-sentence a0 -» al which does not have
an interpolant in any language <£'aoX with X+ < K. TO this end, let

ao:\fv
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Since any model of o0 has power < A, the sentence o0 -• GX is valid. An interpolant
a for this implication has to be a pure equality formula. Then, |= oQ -• o would
imply that a holds in some structure of power A, and by Fact 1.1.1 of this chapter,
a would hold in all structures of power > X. From \=o -> <rl9 the same would be
true of <7l5 which is obviously absurd. D

This counterexample shows that in order to get a relative interpolation result
for JS?K0), we must allow interpolants having quantifiers of length close to K. AS a
matter of fact, there are some positive results in this direction:

2.3.2 Theorem, (a) (Malitz [1971]). If K is regular, then &{2<«)+K allows inter-
polation for S£K(O.

(b) (Chang [1971]). //cf()c) = co, then ££{2<«)+K allows interpolation for &K+(O.
In particular, we have

(c) For any infinite K, J?(2
K)+K+ allows interpolation for J5fK+C0.

(d) IfK is strongly inaccessible, then ££ KK allows interpolation for S£KiO.
(e) IfK is a strong limit cardinal of cofinality co, then J?K + K allows interpolation

for£>K+(a. 0

Of course, corresponding statements for relative definability follow auto-
matically. Counterexample 2.3.1 leaves open the possibility of an interpolation
result for i?K+C0 in ^a0K, for successor K. Since a counterexample to (relative)
definability is also a counterexample to (relative) interpolation, Example 2.3.12
below will dispose of this possibility also. Moreover, it will also show that the
preceding theorem is best possible as far as the length of quantifications is con-
cerned.

In order to deal with the definability property, we need some information
about

The Preservation of Infinitary Equivalence by Sum and Product Operations

We state here a few results which we will use, without touching the wider chapter
of model theory which deals with generalized product operations. We consider
only binary operations # which assign to each pair of (possibly disjoint) struc-
tures 91, 95, with (possibly distinct) vocabularies T1? T2, a new structure 91 # 95
with a vocabulary T. We have in mind—and will use—the following:

2.3.3 Example. (1) Disjoint Sum (simple cardinal sum; disjoint union). Here TX =
T2 = i is a vocabulary containing only relation symbols, and 91, 95 are disjoint.
The operation is defined by:

|9T095| = |9 l |u |95 | ,

= R* u K® for each RGT.
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(2) Full Cardinal Sum (extended cardinal sum). Here T19 T2 do not contain
function symbols. By renaming, we can also assume that T15 T2 are disjoint. The
vocabulary T contains TX U T2 and two extra unary predicates Pl9 P2. 21, 93 are
supposed to be disjoint. The operation is defined by:

|2I + 93| = |2I| u |93 | ,

and, for R e T1 U T2, JR
9I+® is K* or fl93, depending on whether R e TX or K e T2.

(3) Direct Product. This is a well-known construction. D

The preservation result which we shall need is due to Malitz [1971] and takes
the following form:

2.3.4 Theorem. Let # denote any one of the operations on structures described in
Example 2.3.3. Then the following is true for any cardinal X\

(10A for every K > X and every sentence o of <£Kl(x), there is a cardinal

6 > K such that, for all structures SHt and 93f with vocabulary xt (i = 1,2).

211=0A951 and 2I2 =ex <B2 imply

21! # 2I2 |= a iff » ! # 932 \= a. D

Note that this result immediately implies the following

2.3.5 Corollary. The operations of disjoint sum, full cardinal sum and direct product
preserve ££^^-equivalence. D

It is very easy to prove this corollary, using the back-and-forth criterion for
JSf ooA-equivalence given in Theorem 4.3.1 below. The proof of Theorem 2.3.4 is
syntactical (see Dickmann [1975, Chapter 5, Section 2]) and gives additional
information such as, for example, that the cardinal 6 in (t)K is of the order 2K.
This yields:

2.3.6 Corollary. The operations of disjoint sum, full cardinal sum, and direct product
preserve !£^^equivalence, ifK is strongly inaccessible. D

This result has an interesting converse which is due to Malitz [1971], namely,

2.3.7 Theorem. / / ^^-equivalence is preserved by any one of the operations of
Example 2.3.3, then K is strongly inaccessible. D

For a more detailed account of preservation results of this type, see Dickmann
[1975, Chapter 5, Section 2].
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The Beth-Definability Property in Infinitary Logic

We begin this discussion with the following result.

2.3.8 Example (Failure of the definability property in i ? ^ ^ ) . We shall exhibit
an <£(Ol(Ol-sentence which implicitly defines a relation which is itself not explicitly
defined by any formula of i ? ^ . This drastic counterexample shows that there
is no definability result for infinite-quantifier logics relative to any other logic of
the same sort. Its basic ingredients are that ^?

(Ol(Ol expresses well-order and that
there is at most one isomorphism between well-ordered structures.

Let a be the if (Ol(Ol-sentence on a unary predicate U and two-binary predicates
i7, <, which says:

(a) < |" U is a (non-empty) well-ordering,
(b) < { —i U is a (non-empty) well-ordering,
(c) F is an isomorphism of <[/, < {U} onto <(7, < [ ~i U}.

Here —i U stands for {x | ~i U(x)}.
Note that < may not be an order of the universe, and that if for (isomorphic)

well-orders {A, <> ^f <£, <} we set:

then <9I © 95, / > is a model of o.
As the isomorphism between two well-ordered sets is unique if it exists, it

follows that the relation F(-, •) is implicitly defined by a.
Now assume that there is a formula </>(•, •) in i? 0000(^, <) explicitly defining

the relation F(-, •) relative to a. If a* denotes the substitution of (/> for F in a, then
a* is in ifKK(l7, <), for some K > col9 and for disjoint, non-empty well-orders
<̂ 4, <>, <J5, -<>, and 91, 95 defined as above, we have:

(*) 91 © 95 \= a* implies that c/)210® (•, •) is an isomorphism between
(A, <>and<£, <}.

Applying Theorem 2.3.4 to the sentence a* gives a cardinal 6 > K such that (f)K

holds. Consider the following structures:

(A2, <2> = a disjoint copy of (Al9 <!>,

and, using the downward Lowenheim-Skolem theorem for <gee (Theorem 3.1.2
below), get <£2, <2} <ee (A2, <2> such that B2 has cardinality 2e. Since 9IX ©
9l2 |= a* by (f)K it follows that 95x © 952 1= <r*, and by (*) above we conclude that
<#!, •<!> is isomorphic to <£2, ~<2>> which is absurd for cardinality reasons. D

Gregory [1974] settled the question for finite-quantifier languages beyond
JSf̂ a, in a negative way by the use of rigid structures—that is, structures having

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.014
https://www.cambridge.org/core


336 IX. Larger Infinitary Languages

the identity as their only automorphism—instead of well-ordered sets. Extending
certain counterexamples due to Morley and Tait (see Section 4.3.6), he proved

2.3.9 Theorem. Let Kbe a regular uncountable cardinal There are rigid structures
21, 93 of power K in a purely relational vocabulary involving < K symbols, such that

21 = ^ 9 3 and 2 1 ^ 9 3 . D

Any such example has the following special feature:

2.3.10 Lemma. Let 21, 23 be structures with the properties of the preceding theorem.
Then 93 contains an <£^K-undefinable element, that is, an element b such that for
each S£ ̂ -formula (j)(x),

93 t= 4>\b] and 93 |= 3v(v # b A <£(t>)).

Proof. Let z be the vocabulary of 93. If the conclusion is false, then every b e 1931
is definable by an i f OOK(T)-formula, say 4>b(x). Let \j/ be the conjunction of

(0 Vi;V*e|»|0*OO,
(ii) 3vx... vnl/\U i <t>bi(Vi) A <K"i, • • • > vn)l for each fel9..., bn e | 931 and each

atomic or negated atomic formula a such that © f= o\bu . . . ,&„] .

Obviously ij/ is in ^^(T) and 931= \jj. Since 2I=OOK93, then 21 1=
<A A /\be I*B| 3! î (/>b(i;). And this implies that the map of © into 21 defined by

b i—• "the unique element of 0fe"

is an isomorphism, a contradiction. D

We shall also need the result given in

2.3.11 Lemma. An element b e |93| is not <£^-definable iff there is a e |93|, a # b,
such that <93, a} =«,*<»,&>•

Proof. The implication from right to left is obvious. For the other direction, by
Theorem 4.4.6 below, there is an i f ^-sentence (/><©, b> = (j)(c) involving a new
individual constant c, such that for any structure 21 of the appropriate vocabulary
and any a e |2I|,

iff <93,b>^O O K<2I,a>.

Since b is not ifOOK-definable, then © |= —13! v(j)(v\ that is, © |= c/>[a] for some
a ^ b. And, by (*), <®, a} EE OOK < » , 6>. •
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Now we can give Gregory's counterexample:

2.3.12 Example (Failure of the Beth-definability property for JS?K+(D, when
K > a^). In fact, we will show that Ĵ ?

00K does not allow definability for S£K + m.
Let 95 be a structure (with vocabulary T) meeting the conditions of Theorem

2.3.9. By Lemma 2.3.10, let b0 e | SB | be an if^CO-undefinable element. Let x"
contain the vocabulary T' appropriate for full cardinal sums of structures with
vocabularies TX = T U {cb\b e |93|} and T2 = T (see Example 2.3.3(2)), and a new
binary predicate F. Consider the conjunction o of the following J^K+JV') -

sentences:

(a)
(b) the elementary diagram of 93 (in the vocabulary T J ,
(c) F is an isomorphism between <{x|Pi(x)}, T> and <{x|P2(*)}> T)-

Thus, if 33' is a disjoint copy of 93 and/denotes the copying isomorphism, we must
have

where C = <®,&>>6,*, + »' .
Since 93 is rigid, the sentence a implicitly defines the relation F(-, •)• Assume

then that there is a formula (/>(•, •) of if^Cr') which explicitly defines this relation
relative to a:

(**) <J\=Vxy£F(x,y)~<Kx9y)l

Since b0 is J^^^^-undefinable, by Lemma 2.3.11 there is bx e |93|, bx / fc0,
such that:

and, since / is an isomorphism, we also have

As if 00K-equivalence is preserved under full cardinal sums (Corollary 2.3.5), we
conclude that

In the terminology introduced above, this can be rephrased as:

(***) <£,/(&„)> =OOK <C/(6i)>-
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Now, (*) and (**) imply:

which, by (***), yields

But, as (**) and (c) imply that (/>(•, •) is a function, we can conclude f(b0) = /(i>i);
and, hence, b0 = bv This is a contradiction. D

This counterexample does not settle the following questions, which, to our
knowledge are still

2.3.13 Open Problems, (a) Can one prove in ZFC that ^K+K (or J^K + K+) allows
interpolation (definability) for ifK+C0, whenever cf(jc) = at and K > col

(b) Does S£00K allow interpolation (definability) for J^K+C0 when K is a singular
cardinal of uncountable cofinality? D

In connection with question (a) above, Gregory [1974, p. 22] mentions that
Friedman had shown that Ĵ K+K+ does not allow definability for &K+(0, whenever
cf(jc) > co.

3. Basic Model Theory: The
Lowenheim-Skolem Theorems

In this section we will deal with the infinitary analogs of the Lowenheim-Skolem
theorems. These basic results of first-order model theory do admit reasonable
generalizations. However, in the case of the upward theorem, these are neither
naive nor immediate.

3.1. The Downward Lowenheim-Skolem Theorem

This is one of the few results from first-order model theory which generalizes
practically without restrictions to the infinitary languages jSfKA—although not
to JS?ooA. Since the proof is a straightforward generalization of the first-order
argument, we will only state the results and provide some counterexamples and
applications.

The following is a very general form of the theorem; it implies all the known
forms and is useful in its own right.
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3. Basic Model Theory: The Lowenheim-Skolem Theorems 339

3.1.1 Main Theorem. Let 33 be an infinite structure with vocabulary x, X c |33|,
and F a set of <£'K^(T):formulas closed under subformulas. Furthermore, let:

p = the supremum o/K0 and the number of free variables of formulas
in F,

\i = an arbitrary cardinal > 2,

v = an arbitrary cardinal > p.

Assume that one of the following alternatives hold:

(1) max{I,T,F} < / / < § ,

or

(2) p is larger than the number of variables of formulas in F, p < cf(v) and

max{f,T, F} < fi<v < 5.

Then there is a structure 91 such that:

(a) X c | 8 l | o w d 9 I c » ;

(b) For ^i;ery (/> e F and er^r^ assignment gfor </> m 91,

(c) S = /xv m case (1), and% = fi<v in case (2). •

Observe that condition (b) is stronger than 91 < r 23 , which for an arbitrary
set of formulas F, only requires the implication from left to right to hold. As a
consequence, we have.

3.1.2 Corollary. Let 33, T, X be as in Theorem 3.1.1 and assume that

max{f, f} < X = XK < S.

Then there is a structure 91 such that X c 1911, 91 <KK S and 91 = A. //, m addition,
K is regular, then the same conclusion follows from the weaker assumption X = X<K.
Under the GCH, and ifK< cf(A), the assumption X = XK is superfluous.

Proof. Set F = the set of all j^KK(r)-formulas and, then perform the necessary
cardinal computations. D

3.1.3 Corollary. Let X < Kbe regular cardinals satisfying that

ji < K and v < X imply pv < K.

Then every sentence of 3?Kk which has a model, also has a model of power < K. If, in
addition, f < K, then the latter can be chosen to be a {first-order) elementary sub-
structure of the former.
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Proof. Set F = the set of all subformulas of the given sentence. For the last asser-
tion, we also include in T all 5£ft)ft)(x)-formulas. D

3.1.4 Corollary. Let K be a regular uncountable cardinal. Then any J?K(O-sentence
having a model, has a model of power < K. D

3.1.5 Corollary. If K is strongly inaccessible > co, then every sentence of j£?K,
having a model, has a model of power < K. U

The smallest cardinal for which Theorem 3.1.1 proves the existence of a model,
is 2P in case (1) and 2<p in case (2). In general, these bounds cannot be improved.

3.1.6 Counterexamples. (1') In case (1), take 0 to be the c£fK+K+-sentence axio-
matizing the notion of K̂ + -set (see Example 1.2(3)) and let F be the set of all sub-
formulas of (f). This is a counterexample, because a set of type rjK+ has cardinality
> 2K (Gillman [1956]).

(2') In case (2), take K to be a singular beth number and </> the i^KK-sentence
of Example 1.4(2) which characterize, up to isomorphism, the structure <//(fc),
G T H(K)} of all sets hereditarily of power < K. Details are left to the reader; (see
Dickmann [1975, pp. 213-214]).

Application. As an application of the infinitary downward Lowenheim-Skolem
theorem, we shall prove one of the nonaxiomatizability results from topology
that were announced in Example 1.7. The idea is to consider a class IK of struc-
tures— topological spaces in the present situation—containing a member of
sufficiently large cardinality which is "generated" by a set of smaller cardinality.
If IK were RPC in some J?KX, then an application of Corollary 3.1.2 to <£ Kk would
quickly produce a contradiction.

3.1.7 Theorem. Let K be a class of topological spaces (viewed as structures with
vocabulary v, as in Section 1.6) which contains discrete spaces of arbitrarily large
cardinality. Then K is not RPC in ££KX,for any K, X.

Proof. Suppose that the contrary holds. Then there are a vocabulary T 3 v, a set
E of S£KA(i)-sentences, and an ^KA(i)-formula </>(x) such that for any v-structure 91,

(*) 91 e IK iff there is a r-structure 91' such that 9T1= I and
91 = (91' r 0*') \ v.

Let fi be a cardinal > f such that fxK = JLL (for example, \i — 2p with p = max {f, K}).
Let 91 = < Y u P(Y), Y, P(Y), e> be a discrete space in IK of cardinality > \x. By
(*) above, 91 = (91' \ <I>*')J v for some 91' \= Z. Let Y' c y, T = //, and X =
Y' ^A{y}\y e Y'}. Thus, X = \i. Now apply Corollary 3.1.2 to get 33' <Kk 91' such
that B' = / i a n d I c |» ' | . Set 93 = (95' [ $*') [ v. Since 93' N Z, then 93 e IK by
(*). Hence, S ^ ( Z u . f , Z , 2T, e> for a topology 9~ on some set Z, and we identify
these structures. Also, we have that 93' <KX 91' implies that 0®' = (/>*' n 193' | = 1911 n
|93'|. Hence, X c | SB | = Z u F and we get Y' c Z, andj ly}^ e Y'} c ^ Since
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& is closed under arbitrary unions, it follows that P(Y') c ^ and therefore we
must have

But this contradicts the choice of 93'. D

The classes of topological spaces, discrete spaces, 7J-spaces (i = 0 , . . . , 5),
regular spaces, etc., obviously satisfy the assumptions of the theorem. But the
class of compact spaces certainly does not. In order to deal with this case, we use
the same method, letting the Stone space of a power-set algebra play the crucial
role, instead of a discrete space. For the details of these and other applications of
this method, see Cole-Dickmann [1972] or Dickmann [1975, pp. 219-223].

An application of the downward Lowenheim-Skolem theorem for f̂Wl£0

(Corollary 3.1.4, with K = cox) to group theory is given in Chapter XI, at the end
of Section 7.

3.2. The Upward Lowenheim-Skolem Theorem and
Hanf Numbers

Example 1.4(3) revealed some of the constraints on possible generalizations of the
upward Lowenheim-Skolem theorem to infinitary languages. A further constraint
stems from the existence of infinitary sentences which do not have models of some
specific but arbitrarily large cardinalities, such as in the following:

3.2.1 Exercise. Construct an j£?WlCOl-sentence having models of cardinality K iff
cf(jc) # CD. D

These examples are about the strongest obstacle—at least, in principle—to
the existence of some sort of extension of the upward theorem to infinitary logic
as well as to any language whose sentences form a set. This is shown by a simple
but astute remark, which shows that the Hanf number of any such language
exists. For the sake of easy reference, we include

3.2.2 Definition. Given a set X of sentences of an arbitrary language if, we define
its Hanf number, h(X), to be the smallest cardinal X such that any sentence of X
which has a model of power > A, has model of arbitrarily large cardinality. If the
sentences of <£ form a set, its Hanf number is called the Hanf number of J? and
is denoted by h(^). D

See Chapter II, Theorem 6.1.4 for the existence of h(X). Note that in the above
definition "language" means "syntactical structure + vocabulary". Thus,
K^w(Jj)) = niax{K0, ?}. In order to get a more invariant notion, we shall be
rather concerned with
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342 IX. Larger Infinitary Languages

The panorama concerning the values of the Hanf numbers h(<£K)) is very
different, depending on whether we are dealing with finite or infinite quantifier
languages.

The Hanf Number of Finite Quantifier Languages: An Introduction

(1) In this case, it is possible to give upper and lower bounds for h(J£K+(O) in terms
of the cardinal arithmetical operations of ZFC, namely

and in some cases, to even give its exact value

Assuming the generalized continuum hypothesis, we also have

K<&K+<O) = ^K+ f° r aU K of cofinality co.

Furthermore, when cf(/c) > co, the following holds:

(2) Along these same lines, it was shown by Barwise, Kunen, and Morley that
we can express the exact value of h(^K+(O), for all K, in terms of certain recursive
operations on ordinals depending on K+. This, shows (in ZFC) that whenever
cf(fc) > co, the value of h(J£K+(O) is much larger than 3K+—larger, for example,
than Ha, where a is the 1st, 2nd,.. . , nth,... iteration of ordinal exponent at ion on
K+ ; and, even more generally, it is larger than H/(lc+), where / is any recursive
function on ordinals.

(3) However, this does not mean that the axioms of ZFC suffice to give a pre-
cise location for the value of h(J£K+(O) in the hierarchy of the beth numbers no
more than they suffice to locate the value of 2Xa in the hierarchy of the aleph
numbers. Indeed, by using forcing techniques, Kunen proved that by making 2K

large with respect to K, we can consistently make h(J£K+co) small or large within
the interval (2K+, 3( 2K) +). More precisely, we have

3.2.3 Theorem. Assume that ZFC is consistent and let K, 6 be regular cardinals such
that co < K < 6. Then there are models SR, 91 of ZFC in which the values of the
continuum function are as follows:

2A = X+ for co < X < K,

and

2k = max{/l+,0} for k>K\
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but

while

The Hanf Number of Infinite Quantifier Languages

The situation is much more hopeless in this case. For, although the Hanf number
of these languages has been proven to exist in ZFC, the expedient of giving bounds
for them in terms of the cardinal arithmetical operations of ZFC fails. The mere
possibility of expressing the size of h(J£KA), X > co1, in terms of known set-theo-
retical notions seems to require the adjunction to ZFC of extremely powerful—
hence, rather dubious—set-theoretical axioms. But, whatever these additional
axioms may be, all known results underline the fact that the size of h(J?KX) for
uncountable X is extremely large.

We remark, in passing, that Barwise [1972b] and Friedman [1974] have
analyzed the strength of the set-theoretical axioms needed to prove the existence
of the Hanf number h(J?) and to express bounds for it in set-theoretical terms for
various logics J£f, including £fai€Ol.

(1) Upper Bounds. The only upper bounds for the Hanf number of infinite quanti-
fier languages provable in ZFC are the following, and they are obtained by very
simple compactness arguments:

3.2.4 Proposition. Assume that there is a strongly compact cardinal K (that is, a
compact cardinal for which !£KK has the compactness property for sets of sentences
of any size). Then, we have

^ K for any X <K\

and

h(&u) < K for X < K.

In particular, h(<£'WlCOl) is smaller than the first strongly compact cardinal, and

= K for any vocabulary T. D

Some relative consistency results for upper bounds for the Hanf number of
^?

(Ol0il are also known. In the first place, Magidor [1976] proved that the equality
"first strongly compact cardinal = first measurable cardinal" is consistent with
ZFC, provided there is a strongly compact cardinal. Together with the preceding
bounds, this immediately yields

3.2.5 Proposition. If ZFC + "there is a strongly compact cardinal" is consistent,
then so is ZFC + hi&n^) is smaller than the first measurable cardinal". D
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Starting from a different assumption, Vaananen [1980c] proves another relative
consistency result, namely

3.2.6 Proposition. / / ZFC + " there is a proper class of measurable (respectively,
weakly compact and strongly inaccessible) cardinals" is consistent, then so is ZFC +
"h(<£Wl(a^ is smaller than the first measurable (respectively, weakly compact and
strongly inaccessible) cardinal". U

Of course, these results do not exclude the possibility of obtaining much
smaller upper bounds for the Hanf number of smaller, but interesting, sets of
infinitary sentences. This question has hardly been investigated. Nevertheless,
there is the following result of Silver [1971a], a result which uses the construction
of models from indiscernibles.

3.2.7 Proposition. The Hanf number of the set of all prenex-universal sentences of
££\x(x) does not exceed the first cardinal JX with the partition property ji -* (A)^™,
where v = max{X0,f}, provided such fi exists. For X = col and countable T, this
bound can be reduced to the first ji such that JJL —• ((Oi)^03- D

(2) Lower Bounds. Following is a brief account on the results concerning lower
bounds for the Hanf number of infinite quantifier languages which have been
obtained under additional set-theoretical assumptions. For the sake of simplicity,
we confine ourselves to ^?

£Ol£Ol.

3.2.8 Theorem (Kunen [1970]). If ZFC + "there is a measurable cardinal" is con-
sistent, then so is ZFC + "h{J£mx<a^ exceeds the first measurable cardinal". D

In particular, this result implies that no upper bound for /i(i?WlCOl)
 c a n be

expressed in ZFC exclusively in terms of the partition cardinals used in Proposition
3.2.7. Propositions 3.2.6 and 3.2.8 imply

3.2.9 Theorem. The statement "/i(^WlWl) is smaller than the first measurable
cardinal" is independent of ZFC + "there is a proper class of measurable car-
dinals". D

3.2.10 Theorem (Silver [1971a]). ZFC + "there is a cardinal K such that K ->
(co)^w" proves: the Hanf number of the set of all prenex-universal sentences of
^oKot—hence also h(5£'<o1(Ol)—exceeds the first weakly compact, strongly inacces-
sible cardinal. D

A similar result holds for any J£V;t+.

3.2.11 Theorem (Silver [1971a]). ZFC + V= L + "there is a cardinal which is
T\n

m-indescribable for all n, meco" proves: h(S£mi<a^ is larger than the first such
cardinal. D
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Since 11}-indescribable cardinals are just the same as weakly compact, strongly
inaccessible cardinals, and this notion relativizes to L, from Theorem 3.2.11 and
Proposition 3.2.6 we may infer

3.2.12 Theorem. The statement "K^^^J is smaller than the first weakly compact,
strongly inaccessible cardinal" is independent of ZFC + "there is a proper class of
weakly compact, strongly inaccessible cardinals". D

The Hanf Number of Finite Quantifier Languages (Continued)

The remainder of this section is devoted to a sketch of the main ideas and tech-
niques used in the computation of the Hanf number of finite quantifier languages.

Example 1.4(3) shows directly that HK+ < h(£?K+(O). The remaining results are
more difficult by at least an order of magnitude. Some of the steps that lead to
them are more easily visualized in the terminology of omitting (first-order) types
which exploits the equivalence proved in Proposition 1.9.1. In these terms, the
analogue of the Hanf number h(^K+0)) is given in

3.2.13 Definition. The Morley number mK is the least cardinal X such that every
set of < K first-order types which is omitted in some model of power > X is also
omitted in models of arbitrarily large cardinality. D

Proposition 1.9.1 implies immediately that we have

3.2.14 Proposition. h(£?K+J = mK. D

Another basic tool in this theory is an elaboration on Example 1.4(3). Since
this has been treated with some detail in Chapter II, we will merely state the result,
referring the reader to Definition 5.2.1 of that chapter for the definition of the
expression "a sentence pins down an ordinal", and to Theorem 6.1.6 for the
proof itself.

3.2.15 Theorem. Assume that an ordinal a is pinned down by an ^K+0J-sentence;
J>\. U

There is an omitting-types version of this theorem which it is obtained by
replacing in the definition of pinning down the words " model of an J§?K+ -̂sentence "
by the words "model of a first-order theory T omitting a set S of < K types", and
changing the conclusion to read "mK > Ha".

A first application of Theorem 3.2.15 is given in

3.2.16 Theorem. / / cf(/c) > co, then K+ is pinned down by an J?K+(O-sentence.
Hence, 2K+ < h(J?K+(O).

Hint of Proof. Although pinning down ordinals < K is easy—the reader can
convince himself of this by using the sentences 9a of Example 1.2(2)—pinning
down ordinals larger than K requires a subtle argument, the gist of which is as
follows.
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Recall that every a E K is a subset of K. Let r c K x fc be a linear order of K.
If r happens to be a well-order (although not necessarily the canonical one), then
r r a is also a well-order of a, for all OCGK. Since # < K, there is a ft e K such that
<a,r ra>^<j3 ,Gr£>.

This shows that (a) implies (b), where

(a) r well-orders K\ and
(b) for every a e K, there is /? e /c such that <a, r f a> = </?, E f /?>.

If cf(/c) > co, then the converse is also true. For, if r does not well-order JC, there is
an infinite r-descending sequence

. . . r a B r a B _ 1 r . . . r a 1 r a 0

of ordinals an E K. Let a E K: be such that an < a for all n. Then r does not well-
order a and <a, r f a> cannot be isomorphic to any </?, E f J8>.

The point here is that (b) can be "said" by a first-order theory and the omission
of K types, thus allowing us to single out well-orderings of K—that is, ordinals
below K+— amongst linear orderings. The details of this part of the proof are
given in Dickmann [1975, pp. 241-242]. D

The foregoing argument is due to Chang [1968c], although the result was first
proven by Morley-Morley [1967], using V = L.

The inequality /zCJ^J < 3C0l—and hence the equality—was proved by
Morley [1965b] by a very subtle combination of the construction of models from
indiscernibles (Ehrenfeucht-Mostowski [1956]) and the Erdos-Rado [1956]
theorem of partition calculus as a device for producing sets of indiscernibles of
large cardinality. His proof was later extended by Chang [1968c] to obtain the
inequality h(SfK+to) < H(2K)+ for all K, and by Helling [1964] to obtain the in-
equality h(J£K+(O) < 2K+ and, hence, the equality when cf(/c) = co.

The details of these proofs go far beyond the scope of this guide to the subject,
and they can be consulted in the original papers or in Dickmann [1975, Chapter
4, Section 3]. The basic result is

3.2.17 Theorem. Let T be a first-order theory and S a set of (first-order) types. If
for every £ < (2K)+ there is a model of T of power > 3C omitting 5, then there are
models of T of arbitrarily large cardinality omitting S. Q

The statement is independent of the cardinality of S. However, it gives us the
following

3.2.18 Corollary. mK < \2*)+-

Proof. There are 2K sets of types of power < K in a language with < K symbols,
say (S^l^ < 2K>. Let /^ be the omitting-types cardinal (as defined in Definition
3.2.13) of the set S^; then mK < sup{/^|£ < 2K}. Note that ^ < 2{2K)+; for if S^
is omitted by a structure of power > 3(2K)+ , then by Theorem 3.2.17 it is omitted
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by structures of arbitrary large cardinality. And, by the downward Lowenheim-
Skolem theorem for J^wco, it is also omitted by a model of power < H(2K)+ . Since

cfCW) = (2T > 2«,
it follows that

<2K} < 3 ( 2 K ) + . D

Helling's result is similar to Theorem 3.2.17; however, it is assumed that E < K
and that K = Ha, with cf(a) = co, and 2K is replaced by K. Since co is of this form and,
under the GCH, every cardinal is a beth number, we immediately have

3.2.19 Corollary, (a) mw = K&^J = 3fl>1. •
(b) (GCH) J/cf(ic) = co, then mK = h(£fK + (O) = 2K+. U

An outstanding corollary of these upper bounds is the following theorem
due to Lopez-Escobar [1966a, b].

3.2.20 Theorem. The class of all (nonempty) well-orderings is not RPC in any
finite quantifier language 5£K(a.

Hint of Proof. If this class were RPC in, say, <S^K+(09 then by using a few additional
predicates and constants, we could easily manufacture another J2?K+arsentence
which pins down the cardinal X = I2 .By Theorem 3.2.15, this would force

(O) > 3A, which manifestly contradicts Corollary 3.2.18. D

In order to complete this account, let us briefly look at the argument leading
to the computation of the exact value of h(J£K+(a)- This argument was discovered
by Barwise-Kunen [1971] and, independently, by Morley (an unpublished result).
The techniques reviewed above are all used here along with a number of other
key refinements.

Let P(K+) denote the class of all ordinals pinned down by some ifK+w-sentence;
it has the following properties:

(a) P(K+) is an initial segment of ordinals without last element (see the re-
marks following Definition 5.2.1 in Chapter II)

(b) P(K+) C (2 K ) + , by Theorem 3.2.15 and Corollary 3.2.18;
(c) K+ c P(K

+l by Example 1.2(2);
(d) If cf(fc) > co, then K+ e P(K+), by Theorem 3.2.16;
(e) (Karp-Jensen): P(K+) is closed under primitive recursive operations on

ordinals.

3.2.21 Exercise. Prove (e) above for ordinal addition and multiplication. •

Let a(K+) be the first ordinal not in P(K+). By Theorem 3.2.15, Ha(K+) <
h(^K+(O). The converse is also true, although it is a much more delicate matter.

The notion of pinning down considered above is too coarse for our purposes.
A more manageable notion along the same lines is obtained, first, by relaxing the
well-orderedness requirement to well-foundedness; and, second, by adding the
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metatheoretic requirement that the well-founded structures under consideration
be reasonably well-behaved set-theoretical objects. A first, nontrivial step consists
of proving that the new notion coincides with the older one. See Dickmann [1975,
Chapter 4, Section 5C]. Once this is done, we then prove

3.2.22 Theorem. Let </> be an &K+(o-sentence whose models have bounded cardinality.
Then there is a well-founded structure <^", < > definable in ZFC by a bounded
quantifier formula with parameters from H(K+\ such that if a denotes its height,
then all models ofcj) have power < 1d+(O.{0L+l),for some S < K+ .

Denouement. By the remarks preceding the statement, a e P(K + ); by (c) and (e),
S + a>(a + 1) e P(K+), and hence this ordinal is smaller than a(K+). By the defini-
tion of the Hanf number, the inequality h(J£K + (O) < 3a(K + ) thus follows. D

Concerning the Proof of Theorem 3.2.22. A few remarks on this argument's main
ingredients are destined (at least, we hope) to sharpen the reader's appetite for
more on this subject. In fact, the full meal is served up in Barwise-Kunen [1971]
and in Dickmann [1975, pp. 274-281].

(1) The members of ZT are certain sets of sentences belonging to a fragment ¥
of =£?K+W contained in H(K+). All of these sets contain (/> and are chosen in such a
way that they are rich enough to make the following work:

(i) an analogue of the model existence theorem of Chapter VIII, Section 3.1;
(ii) the essentials of the indescernibility arguments involved in the proof of

Theorem 3.2.17.

The order -< of 3T is reverse (proper) inclusion.
(2) If y had an infinite -< -decreasing sequence, Zx >- Z2 >•..., the indescern-

ibility arguments mentioned in (ii) above can be used to produce models of \Jn S a -
lience also of (/>—of arbitrarily large cardinalities, contrary to the assumption on
the cardinalities of the models of (/>.

(3) An induction argument on the foundation rank of members of < ^ •<>
(involving also the Erdos-Rado theorem to get sets of indiscernibles of large
cardinality) is used to show that the models of any 2£_G 3~ have power <
<̂»-(j8+i)(̂ X where ft is the < ^ -<>-rank of Z and X = 2T. In particular, every

model of </> has power < '2a).ia+1)(X). Since *F e H(K+), there is y < K+ such that
*F e R(y), so that *F < Dy and X <1y+1. The conclusion follows by setting 5 =
y + 1 . D

4. The Back-and-Forth Method

4.1. Introduction and History

The method of extension of partial isomorphisms originated with Cantor who
used it for the stepwise construction of an isomorphism between any two count-
able dense linear orderings without endpoints. Since then, this type of argument
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has been used to construct isomorphisms in a large variety of mathematical con-
texts. For example, some celebrated uses of this method are:

— The proof that a countable reduced abelian p-group is characterized up to
isomorphism by its Ulm invariants (see Kaplansky [1969, Theorem 14]).

— HausdorfTs generalization of Cantor's theorem showing that two ^-sets
of cardinality X are isomorphic, for regular cardinals A.

— The proof that two real closed fields of cardinality Kx whose underlying
orders are of type t](Ol are isomorphic as fields (Erdos-Gillman-Henriksen
[1955]).

— The proof that two saturated, elementarily equivalent structures of the
same cardinality are isomorphic.

These examples illustrate two rather different situations. In the countable case
(Cantor's and Ulm's examples), the method produces an isomorphism rather
naturally and without additional assumptions. In the uncountable case (the three
last examples), one frequently needs to introduce cardinality hypotheses ex-
traneous to the problem in order to end up with an isomorphism (for example, in
the two examples involving ^-sets, the assumption is vacuously verified unless
GCH is used). The theory developed in this section gives a very satisfactory
explanation for this state of affairs. Moreover, it provides a machinery which
renders the exact content of the proofs, thus eliminating the extraneous cardinality
assumptions in the problematic cases.

A different use of the back-and-forth method was inaugurated by Langford
[1926]. He used it to show that any two dense linear orderings without endpoints
are elementarily equivalent, regardless of their cardinalities. Fraisse [1955a] and
Ehrenfeucht [1961] generalized Langford's use of the method (and result as well)
by giving a purely algebraic characterization of elementary equivalence in terms
of families of partial isomorphisms with the back-and-forth properties (Theorem
4.3.4). Furthermore, Ehrenfeucht gave a game-theoretical interpretation of the
method which subsequently became very popular. However, it was Karp [1965]
who conclusively showed that the mathematical framework where the basic
("one-at-a-time") back-and-forth technique is naturally expressed is infinitary,
rather than first-order, logic. More precisely, it is the class-logic S£ ̂ HO- Karp's
results tied neatly in with Scott's earlier characterization of the countable iso-
morphism type of a countable structure by a singleJ2?Wj(0-sentence (see the end
of Section 4.4 below). This connection was developed and generalized by Chang
[1968c]. Barwise-Eklof [1970] and Barwise [1973b] gave a unified form to all
these arguments and provided the basis for a more general treatment. Benda
[1969] and Calais [1972] generalized the work of Karp to the class-logics JS?^.
The general theory of back-and-forth arguments is presented in Dickmann [1975,
Chapter 5]. This is the subject matter of Sections 4.3 and 4.4 below.

A third and quite different use of partial isomorphisms is for building em-
beddings—rather than isomorphisms—or even other kinds of maps, as in the
following examples:

— The proof that every A-saturated structure is /Uuniversal, that is, it contains
an embedded copy of every structure of power < X with the same first-
order theory.
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— The so-called countable embedding theorem (Barwise [1969c]) which shows
that for any two countable structures 91 and 95, 91 can be embedded in 93
iff every universal J5fwico-sentence which holds in 95 also holds in 91.

This kind of use hardly falls under the denomination "back-and-forth"; for, fre-
quently one moves in only one direction. However, it fits very naturally into the
general setting developed in Section 4.4 below.

4.2. Basic Facts

4.2.1 Definition, (a) Let 91, 93 be structures with the same vocabulary. A m a p /
from a subset of 91 into a subset of 93 will be called a partial isomorphism
from 91 to 95 iff either:

(i) / is the empty map and 91, 95 satisfy the same atomic sentences; or,
(ii) Dom(/) is a substructure of 91, Range(/) is a substructure of 33, and

/ is a monomorphism, that is, for every atomic formula 4>{vl . . . vn) and
every xl9..., xn e Dom(/),

91^ </>!>!... Xj iff ®t=$U(Xl\...J(Xn)l

(b) Given a cardinal A, a X-partial isomorphism is a partial isomorphism,
where Dom(/) is generated (as a substructure of 91) by fewer than A
elements.

Notice that in other chapters (for example, in Chapter II, Section 4.2) the
domains of partial isomorphisms need not be substructures of 91; the difference
is not essential, because if Dom(/) / 0 , or if the language has at least one in-
dividual constant, then/extends to the substructure of 91 generated by Dom(/).

The extension relation between maps will (also) be denoted by c . As a mo-
tivation for later arguments, we prove the theorem of Hausdorff that was mentioned
in the introduction.

4.2.2 Example and Theorem. Let X be a regular infinite cardinal. Then any two
nrsets of cardinality X are isomorphic.

Proof. The argument separates into two parts, and we first consider
Part I: Let {A, <>, (B, •<> be 7^-sets of power A, and consider the set 0 of all
A-partial isomorphisms (that is, in this case, order-preserving maps with Dom(/)
< X). 1 has the following properties:

(i) X-extension property: Any subfamily of D of power < A, totally ordered
under the order of extension, has an upper bound in 0.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.014
https://www.cambridge.org/core


4. The Back-and-Forth Method 351

(ii) One-at-a-time back-and-forth properties:
(a) Forth property: For every / e O and aeA, there is #eO such that

f ^ g and a e Dom(g);
(b) Back property: For every /eD and beB, there is geQ such that

f ^ g and fo G Range(#).

Condition (i) is clear by the regularity of A, but (ii) is more delicate. We will do
(b), the proof of (a) being symmetric. Thus, assume that b $ Range(/), and let
(Y, Z) be the cut of Range(/) determined by b:

Y={ye Range(/)|)> <b}, Z = {z e Range(/)|b -< z}.

Since/is order-preserving, we have /~ 1 [y ] < / ~ 1 [ Z ] (see Example 1.2(3) for
this notation); and, since Dom(/) < A, these sets have power < X. Since <4, < >
is of type rjk, there is a G A such t h a t / - 1 [ y ] < a < f~1\_Z~\. Thus, the map

Domfo) = Dom(/) u {a},

g[Dom(f)=f9

g(a) = b,

does the job. Part I now established, we turn to

Part II. Given a nonempty family 0 of partial isomorphisms with properties (i)
and (ii), we construct an isomorphism of {A, < > onto <£, -< >. To this purpose, we
enumerate A and B without repetitions:

A = (aa\oi < A), B = <ft.|a < X>.

Starting with any / 0 e 0, we now construct a sequence

/o c /x c . . . c /a c . •. (a < X)

of partial isomorphisms by taking fa to be:

(i') If a is a limit ordinal, then fa = any map g e D extending all fd9 S < a.
Here we use (i),

(iir) If a is a successor ordinal, then fa = any map g e D extending /a_1? and
such that:
(a') ap+n G Dom(g), ifa = j8 + 2n + l,)8 limit,
(b') bfi+ne Ranged), if a = fi + 2n -h 2, ft limit.

Here we use (ii)(a) and (ii)(b), respectively.

As an exercise, the reader might check tha t / = (Ja<A /a is an isomorphism, as is
required. D

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.014
https://www.cambridge.org/core


352 IX. Larger Infinitary Languages

Clearly, Part II is a general theorem which has nothing to do with orderings
(Proposition 4.2.5). In order to analyze the situation, it is convenient to introduce

4.2.3 Definition and Notation. The notation

1: 91 ~ 95 means that D is a nonempty family of partial
isomorphisms from 91 to 95 with the
back-and-forth properties given in (ii)(a)
and (ii)(b) of Theorem 4.2.2 (caution:
property (i) is not required to hold).

91 ~p 95 means that

I: 91 ~? ' e 95 means that

D:9I~595 means that

there is an D such that 0: 91 ̂ p 95.

0 is a nonempty family of partial
isomorphisms with the back-and-forth-
properties of Theorem 4.2.2 and the
extension property for ^-chains of
power < A.

0 is a nonempty family of partial
isomorphisms with the fewer than Xat a
time back-and-forth properties; that is, for
every fe 0 and A c |9I|? A < A, there is
g e D such that / c g and A c Dom(#),
and similarly for the "back" part.

Observe that the extension property and the back-and-forth properties do not
always occur together as they do in Theorem 4.2.2. The following connections
between the notions just introduced are easily proven and are left as an exercise.

4.2.4 Fact. For any family 0 of partial isomorphisms, the following holds:

(a) 0: 91 ~ p
;;

e 95 implies 0: 91 ̂  5 95 implies 0: 91 ~ £ 95 for any K < A, implies
Q : 9 I ~ p 9 5 ;

(b) I:ffl*pSan:Sl-£S;
(c) / / 91 ^f 95, then {/}: 91 ~fe 95/or any 1 D

With this notation the second part of Theorem 4.2.2 becomes

4.2.5 Proposition. 7/91 and 33 are of power < A, or generated by sets of power < A,
then

91^95 iff 9I-£'e95.

//, in addition, cf(A) = co, then

91^95 iff 91-595.
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Hence, all four relations ̂ , ~p, ^and ~%e are equivalent on countably generated
structures. D

Later we will see that for regular uncountable cardinals A, the relation ~ J e

is much stronger than the relation ~J .

4.3. Partial Isomorphisms and Infinitary Equivalence

The fundamental result of the- theory presented in this section is due to Karp
[1965]; it shows that the relation ~^ °f partial isomorphism is identical with
the relation = aoX of JSf^-equivalence. We will give a sketch of its proof.

4.3.1 Theorem. For all structures 91 and 23, 91 ~p
x 23 is equivalent to 91 = ooA 23.

Proof. For the sake of notational simplicity, we will assume that X = co (hence,
~£ becomes ~p) and that the vocabulary has only relation symbols.

(1) We assume that 0: 91 ~p23 and prove that 91 = o o A S. By induction on
the structure of j£? ̂ -formulas, one shows that any / e D is an <£ ̂ -map, that is,
for any (/> with < n free variables and any al9..., an e Dom(/),

(*) 911= 0 [ f l l , . . . , an~\ o » N 0 [ / ( f l l ) , . . . , f(an)l

This is quite immediate except, possibly, in the case in which (j) = 3yi// where the
following sequence of equivalences settles the matter:

For some a e 1911,

911= ^[al5 ...9an9d]o(Forth Property).

For some a e 1911 and g e D such that / c g and a e Dom(g).

91 \= il/[a1,..., an, a~] o (Induction Hypothesis).

For some a e 1911 and g s D such that f^g and a e Dom(#),

25 f= (AC^i), . . . , g(an), g{a)~\ o (Back Property).

For some b e | S |,

(2) We prove now the converse. The preceding implication tells us that the
members of any back-and-forth set D: 91 ^p23 are necessarily i ^ - m a p s . Let
0 be the family of all such maps with finite domain. Since 91 = ^ 23, the empty
map is in 0, and D ^ 0 . Let us prove, for example, that 0 has the forth property.
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To this end, let / e l , with D o m ( / ) = {al9..., an}, and a e | 2 l | , a ^ at

(i = / , . . . , n). If we find b e 1931 such that

(**) 91 N 0 [ f l l , . . . , an, a] => 95 N= 0 [ / ( f l l ) , . . . , /(*„), 6]

holds for every if ^-formula <\> with < n + 1 free variables, then the map

Dom(0) = Dom(/) u {a},

would solve the problem, because (**) implies its own converse. If this is not the
case, then for each b e 1931, there would be an if ^-formula (pb such that 911=

u . . . , an, d] but 95 h= - i ^ [ / ( f l l ) , . . . ,/(an), 6]. Set

Then, 911= ^[a 1 ? . . . , an, a], and this, of course, implies that

while

®N(Vi;n+1-uA)C/(^i),..., f(an)l

But this clearly contradicts the definition of/. D

Show as an exercise that for a fixed map h: 91 -> 95, the condition "/z is an
if ^-embedding" can be characterized in a similar manner.

A minor modification of the same argument gives a back-and-forth charac-
terization of the important notion of $£^^equivalence up to bounded quantifier-
rank.

4.3.2 Definition, (a) To each if ooA-formula (/>, we inductively assign an ordinal
qr(^) called its quantifier rank:

qr((/>) = 0 if <t> is atomic;

qr((/>) = qr(i/0 if >̂ is —i «A;

= sup{qr(i/O | i e /} if 0 is / \ ^ or V ^ ;
ie / iel

qr((/)) = qr(^) -hi if 0 is (Vx)iA or

When A = co the proviso X = 1 is frequently added to the last clause.
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(b) By 91 E E ^ 93, we mean that 91 and 95 satisfy the same if ^-sentences of
quantifier-rank < /?. D

4.3.3 Theorem (Karp). / / 91 and 23 have the same vocabulary, and ft is an ordinal,
then the following are equivalent:

(2) there is a sequence 3T = <QJa < j8> with the properties:
(a) each Da is a nonempty family of partial isomorphisms from 91 to 93;
(b) D a c D y , / o r 7 < a < j 8 ;
(c) Back-and-forth property: if OL + 1 < ft, then

(i) /or et;ery / e 0a+1 and 4̂ ^ |9I|, A < A, r/zere is g e Da suc/z
/ c # and A c Dom(#);

(ii) /or erery / e 0a+1 and J5 c |93|, B < A, tferg is g e Da swc/z t/iat
/ c ^ and B ^ Range(gf). D

As was remarked in the introduction to this chapter, the back-and-forth
characterization of elementary equivalence is another important result along
these lines. Thus, we have

4.3.4 Theorem (Ehrenfeucht-Fraisse). / / 91 and © are structures in a finite vo-
cabulary without function symbols, then the following are equivalent:

(1) 91 = S ;
(2) there is a sequence of length a>, 9~ = <!„ | n e co>, with properties of Theorem

4.3.3(a)-(c), where the sets A, B of power < X in (c)(i) and (c)(ii) are replaced
by one-element sets.

Gist of Proof. For the proof that (2) implies (1), we proceed as in the first half of
the proof of Theorem 4.3.1, showing by induction on n that the maps in Dw preserve
first-order formulas of quantifier-rank < n.

For the argument that (1) implies (2), we put in Dk all partial isomorphisms
preserving formulas of quantifier-rank < k. Observe that the infinitely many
formulas {<&,(i>i>..., vn-{)\b e |93|}—all of quantifier-rank < k—separate into
only finitely many classes modulo (logical) equivalence. By selecting representa-
tives of these classes, \j/ then becomes a first-order formula. This is because in a
finite vocabulary without function symbols there are only finitely many classes
modulo (logical) equivalence of formulas of bounded quantifier-rank with a fixed
finite number of free variables (Exercise and Hint: Use induction on the quantifier-
rank). D

4.3.5 Remark. The restriction to a finite vocabulary without function symbols is
unavoidable. For more on this, see Dickmann [1975, Example 5.3.12]. We note
that in the proof given in that book (Theorem 5.3.11, pp. 321-322) the clause
"without function symbols" was inadvertently omitted.
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4.3.6 if ooA-Equivalence and Isomorphism. The fact that partial isomorphism
implies isomorphism for structures of power < X, when cf(A) = co (see Proposition
4.2.5), does not extend to other values of X. The first examples of, say, non-iso-
morphic =Sf00Wl-equivalent structures of power Kx were constructed by Morley
(see Chang [1968c, p. 45], Nadel-Stavi [1978]), and Tait (see Dickmann [1975,
pp. 350-360]). The same construction applies to any regular uncountable cardinal,
but not to singular cardinals of cofinality > co. For the latter the problem is still
open. Gregory [1974] showed how to transform any example with these properties
into one which, in addition, is rigid—and this even for any infinite cardinal.

The example of Morley and Tait is a tree. Later on, Paris [1972, unpublished]
gave an example of a total ordering with the same property. More recently,
Shelah [1981b, 1982b] hasmadeamoreconclusivestudy of the number of structures
if ^-equivalent to a given structure of power X. His results are given in

4.3.7 Theorem and Example. Let Xbe a regular cardinal.

(1) Under the assumption that V = L, if X is not weakly compact, then the
number of isomorphism types of models of cardinality X which are $£^r

equivalent to a given structure of cardinality X is either 1 or 2k.
(2) If X is weakly compact, then for any cardinal 1 < K < X there is a structure

of cardinality X which, up to isomorphism has exactly K structures of car-
dinality X that are ££^^-equivalent to it. This construction also applies to
any supercompact cardinal K such that X < K < 2A. D

A recent paper by Kueker [1981] investigates the ways in which S£^<af
equivalent structures of power Kx can be built up from increasing, continuous
chains of isomorphic countable substructures.

4.3.8 The Strong Partial Isomorphism Relation. As the relation ~fe of strong
partial isomorphism arises spontaneously in mathematical practice as much as
the relation ~ $ of partial isomorphism does, it is natural to ask whether it also
has a metamathematical interpretation. This question was posed, independently,
by Dickmann [1975, p. 316] and Kueker [1975, pp. 34-35]. Nevertheless it
remains largely open—even to the point that we do not yet know whether or not
the relation ~%e is transitive.

However, Karttunen [1979] has made a partial step in this direction, by
giving a back-and-forth characterization of equivalence in infinitary languages
of a different type, which was first introduced—rather informally, too—in
Hintikka-Rantala [1976]. These are the languages N^x- A precise definition of
these and the corresponding languages NK^ is to be found in Rantala [1979] and
in Karttunen's paper. Roughly speaking, their characteristic feature is that formulas
are defined by giving the tree of their subformulas, and that this tree may have
branches of infinite height (contrary to the case of if „ rformulas, where the tree
of subformulas is well-founded; see Dickmann [1975, pp. 87-88]).

Karttunen characterizes JV^-equivalence in terms of a certain relation
~y'e; this being a priori weaker than ^ e . Briefly stated, 0: 91 ~£ ' e 95 holds iff
the family of partial isomorphisms D has a tree order < finer than the extension
order c , and the (same) back-and-forth and extension properties hold for the
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order < , instead of that of extension. It is not known how much weaker is the
relation ~ A

w'c. However, Karttunen does show

(1) - A
w'e implies ~$,and

(2) for structures of cardinality < A, we have that ~ 7 ' e implies isomorphism.

Hence, in view of the comments in Section 4.3.6, the relation ~A
w'e is seen to be

much stronger than ~J .

4.4. A General Setting for Back-and/or-Forth Arguments

In this section we will consider the problem of using extensions of partial iso-
morphisms as a tool for constructing maps other than isomorphisms. This kind
of application ties in with the question—a priori a different one—of whether there
are back-and-forth characterizations of semantical relations between structures
other than if^-equivalence. What we have in mind are semantical relations
induced by classes of infinitary formulas other than the class of all such formulas.
A first example, the relation of if ^-equivalence up to bounded quantifier-rank,
was already considered in Theorem 4.3.3. As a matter of fact, both these problems
have a common solution; the connecting thread is the countable embedding
theorem stated at the end of Section 4.1.

Let us begin by properly defining the semantical relation 91 (O) © induced by
a class <D of if ^-formulas. In the examples that we already know, the relations
= ooA and =^A are induced by classes Q> of formulas closed under negation, so
that the condition

(f) for every sentence 4> e O, 911= 0 implies 93 1= 0,

entails its own converse. This is not true of other classes of formulas (for instance,
Q> = the existential ££^-formulas). This indicates that (f) defines the appropriate
semantical relation between 91 and 95, which we will denote 91 (<!>) 95.

We should also expect that if an appropriate characterization of the relation
91 (<D) 95 is to exist, the class <P ought to have some closure properties. It turns
out that these requirements are very mild.

4.4.1 Definition. A class Q> of if ^-formulas is normal if it satisfies the following
requirements:

(Nl) v0 = v0 is in 0 ;
(N2) If (f) is in <I>, then some reduced form of <fi is also in <D (a reduced form of

cj) is obtained by "pushing" all negation symbols to their innermost
places);

(N3) <£ is closed under subformulas;
(N4) $ is closed under conjunctions and disjunctions of sets of its formulas;
(N5) Q> is closed under substitutions of (some occurrences of) variables by

terms;
(N6) For every ordinal a, if <D contains a formula of quantifier-rank a + 1,

beginning with 3 (respectively, V), then any quantification of the same
type on a formula in O of quantifier-rank < a is in G>. D
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The clause (N2) is designed to allow inductions on the structure of formulas
in®.

4.4.2 Examples, (a) The following classes of <£«,rformulas are normal: all
formulas, all reduced formulas, all quantifier-free formulas [(N6) holds vacuously];
all existential formulas [(N6) holds vacuously for V], all universal formulas, all
positive formulas. Furthermore, if O is normal, then the class d^ of all formulas in
O of quantifier-rank < /? is also normal.

(b) The following classes are not normal: all prenex .£?^-formulas [(N4)
fails], all ^^-formulas [(N4) fails]. D

The notion of partial isomorphism must also be adapted to the present setting,
and the appropriate notion for this is that of a (partial) Q>0-morphism, that is, of a
map preserving all quantifier-free formulas (j) in <J>:

21 N (t*[g~] implies 93 |= </>[/ ° g\,

for every assignment g in Dom(/).
The following result is a common generalization of Theorems 4.3.1 and 4.3.3,

and its proof is similar to that of the latter.

4.4.3 Theorem. For any normal class <D of ^^^formulas and for any structures 91,

23 with the appropriate vocabulary, the following are equivalent:

(1) 9I(O)<B;
(2) There is a sequence <Da|aeON> of nonempty families of partial <D0-

morphisms from 91 to 23, such that;
(a) i / a < y, then\y c Qa;
(b) for every a e ON,

(i) if <I> contains a formula of quantifier-rank a + 1 beginning with an
existential quantifier, then the forth property holds: For every
f e Da+1 and A c |9J|, A < A, there is g e Da such thatf c g and
A c Dom(g);

(ii) if <X> contains a formula of quantifier-rank a + 1 beginning with a
universal quantifier, then the back property holds: For every
fe Da+1 and B c |©|, B < I, there is ge^a such that f^g and
£ c : Ranged). Q

4.4.4 Some Important Remarks, (a) If <D has the additional property that, when-
ever it contains one formula of quantifier-rank > 0 beginning with 3 (respectively
V), then it contains formulas or arbitrary large quantifier-rank beginning with 3
(respectively, V), then the sequence <0a|aeON> can be replaced by just one
family of partial morphisms. Obviously, this is the case if O is any one of the follow-
ing classes: All formulas (see Theorem 4.3.1), existential formulas, universal
formulas, positive formulas.
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(b) For normal classes of the form O ,̂ where /? is an ordinal—see Example
4.4.2(a)—the sequence <DJaeON> can be cut down to <0Ja < /?>. In this way,
a generalization of Theorem 4.3.3 can be obtained.

These and other variants are discussed in detail in Dickmann [1975, Chapter
5, Section 3.C]. D

An argument of this type leads to results such as:

4.4.5 Proposition. Let X be a fixed infinite cardinal. To every cardinal pi there
corresponds a cardinal K which depends only \x and X such that z /S < JLL, then for
arbitrary 91 the following holds:

(a) (Chang) 91 (ExKjl) 93 implies that 91 (Ex^) 93;
(b) (Kueker) 91 =Kk 93 implies that 91 EroA 93;
(c) (Chang) 93 (UnKJ 91 implies that 93 (Un^) 91;
(d) (Chang) / / also 91 < \x, then

9I(POSK A)93 implies 9I(PosooA)©.

Here, the symbols Ex, Un, Pos, respectively denote the classes of existential, uni-
versal, and positive formulas of the corresponding languages. D

See Chang [1968c] or Dickmann [1975, pp. 335-339] for proofs of this.
These results hold regardless the number of symbols in the vocabulary.

Bringing this parameter into consideration yields a generalization of Scott's
famous countable isomorphism theorem.

4.4.6 Theorem. Given a vocabulary % and cardinals \i and X, where X is infinite, let
K = max{/i<A, f} + . Then for each x-structure 91 of cardinality <\x, there is an
<£Kk(x)-sentence </><M such that

» l = ^ iff 91 =«, ,»

holds for any structure 33. D

When fi = X = f = Ko, <j>^ is in JSP<O1CO. If, in addition, 93 is also countable, then
Theorem 4.3.1 and Proposition 4.2.5 give

93 N= 0« iff 91 ^ 93.

This is Scott's isomorphism theorem (see also Chapter VIII, Section 4.1).
Theorem 4.4.6 holds for relations which are slightly (?) more general than

if ^ requivalence. However, we do not know of any interesting application of this
additional information; see Dickmann [1975, p. 340].
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360 IX. Larger Infinitary Languages

The connection between isomorphism and if ^-equivalence given by Theorem
4.3.1 and Proposition 4.2.5 when cf(A) = co does have analogs in the present
general setting:

4.4.7 Proposition (Chang). Let cf(A) = co. Then

(a) 1 < X implies that 91 (Ex^) 33 iffM c 95.
(b) 93 ^_X implies that 91 (Un^) 93 #93 £ 91.
(c) % 5 < X imply that 91 (Pos^) 93 iff 93 is a homomorphic image of 91. D

Propositions 4.4.5 and 4.4.7 can be combined in an obvious way to improve
the left-hand side of the result, when 91 and/or 93 are of bounded cardinality. We
immediately obtain a proof of the countable embedding theorem (see the end of
Section 4.1).

4.5. Some Applications

No account of the back-and-forth method would be complete without at least
some mention of concrete mathematical applications. And such we will briefly
give here. Further examples will be found in Chapter XI, where several important
applications to algebra are discussed—especially in Sections 1-5.

The Functoriality of Back-and-Forth Methods

A little practice with the application of the techniques presented in this section
reveals that some of the back-and-forth relations we have considered (such as,
~ 5) t e n d to be preserved by many standard algebraic constructions. As an example
of this, the reader may try

4.5.1 Exercise. Using Theorem 4.4.3, prove that if Q> normal class and 91; (<X>) 33£

for all i e /, then

iel iel

Warning: Direct sums only make sense if the vocabulary contains an individual
constant, 0, such that F(0, . . . , 0) = 0 for every operation F. D

This exercise should convince the reader that only "general nonsense" argu-
ments are used, which is an indication of some kind of functoriality. The extent
of it was worked out by Feferman [1972], who showed:

4.5.2 Theorem. IfF is a X-localfunctor (see below), then F preserves !£ ^^-equivalence
and also !£ ^^-equivalence up to quantifier-rank /? for any ordinal /?. D
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4. The Back-and-Forth Method 361

A X-local functor is an operation on structures (of possibly infinitely many
arguments) and on maps between them, satisfying:

(i) in each coordinate, its domain of definition is closed under substructures;
(ii) F preserves inclusion (of both structures and maps);

(iii) for every subset Z c |F«9l. | j e / » | of power < X there are substructures
23, c 2J. (i s I), each generated by < X elements, such that

Granted properties (i) and (ii), one variable co-local functors are precisely those
which preserve direct limits.

From Theorem 4.5.2 we thus infer

4.5.3 Corollary. For the indicated values ofX, J£ ̂ ^-equivalence is preserved by the
following algebraic and model-theoretic constructions (among others):

(1) The polynomial ring in one indeterminate over a ring (any X);
(2) The ring of formal power series in one indeterminate over a ring (any X > Kx);
(3) The field of fractions of an integral domain (any X);
(4) The free group generated by a set (any X);
(5) Tensor products of modules (any X);
(6) Generalized product operations; including direct products, direct sums, and

the various cardinal sum operations considered in Section 2.3 (any X);
(7) The structure 9) ̂ (X, <) , with blueprint Z, generated by the set of order-

indiscernible s <X, < ) (any X). D

Several warnings ought to be sounded here. In particular, we caution.
(a) That these preservation results are derived by explicit description of each

of the operations, rather than by use of their universal properties. This relates to
Hodges' X-word constructions, constructions which also preserve <£^-equivalence
(see Chapter XI, Section 6).

(b) That in (1) and (7) the functor is co-local (hence, it is A-local for every
X > at), while in (2) it is co1 -local. In the other cases it is not local as it stands.
However, the construction can be put in equivalent form as a composition of a
local functor and other operations which preserve i? ^-equivalence.

(c) That although the method is quite general, there are certain forms of the
back-and-forth argument to which it does not apply. For example, elementary
equivalence is not preserved by the operations (1) and (4). See Feferman [1972,
pp. 92-93].

(d) That the construction in (7) is delicate, and we will refer the reader to
Morley [1968] for the details. However, the preservations results are quite general
in this case. For example, this construction preserves the strong partial iso-
morphism relation ~p

k>
e (see Dickmann [1975, pp. 393-397]). As a matter of fact,

an analysis of these results will show that we obtain the following extension of
Theorem 4.5.2.

4.5.4 Theorem. Let F be a unary X-local functor sending x-structures into T'-struc-
tures. Let <X> and *F be normal classes of <£^k-formulas with vocabularies T, T',
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respectively. Assume that F transforms partial Q>0-morphisms into partial ^
phisms. Furthermore, let us assume that these classes are correlated in the following
way: For every ordinal a, if *P contains a formula of quantifier-rank a beginning with
3 (respectively, V), then <X> contains at least one formula of the same type, also of
quantifier-rank a. Then, for structures 91, 95 in the domain of F,

9I(d>) 93 implies F(9l) (¥) F(»). D

As an exercise, the reader may try to derive some consequences of this theorem
in the style of Theorem 4.5.3.

Partial Isomorphisms and Reduced Products

The foregoing results also apply to the operation of reduced product modulo a
filter. Indeed, it is easy to verify that we have

4.5.5 Exercise. The reduced product operation (modulo a fixed filter) is an co-
local functor. [Certain precautions will be observed in defining the reduced product
of a family of maps.] D

However, Benda [1969] proved a much stronger result whenever the filter
satisfies some mild conditions:

4.5.6 Theorem. Suppose we are given an infinite set I, a fixed infinite cardinal X, a
vocabulary % of power < X and a X-regular filter 3F on I. If the x-structures {9lf | i e 1}
and {93j| i e /} satisfy:

% = 93; for each i e /,

then

iel iel

In other words, elementary equivalence is strengthened to if ooA+-equivalence.
A filter !F is X-regular just in case it contains a family of X sets such that the

intersection of any infinite number of them is empty. For more information on
this matter, see Chang-Keisler [1973, Section 4.3]. The theory developed there
shows that A-regularity is a rather mild condition. For example, co-regular and
co-incomplete (obviously) coincide, and the notions of non-principal and co-
regular ultrafilters are coextensive on sets of power less than the first measurable
cardinal. This proves at once:

4.5.7^ Corollary. If 3F is an co-incomplete filter or if 3F is a non-principal ultrafilter
and I is smaller than the first measurable cardinal, then 9It- = 93f/or all i e I, implies

iel iel

for structures with a countable vocabulary. U
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Since a single J2?A + ;1 +-sentence involves at most X symbols, Theorem 4.5.6
also yields the conclusion

iel iel

for structures with a vocabulary of arbitrary cardinality.
Benda [1972] proved that the conclusion of Theorem 4.5.6 can be strengthened

to if a0^+ + -equivalence for filters with additional properties. A proof of Theorem
4.5.6 which is, we think, easier than Benda's and which is more in keeping with the
spirit of the theory that has been developed here can be found in Dickmann
[1975, Theorem 5.4.15].

Real Closed Fields

As a final example, let us consider the following classical theorem of Erdos-

Gillman-Henriksen [1955].

4.5.8 Theorem. Any two real closed fields of cardinality Kx whose underlying orders
are of type rj(Ol, are isomorphic. D

This statement has a major drawback: It is totally vacuous unless the con-
tinuum hypothesis holds (see Gillman [1956]). An analysis of the proof reveals,
however, that something is proven which has nothing to do with the cardinality
of the fields, let alone with the continuum hypothesis. As in other situations, the
machinery developed in this section makes it possible to formulate a statement
which renders the exact content of the proof.

4.5.9 Theorem. Let Xbe a regular cardinal and F, F' two real closed fields of type
Y\k (no restriction are placed on their cardinalities). Then F ~%e F'.

Hint of Proof. This combines the argument used in Theorem 4.2.2, together with:

(i) The fundamental result of Artin-Schreier that an isomorphism between
ordered fields extends uniquely to their real closures (see Jacobson [1964;
pp. 285-286]); and

(ii) the fact that if / is a partial isomorphism from F to F , x e F, y e F' are
transcendental over Dom(/) and Range(/) respectively, and, for all
z G Dom(/),

x > z iff y > f(z\

then/can be uniquely extended to the subfield generated by Dom(#) u {x}
in such a way that x is sent onto y. U

For details on this line of inquiry, the reader should see Dickmann [1977].
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Chapter X

Game Quantification

by PH. G. KOLAITIS

Game quantification interacts with the model theory of infinitary logics, abstract
model theory, generalized recursion theory, and descriptive set theory. The aim of
this chapter is to examine these connections and give some applications of the
game quantifiers to the above areas of mathematical logic.

The chapter is divided into four sections. The first presents the basic notions and
the interpretation of infinite strings of quantifiers via two-person infinite games.
Section 2 deals with the interaction between game quantification and global
definability theory, the main theme being that certain second-order statements can
be reduced to formulas involving the game quantifiers which can, in turn, be
approximated by formulas of L ^ . This section also includes a proof of Vaught's
covering theorem, as well as applications of game quantification to the model theory
ofZ^^ and admissible fragments. In Section 3, we show that the game logics are
absolute and unbounded, and most of the model-theoretic properties of these
logics will then follow from this fact. Section 4, the final section, discusses the
interaction with local definability theory. Here we consider the basic relation of
the game quantifiers to inductive definability and higher recursion theory, and give
some of their uses in descriptive set theory.

1. Infinite Strings of Quantifiers

This section presents the main definitions and basic results about infinite strings of
quantifiers {QQX0Q1X1Q2X2 . . . ) where, for each i = 0, 1, 2 , . . . , Qt is the
existential quantifier 3 or the universal quantifier V on a set A. The interpretation of
such strings is via two-person infinite games of perfect information. We first
describe the interpretation in an informal way and indicate the expressive power of
certain infinite strings. The precise definitions involve the notions of a winning
strategy and a winning quasistrategy. The Gale-Stewart theorem is then proven
and used to push negation through infinite strings in certain cases.

Throughout this section, A is a non-empty infinite set, A<co = [jne(0 An is the
set of all finite sequences from A, and A10 is the collection of all infinite sequences of
elements of A. We use variables x,y9z,... to denote elements of A, variables
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366 X. Game Quantification

s, r, w, . . . to represent elements of A K w, and variables a, jS, . . . to denote the members
of A™. The empty sequence is denoted by ( ), while s"t denotes the concatenation
of two elements s, t of A K (O. Finally, if a e A03 and n e co, then a f n is the restriction of
a to n, that is, a {n = (a(0), a ( l ) , . . . , a(n - 1)) e 4".

7.7. Iterating the Existential and the Universal
Quantifier Infinitely Often

1.1.1. The most natural infinite strings of quantifiers are obtained by iterating the
existential quantifier or the universal quantifier—or, alternatively, the existential
and the universal quantifier. If R c A™ is a non-empty set of infinite sequences from
A, then three infinite strings that result in this way are:

(1) (3x0 3xx 3x2 • • )R(x0, x1? x2 , . . . ) ,

(2) (Vx0Vx1Vx2.--)K(x0,x1,x2,...),

(3) (3x0 Vy0 3*i Vj^ 3x2 Vy2 •

The first two strings, (1) and (2), respectively express existential and universal
quantification over the set A™ of infinite sequences from A. In order to interpret the
infinite string given in (3), we associate it with the following two-person game
G(3V, R) of perfect information:

A round of the game G(3V, R) is played by players I and II
alternatively choosing elements from A:

I

Player I wins the above round if (x0, y0, xl9 yl9 x 2 , y2, • • -
otherwise Player II wins the round.

We say that Player I wins the game G(3V, R) if I has a systematic way to win
every round of the game. Similarly, we say that Player II wins the game G(3V, R) if
II has a systematic way to win every round of the game. Finally, we put

(3x0 Vy0 3xt Vyt 3x2 Vy2 •
iff Player I wins the game G(3V, R).

In general, if Q = (Qo, Ql9 Q 2 , . . . , Qi9...) is an arbitrary infinite string such
that each Qt is the existential or the universal quantifier, then the interpretation of
the statement

(4) (60X061X162X2 • • • Qi*i'' -)R(x0, xu x 2 , . . . , xt,...)
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1. Infinite Strings of Quantifiers 367

is entirely analogous to the preceding one for (3). More specifically, we associate
with g and R a two-person infinite game G(g, R) in a round of which, for each
i = 0, 1, 2 , . . . , an element xt in A is picked by Player I if Qt = 3 and by Player II
if Q. = v. At the end of the round, Player I wins the round if the infinite sequence
(x0, xu x2, • • •, xi9...) is an element of R. Otherwise, Player II wins the round. We
say that Player I wins the game G(Q, R) if I has a systematic way to win every round
of it. Similarly, we say that Player II wins the game G(Q, R) if II has a systematic
way to win every round of it. As before, we put

(60*061*162*2 ' • • 61*; • * -)R(x0, xl9 x 2 , . . . , xi9...)
iff Player I wins the game G(Q, R).

1.1.2 Remark. Often the infinite strings given in (1), (2), (3), and (4) are not applied
to arbitrary relations R c A10, but rather to relations which are either open or
closed.

A relation R c A10 is open, if it can be written as the infinitary disjunction of
finitary relations; that is, if there are relations Rn c= An, ne co, such that

R(x0, *i> • • • 5 xn-u xn9...)o\/ Rn(x0, xl9..., xn_x) .

Similarly, we say that a relation R c A0* is c/osed if it can be written as the
infinitary conjunction of finitary relations; that is, if there are relations Rn c A", for
each n e co, such that

^(Xo, Xl9 . . . , *„_!, Xn, . ..)<=> / \ i^n(x0, * ! , . . . , *„_!).
neco

This terminology is justified by the fact that a relation R is open (or closed) if it is
an open set (or, respectively, a closed set) in the product topology on A™, where A is
equipped with the discrete topology.

If the infinite strings in (1), (2), and (3) are applied to relations on A™ which are
open or closed, they can then be identified with certain monotone quantifiers on
the set A<(O of finite sequences from A. In order to make this idea precise, we
introduce the following notions, which will be also used in Section 4 of this
chapter.

1.1.3 Definitions. A monotone quantifier Qona set A is a collection Q of subsets of A
such that:

(i) Q is non-trivial; that is, 0 g Q g 0>(A);
(ii) Q has the monotonicity property, that is, if X e Q and X c y, then YeQ.

Interchangeably, we write

QxR(x) iff REQ iff {xeA:R(x)}cQ.
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368 X. Game Quantification

The dual of a monotone quantifier Q is the collection Q, where

XeQ iff (A -X)tQ.

It is quite clear that Q is also a monotone quantifier and that (Q) = Q.

Under these definitions, the existential quantifier 3 on A is identified with the
collection of non-empty subsets of A, and we write

3 = {X^A:X^0},

while the universal quantifier V on A is the singleton given by

V = {A}.

We obviously have that

3 = V and V = 3.

By iterating the existential and the universal quantifier on A infinitely often, we
obtain the following interesting quantifiers on the set A<(O of finite sequences from
A:

(5) The Suslin quantifier £f

^ A ^ : (Vx0 Vx! Vx2 • • •) V ((*o, ^ i , x 2 , . . . , xn^)e

(6) The classical quantifier si

s/ = lx^ A^' (3x0 3x, 3x2 • • •) / \ ((x0, xl9 x 2 , . . . , x^^e

Here it is obvious that ^ is the dual of the Suslin quantifier.

(7) The open game quantifier &,

V ((xo? yo, *i, yw-, xn-!, yM_ 0 e x) y
n )

(8) The closed game quantifier &

/\ ((x0, y0, xl5 y l 9 . . . , xn_l5 };„_ x) e X)i.
« J
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1. Infinite Strings of Quantifiers 369

It will follow from results in Section 1.2 that the closed game quantifier is the
dual of the open game quantifier.

1.1.4 Remark. The Suslin quantifier £f, the classical quantifier si, and the two-
game quantifiers can capture properties which are not, in general, expressible using
the infinitary logic LWlW or even the logic L ^ . The following examples indicate the
expressive power of these quantifiers.

(i) The notion of well-foundedness can be expressed using the Suslin quantifier
£f. Indeed, if R is a binary relation on a set A, then

R is well-founded iff (Vx0 Vxj Vx2 • • •) V ("•<>*+ iRxn)).
n

It is well known, of course, that this property is not expressible in the infinitary
logic LW1W.

(ii) If 91 is a structure which possesses a first-order definable coding machinery
of finite sequences, then the Suslin quantifier and the classical quantifier si can be
identified with monotone quantifiers on the universe A of the structure 91. For
example, this is the case with the structure N = <co, +, • > of natural numbers. On
this structure, the Suslin quantifier and the classical quantifier si can capture
second-order statements. This follows from the fact that on M every 11} relation
R(z) can be written in the form

R(z)o(\fx0 Vxx Vx2 • • . ) (V <K<x0, xl9..., *„_!>, z)\

where ^ is a first-order formula and <x0, x l 5 . . . , xn_ x) is an element of co coding
the sequence (x0, x l 5 . . . , xn-x).

The above is a rather special property of the structure N of natural numbers. At
the other extreme, if R = <cow u co, co, +, •, Ap}, where Ap(x9 n) = a(n), is the
structure of real numbers, then the Suslin quantifier and the classical quantifier si
coincide respectively with the universal and the existential quantifier on the reals.
This is a consequence of the fact that we can code infinitely many reals by a real in a
first-order definable way.

(iii) The open game and the closed game quantifier have, in general, higher
expressive power than the Suslin and the classical quantifier si. If a structure 91
possesses a first-order coding machinery of finite sequences, then the relation of
satisfaction " 911= q>", where cp is a sentence of the first-order logic of the vocabulary
of 91, can be shown to be expressible in terms of the open game or the closed game
quantifier, while this relation is not first-order definable on such structures. In
particular, on the structure R of the real numbers the game quantifiers properly
transcend the Suslin and the classical si quantifier.

The connections between local definability theory and game quantification will
be investigated in Section 4 of this chapter.

(iv) Consider a vocabulary! consisting of two binary relation symbols < l 5 < 2

and the equality symbol =. Using the infinite string (Vx0 3y0 Vxt 3yx • • •) and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.015
https://www.cambridge.org/core


370 X. Game Quantification

countable disjunctions and conjunctions, we can write a statement cp(u, v, < l5 < 2)
expressing that:

" < x and < 2 are well-orderings

and

u is in the field of < l9 v is in the field of < 2

and

the order type \u\1 of u in <l is less than or equal to the order type
\v\2 of v in < 2 ."

The crucial property IM^ < \v\2is then expressed as follows:

(Vx0 ly0 Vxx 3 ^ • •.) [ 7 / \ (xn < ! ii) <-> / \ (yn <2 v)\

'A /\(xm <1xn<-+ym <2yn) A / \ ( x m = x n ^ ^ m = j>B) .
m,« w,« J

The proof that this statement works can be obtained by induction on IM^.
Fromtheabove,iteasilyfollowsthatusingtheinfinitestring(Vx0 3y0 Vxj 3y1 • • •)

and countable disjunctions and conjunctions, we can write a statement iK<)
asserting that

" < is a well-ordering of order type y + y for some ordinal y".

Malitz [1966] has shown, however, that this statement is not expressible by any
formula of the infinitary logic L ^ . Thus, game quantification can give rise to
infinitary logics which are different from the usual infinitary logics LKk. These new
infinitary logics will be introduced and studied in Section 3 of this chapter, while in
Section 2 we will pursue the relationship between game quantification and global
definability theory.

7.2. Winning Strategies and Winning Quasistrategies

Assume that Q = (Qo, Q1? Q 2 , . . . , Qh ...) is an infinite string such that for each
i = 0, 1, 2 , . . . Qt is the existential or the universal quantifier on a set A. In the
preceding section the interpretation of the statement

(QoXoQ1x1Q2x2 - • • QtXi • • -)R(x0, xu x2,..., xi9...)

was given in a rather informal way, since we defined the concept" Player I wins the
game G(Q, R)" by saying simply that "Player I has a systematic way to win every
round of the game G(Q, R)" This definition is intuitive, but not very precise. We will
now give precise definitions of these concepts in a set-theoretic framework. It
actually turns out that we can give at least two interpretations for infinite strings of
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1. Infinite Strings of Quantifiers 371

quantifiers which are equivalent in the presence of the full axiom of choice, but
which may nevertheless be different if only weaker choice principles are available.
For the sake of clarity, we give the definitions and then state the results only for the
infinite string (3, V, 3, V,... , 3, V,... )• However, these notions will generalize to
arbitrary strings Q = (Qo, 6 i , Q2 > • • • * Gi> • • •) with only notational changes in the
definitions or the proofs.

1.2.1. Let R c Ato be a relation on the set of infinite sequences from A, and let
G(3V, R) be the two-person infinite game associated with the statement

(9) (3x0 Vy0 3xx V ^ 3x2 \/y2 • • -)R(x0, y 0 , xl9 y l 9 x29y29. • •)•

A strategy afar Player I in the game G(3V, R) is afunction a: [jneco A2" -> Afrom
the set of finite sequences of even length into A.

Intuitively, a strategy a for I provides him with a next move. We say that I
follows the strategy a in a round ( x 0 , y 0 , xl9 y u x 2 , y 2 , •..) of the game G(3V, R) if
x 0 = a(( )) and xn = a((x0, y09 xl9 y l 9 . . . 9 xn.l9 y n - x ) \ for all n = 1, 2, 3 , . . . .
We call a a winning strategy for I in the game G(3 V, R) if I wins every round of the
game in which he follows a.

In an analogous way, we define a strategy z for Player II in G(3V, R) to be a
f u n c t i o n i : [ j n e c o A 2 n + l -• A.PlayerIIfollowsTinaround(x0, y 0 , x u y l 9 x 2 , y 2 , - • •)
ofthegameifjw = r((x0, y0, xl9 yu . . . , xn_l5 ^ _ l 9 xn))foralln = 0, 1, 2, We
say that T is a winning strategy for II in G(3V, K) if II wins every round of the game in
which he follows T.

Using the above notions, we rigorously interpret the statement given in (9)
as follows :

(10) (3x0 Vj/0 3x1 VJ/J 3x2 Vx2 • • -)^(x05 yo>
 xu y^ x2,y2,...)

iff Player I has a winning strategy for the game G(3V, R).

In practice, when we prove theorems about infinite strings of quantifiers, we
must often use the axiom of choice to exhibit a winning strategy for one of the players
in the game associated with the infinite string. There are situations, however, in
which one is working in a set theory where the full axiom of choice is not available.
In such cases, we can still prove the results about the infinite strings of quantifiers by
reformulating the interpretation of the infinite string given in (9). The idea here is to
replace the notion of a strategy by that of a quasistrategy, a quasistrategy being
essentially a multiple-valued strategy that provides the player with a non-empty
set of possible next moves instead of a single move.

A quasistrategy I, for Player I in the game G(3V, R) is a set Z c A<(O of finite
sequences from A such that:

(i) there is some x0 e A for which ( x 0 ) e l ;
(ii) if (xo,yo,xuyu . . . , xB_l9 ^ . J G Z , then there is some xeA for which

(x0, y0, xl9 yl9..., xn_l9 yn-19 x ) e l ;

(iii) if (x0, y0, xl9 y!,..., *„-1, yn-1, x) e I , then for every ye A

(x0, ^o. xl9 yl9..., xn_ l9 yn_ t, x, y) e I .
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Player I follows the quasistrategy X in a round (x0, y0, xl5 yu x2, yi, - • •) of
G(3V, R) if every initial segment of the round is in I . Furthermore, we say that I is a
winning quasistrategy for I in the game G(3V, R) if I wins every round of the game in
which he follows S.

We define also the notions of quasistrategy for II and winning quasistrategy for
II in the game G(3V, R) in an analogous dual way.

We can now interpret the statement in (9) in an alternative way as follows:

(11) ( 3 x 0 V y 0 3 x x Vyx 3 x 2 \/y2 • • -)R(x0, y 0 , x l 9 y u x 2 , y 2 , . . . )

iff Player I has a winning quasistrategy in the game G(3V, R).

It is quite obvious that if Player I has a winning strategy in the game G(3V, R\
then I also has a winning quasistrategy in this game. If, in addition, the set A can be
well-ordered, then every winning quasistrategy for I in G(3V, R) gives rise to a
winning strategy for I in this game. We therefore see that, in the presence of the
axiom of choice, the two interpretations given by (10) and (11) of the statement in
(9) are equivalent. This equivalence, however, depends on the axiom of choice in an
essential way.

If we interpret the infinite string (3x0 Vy0 3xj V)̂  3x2 Vy2 • • •) via quasistra-
tegies, then most theorems about this string can be proved using the axiom of
dependent choices. A weaker principle than the full axiom of choice, the axiom of
dependent choices states that, for every non-empty set B and for every binary
relation P c B x B on B,

(Vx e B)(3y e B)P(x9 y) =>(3f:o^ B)(Vn)P(/(n), f(n + 1)).

Observe that we used the axiom of dependent choices implicitly, when we
asserted in Section 1.1.4 that the Suslin quantifier can express the notion of well-
foundedness. Indeed, this axiom is precisely the choice principle needed to show
that a relation is well-founded if and only if it has no infinite descending chains.

We will now investigate some simple properties of strategies and quasistrategies,
beginning with

1.2.2 Lemma. Let R <= AM be a relation on the set of infinite sequences from A. Then,

(i) It is not possible that both Players I and II have winning strategies in the game
G(3V, R).

(ii) (Assuming the axiom of dependent choices). It is not possible that both
Players I and II have winning quasistrategies in the game G(3V, R).

Proof Part (i) is obvious and requires no choice principles. To prove part (ii) we
will assume, towards a contradiction, that Player I has a winning quasistrategy I in
G(3V, R) and that II also has a winning quasistrategy T in this same game. Using
dependent choices, we can then produce a round (x0, y0, xu yu x2, y2, • • •) of the
game G(3V, R) every initial segment of which is in both I and T. But then the round
C*o> ô> xu )>!> x2, y2 , . . . ) is in both R and ~iR. This is a contradiction. Q
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1. Infinite Strings of Quantifiers 373

If R c A™ is a relation on the set of infinite sequences from A, and if G(3V, R)
is the game associated with the statement

(9) (3x0 Vy0 3xx Vyx 3x2 \/y2 • • )#(x0, };o, xl9 yi, x2,y2,.. .),

then G(V3, —\R) is the game associated with the statement

(12) (Vx0 3y0 Vxj 3 ^ Vx2 3y2 • • •) - iK(x 0 , y0, xl9 yl9 xl9yl9...).

It is clear from the definitions that a winning strategy (respectively, quasistra-
tegy) for II in the game G(3V, R) is a winning strategy (respectively quasistrategy)
for I in the game G(V3, —i JR). We therefore have the following

1.2.3 Lemma. Let R ^ Aw be a relation on the set of infinite sequences from A. Then,

(i) Player II has a winning strategy (respectively quasistrategy) in G(3V, R) if
and only if Player I has a winning strategy (respectively quasistrategy) in

(ii) Player I has a winning strategy (respectively quasistrategy) in G(3V, R) if
and only if Player II has a winning strategy (respectively quasistrategy) in
G(V3,-iJR). D

Assume now that R c A03 is a relation such that Player I or Player II has a
winning strategy (respectively a winning quasistrategy) in the game G(3V, R).
Combining this with Lemmas 1.2.2 and 1.2.3, we obtain the equivalence:

(13) -i(3xo V^o 3xx Vj/i • • -)R(x0, y0, xl9 yl9...)

<^>(Vx0 3y0 Vxr 3y1 • • •) -~iR(x0, y0, xl9 yl9...),

where the interpretation of the statements given in (9) and (12) is via winning
strategies as in (10) (respectively via winning quasistrategies as in (11)).

We say that the game G(3V, R) is determined if Player I or Player II has a
winning strategy in this game. We also say that G(3V, R) is weakly determined if
Player I or Player II has a winning quasistrategy in the game. The preceding facts
show that if the game G(3V, R) is determined or weakly determined, then to negate
the statement given in (9), we can push the negation through the infinite string
(3x0 \/y0 3xi Vyx • • •) and apply it to the relation R. Although this manipulation is
always true for finite strings and all relations R, it is not true for infinite strings and
arbitrary relations R c A™. Indeed using the axiom of choice, Gale and Stewart
[1953] showed that there is a relation R c 2 w such that the game G(3V, R) is not
determined. It turns out, however, that if the relation R is open or closed, then the
associated game G(3V, R) is determined.

1.2.4 Theorem (Gale-Stewart [1953]). Let R c A03 be a relation on the set of
infinite sequences from A which is either open or closed. Then,

(i) (Assuming the axiom of choice). Player I or Player II has a winning strategy
in the game G(3V, R);

(ii) Player I or Player II has a winning quasistrategy in the game G(3V, R).
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374 X. Game Quantification

Proof. The first part of the theorem follows from the second by well-ordering the set
A. Moreover, in view of Lemma 1.2.3, it is enough to establish the result for the case
of a closed relation R c A03. Therefore, assume that there are finitary relations
Rn c A2n+2, for each n = 0, 1, 2 , . . . , such that

R ( x 0 , y 0 , x l 9 ) > i , . . . , x n , y n , . . . ) o /\ R n ( x 0 , y 0 , x l 9 y l 9 . . . , x n , yn).

We will show that Player I or Player II has a winning quasistrategy in the game
G(3V, R). The winning quasistrategy will be obtained by using an inductive analysis
for the set of "winning positions" for Player I in the open game G(V3, ~iR). More
precisely, consider the following monotone operator q>(u, S\ where u ranges over
the elements of A<(O and S over the subsets of A<O3\

cp(u, S) o (u h a s e v e n l e n g t h ) & l i f u = ( x O 9 y o , . . . , x n 9 yn),

t h e n V ~ i R m ( x o , 3>o, • • • , * « > y j ) v (Vx 3y)(un(x, y) e S).

By induction on the ordinals define a sequence {cp^}^ of subsets of A<<o, where

UE(p°o <p(u, 0 ) ,

uecp^o q>(u, (J (p"),

and let (p°° = ( J ^ . Intuitively, the set (p00 consists of all "winning positions "for
Player I in the game G(V3, -\R), since (using the axiom of dependent choices) we
can show that

(14) (xo,yo,...,xn9yn)e(p«>

o(Vxn+1 3yn+l Vxn + 2 3^B + 2 - - - ) V ~iRm(xO9yo,...,xm,ym).
meco

In completing the proof of the theorem, we will not use the above equivalence,
but have included it in order to make the role of (p00 transparent.

We claim now that if the empty sequence ( ) is not in (p°°, then Player I has a
winning quasistrategy in the game G(3V, R\ while if ( )e(pco, then Player II has a
winning quasistrategy in G(3V, R). Indeed, if ( ) £ <p°°, then it can be easily verified
that the set

E = {u eA<(O: (u has even length and u $ cp00)

v (w has odd length and (Vy)(un(y) $ cp00)}
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1. Infinite Strings of Quantifiers 375

is a winning quasistrategy for I in G(3V, R). On the other hand, if ( ) e <p°°, then for
u e <p°°, we first put |« ̂  = least ordinal £ such that u e (/>*% and then let

T = {w 6 ̂ <£0: for every veA<(Oifv = (x09 y 0 , . . . , x£, yi9 xi+l9 yi+1)

is an initial segment of u of even length, then v e (p°°
and

K x o ^ o , . - - , ^ - , ^ ) ^ = 0 or

> | ( x 0 , y O 9 . . . 9 x i 9 yi9 x i + l 9 ^ + 1 ) | ^ } .

It is now quite easy to show that T is a winning quasistrategy for II in G(3V, R). D

Combining the Gale-Stewart theorem with Lemmas 1.2.2 and 1.2.3 we have the
following:

1.2.5 Corollary. Let R c A™ be a relation which is open or closed. Then,

(i) (Assuming the axiom of choice). Player I does not have a winning strategy in
G(3V, R) if and only if Player II has a winning strategy in G(3V, R).

(ii) (Assuming the axiom of dependent choices). Player I does not have a winning
quasistrategy in G(3V, R) if and only if Player II has a winning quasistrategy
inG(3\/,R). D

The above corollary allows us to push the negation through the infinite string
Thus, if R ^ A™ is open or closed, then

(13) 1 (3x0
 V^o 3 x i v^i * * ')R(xo, J>o> xl9 yl9...)

o (Vx0 3y0 Vxj 3yx • • •) ~iR(x0, y09 xl9 yl9...).

D

1.2.6 Corollary. The closed game quantifier *& is the dual of the open game quantifier
9. D

As was mentioned in the introduction to this section, all the preceding results
extend to arbitrary infinite strings. In general, if Q = (Q09 Ql9..., Qi9...) is an
infinite string such that for each i = 0 ^ , 2 , . . . Qt is the existential or the universal
quantifier on A9 then the dual string Qu is defined by

If a relation R c A™ is open or closed, then we have the equivalence

(15) - 1 ( 6 0 * 0 6 1 * 1 *' * Q i x i ' ' ')R(x09 x l 9 . . . 9 x i 9 . . . )

K ( , x l 9 . . . 9 x i 9
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376 X. Game Quantification

Proof of the above equivalence requires the full axiom of choice if the interpretation
is via winning strategies and the axiom of dependent choices if the interpretation is
via winning quasistrategies.

1.2.7. In view of the preceding results for the open and the closed games, it is
natural to ask whether or not there are other relations R c A03 for which the game
G(3V, R) is determined. We say that the game G(3V, R) is Borel if the relation R is a
Borel set in the product topology on Am, where A discrete. Martin [1975] proved
that in ZFC every Borel game is determined. His proof actually established that in
ZF + axiom of dependent choices (DC) every Borel game is weakly determined;
that is, that, one of the two players has a winning quasistrategy in such a game. The
question of determinacy for games G(3V, R\ where R has higher complexity, is
independent of ZF and leads into strong set-theoretic hypotheses.

1.2.8 Remarks. We have two reasons in mind for making explicit the distinction
between winning quasistrategies and winning strategies. The first, is that it is often
important to know the weakest possible metatheory in which we can formulate and
prove results about infinite strings of quantifiers. This will be useful, in Section 3 of
this chapter; for there we discuss the set-theoretic definability of the infinitary logics
built by using the game quantifiers. The second reason is the connection between
game quantification and descriptive set theory, a connection which will be briefly
pursued in Section 4. Much of the current research in descriptive set theory is
carried in ZF together with the axiom of dependent choices (DC) and the hypothesis
that certain infinite games are weakly determined.

From now on, we will distinguish explicitly between strategies and quasistra-
tegies in only a very few cases. Instead, we will use the statement "Player I wins the
game G(3V, R)" for both interpretations, i.e., depending on the context or on the
metatheory available, this means that Player I has a winning strategy or a winning
quasistrategy in the game G(3 V, R).

1.2.9. We should point out that finite strings of quantifiers at the beginning can
always be absorbed inside an infinite string. More precisely, for any relation R c A03,
we have the equivalence

(16) (SoXoXGiXi) • • • (QnXn){(Qn+1xn+ 1)(Qn+2xn+2) • • •}

R{x0, x l 5 . . . , xn, xn+l9 xn + 2, •..)

<> (Qo*oQlXl ' * * QnXnQH+lXn+ i ' ' ')R(XO, * ! , . . . , Xn, Xn+l, . . .),

where Qt = 3 or Qt = V, for each i = 0, 1, 2 , . . . .
In general, if the relation R is arbitrary, the proof of the above equivalence

requires the axiom of choice, even though the interpretation may be via winning
quasistrategies. However, in the case where R is open or closed, no choice principles
are required in the proof, since there are canonical quasistrategies for such games.

We end this section with two simple propositions. These will provide a first
insight into the relationship between game quantification and second-order logic.
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1. Infinite Strings of Quantifiers 377

If R c A<(X> is a relation on the set of finite sequences from A, then R gives rise
to an open relation \J R and a c/osed relation /\Ron the set 4̂W of infinite sequences
from A, where

V R = {aeA10: there is some neco such that (a f n) e #}

and

A # = {a e A03: (a f n) e R for all n e co}.

1.2.10 Proposition. Let R <= A<0) be a relation on the set of finite sequences from A.
Then,

(Vx0 3y0 Vxx 3yx-- VxM 3yn • • •) A R(xo> ^o? ^ i , ^ 1 , • • • 5 ^n? ^ )

iff (3T)(T fs « winning quasistrategy for I in G(V3, f\ R) and
T c #).

Proo/. The result follows immediately from the observation that if T is a winning
quasistrategy for Player I in G(V3, / \ #), then, using dependent choices, we see that
any sequence u = (x0, y0,..., xn, yn) in T can be extended to a round (x0, y0,...,
xn,yn, *n+ i,yn+i>-- •) o f G(V3, A «) in which I follows T. U

The closed game quantifier can be expressed using second-order existential
quantification. This is the content of the next proposition, a result that we will use
repeatedly in the sequel.

1.2.11 Proposition. Let R c= A<(° be a relation on the set of finite sequences from A .
Then,

(Vx0 3y0 Vx! 3yx • • • Vxn 3yn • • •) A R(xo> ^o , ^ i , yi,->, *n, yn)
n

iff (3Tt 3T2 • • • 3Tn - • - ) { A (r. £ ^42" & Tt £ R

&(\fxo3yo)((xo,yo)eT1)

& (Vx0 Vy0 • • • Vxw_i Vy

& (Vxn 3yB)(TB+1(x0, Jo, • • •, xn-i, yn-i>
 xm y

Proof In view of Proposition 1.2.10, it is enough to consider a winning quasistrategy
T for I in the game G(V3, A R) and to put

Tn = {(x0, y 0 , . . . , xn_u yn_ J e A 2 n : (x0, y 0 , . . . , xn.x, y n - J e T}. U
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378 X. Game Quantification

2. Projective Classes and the
Approximations of the Game Formulas

In this section we will study the interactions between game quantification and
global definability theory. The first basic result to be presented here is Svenonius'
theorem which establishes that on countable structures the relations definable by
the closed game quantifier coincide with the Z} relations. Following this theorem,
we will show that the game quantifier formulas can be approximated by formulas
of the infinitary logic LWlC0. These two results make it possible to analyze certain
second-order statements, such as Z} and II} formulas, by the use of methods and
techniques from the model theory of LWlC0. As an illustration of these ideas, we will
here outline a proof of Vaught's covering theorem. The section will end with
applications of the approximations of the game formulas to descriptive set theory
and to the model theory of LWlC0 and admissible fragments.

2.1. Game Quantification and Projective Classes

Throughout this section we will be working with vocabularies which contain only
relation and constant symbols. If T is such a vocabulary, then LWCO[T] is the set of all
first-order formulas of vocabulary T. AS usual, LWlC0 is the infinitary logic which
allows for countable disjunctions and conjunctions, while LCOICO[T] is the set of all
formulas of L^^ of vocabulary T. If the vocabulary is either fixed or understood
from the context, then we will often write Lwco and L^^ instead of LWCO[T] and

In what follows countable means of cardinality less than or equal to co; that is,
the cardinality is either finite or denumerably infinite. Moreover, we write HF for
the set of hereditarily finite sets and HC for the set of hereditarily countable sets, so
that

HF = {x: |Tc(x)\ < co} and HC = {x: \Tc(x)\ < co^.

All the vocabularies to be considered here are countable. If T is such a countable
vocabulary, then we can identify the formulas of L^Jix] with set-theoretic objects,
so that if cp is in LW I £ 0[T], then Tc({(p}) c HC. In particular, we have that

^cocoM = Ltoia>[r'] n H F a n d L<Ul(O[r'] = L(Ol<o[r'] n H C .

If A is an admissible set (possibly with urelements) and T G A, then

LAbl = L^Jx] n A

denotes the admissible fragment of L^Jiz] associated with A, where L^a, is the
infinitary logic which allows for arbitrary disjunctions and conjunctions, but
which only allows for finite strings of quantifiers.
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2. Projective Classes and the Approximations of the Game Formulas 379

2.1.1 Definitions. Let T be a countable vocabulary containing only relation and
constant symbols.

(i) We say that a second-order formula cp is PCA[i] (or simply PCA) if it is of the
form

wherein is a countable set of relation symbols # = (Rl9 R2,...) not in the vocabulary
T and where, for each n e co, we have that il/n(R) is a formula of LWft)|Y], with T' =
T U R.

(ii) We say that a second-order formula cp is Z} oi^r L^jY) , and we write cp
is ZKL^^M) or simply I}(LWl J if it is of the form

where R is a countable set of relation symbols not in i and il/(R) is a formula of
Aoioty], with T' = T v R.

(iii) If 4̂ is an admissible set and zeA, then we say that a formula cp is 2}
L^fr], and we write 9 is D{(L^[T]) or simply Z}(LA), in case cp is of the form

where £ is a countable set of relation symbols not in T such that Re A and (/<£) is a
formula of the admissible fragment LA[x'\ with %' = x u R.

We now introduce the notions of a closed gameformula and an open gameformula,
which are obtained by applying the closed and the open game quantifier to formulas
of the first-order logic LW(O.

2.1.2 Definitions. Let T be a vocabulary which is countable and contains only
relation and constant symbols.

(i) We say that 0>(z) is a closed game formula if it is of the form

(1) (Vx0 3y0 Vxt 3^! • • •) A <^> *o> )>o> • • • > *n-1> yn-il
n<io

where cpn is a formula of LWW[T] in the displayed free variables, for each neco.
(ii) We say that <5(z) is an open gameformula if it is of the form

(2) (3x0 Vy0 3xt tyx • • •) V <Pn& x o , y o , . . - , x n - l 9 y n - i ) ,
n<(o

where cpn is a formula of LWCO[T] in the displayed free variables, for each new.
The Gale-Stewart theorem (1.2.4) implies that the negation of a closed game

formula is always logically equivalent to an open game formula, and vice-versa. It
actually turns out that there is a strong connection between PCA formulas and
closed game formulas. However, in order to analyze Ii(LwlC0) formulas we must
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380 X. Game Quantification

consider the following generalization of the game formulas, a generalization
introduced by Vaught [1973b].

(iii) A closed Vaught formula <&(z) is one of the form

(3) ( A V
he I jo el i i e I

A (Pioio"'"" lJ"-'(z, x o , y o , . . . , x , , - u }'„_ 0 ,
n< o)

where / is a countable set and, for each (io,jo, . . . , i n _ 1 , j n _ 1 ) e / 2 " , we have that
piojo-in-ijn-ifc XQ? y 0 , . . . ? Xw_l9 yn_x) is a formula of LWlC0[i] in the displayed
free variables.

(iv) An open Vaught formula <J>(z) is one of the form

(4) (
he I joe I i i e / j 1 e /

<p yz, x0, y0, . . . , *„_!, JM- i;,

where / is a countable set and each (piojo'"in'ljn-l(z, x0, ^0» • • •» x «- i ' yw-i) ^s a

formula of LWlCO[i] in the displayed free variables.
To simplify the already cumbersome notation, we will henceforth write

U J for the sequence (iojo,..., in-ujn-i) in I2n

and

x, y for the sequence of variables (x0, y0,..., xn_1? yn_i)

so that

(p''J(z, x, y) denotes the formula

snhJO • " i n - 1 j n - l / ^ v i , v A; ^

(v) We say that O(z) is a game formula if it is either an open or a closed game
formula. Similarly, a Vaught formula is one which is either an open or a closed
Vaught formula.

(vi) If<I>(z) is either a game formula or a Vaught formula and if A is an admissible
set, then we say that O(z) is in A just in case the family of formulas {cpu J(z, x, y):
(i, J) e I2", n < co} is an element of A.

2.1.3. If 91 is a structure of vocabulary T, then the interpretation of a Vaught
formula on 91 is via a two-person infinite game in a round of which Player I and
Player II take turns and each chooses an element from the universe A of the
structure 91 and an index from the set I. The definition of a winning strategy and a

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.015
https://www.cambridge.org/core


2. Projective Classes and the Approximations of the Game Formulas 381

winning quasistrategy in this game is analogous to that given in Section 1.2. The
Gale-Stewart theorem extends to Vaught formulas by essentially the same proof, so
that the negation of a closed Vaught formula is logically equivalent to an open
Vaught formula, and vice-versa.

In general, game formulas cannot capture statements expressible by formulas of
the weak second-order logic LwII. On the other hand, the infinitary logic LWlC0 is
stronger than LwII, so that if we hope to study ^{(L^^) formulas using some
infinitary logic, then we must consider a logic which is at least as strong as Lwll.
These comments provide a first justification for introducing the Vaught formulas.
We should also point out here that if / = co and 21 = <4, . . .> is a structure of
vocabulary r such that co c A and 21 possesses a first-order coding machinery of
finite sequences, then the open and the closed Vaught formulas have no more
expressive power than the formulas obtained by applying the open and the closed
game quantifier to formulas of LWiC0. Of course, over such structures the weak
second-order logic Lwll is subsumed by the first-order logic Lwco.

We now proceed to investigate the connections between PCA and £{(1^^)
formulas on the one hand and closed game and Vaught formulas on the other. All
the results refer to a fixed vocabulary T which is countable and contains only
relation and constant symbols.

2.1.4 Proposition, (i) Any closed game formula is logically equivalent to a PCA

formula.
(ii) Any closed Vaught formula O(z) is logically equivalent to a Z}(LWlf0) formula.

Moreover, if A is an admissible set and O(z) is in A, then <J>(z) is logically
equivalent to a H\(LA) formula.

Proof The first part of this proposition follows immediately from Proposition 1.2.11.
On the other hand, the extension of this proposition to closed Vaught formulas
gives easily the second part. D

Svenonius [1965] established a partial converse to Proposition 2.1.4. More
specifically, he showed that over countable models the closed game formulas have
the same expressive power as the PCA formulas. Vaught [1973b] obtained a
generalization of this result by introducing the class of formulas which here we
call closed Vaught formulas and by showing that over countable structures they
are equivalent to the Z}(LWia)) formulas. Before presenting these results, we will
introduce the following notation:

1=' cp means that the sentence cp is true in all countable structures.

Notice that if cp is a sentence of LWlW[i], then

\=' q> if h= <p,

because the Skolem-Lowenheim theorem holds for the infinitary logic L ^ .
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382 X. Game Quantification

2.1.5 Theorem, (i) (Svenonius [1965]). For any PCA formula 3R/\n<0) ^ ( z , R),
there is a sequence of quantifier-free formulas cpn(z, x, y) of L(O(O\_T'] such that if
O(z) is the closed game formula (Vx0 3y0 Vxx 3yx • • •) /\n<pn(z, x, y), then

(a) H ^ A W ^ ) - ^ ) ;
n<co

(b) 1=' <D(z) -» 3lf / \ tAn(z, R); and hence
n<co

(c) \='^z)^3

Moreover, the quantifier-free formulas cpn{z, x, y) can be obtained recursively
from n, R and the sequence {\l/n(z, R)}.

(ii) (Vaught [1973b]). For any I}(LCOlJ/ormw/a 3R\j/(z, R), there is a closed
Vaught formula <I>(z) which does not contain symbols from R and such that
(a) 1= 3Ril/(z, R) -> <X>(z);
(b) \=f 0(z) -> 3R{j/(z, R)', and hence
(c) \=' 0>(z)^>3R\jj{z, R).
Moreover, the formulas {cpl>J(z, x,y): (i,J)eI2n,n < co}, which determine
<I>(z), can be chosen to be in L(O0)\_z~] and to depend on 3R\j/(z, R) and co in a
primitive recursive way. In particular, if A is an admissible set, coeA and
3R\j/{z, R) is I*\(LA), then the closed Vaught formula 0(z) can be chosen in A.

Sketch of Proof In what follows we merely outline a proof of part (i) and give a hint
of the proof of part (ii) of the theorem.

If we add new constant symbols, it will suffice to prove the result for a PCA

sentence 3R f\n<co i/sn(R\ where \l/n(R) is a sentence of LWCO[T U £ ] , for each neco.
Moreover, using the Skolem normal form, we may assume without loss of generality
that the PCA sentence 3R /\n<(O i/sn(R) is actually of the form

3R f \ ( V x i • • • ^xkn)(3y1 • • • 3 y l r ) x n ( x l , . . . , x k n , y l 9 . . . , y l n , R),
n<(o

where in(xu ..., xkn, yu ..., yln, R) is a quantifier-free formula of LW W[T U R], for
each neco.

To make the game-theoretic argument involved transparent, we will also
assume that we have only one quantifier-free formula #(x, y, R) in the variables
x and y, so that the original PCA sentence is

3R(\/x)(3y)X(x, y, R).

It is easy to show that for any quantifier-free formula 9(w, R) in LWCO[T U K]
one can find, recursively from 8, a quantifier-free formula 9*(w) in LWCO[T] such that

\= 3R6(w, R) <-> 0*(w).
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2. Projective Classes and the Approximations of the Game Formulas 383

Using the above fact, we let <pn(x0, y0,..., xn, yn) be a quantifier free formula
of L(0(O[T'] which is logically equivalent to

SR/\x(xm9ym9R)
m<n

and then consider the closed game sentence O:

( V X Q 3 y 0 V x ! 3y± • • •) A <Pn(x09 y 0 , x l 9 y l 9 . . . , x n , yn).
n

We claim that this closed game sentence has the required properties, namely

(a) |= 3R(Vx)(3y)X(x, y, R) -> O; and
(b) K<D

It is clear that if 91 is a structure of vocabulary T such that

then the set

Z = {ue,4<co: if (xo, .yo, . . . , *„,}>„) ^ w, then

is a winning quasistrategy for Player I in the game associated with <I>.
Assume now that 21 is a countable structure such that 91 f= 0. Consider a

round of the game associated with <X> in which Player II enumerates the universe A
of 91 and Player I answers using his winning quasistrategy; that is, the round looks
like:

II

I

a0 ax a2

b0 b1 b'2

with A = {a0, al9 a2, • • •}•
Since I follows his winning quasistrategy in this round, we have that

91 N 3R A X(am, bm9 R)9 for all n e <o.
m<n

Let am, bm, for m < co, be new constant symbols not in T and consider the set of
quantifier-free sentences 7, where

T = Diagram(9l) u {x(aw, bm, ^ ) : m < a)}.
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384 X. Game Quantification

T is finitely satisfiable; and, hence, by the compactness theorem it has a model.
Since each sentence #(am, bm, R) is quantifier-free, this implies that there is a set R®
of relations on A such that

21, R* \= z(aw, bm, R) for each m < co.

However, the sequence {a0, au a2, • •.} exhausts the universe A of the structure 21,
and therefore we have

21, R*^(Vx)(3y)X(x,y,R).

The main* argument remains the same in the general case where we have
infinitely many quantifier-free formulas xn(

xu • • • -> xkn, y^ • • • > yin>R) f°r *] < CD-
There are only minor combinatorial complications which can be handled by
enumerating the tuples 3c, y of variables in such a way that the variables occurring
at stage m of the enumeration have indices < m. This completes the proof of the
first part of the theorem.

In order to establish part (ii) of our result we show first that a S}(LWia)[T])
formula *F(z) is equivalent to a PCA formula ^'(z) over an expanded vocabulary x'
which contains x and subsumes weak second-order logic. By applying part (i) of the
above, we can find a closed game formula O'(z) over x' which is logically equivalent
to *F'(z) on countable structures. The closed game formula 0>'{z) over x' can, in
turn, be translated to a closed Vaught formula <D(z) over x. In such a translation the
propositional part of the Vaught formula is used to capture the expanded
vocabulary.

We should point out that Harnik [1974] and Makkai [1977a] gave direct
proofs of part (ii) by associating an appropriate countable admissible fragment with
the £1(LW I C 0[T]) formula *F(z). The proof is analogous to the one we gave for part (i)
with the model existence theorem for fragments used in place of the compactness
theorem. D

2.2. The Approximations of the Game and the
Vaught Formulas

In Section 1 we pointed out that game formulas can be used to capture statements
which are not expressible in L ^ . We will see here however that the Vaught
formulas in general and the game formulas in particular can be approximated by
formulas of L ^ . This result combined with Theorem 2.1.5 (the theorems of
Svenonius and of Vaught) makes it possible to analyze ^{(L^^) and Yl\(L0H0))
formulas via L0)l(0 formulas.

2.2.1 Definition (Vaught [1973a]). Assume that O(z) is a closed Vaught formula of
the form

'too A 3y0 V V*, A ^ i V • • •) A ?'• J a x, y).
io e / jo e I i \ e I
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2. Projective Classes and the Approximations of the Game Formulas 385

Then, for any n < co, any (ij) = (io,jo,..., *„_ l9jn.x) e J2w, and any ordinal
a, by induction on a simultaneously define a formula

8li\z9 x, y) = #"°""i»-""-'(z, x0, }>o, • • •, xn.l9 ^ _ i )

as follows:

( 1 ) r - ' - ^ i z , x0, y0,•••, *„-!, yB-i) is

A ^ - ^ - ^ - ( z , x0, y0, • • •, xB_1} ̂ . i ) ;

(2) SMri-lJ-1(z,xo,yo,...,xl,-1,yl,-1) is

ine/ j.ne/

(3) ^« J ( ^ ̂  ^) is A ^ J(̂ » *> 3̂ )' if a is a limit ordinal.

We write 5a(z) for the formula <5£ }(z), where ( ) is the empty sequence, and we
call (5a(z) the oc-th approximation of O(z). For each ordinal a, we let pjz) be the
formula

vxoA^oA--'v^«-i A v^«-i A
foe I joe I in-iel jn-i^l/

(4) A |7
L \ foe I jo

2.2.2. It is clear that for each ordinal a and each (i, ]) e I2n, where n < co, the
formulas (5̂ '7(z) and pa(z) are formulas of L^. Moreover, if a < cou then they are
actually formulas of LWlC0.

It is also quite easy to verify that the formulas 8l;\z) can be defined by a E-
recursion as a function of the Vaught formula <D(z), the sequence i, /and the ordinal
a. Consequently, if X is an admissible set having ordinal o(A) and if the Vaught
formula <D(z) is in A, then for every ordinal a < o(A\ the formulas 5a(z) and pa(z)
are elements of A.

2.2.3. If O(z) is a closed game formula, then the approximations of O(z) are defined
in an analogous way, although they are actually of a simpler form. More specifically,
if O(z) is the closed game formula

y0 Vx! 3yx • • •) A Pnfc *o> .Vo> • • • > *n-i> ^ - i X
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386 X. Game Quantification

then

(5) Sn
0(z, x o , y O 9 . . . , x n - l 9 y n _ i ) is / \ cpjz, x o , y o , . . . 9 x m - l 9 y m - i \

m<n

( 6 ) SZ+i& * o , y o , - - > x n - l 9 y n - x ) i s V x n 3ynd
n
a
+1(z, x 0 9 y O 9 . . . 9 xn9 yn)9

( 7 ) dn
a(z9 x 0 9 y O 9 . . . 9 x n _ l 5 y n - t ) is / \ Sn

fi(z9 x 0 9 y 0 9 . . . , x n _ l 9 y n _ 0
P<a.

for a limit.
We write <5a(z) for the formula 5J(z) and call it the a-th approximation of the

closed game formula <I>(z).
Also, we put pj^z) for the formula

(8) A KV*o V^o ' ' * V x - i V^-i)(^(z, x0, y 0 , . . . , *„_!, ^ _ i )

-> SUx(z, x0, y0? • • • > ^c»-1, y«-1))].

If O(z) is an open Vaught formula (or an open game formula), then we define the
approximations

4' \z, x, JO (respectively, 6j(z, x9 y))

of O(z) in a dual way, so that if

&li\z9 x9 y) (respectively, 8n
a(z9 x9 y))

are the approximations of the closed Vaught formula (or the closed game formula)
which is logically equivalent to ~i O(z), then

£« J(z, x, j;) is logically equivalent to ~i^'7(z, x, y)

(respectively, e"(z, x, y) is logically equivalent to ~i (5"(z, x, y)).

2.2.4 Example. Let < be a binary relation symbol in the vocabulary r and let O
be the open game sentence which asserts that < is well-founded; that is to say, <X> is
the sentence

Below we compute the approximations sa of 0 and find their meaning:
(i) if m < co, then sm = 8° is the sentence

V

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.015
https://www.cambridge.org/core


2. Projective Classes and the Approximations of the Game Formulas 387

(ii) ew = e° is the sentence

V £ m = V (\/
m<(o m<co L \k<m

Notice that ew asserts that, for some m < a>, there is no descending chain with m
elements in <. Therefore, ew states that < is a well-founded relation of finite rank.

(iii) s(O+1 = e° + 1 is the sentence

o ( V V*i v*2 •'' Vxm_Y V
\m<co \k<m

Vx

This sentence asserts that, for every element x in the field of <, the set of
predecessors of x has finite rank. Therefore, ew+x is equivalent to the assertion that
< is a well-founded relation with rank < co < co + 1.

The pattern revealed in (i), (ii), and (iii) holds in general. Indeed, by induction
on a, we can show that for any ordinal a

sa asserts that " < is a well-founded relation of rank less than a".

It follows, therefore, that if 91 is a structure of cardinality < k, then

iff 91N \/ ea.
OL<K +

Later on we will show that the above equivalence holds for arbitrary open games
or for open Vaught formulas. Before developing the general theory of the ap-
proximations, we will present the main properties of the finite approximations of
game formulas on saturated structures. Consequently, we now consider

2.2.5 Theorem. Let Q>(z) be the closed game formula

(Vx0 3^o Vxx 3y1 • • •) A <Pn& *b, y0, • • •, *»- i , yn-i)>
n<(o

and let 91 be a structure of vocabulary x.

(i) / /9l is co-saturated, then

\
/\SJz));

m<co )

(ii) / /9I is recursively saturated and the sequence {(pn(z, x,y):n<co} is recur-
sive, then again

/\SJz)\
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388 X. Game Quantification

Proof We outline the argument for part (ii) since that part is the effective version of
part (i).

Let 91 be a recursively saturated structure and assume that the sequence
{q>n(z, x, y): n < co} is recursive. It is clear from the definition of the finite ap-
proximations that for any structure 91

911= \/z(Q>(z) -> djz)) for all m < co.

Thus, it remains to show that, under the above hypotheses,

911= Vz[ A djz) -» <D(z)).
m<

The main idea comes from the proof of the Gale-Stewart theorem in Section 1.
More specifically, as in Theorem 1.2.4, we consider the monotone operator <p(z, u, S),
where

<p(z, w, S) o (u e A<co and u has even length)

&(ifw = ( x o J o . - . . , V i J n - i ) 5

then ( V -i cpk(z, x0, yo>... ,x*-i, ^ - 0

Let q>* be the stages of the inductive definition generated by <p. That is,

(p° = {(z, «): (p(z, u, 0)}, and (pJ = |(z, M): <»U M, U /

From this, it is easy to show that, for any m < co and any n < co, we have

(1) ( z , x o , } / o , . . , V i J n - i ) e f iff ( ^ X O J O ^ - ^ V I J H - I ) ^ ! ! , -

Since the sequence {(pn(z, x, y): n < co} is recursive, we can view cp(z, u, S) as a
IL monotone inductive definition on HYP^,. But 91 is recursively saturated and so
(̂HYPgj) = co. Therefore, by Gandy's theorem, (see Barwise [1975]) the inductive

definition must close off at co steps, so that we then have

(2) cp™= [jcpm.
m<oi

Assume now that 91, z |= f\m<0) 5m(z). Then z ̂  cpm for all m < co by the equi-
valence given in (1). Hence, z $ cp00 by (2). The proof of the Gale-Stewart theorem
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2. Projective Classes and the Approximations of the Game Formulas 389

implies then that Player I has a winning quasistrategy in the closed game G(V3,
f\n<(Ocpn). Hence, 91, z \= ®(z). D

2.2.6. In many respects, the idea behind the approximations has its origins in
classical descriptive set theory and the approximations of the operator s/ (see, for
example, Kuratowski [1966]). The finite approximations of closed game formulas
were introduced by Keisler [1965c], who established, among other results, the
first part of Theorem 2.2.5. Moschovakis [1969, 1971, 1974a] developed the
theory of positive elementary inductive definability on arbitrary structures 91 which
possess a first-order coding machinery of finite sequences. He obtained the basic
connection between inductive definability and game quantification; and, in essence,
discovered the properties of the approximations da of closed game formulas.

However, Moschovakis' results were of a local nature, since they dealt with an
arbitrary but fixed structure. In the abstracts Chang-Moschovakis [1968], Chang
[1968a], and the paper by Chang [1971b], the approximations of the game
formulas are used implicitly in the study of global definability. The approximations
of the Vaught formulas were introduced by Vaught [1973b] who established their
main properties and used them in the study of £}(LWlC0) and nJ(LWlW) formulas.

2.2.7 Theorem (Vaught [1973b]). Let ®(z) be a closed Vaught formula of the form

0 A ^ o V vx! A ^ i V • • •) A <PUJ& *> y)-
ioel joe I » i e / j i e l J

Then, we have

(i) for any ordinals a, j8 with a > /} and for any i,J,

N 5^J(z,x,y)^dy(z,x,y);

(ii) for any ordinal a,

1= <D(z) -> <5a(z) and \= (da(z) A pa(z)) -> O(z);

(iii) for any structure 91 of cardinality < K,

(1) 9i^vz( V W ) ;
\a<K+ /

(2) 91 ^ V z U ( z ) ^ A <
L a<K+

(3) 91 N Vz|~O(z)~ V (P
L
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390 X. Game Quantification

(iv) Moreover, ifM is an admissible set, o(M) > co, O(Z) is in M and 91 e M, then

91 \= Vzpo(M)(z)

and hence

Hint of Proof. Part (i) is proven by induction on the ordinal a. Part (ii) follows easily
from the definitions of the formulas <5a and pa. For example, if 91 is a structure such
that 91, z N <5a(z) A pa(z), then the set

& (t; <= U)) ^ 9 1 , Z, X0, y 0 , . . . , * „ - ! , J n - l 1= ^aJ)}

is a winning quasistrategy for Player I in the game associated with <£(z). Hence,
91, z t= O(z).

The proof of parts (iii) and (iv) requires the inductive analysis of the dual open
game and is similar to the proof of Theorem 2.2.5. In (iii), a cardinality argument
shows that the corresponding monotone operator closes off at some ordinal a < K +.
In (iv) this is proved using Gandy's theorem or directly using a boundedness
argument. D

The following result is an immediate consequence of Theorem 2.2.7 in which we
take K = co in part (iii). It has interesting applications in descriptive set theory.

2.2.8 Corollary. Let 3>(z) be a closed Vaught formula. Then

(i) t='(Vz)(<D(z)<-> /\Sa(z))

(ii) N'(Vz)(W)~ V &.(*) * P«C0)) •
]ac<(Oi

Theorem 2.2.7 is the main result on the approximations of the closed Vaught
and the closed game formulas. We can, of course, formulate and prove an analogous
"dual" result on the approximations of the open Vaught and the open game
formulas.

Burgess [1977] introduced a notion of approximations for formulas of abstract
logics and showed that if (L*, |= *) is an absolute logic, then the formulas of L* can
be approximated by formulas of L ^ . His proof makes use of Theorem 2.2.7, since
he shows first that any formula of L* can be approximated by formulas involving
game quantification and arbitrary disjunctions and conjunctions. More about
these results can be found in Chapter XVII of this volume.
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2. Projective Classes and the Approximations of the Game Formulas 391

In what follows we will combine the Svenonius-Vaught result which is given in
Theorem 2.1.5 with the results on approximations in order to study properties of
the £}(LWlW) and the II {(L^,^) formulas. We begin by proving a strong version of
the interpolation theorem for Lwco.

2.2.9 Theorem. Let <X>, *F be Z{(LWW) sentences and let dZ\ where m < (D,be the
finite approximations of the closed game sentence 4/* which is equivalent to *F on
countable structures.

If \= <X> -• —i *F, then there is some m < co such that 1= O -• ~i <5**.

oof In order to derive a contradiction, we assume that |= O -» ~i ¥ , but for all
m < co, the sentence O A $%* has a model. Consider then the closed game sentence
O* which is equivalent to O on countable structures and let Sf*, where n < co, be its
finite approximations. Since 1= <&-> <D*, N <X>* -• f\n<(O S®* and N $Z* -• <5̂ *, for

' th tm > m', the set

is finitely satisfiable. Let 31 be a countable, recursively saturated model of T. Then
« N (A»<» O A (Am<M O But by Theorem 2.2.5, we have

91 N *• <-> A #* and « 1= ** ^ A C

so that 911= (D* A ^P*. However, since 91 is countable, 911= (0> <-• 0>*) A (^ ^ ^*)
and hence

91 N O A *F. But this is a condiction of the hypothesis that

D

The next result was established by Vaught [1973b] and has turned out to have
many interesting consequences.

2.2.10 Vaught's Covering Theorem. Let O, ¥ be Zl(LWlC0) sentences and let £%*,
for a an ordinal, be the approximations of the closed Vaught sentence *F* which is
equivalent to *F on countable structures.

(i) / / |= O -• -i*¥, then there is an ordinal /? < CDX such that |= O -• "i5j*.
(ii) Moreover, if A is a countable admissible set, <X> and *F are 2*\(LA) and \= Q> ->

~~\x¥, then there is some ordinal [I < o(A) such that N O -> ~iSj*.

Proof Here we give the proof for the case where O and *F are Z }(LWl w) sentences and,
at the same time, point out the modifications that are needed if O and *F are

Let 0 and V be I ^ L ^ ^ ) sentences such that |= O -• ~i ¥ and let O* and lF* be
the closed Vaught sentences which are respectively equivalent to O and *F on
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392 X. Game Quantification

countable structures. The key idea is that if ~i *P holds, then we can use the inductive
analysis of the open Vaught formula which is equivalent to -i ¥* in order to extract
a Z^L^^) sentence which pins down ordinals. But then the undefinability of well-
order in LWlCO implies that all ordinals pinned down in this way are bounded by some
ordinal jS < co1. From this, it will follow that \= O -• ~i(5j*. We now provide some
of the technical details there are necessary to make this idea precise.

The closed Vaught sentence ¥* is of the form

VA
i o e / Joel i i e /

where / is a countable set and the \j/u \x, y) are formulas of LWl(0. It is easy to see that
if <5̂ *'u J are the approximations of ¥* for a an ordinal and (j, ]) e 72", then

(1) ST^J(x0,y0^..,xn_uyn^) iff

A (V^ A 3^ V
P<oc \ inel jnel

It is clear from the above equivalence that the approximations of ¥* would have
the same meaning if, instead by induction on the ordinals, they were defined by
induction on the rank of an arbitrary well-ordering <. We will now consider new
relation symbols <, PUJ for (i,J)e I2n, n < co, and a new constant symbol c.

We claim that in the expanded vocabulary T' = T U {<, c} u {PijJ: (Uj) e 72n,
n < co} we can find a sentence % of L ^ ^ T ' ] which asserts that < is a linear ordering
and that the relations P1'7 satisfy the equivalence given in (1) above along <. More
precisely, we let / be the conjunction of the following sentences of L W I W [T ' ] :

(i) " < is a linear ordering with greatest element c";
(ii) P< >(c);

(iii) the universal closure of the formula,

Pl'J(u9 x 0 , y 0 , . . . , x n - l 9 y n - x )

*-> (Vv < u) (\JxH A lyn V )PUnt3Jtiv9 xo,yo,...9xn9yn)
\ inel jnel/

A A *i
k<n

for (i, j) G 72", n e co.

It follows from the preceding comments that if a structure 91 is a model of / and
u is an element of <^ of rank a, then for any i, J, we have

{(x, y): P*>l>\u9 x, y)} = {(x, y):%x,yt= ST^1}.
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2. Projective Classes and the Approximations of the Game Formulas 393

We will show now that the sentence (—l1!1*) A % pins down ordinals. Indeed, we
claim that:

(2) if 91 is a structure of vocabulary T' such that 911= (—i *F*) A /,
then < m is a well-ordering of its field.

Otherwise,let91 \= ( - I 1 ?* ) A /andletc >*Vl >mv2 >*••• >*vn >mvn+1 >*•••
be an infinite descending chain in the field of < m. Since 91 \= %, we can use then the
conjucts given in (ii) and (iii) of/ and the infinite descending chain above to define
a winning quasistrategy for Player I in the game associated with *F*. Hence we
have that 911= VF*. But this is a contradiction.

In order to complete the proof of the theorem, we observe that since |= O -> —i *F
and \=' *F <-> ¥*, we must have that N O -> -i1?*. It thus follows from (2) above
that we have

(3) if 91 is a structure of vocabulary x' such that 91 N O A #,
then < ̂  is a well-ordering of its field.

The undefinability of well-order in LWlW now implies that there is an ordinal
j8 < co 1 such that if 911= O A /,then < ̂  has rank less than /?. As a consequence, the
sentence O A dJ* has no model and therefore f= <X> -• —i (5J*.

If O and *F are Z}(L^), where A is a countable admissible set, then the result can
be proved by an entirely analogous argument using the effective versions of
Theorems 2.1.5 and 2.2.7, and the theorem for pinning down ordinals in admissible
fragments (for the latter result, see Barwise [1975] or Chapter VIII of this volume).
Notice also that if A = HF, then the result was proved in Theorem 2.2.9. D

Although Vaught's covering theorem is a generalization of Theorem 2.2.9, its
proof appears to be quite different from the one given for Theorem 2.2.9. Therefore,
it is natural to ask if Vaught's covering theorem can be proved by combining
compactness results with recursive saturation. Harnik [1974] gave such a proof (his
proof can be found also in Makkai [1977a]) using the Barwise compactness
theorem for a countable admissible fragment A and the existence of Z^-saturated
models. For the definition and related results about I^-saturation, the reader
should also see Section 7, Chapter VIII of this volume.

2.3. Some Applications of Game Quantification

The results in Sections 2.1 and 2.2 have many interesting applications to the
model theory of LWlC0 and admissible fragments LA. It actually turns out that we
can derive the main theorems about compactness, abstract completeness, and
interpolation in LWlC0 or in LA from the Svenonius-Vaught theorem, the approxima-
tions and the covering theorem. Since these results are well known and are discussed
in Chapter VIII of the present volume, we will here restrict ourselves to merely
listing some of the applications and making occasional brief comments on the
proofs.
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394 X. Game Quantification

2.3.1 Applications of the Svenonius-Vaught Theorem. Vaught [1973b] obtained a
proof of the Barwise compactness theorem using tools from the theory of game
quantification. His argument consists of the following two independent parts:

(i) Let A be an arbitrary admissible set such that co e A and consider the class of
bounded open game formulas. These are game formulas for which the associated
game is bounded for Player II in the sense that his next move must belong to the
union of the moves played thus far. More precisely, a bounded open game formula
®(z) is of the form

[(3xo)(V)>o e z u xo)(3x1)(\fy1 e z u x0 u y0 u xx) • • •]

V <pn(z, x 0 , y 0 , . . . , * „ _ ! , y n - i ) ,
n<co

where each cpn(z, x0, y0,..., xn_l, yn-i) is a Ao formula.
Vaught [1973b] showed that every admissible set A with co e A reflects bounded

open game formulas. That is, if <£(z) is such a formula and A9z \= <D(z), then there is
a transitive set w such that zsweA and <w, e>, z t= O(z).

(ii) The proof of the Svenonius-Vaught theorem (2.1.5) can be easily adapted
to show that if A is in addition countable, then every strict-II} formula is equivalent
on A to a bounded open game formula. It then follows from part (i) that if A is a
countable admissible set with we A, then A satisfies strict II {-reflection, and hence
A is Zj-compact.

2.3.2 Applications of the Approximations, (i) Every ^{(L^^) class of countable
models is the intersection of ^ L^^-elementary classes,

(ii) Every I^KL^^) class of countable models is the union of Kj LWlC0-ele-
mentary classes.

These two results are rather direct consequences of Corollary 2.2.8. The first
result, in turn, implies that every analytic set of reals is the intersection of Kt Borel
sets. On the other hand, the second result yields Scott's isomorphism theorem for
countable structures, since if 21 is countable, then the collection {93: © « 91} is a
I}(LW lJ class of countable models.

Other applications of the approximation theorem given in Section 2.2.7
include:

(iii) The Reduction Principle for II{(L^^) Classes of Countable Models. This
principle asserts that if Xu X2 are two FI}(LWlW) classes of countable
models, then we can find two other n}(LWlC0) classes jT'l9 JT'2 such that
Jfi u JT2 = X\ u jf'2 and tf\ n JT2 = 0.

(iv) The Abstract Completeness Theorem. This result states that if A is a
countable admissible set, then the set of valid sentences in LA is Zx on A
uniformly.

2.3.3 Applications of the Covering Theorem. In this discussion, we will examine:

(i) The interpolation theorem for LWlW and countable admissible fragments,
(ii) The undefinability of well-order in L0)l(O and the theorem on pinning down

ordinals in countable admissible fragments.
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The interpolation theorem follows immediately from the covering theorem.
Actually, in addition we obtain some information about the interpolant. For the
undefinability of well-order, we will assume that cp(<) is a S}(LWl(0) sentence such
that if 511= cp( <), then < * is a well-ordering. Then |= cp{ <) -• ~i (3x0 3x x • • •) /\n < a

(xn+l < xn\ hence there is an ordinal ft < co1 such that t= cp{<) -> ~\Sfi, where 5a

are the approximations of (3x0 3xx • • •) A«<w(xn+i < xn)- It follows now im-
mediately from Sections 2.2.3 and 2.2.4 that i8p asserts that the rank of < is less
than p.

The proof of the covering theorem we gave here makes use of the undefinability
of well-order. However, Harnik's [1974] proof of this result does not depend on it,
so that we can first prove the covering theorem and then establish the undefinability
of well-order. This is, for example, the approach taken by Makkai [1977a].

Further applications of this material can be found in Makkai [1973b, 1974b],
Vaught [1974], Harnik [1976] and Harnik-Makkai [1976].

2.4. On the Connection with Invariant
Descriptive Set Theory

We have here tried to develop the theory of game quantification in a more or less
self-contained way by using methods from the model theory of LCOl(a and admissible
fragments.

At this point we should mention that there is also a very interesting connection
between game quantification and invariant descriptive set theory. It is part of the
general interaction between infinitary logic and descriptive set theory, which arises
by identifying countable structures with elements of a product of topological spaces
of the form 2W", co10", or of. If cp is a sentence of some infinitary logic, then the
collection of all countable models of cp can be viewed as a subset of such a product
which is invariant under a certain action of the group co ! of the permutations on a>,
or under a natural equivalence relation. Topological methods and results from
invariant descriptive set theory can then be used to derive theorems of infinitary
logic. In particular, some of the results we have presented here can be studied by
these methods. This direction has been pursued with much success by Vaught
[1974], Burgess-Miller [1975], Miller [1978] and others.

3. Model Theory for Game Logics

The aim of this section is to present an overview of the model theory for the infinitary
logics L^Q and L^v associated with game quantification. The main result is that
the logics L^G and L^y are absolute in the sense of Barwise [1972a]. Many model-
theoretic properties of L^G a n d L^y then follow from this result and from the fact
that both of these logics can express the notion of well-foundedness.
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396 X. Game Quantification

3.1. The Infinitary Logics LooG and L^v

We will begin our discussion with

3.1.1 Definition. The infinitary logic (L^G, I=LODG) is determined by the class
^OOGM of L^Q-formulas of vocabulary x and the relation of satisfaction \=LaoG

between sentences oi LooG[x~\ and structures of vocabulary z. If i is a vocabulary,
then LOOG[T] is the smallest class which:

(i) contains all atomic formulas over the vocabulary i;
(ii) is closed under negation —I ;

(iii) is closed under single existential 3 and single universal V quantification;
(iv) if O is a set of formulas of L ^ G M with only finitely many free variables in O,

then the conjunction f\ O and the disjunction \J <D are also formulas of
LOOGW;

(v) if {<pn(z, x0, y0,..., xn_u y^J: n < co} are formulas of LOOG[T'] in the
displayed free variables, then the expressions

(Vx0 3y0 Vxx 3yx • • •) A <?»(*' xo> )>o> • - •» xn-u yn-i)
n<co

and

(3XO V^o 3 * ! V^! • • •) V ^n (^ ^ 0 . )>0> • • ' > *n-l> ^ - l )
n<co

are also formulas of LaoG[r'] with z as free variables.

The relation of satisfaction "91 l=LooG V between sentences of LaoG[r'] and
structures of vocabulary T is defined inductively, using the game theoretic interpreta-
tion from Section 1 for the clause given in (v). It is understood that if the full axiom
of choice is available in the metatheory, then the interpretation is via winning
strategies. If one is working only with the axiom of dependent choices, then the
interpretation of the clause in (v) is given using winning quasistrategies.

If T is a vocabulary and HC is the set of hereditarily countable sets, then we put

LmiG[x\ = L ^ T ] n HC.

Notice that the open game and closed game formulas that we considered in
Section 2 are actually elements of LWlG[i].

3.1.2 Definition. The infinitary logic ( L ^ , ^LaoV) is defined as follows:
If T is a vocabulary, then the collection L ^ T ] is the smallest class of formulas

which satisfies the closure properties (i), (ii), (iii), and (iv) in the previous definition
and in addition is such that:

(v') if / is a non-empty set and for every n e co and every (ij) e I2n <plJ(z, x0,
y0,..., xn_l5 yn-x) is a formula of LooV[z~] in the displayed free variables,
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then the expressions

V
r o e / joe I

f\(pU7(z9 Xo,
and

V cpUJ(z, x0,

are also formulas of LOOF[T] with z as free variables.

The relation of satisfaction "91 h=LooKiA" between sentences of LODV[T'] and
structures of vocabulary T is defined inductively, again associating a game with the
formulas in (V).

We put

W M = LOOKW n HC

and observe that the open Vaught and closed Vaught formulas of Section 2 are
elements of LWlK[i].

It is not hard to verify that the logic LWlK is stronger than the logic LWlG. Indeed,
LWlK—and, of course, L^v—can express infinitary connectives which cannot be
captured by LwlG (nor by L^G for that matter).

Vaught [1974] pointed out that the weak second-order version of LWlF coin-
cides with LWlK, so that LWlV is invariant under passage to weak second-order logic,
while LWlG is not. However, as we have mentioned before, over countable models
possessing a first-order coding machinery of finite sequences, the infinitary logics
LWlG and LWlV have the same expressive power.

3.1.3. We now recall the definition of an absolute logic from Chapter XVII, a
definition which was originally given in Barwise [1972a].

Let T be a set theory at least as strong as the admissible set theory KP and let
(L, \= L) be an abstract logic. We say that the logic (L, N L) is absolute relative to T if:

(i) The relation "cp is a sentence of L [ T ] " is a Zf predicate of q> and the
vocabulary T; and

(ii) if cp is a sentence of L[T] and 91 is a structure of vocabulary T, then the
predicate "91 |=L (/>" is a Aj predicate of 91, cp and T.

A logic (L, N L) is strictly absolute if it is absolute relative to the admissible set
theory KP.
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398 X. Game Quantification

One of the main results of Barwise [1972a] (see also Chapter XVII of the present
volume) asserts that if (L, t=L) is a strictly absolute logic, then L < L^. However,
we showed in Section 1.1.4 that there is a formula of LWlG which asserts that:

" < is a well-ordering of order type y + y for some ordinal y."

Since the above statement is not expressible in L ^ , we obtain the following

3.1.4 Theorem. The infinitary logics LWlG, L(OlV, L^G, L^y are not strictly absolute.
U

It is now natural to ask whether or not the game logics are absolute relative to
som-e true set theory. The answer to this question is provided by the following result
of Barwise [1972a].

3.1.5 Theorem. The infinitary logics LWlG, LWlF, L^Q and L^v are all absolute
relative to the theory KP + X^-separation + Axiom of Dependent Choices.

Sketch of Proof. Once more the main idea comes from the inductive analysis of the
open games, which was given in the proof of the Gale-Stewart theorem. An
inspection of the proof given there reveals, first of all, that the Gale-Stewart
theorem is itself provable in KP 4- Xx-separation + axiom of dependent choices.
To establish that satisfaction is absolute for, say, the infinitary logic LWlG, we define
by induction on the construction of the L^^^-formulas a X x predicate P(T, 91, \jj, i)
such that if 91 is a structure of vocabulary T, then

P(T, 91, \j/, i) iff (i = 0 & 91 \= \jj) v (i = 1 & 91 \£ \j/).

This automatically takes care of the negations, while for the crucial clause
given in (v) of Definition 3.1.1 we use the Gale-Stewart theorem and Xx -separation.
More precisely, if \j/ is the sentence

(Vx0 3y0 Vxi 3yx • • •) / \ ^n(x0, y 0 - • • ,xn-19 yn-i)9
n<a>

then

P(T, 91, ^, 0) <=> Player I has a winning quasistrategy in G( V3, / \ ^M

and

P(i, 91, \j/, 1) o Player I has a winning quasistrategy in G{ 3V, \f ~]\j/n
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3. Model Theory for Game Logics 399

where <p°° is the smallest fixed point of the monotone operator cp(u, S) associated
with the open game G(3V, \/n<o ~I*/O> just as in the proof of the Gale-Stewart
theorem given in Section 1.2.4. D

3.2. Model-theoretic Properties of the
Logics L^G and L^v

The following model-theoretic properties of the infinitary logic L^v follow from its
absoluteness and the results in Chapter XVII of this volume.

3.2.1 Theorem, (i) The logic L^v has the downward Skolem-Lowenheim property
to CD. That is, if a sentence cp O/LOO1/[T] has a model, then it has a countable
model

(ii) The logic L^y has the Karp property. That is to say, ifW, 23 are structures
of vocabulary x which satisfy the same sentences ofL^^x], then they satisfy
the same sentences ofLaoV[r']. U

Barwise [1972 a] showed that these properties are shared by any abstract logic
which is absolute. Moreover, Barwise [1972a] and Burgess [1977] established
certain negative results about logics which are absolute and unbounded. That is,
the collection of well-founded structures is a PC class. Since the infinitary logics
LWlG, LWlF, L^G and L^v can all express the notion of well-foundedness, we have

3.2.2 Theorem, (i) (Failure of the Abstract Completeness Theorem). The set of valid
sentences of the infinitary logic LWlG is a complete H1 set on HC. The same is
true for the validities of the infinitary logic Lm^v.

(ii) The infinitary logics LWlG and LMlV do not satisfy, the Craig interpolation
theorem, the A-interpolation theorem, the Beth definability theorem, and the
weak Beth definability theorem. D

The reader is referred to Chapter II for the definitions of these notions and to
Chapter XVII for the proof of the above theorem.

3.2.3. The approximation theory for Vaught formulas, which was developed in
Section 2, can be easily extended to arbitrary formulas of L^v, the main result being
that with any sentence \\i of L^y we can associate sentences b\ of L ^ , for a an
ordinal, such that

Green [1979] used these approximations to introduce consistency properties for
y and obtained a model existence theorem for game logics. As we mentioned in
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400 X. Game Quantification

Corollary 2.2.8, Burgess [1977] extended the approximation theory to any absolute
logic. Finally, Harnik [1976], using the approximations and model theoretic
forcing, established certain strong preservation theorems for L^y which partially
compensate for the failure of interpolation.

We conclude this section by pointing out that certain sublogics and extensions
of the game logics L^Q and L^v have also been studied. For example, Ellentuck
[1975], Burgess [1978b] and Green [1978] have investigated the Suslin logics
which can be described intuitively as the propositional part of L ^ , since they allow
for infinite alternations of the connectives f\ and \J, but not of the quantifiers V and
3. Burgess [1977] introduced the Borel-game logic L ^ , an extension of L^v. In this
logic, the infinite strings of quantifiers and connectives are applied not only to
matrices which are open or closed, but also to matrices which can be coded by a
Borel set. Of course, it takes Martin's [1975] theorem on Borel determinacy to
show that negations can be pushed inside. The Borel-game logic is absolute relative
to ZF + axiom of dependent choices.

4. Game Quantification and Local
Definability Theory

This section contains the connections between game quantification, generalized
recursion theory, and descriptive set theory. The first basic result asserts that on
structures with a first-order coding machinery, the (positive elementary) inductive
relations coincide with the ones that are explicitly definable using the open game
quantifier. This result is due to Moschovakis [1972] and constitutes an absolute
version of Svenonius' theorem (see Theorem 2.1.5). Aczel [1975] generalized this
result and showed that the Q-inductive relations on a structure can be characterized
using infinite strings (Qx0 QxiQx2 • • •)> where Q is an arbitrary monotone quantifier.
To present these theorems, we introduce infinite strings (Qx0Qx1Qx2 • • •) and
interpret them via two-person infinite games. We will pursue the study of the Q-
inductive relations and state their characterizations in terms of functional recursion,
representability in stronger logics, and admissible sets with quantifiers. We will also
briefly indicate some of the tools of inductive definability which are used to derive
local versions of the global results given in Section 2. That done, we will discuss the
connections with non-monotone inductive definitions and the recursion-theoretic
difference between the open game and the closed game quantifier. The chapter will
end with some results and comments concerning the interactions of game quantifica-
tion with descriptive set theory.

Because of the limitations of space, most of the results in this section will be
given without proofs. However, we have included the definitions of the basic notions
as well as all the relevant references to the literature.
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4. Game Quantification and Local Definability Theory 401

4,1. Iterating a Monotone Quantifier Infinitely Often

4.1.1. Assume that Q is a monotone quantifier on a set A; that is, suppose that Q is
a non-empty, proper subset of 0>(A) which is closed under supersets. In order to
iterate the quantifier Q infinitely often, we must give meaning to the string

The following interpretation is due to Aczel [1975] and is motivated by the observa-
tion that, since Q has the monotonicity property,

QxP(x) iff (3XeQ)(\fxeX)P(x\

so that intuitively we should have the equivalence

-)R(x0, xl9 x2, • • 0

iff (3X0 e QXVxo e X0)@X1 e QWxx eX^--- R(x0, xl9.. .)•

This suggests associating with Q as well as with a relation R c A03 the following
two-person infinite game G(g, R) of perfect information:

A round of the game G(Q, R) is played by Players I and II who make alternate
moves in such a way that I picks a set Xt e Q and II responds by picking an element
xicXhi = 0, 1 ,2, . . .

I

II

Xo X,

x0

x2

x2 ••

• (Xi

• (x,i

eQ,

= X,,

all

all

is

ie

1)

I)

Player I wins the above round if (x0, xl5 x 2 , . . ) e i^; otherwise, Player II wins
We say that Player I wins the game G(Q, R) if I has a systematic way to win every
round of the game. This can be made precise by requiring that Player I have a
winning strategy for G(Q, R); that is, that there be a function o\ {Jn<(a(Q x A)n

-• Q with the property that (x0, xl5 x 2 , . • ) e î  for any round (Xo, x0, Xl9 xl5

X2, x2 , . . . ) of G(g, î ) in which Xo = <r(( )) and Xi+l = a(X0, xo,...,Xh x-%
for every i G CO. Similarly, we say that Player II wins t/ẑ  ^am^ G(2, R) if II has a
winning strategy T: (Jn<co (2 x A)" x Q -• 1̂ with which he can win every round
of G(g, R). Finally, we put

iff Player I wins the game G(Q, R).

The following proposition is a simple, but useful tool in manipulating infinite
strings of quantifiers. Its proof follows easily from the definitions and the axiom of
choice.
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4.1.2 Proposition. Let Qbeamonotone quantifier on A and let R ^ A°*. Then we have,

-}R(x9 x0, xl9 x2 , . . . )

iff (QxQx0QxiQx2- -)R(x, x 0 , x t , x 2 , . . . ) . D

The next theorem provides the basic connection between winning strategies for
Player I in the game G(Q, R) and winning strategies for Player II in the dual game

G(Q, —i R) associated with the statement

(Qx0QxlQx2 • • •) -\R(x0, xl9 x2 , . . . ) , where of course ~iR = A™ - R.

4.1.3 Theorem. Let Qbea monotone quantifier on a set A and let R c A03. Then the
following are equivalent:

(i) (Q*oQxiQx2 ' ' m)R(x0, xl9 x 2 , . . . ) ; that is to say, Player I wins the game

(ii) Player II wins the game G(Q, —iJR).

Proof Let cr be a winning strategy for Player I in the game G(Q, R). We will in-

formally describe a winning strategy for Player II in the dual game G(Q, ~i R). The

argument uses the axiom of choice and the fact that if X e Q and Y e Q, then

X n Y ^ 0 . Assume then that Player I starts a round of G(Q, ~i R) by playing a

set 70 G Q. If Xo = <T(( )), then Xo e Q, and hence Xo n 70 # 0 . Now,

Player II answers Player I in G(Q, ~n R) by picking an element
xosXo n y0.

If/ plays Yx e Q, then II responds by playing some element xx of the non-empty
set Xt n Yl9 where Xt = a(X0, x0) e Q. If Player II continues in this way, then at
the end of time he has produced a round (Yo, x0, Y1? x l 9 . . . ) of the game G(Q, -\R)
for which there is a round (X09 x09 Xl9xl9 ...)of G(g, R) played according to the
winning strategy o for Player I in that game, hence (x0, xl5 ...)eR.

As to the other direction, we will assume that Player II wins the game G(g, ~i R).
We will indicate how to define a winning strategy for I in the game G(Q, R). The
idea is similar to the one presented earlier; namely, I plays in such a way that he
forces his opponent to produce a sequence (x0, xl9 x2, •. •) which corresponds to

moves of II in G(g, ~iR) played according to his winning strategy. More precisely,
I starts by playing the set

Xo = {x: there is a round of G(Q, ~iR) of the form (Y, x,. . .)
in which Player II follows his winning strategy}.
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4. Game Quantification and Local Definability Theory 403

Notice that Xo e Q, since otherwise its complement (A - Xo) e Q and it is thus

a legitimate move for I in G(Q, ~iR). But then the winning strategy of II in this
game produces an element of Xo n (A - Xo). This is a contradiction.

Suppose now that Player II responds with an element x o e l o . Then there is a

round of G(Q, ~i R) of the form (Yo, x0 , . . . ) in which II follows his winning strategy.
The next move of I in G(Q, R) is the set

Xx = {x: there is a round of G(Q, ~\R) of the form (Yo, x0, Y, x,. . .)
in which Player II follows his winning strategy}.

It is easy to see that Xx e Q. Moreover, if II responds with an element x1eXl, then

there is a round of G(Q, ~~\R) of the form (Yo, x0, Yl9 xl9...) in which II plays
according to his winning strategy. In this way, at the end of time the two players in
G(Q, R) have produced a sequence (Xo, x0, Xl9 xl5 X2, x2 , . . . ) such that there is a

round (70, x0, y,, x1? Y2, x2, •. •) of G(Q, —i/?) in which II follows his winning
strategy. D

The proof of the Gale-Stewart theorem (1.2.4) can be easily modified to
yield the determinacy of open or closed games associated with the infinite string
(Qx0QxlQx2 - - •). Thus, if Q is a monotone quantifier and R is a relation which is
either open or closed, then Player I or Player II wins the game G(Q, R). By combin-
ing this fact with Theorem 4.1.3 we immediately obtain the following

4.1.4 Corollary. Let Qbe a monotone quantifier on A and let R c= A03 be a relation
which is either open or closed. Then

Player I does not win G(Q, R) iff Player I wins G(Q, iR)

and hence

9 x l 9 x 2 , . . . )

(QQQ Y Y ^ n
, X j , X 2 , . . .). U

4.1.5. Thus far we have considered infinite strings obtained by iterating only one
monotone quantifier infinitely often. We might also consider a sequence Q =
{Qn}nso of arbitrary monotone quantifiers Qn, n e co, on a set A and the correspond-
ing infinite string (QoxoQlxl • • • Qnxn • • •). If R c A03 is a collection of infinite
sequences from A, then the statement

QnXn * * ')R(XO, Xl9 . . . , Xn9 . . .)
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is interpreted via a game G(Q, R) which is suggested by the intuitive equivalence

( G o * O < 2 l * l * ' ' Qn*n * ' ')R(XO, X l 9 . . . , X n , . . .) iff

(3X0 e

• • • (3Xn e QH)Q/xH e X n ) - . - R(x0, x l 9 . . . , xn) .

The preceding results extend naturally to such arbitrary strings with only minor
modifications in the definitions and the proofs. In particular, if R c A" is either
open or closed, then we can push the negation inside, so that we have

KO9Xl9...9Xn9...)

We should point out here that for the infinite string (Vx0 3y0 Vxl3y1- •), the
interpretation of the statement (Vx0 3y0 Vxx 3yx • • -)R(x0, y0, xl5 yu ...) given
above is equivalent to the one given in Section 1 of this chapter. Notice, however,
that a strategy for I in the sense of this section essentially coincides with a quasi-
strategy for I in the sense of Section 1, rather than with a strategy. This is because we
have identified the existential quantifier 3 on A with the collection {X c A:X / 0 } .

4.1.6. The infinite string (Qx0 QxxQx2 • • •) can be viewed as defining a new
monotone quantifier Q* on the set A03 of infinite sequences from A. More specifically,
the quantifier Q* on A03 is the collection

Q* = {X c A": (Qx0QXlQx2 • • -)X(x0, xl9 x 2 , . . . )} .

If the infinite string (Qx0Qx1Qx2 • • •) is applied to relations R on A03 which are
open or closed, then it gives rise to two monotone quantifiers Q v and Q A on the
set A<co of finite sequences from A.

The quantifier Qv on A<03 is the collection

c A<a: (QxoQx^ • • •) V

while f/*e quantifier QA on A<(O is defined by

G A = j * £ ^ < - : ( Q x 0 e x 1 Q x 2 • • •) A ^ 0 , x l 9 . .

The quantifiers Q v and Q A can be expressed using the quantifier Q* on A03 and
infinitary connectives. Indeed, if R ^ A <(O is a relation on the set of finite sequences
from 4̂, then we first introduce the relations \ / R and / \ i ? o n the set of infinite
sequences, where

V R = UeA^'.y R(a [n)i and /\R = \ae A°>: /\R(a [n)>.
I n ) I n )
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It is now clear that

Q "sR(s) o Player I wins G(Q, \J R)o Q*a V R(a)

and

Q AsR(s) o Player I wins G(g, / \ R) o Q*OL /\ R(oc).

Since the quantifiers Q v and Q A give rise to games which are open or closed, we
can use Corollary 4.1.4 to find their dual quantifiers.

4.1.7 Corollary. Let Q be a monotone quantifier on A. Then:

(i) the dual of the quantifier Qv is the quantifier QA ; that is, (Q v ) u = Q A ;

(ii) the dual of the quantifier QA is the quantifier Q v ; that is (QA)U = Qv. D

4.1.8. The Suslin and the classical s/ quantifier are special cases of the quantifiers
Qv and QA. Indeed, it is obvious that Vv is the Suslin quantifier on the set A<(O,
while 3A is the classical quantifier si on A<co. Notice also that VA and 3V are
respectively the universal and the existential quantifier on the set A<0} of finite
sequences from A.

We now consider the quantifiers 3V and V3 on the set A2 = A x A, where

and

\/3 = {XczA2:(\/x3y)((x,y)EX)}.

Of course, the quantifier V3 is the dual of 3V. Moreover,

(3V)V is the open game quantifier ^ on A<co,

and

(V3)A is the closed game quantifier ^ on A<(O.

Observe that here we have tacitly identified the sequence ((x0, y0), (xl9 yx),
(x2, y2),...) in (A x A)03 with the sequence (x0, y0, xl9 yl9 x2, y2 , . . . ) in A™.

If Q is a monotone quantifier on A, then the next quantifier Q+ of Q is the
quantifier

Q+ =(623V)V,

where QQ 3V = {X <= A*\ (QxQy 3z Vw)((x, y, z, w) e X)}. Therefore, ifR c A<(°,
then we have

Q+sR(s)o(Qx0Qy0 3z0 ^w0Qx1Qyl 3z, \fwt • • •)

V R(x0, y0, z0, w 0 , . . . , xn_!, yn_l9 zn-l9 wn_i).
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406 X. Game Quantification

It follows from the above that the dual quantifier of Q+ = (QQ 3V)V is the
quantifier (Q Q V3)A. Notice that the open game quantifier ^ is the next quantifier of
(3V). As we will see in the sequel, the next quantifier plays an important role in the
theory of inductive definability.

4.2. Game Quantification and Positive Elementary
Induction in a Quantifier

4.2.1. Let 91 = (A, Ru . . . , Rn, c l 5 . . . , ck} be a structure and let Q be a monotone
quantifier on the universe A of the structure. The first-order logic ££\Q) of the
structure 91 has both first-order variables x, y, z , . . . and second-order variables

S, 7, t / , . . . , but the quantifiers V, 3, Q, Q range only over the first-order variables.
The "boldface" first-order logic &*(Q) of the structure 91 is obtained from ^\Q)
by adding to the vocabulary a new constant symbol a for each element as A. If we
do not consider an additional quantifier Q, then we have the logics JS?ffl and JSfa

respectively.
If <p(xl9..., xn, S) is a formula of ^\Q) in which S is a w-ary relation symbol

with only positive occurrences, then cp(x, S) gives rise to a transfinite sequence
{/|}^eOrd of n-ary relations on A, where

We put

and call 1^ the set inductively defined by cp. It is easy to see that

3c e I9 o cp(x, IJ

and

so that /^ is the smallest fixed point of cp.
\{R is an m-ary relation on A, we say that R is Q-(positive) inductive in case there

is a formula cp(u, v, S) of !£®(Q) with S occurring positively and a finite sequence a
of elements of A such that

(a, y ) e / , .
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4. Game Quantification and Local Definability Theory 407

We say that a relation R c Am is Q-(positive) hyperelementary if both R and
v4m — R are Q-inductive relations. We write

IND(2l, Q) = the collection of all g-(positive) inductive relations on 21,

and

HYP(2l, Q) = the collection of all Q-(positive) hyperelementary
relations on S2I.

If we do not consider an additional quantifier Q on A, then we have the notions
of the (positive) inductive and the (positive) hyperelementary relations on 21. In
this case we put

IND(2l) = all (positive) inductive relations on 21,

and

HYP(2l) = all (positive) hyperelementary relations on 21.

The theory of the inductive and the hyperelementary relations has been
developed in the monograph Moschovakis [1974a]. Here we will purposely restrict
ourselves to stating the results which are directly related to game quantification.

4.2.2. Henceforth, we will confine our attention to structures possessing a first-
order coding machinery offinite sequences. We say that a structure 21 = {A, Ru . . . ,
Rn, cu . . . , ck} is acceptable if co, < w are first-order on 21 and there is a total, one-
to-one coding function < }:A<(O -> A such that the relation seq and the functions
Ih and q are first-order on 21, where

seq(x)o there are xl9 x2, - - •, xn such that x = <xl9 x 2 , . . . , xn>;

[0, if -i seq(x)
[n, if seq(x) and x = <xl5 x 2 , . •., xw>;

and

j , if x = <x1? x2, ...,xM> and 1 < i < n,
q(x, i) = (x)i = .
HK J v h [0, otherwise.

Typical examples of acceptable structures are the structure of arithmetic
M = <co, + , •>, the rationals Q = <Q, + , •>, the structure of analysis U =
(co u cow, co. + , •, Ap) (where Ap(oc, n) = a(«), with a e a / ° and new), and the
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408 X. Game Quantification

structures V; = (Vx, e>, for each ordinal X > co, where Vk is the collection of sets
of rank less than X.

Many of the results in this section are true under a much weaker hypothesis,
namely that the structure 91 under consideration has an inductive pairing function.
Such a function is, of course, a total, one-to-one function < >: A x A -» A with an
inductive graph. Examples of such structures include the structures X = <A, < >
and LA = <LA, < > for any infinite ordinal A, all models of Peano arithmetic, and
any structure of the form 91 = {A, e> where A is a transitive set closed under pairs.

Every acceptable structure has the property that the weak second-order logic
J£?wII on 91 can be subsumed by the first-order logic ^ of the structure 91.

If we want to avoid the assumption of acceptability, then we must consider a
larger class of inductive definitions, namely the inductive* and the Q-inductive*
relations of Barwise [1975, 1978b], or pass from an arbitrary structure 91 =
{A, Ru . . . , Rm,cl9..., ck) to the expanded structure 91* = (A u X < w uw,A,
co, Rl9..., R m , < „ , Ap, cl9..., cfc>, whe re Ap((au . . . , an\ i) = at.

If 91 is an acceptable structure and T is a quantifier on the set A<0) of finite
sequences from A, then T can be identified with a quantifier on A, which we also
denote by T and which is defined as follows:

T = {X c= A: {(xu . . . , xn) e AK": <x l 9 . . . , xn) e X} e 7},

with < >: A<0) -• A a fixed coding function as in the definition of acceptability.
In particular, the quantifiers Qv, QA, Q+ and (Q + )u can all be viewed, and

indeed will so be viewed from here on, as quantifiers on the universe A of the
structure 91. Thus, for example, the open game quantifier on A <0) is identified with
the quantifier

on A, while the closed game quantifier # on A<(O becomes the quantifier

9 = Ix c AiQ/xoSyoVx^yi'..)

on A. For the remainder of this section, if 91 is an acceptable structure, then
< >: A<(° -• A will always denote a total, one-to-one function such that the as-
sociated coding and decoding relations and functions seq, //*, q are first-order on 91.

The next theorem provides the basic connection between inductive definability
and game quantification. We credit this result to Moschovakis [1974a], [1972] for
the inductive relations and to Aczel [1975] for the g-inductive relations.
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4. Game Quantification and Local Definability Theory 409

4.2.3 Theorem. Let 21 = (A, Ru . . . , Rm, cu . . . , ck} be an acceptable structure
and let Q be a monotone quantifier on A. Then,

(i) a relation R on A is Q-(positive) inductive if and only if there is a formula
cp(u, z) of the "boldface" logic &m(Q) of the structure 21 such that
R(z) oQ + ucp(u, z); that is,

R(z)<*(Qv0Qw0 3x0 Vy0 Qv.Qw, 3xx Vyi • • •)

V <K<*>o> w 0 , x 0 , y 0 , . . . , vn-u w w _ l 9 x n - . l 9 J V i X z) ;
n

(ii) in particular, a relation R on A is (positive) inductive if and only if there is a
formula cp of the "boldface" logic i?21 of the structure 21 such that

R(z) o &u<p(u, z) o

(3x0 V j 0 3 x x Vyx • • •) V <P«*o> y 0 , . . - , x n _ l 9 ) ; „_!> , z) .
n

Hint of Proof The inductive analysis of open games given in the proof of the Gale-
Stewart theorem (1.2.4) can be used to show that if (R(z) oQ + ucp(u, z)\ then the
relation R is Q-inductive. For the other direction, one has to show first that if
\jj(z, S) is a formula of £P®(Q) in which S occurs positively, then there is a quantifier-
free formula 9(v, w, x, y, z) such that

*Kz, S) o (Qvo)(Qwo)(3xo)0/yo) • • • (Qvm)(Qwm)(3xJ(VyJ(VO

[6(v, w, x, y, z) v S(t)l

Using the equivalence above and the coding machinery on 21, it is not hard to
verify that the smallest fixed point 1^ of the formula \jj(z, S) is explicitly definable by
the next quantifier Q+ applied to a formula cp(u, z) oi£f\Q). D

4.2.4. The above identification of the inductive relations with the ones definable by
open game formulas is an absolute version of Svenonius' theorem (2.1.5), and has
many applications in either direction. In particular, results from inductive defin-
ability have implications for game quantification and vice-versa. For example, we
can use the proof of Theorem 4.2.3 to discover the main properties of the approxima-
tions of the open game formulas. Indeed, if <&{z) is an open game formula and <p(z, S)
is a positive in S formula of ^ such that 211= (Vz)($(z) <-• /^(z)), then the ap-
proximations £̂  of O are equivalent on 21 to the stages /£ of cp. In the other direction,
Moschovakis [1974a] used Theorem 4.2.3 to show the existence of universal
inductive relations on acceptable structures. As a consequence, on every acceptable
structure there are inductive relations which are not hyperelementary. Moreover,
on such structures the relation of satisfaction " 211= cp ", where cp is a sentence of
JSP*, is hyperelementary; but it is not, of course, first-order.

The tools of inductive definability can be used to obtain local versions of such
global results as Vaught's covering theorem (See Section 2.2.10), the separation and

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.015
https://www.cambridge.org/core


410 X. Game Quantification

reduction principles and others. One of the main tools is the stage comparison
theorem of Moschovakis [1974a] which asserts, intuitively, that we can compare
the stages of an inductive definition in an inductive way. Its consequences include
the following theorem, a theorem which is true for an arbitrary structure 91.

4.2.5 Theorem. Let 91 = (A, Ru . . . , Rn, cl9..., ck} be a structure and let Qbe a
monotone quantifier on A. Then the c/ass IND(9l, Q) of the Q-inductive relations has
the pre-well-ordering property. That is, if P ^ An is a Q-inductive relation, then there
is a map G: P^>X, where X some ordinal, such that the relations <% and <* are
Q-inductive, where

v a(x) < a(y))

and

U

If P is a Q-inductive relation and a: P^^X is a map such that the relations
< * and < * are Q-inductive, then we say that a is a Q-inductive norm on P. The
existence of Q-inductive norms easily implies the reduction principle for the Q-
inductive relations and the separation principle for the complements of the
Q-inductive relations.

With any structure 91 we associate the ordinal K®, where

Km = sup{rank(<): < is a hyperelementary pre-well-ordering on A}.

If Q is a monotone quantifier on the universe A of the structure 91, then we consider
also the ordinal

K*(C) = sup{rank(<):
< is a Q-hyperelementary pre-well-ordering on A}.

The stage comparison theorem also yields the following useful boundedness
principle.

4.2.6 Theorem. Let 91 = (A, Ru . . . , Rn, cl9..., ck) be a structure and let Qbe a
monotone quantifier on A. Assume further that P is a Q-inductive relation and
a: P —> X is a Q-inductive norm. Then

(i) X < K*®;

(ii) for each £ < X the set P^ = {xeP: a(x) < £} is Q-hyperelementary;
(iii) P is Q-hyperelementary if and only if X < Km{Q). D

The above result can be thought of as a local version of the approximation
theorem (2.2.7) and the undefinability of well-order. Actually, Moschovakis
[1974a] showed that it implies a covering theorem for the Q-inductive relations on
any structure.
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4. Game Quantification and Local Definability Theory 411

4.2.7 The Covering Theorem. Let P be a Q-inductive relation on a structure 91 and
leto'.P -^-^ A be a Q-inductive norm. IfR is the complement of a Q-inductive relation
and R c P9 then there is an ordinal £ < Km(Q) such that

£ <= pS = {xeP:(j(x) < £}.

In particular, R is contained in a Q-hy per elementary subset of P. D

In order to gain more insight into the relations definable by the game quantifiers
on an acceptable structure, we next state various characterizations of the Q-
inductive relations in terms of Spector classes, functional recursion, representability
in stronger logics, and, finally, admissible sets with quantifiers.

4.2.8. Let F be a class of relations on A and let Q be a monotone quantifier on A.
We say that F is closed under Q if, whenever a relation P cz An+ x is in F, then the
relation R c A" is also in F, where R(x) <=> (Qy)P(y, x).

The class F has the pre-well-ordering property if, for each relation P in F, there is
a mapping a: P ^* A, where A an ordinal, such that the relations < * and < * are
inF.

Assume that 91 = {A, Rl,..., Rn, cu . . . , ck} is an acceptable structure and F
is a collection of relations on A. We call F a Spector class on 91 if:

(i) F contains all first-order relations on A with parameters from A and is
closed under u, n, V, 3;

(ii) F has the pre-well-ordering property; and
(iii) F is A-parametrized. That is to say, for each new, there is a (n + l)-ary

relation £/" in F with the property that a relation £ c ,4" is in F if and only
if there is some a e A such that K = {xe An: (a, x) e U"}.

It actually turns out that the collections IND(9l) andIND(9I, Q) of the inductive
and the Q-inductive relations are both Spector classes. The notion of a Spector class
was introduced by Moschovakis [1974a] and provides a framework for developing
abstract recursion theory. The following is a theorem of Moschovakis [1974a] and
Aczel [1975]. On the one hand, it summarizes the main closure and structural
properties of the inductive and the Q-inductive relations while, on the other, it yields
a minimality characterization for these classes of relations.

4.2.9 Theorem. Let 91 = {A, Ru ..., Rn, cu ..., ck} be an acceptable structure and
let Qbe a monotone quantifier on A.

(i) The collection IND(9I, Q) of the Q-inductive relations on A is the smallest
u

Spector class on 91 closed under Q and Q.
(ii) In particular, the collection IND(9I) of the inductive relations on A is the

smallest Spector class on 91.
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412 X. Game Quantification

We state one further result about Spector classes, a result which shows that
these classes possess interesting closure properties and are related to game quant-
ification.

4.2.10 Theorem. Let 51 be an acceptable structure, Q a monotone quantifier on A and
F a Spector class on 91. Then

(i) F is closed under the quantifier Q if and only ifY is closed under the quantifier
Qv. In particular,

(ii) F is closed under Q and Q if and only ifT is closed under the next quantifier
Q+.

(iii) Every Spector class is closed under the open game quantifier $. D

4.2.11. Let A be a set such that co ^ A and let 0>$Fk be the collection of all /c-ary
partial functions from A to co. A functional on Ais a partial mapping

<D: A1 x 0>^ki x • • • x &&krn -• co,

which is monotone. That is, if O(x, gl, ..., gm) = w and g^ ^ h1,..., gm £ hm9 then
<D(x, h 1 1 . . . , h m ) = w.

If O = (O l 9 . . . , >̂s) is a finite sequence of functional on the universe of a
structure 91, then we can define the notion of a recursive in 0 m-ary partial function
from A to co. This is done by first associating with $ the smallest class of functionals
having certain closure properties and containing <5, and then iterating the operative
functionals in that class. The detailed definitions of functional recursion can be
found in Kechris-Moschovakis [1977].

A relation P on A is semi-recursive in O if it is the domain of a recursive in (!)
partial function. We say that P is recursive in O if its characteristic function %P is
recursive in O. We put

ENV[<D] = the collection of all semirecursive in $ relations

and

SEC[O] = the collection of all recursive in O relations.

These classes of relations are called, respectively, the envelope ofQ> and the section
o/O.

Any monotone quantifier Q on A gives rise to a functional F^ which embodies

existential quantification with respect to Q and Q. This functional is defined by

|, otherwise,
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4. Game Quantification and Local Definability Theory 413

where p varies over the partial functions from A to co. Here j, abbreviates " is defined ",
while | stands for "is undefined". If Q is the existential quantifier 3, then we write
E # for Ff so that

(0, if(3x)(p(x) = 0),
E * ( p ) = j l , if(Vx)(p(x)i#0),

[ | , otherwise.

It is not hard to show that positive elementary induction in the quantifier Q
coincides with recursion in the functionals E # , F^.

4.2.12 Theorem. Let 91 be an acceptable structure and Q a monotone quantifier on A,
then,

(i) A relation is Q-inductive if and only if it is semirecursive in E# , ¥Q and hence

IND(9I, Q) = ENV[E*, F#].

(ii) A relation is Q-hy per elementary if and only if it is recursive in E# , ¥Q and
hence

HYP(9I, 0 = SEC[E#, F£].

In particular, we have

IND(9l) = ENV[E#] and HYP(9l) = SEC[E#]. D

4.2.13. Assume that 91 = {A, Rl9...9 Rn, cl9..., ck} is a structure and T is a
system of axioms and rules of inference in a logic 5£ which has a constant a for each
element a e A. We say that a relation P on A is weakly representable in T if there is a
formula cp of ££ such that

P(al9 ...9an)oTt- ( jo(a l 5 . . . , an).

We say that P is strongly representable in T if both P and ~iP are weakly
representable. Aczel [1970, 1977] characterized the inductive and the g-inductive
relations on an acceptable structure in terms of representabihty in certain systems.
If 91 is a given structure, then the infinitary system TQ0(9l) consists of the following
axioms and rules of inference:

(i) All standard first-order axioms and rules of inference for the "boldface"
first-order logic 5£%.

(ii) All atomic and negated atomic sentences of &m which are true in 91.
(iii) A-rule: From <p(a) for all aeA, infer (Vx)<p(x).
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414 X. Game Quantification

If Q is a monotone quantifier on A, then the infinitary system T°°(9I, Q) has, in
addition to (i), (ii), and (iii), the following rules:

(iv) Q-rule: From cp(a) for all aeX, with X e Q, infer (Qx)(p(x).

(v) Q-rule\ From cp(a) for all a e l , with X GQ, infer (Qx)<p(x).

Notice that the V-rule is the same as the /4-rule, while the 3-rule is an axiom of
first-order logic, namely from (p(a), for some a, infer 3x<p{x).

4.2.14 Theorem. Let 91 be an acceptable structure and Q a monotone quantifier on A.

(i) A relation P on A is weakly representable in T°°(9I, Q) if and only if it is
Q-inductive.

(ii) A relation P on A is strongly representable in T°°(9l, Q) if and only if it is
Q-hy per elementary.

In particular, the inductive relations are exactly the weakly representable ones in
T°°(9I) and the hyper elementary relations are the strongly representable ones in
r°°(9i). n

Notice that if 91 is a countable, acceptable structure, then Svenonius theorem
(2.1.5), when combined with Theorems 4.2.3 and 4.2.14, yields a completeness result
about the infinitary system T°°(9I), namely that if a formula (p(Xl9..., Xn) of ££**
is universally valid, then TQ0(9l) h- cp(X1,..., Xn). This completeness theorem also
has a direct proof which uses the omitting types theorem. In this case, Theorems
4.2.3 and 4.2.14 can be used to give an alternative proof of Svenonius' theorem.
On the structure of arithmetic N = <co, + , •> these results become the classical
representability characterization of the 11} relations in co-logic.

Finally, we mention the characterizations of the Q-inductive relations in terms
of admissible sets with quantifiers. For simplicity, we restrict our attention to
acceptable structures of the form 91 = {A, G\ A, Ru . . . , Rn, cu . . . , ck} where A
is a transitive set.

If A and M are transitive sets, AeM, and Q is a quantifier on A, then we can

define what it means for M to be a Q#, Q*-admissible set. The crucial additional

axioms are the schemata of Q and Q-collection, where

(^-collection'. (Qx e A)(3y)cp -»(3w)(Qx e A)(3y e w)cp,

Q-collection: (Qx € A)(3y)cp -> (3w)(Qx e A)(3y e w)cp,

with cp a A0(Q, Q) formula. The detailed definitions are given in Moschovakis
[1974a] and Barwise [1978b], while the next theorem comes from Barwise-
Gandy-Moschovakis [1971] and Moschovakis [1974a].

4.2.15 Theorem. Let 91 = <v4, e [ A, Ru ..., Rn, cu . . . , ck> be an acceptable
structure such that A is a transitive set and let Qbe a quantifier on A. Put

S&*(Q) = p|{M: 91 e M and M isaQ*, Q*-admissible set}.
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4. Game Quantification and Local Definability Theory 415

Then 9I#(g) is a g # , Q*-admissible set, o(9l#(6)) = K*{Q) and moreover Jor any
relation P on A

(i) P is Q-inductive if and only ifP is ̂ ( Q , Q) on 9I#(Q)
(ii) P is Q-hyperelementary if and only ifPe 91 * (Q). D

At this point, we will collect all the characterizations of the Q-inductive relations
into one result which we now present

4.2.16 Theorem. Let 91 be an acceptable structure and Q a monotone quantifier on A.
IfP <= An is a relation on A, then the following are equivalent:

(i) P is explicitly definable by the next quantifier Q+; that is, there is a formula

<p(u, z) of£e*{Q) such that (Vz)(P(z) o Q + ucp(u, z)).

(ii) P is Q-inductive.

(iii) P is in the smallest Spector class on 91 closed under Q and Q.
(iv) P is semi-recursive in E # , FQ.
(v) P is weakly representable in T°°(9I, Q).

(vi) P is ^ ( Q , Q) on the smallest Q*, Q*-admissible set having 91 as element,
provided that the universe A of the structure 91 is transitive and e {A is
among the relations of^Si. D

The local results given above suggest certain generalizations of the global
results in Section 2. The approximation theory extends to formulas involving the
next quantifier; that is to say, it extends to expressions of the form Q + ucp(u, z) and
(Q + )uucp(u, z), where Q is an arbitrary monotone quantifier. However, in general,
Svenonius' theorem does not hold for an arbitrary quantifier Q—in fact, it is
actually false if Q is the open game quantifier ^. An interesting problem is to find
natural monotone quantifiers Q for which Theorem 2.1.5 goes through. This,
of course, is equivalent to the completeness theorem for the infinitary system
T°°(9l, Q).

43. Non-monotone Induction and Recursion in the
Game Quantifiers

4.3.1. A second-order relation on a set A is a relation cp{xu . . . , xn, S) with argu-
ments elements x l 9 . . . , xn of A and subsets S of a cartesian product Am for some
m < co. If <p(x1,..., xn, S) is a second-order relation on A and S c An, then we
iterate cp and, by induction on the ordinals, define a sequence of n-ary relations
{(p*}^ on A, where

xe< ") v Jx, \J<p*\
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416 X. Game Quantification

We put

<P™ = U <f

and call cp00 the set inductively defined by (p.
Notice that if q> is a monotone relation, then (xe<p*o <p(x, \Jtl<^ (p*)). This was

indeed the case for the second-order relations determined by positive formulas in
Section 4.1. Here we consider second-order relations which in general are non-
monotone.

If 91 is a structure and J* is a collection of second-order relations on A, then we
call a (first-order) relation P on A ^-(non-monotone) inductive in case there is a
second-order relation <p(u, v, S) in $F and a sequence a of elements of A such that

Let 91 be an acceptable structure, let ^ be the open game quantifier on A

V «xo> yo* • • • > *n-1> y*-1> e * ) k
« J

and let P(x, S) be a second-order relation on A. We say that P(x, S) is ^ j an 91 if
there is a formula q>(u, x, S) of «Sf̂  such that

P(x, S) <=> &u(p(u, x, 5).

We write

^ ! = the collection of all ^x second-order relations on 91.

Theorem 4.2.3 has a relativized second-order version which shows that the ^
relations are exactly the second-order (positive) inductive relations on 91. We will
state now a characterization of the ^ -(non-monotone) inductive relations on 91.
To do this, however, we need some notions from admissible set theory.

Let M and N be two admissible sets such that M c N. We say that M is N-
stable if M is a Z! -elementary submodel of N, i.e. if for every I j formula (p(x u ...,xn)
and every au...,ansM

<M, e> N ^(fl!,.. . , an) <=> <Af, £> 1= (p(a{,..., an).

We say that an admissible set M is <g^-reflecting if, for any formula q>(u, z) of set
theory and any sequence a = (au ..., an) of parameters from M, we have

<M, G> 1= &u(p(u, a) => there is some admissible set w G M
such that <w, e> t= ^ucp(u, a).
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4. Game Quantification and Local Definability Theory 417

Observe that by Svenonius' theorem (2.1.5) we have that a countable admissible
set is ^ -reflecting if and only if it is FI] -reflecting.

4.3.2 Theorem. An admissible set M is $ ^reflecting if and only if M is M+ stable,
where M+ is the smallest admissible set having M as element. •

This result is credited to Richter-Aczel [1974] for countable admissible sets.
Richter-Aczel [1974] and Moschovakis [1974b] characterized the non-monotone
inductions in the open game quantifier using ^ -reflecting admissible sets.

4.3.3 Theorem. Let 91 = (A, e [ A, Ru . . . , Rn, c l 5 . . . , ck} be an acceptable
structure such that A is a transitive set. A relation P on A is $ ^(non-monotone)
inductive if and only ifP is £x on the smallest admissible set which is <S ̂ reflecting and
contains 91 as an element. D

This theorem is an absolute version of the following:

4.3.4 Corollary. Let Y\\ be the class ofU[ second-order relations on the structure of
arithmetic N = <co, +, •>. Then a relation P on co is Yl\-(non-monotone) inductive
if and only if P is Ex on the smallest U\-reflecting admissible set. D

We next examine the non-monotone inductions in the closed game quantifier

A «*0, yo>-"> Xn-l9 )>„_!> G X)i
» J

on an acceptable structure 91.

We say that a second-order relation P(x, S) is &1 on 91 if there is a formula
cp(u, x, S) of <£* such that

P(x, S) o &u<p(u, x, S).

We put

^ ! = all ^ j second-order relations on 91.

Harrington-Moschovakis [1974] obtained the following characterization of the

non-monotone inductive relations in the quantifier $.

4.3.5 Theorem. Let 91 be an acceptable structure. Then a relation P on A is^x-
(non-monotone) inductive if and only if it is ^-(positive) inductive, and hence

# r IND = IND(9I, #) = ENV[E#, Ff ]. D
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418 X. Game Quantification

4.3.6 Corollary. Let 91 = (A, G {A, Rl9..., Rn9 cl9..., ck} be an acceptable

structure such that A is a transitive set. A relation PonA is % ̂ inductive if and only if

P is Et on the smallest ^ # , <§*-admissible set with 91 as an element. D

4.3.7. In the light of the preceding theorems, it is natural to ask how do the classes

^ r I N D and ^ - I N D compare. The main theorem of Aanderaa [1974] and the
pre-well-ordering property for the second-order (positive) inductive relations
(which is the relativized version of Theorem 4.2.5) immediately imply that

^ - I N D g # r I N D .

In other words, every (Sl -inductive relation is ^x-inductive, but the converse is

not true. Moreover, the closure ordinals of the ^ -inductive relations is much
bigger than the closure ordinal of the ^-inductive relations.

These results show that inductive definability provides ways to distinguish
between the open game quantifier and the closed game quantifier. Such distinctions
usually do not occur in model theory where a quantifier and its dual are treated on
an equal basis, and the properties of the dual are obtained from the ones of the
quantifier by involution.

Notice that the functionals F | and Ff do not differentiate the open game
quantifier from the closed game quantifier, since it is easy to see that on any
acceptable structure

ENV[E#, F j ] = IND(9I, 0) = ENV[E#, Ff ].

The recursion-theoretic difference between the quantifiers ^ and ^ is captured
by the functional FQ, which was introduced by Kolaitis [1980] and which, in

general, distinguishes the quantifier Q from its dual Q. The functional F£ is defined
by

O, if«2x)(p(x) = 0)

(p) = I 1, if p is total & (Qx)(p(x) i * 0),
otherwise

where p varies over the partial functions from A to a.

4.3.8 Theorem. Let 21 = {A, Ru ..., Rn, cu..., ck} be an acceptable structure.
Then

ENV[E#, F;] £ ENV[E#,

Moreover

ENV[E#, F£] £ ^i-IND £ # r IND = ENV[E#, F#]. D
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4.4. Game Quantification and Descriptive Set Theory

4.4.1. As mentioned in Section 4.1.6, the infinite string (3x0 \/y0 3xx V)̂  • • •) gives
rise to a monotone quantifier (3V)* on the set A03 of infinite sequences from A,
where

(3V)* = {X ^ A03: (3x0 Vy0 3xx ^y1 • • -)X(x0, y0, xl9 yl9 ...)}.

If A = co, then the quantifier (3V)* is usually denoted by O1 or simply by O and
is called the game quantifier on co03, while if A = R = cow, then (3V)* is the game
quantifier D2 on the set R™ of infinite sequences of reals. The properties of the
quantifier O have been studied in depth by descriptive set theorists. We refer the
reader to the book Moschovakis [1980] for a systematic treatment of O and its uses
in definability theory. Here we will restrict ourselves to stating a sample of the
results on the game quantifiersO and O2, results which are related to topics covered
earlier in this chapter.

Assume that F is a collection of relations on integers and reals; that is, if P e F,
then P is a relation of the form P(xl9..., xn, a l 5 . . . , am), where xt e co for 1 < i < n
and (Xj G of* for 1 < j < m. If we quantify every relation in F by O, we then obtain
the class

OF = {OaP(x, a, p): P(xl9..., xH9 a, pl9..., j8J is a relation in F}.

In a similar way, we can define the class O2F for a collection F of relations on
integers, reals and infinite sequences of reals.

Some of the deeper results in descriptive set theory depend on transfer theorems
which, in effect, assert that, under certain assumptions, properties of a class F transfer
to the class OF or to the class O2F. In proving such transfer theorems, we usually
need certain determinacy theorems or hypotheses about the class F.

We say that a relation P on A03 is determined if Player I or Player II wins the
game G(3V, P) associated with P. Of course, for such relations P we have that

i(3x0 Vyo 3xi Vyi • • -)P(xo, ^o? Xi9 y±9...)

o (Vx 0 3yo\/xl 3yl • • •) -iP(xO9yO9xl9yl9...).

We say that determinacy holds for a class F of relations on Aw, and we write
Det(F), if every relation in F is determined.

Martin [1975] established that every Borel set of reals is determined, or
equivalently Det(Aj). This is an optimal result in ZFC, since it is well known that
Det(Z}) is not provable in ZFC. Much of the current research in descriptive set
theory is carried on under the assumption that certain definable sets of reals are
determined. The hypothesis of projective determinacy (PD) asserts that every
projective set of reals is determined. The projective sets are the subsets of the reals
which are definable by first-order formulas with parameters over the structure
U = (co™ u co, co, +, •, Ap} of analysis. They are further classified as S^ or 11,5 s e t s

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.015
https://www.cambridge.org/core


420 X. Game Quantification

depending on the number of alternations of quantifiers in the defining formula
starting respectively with an existential or a universal quantifier. If no parameters
are allowed, then we have the "lightface" classes of S* and n* sets of reals.

We next state a transfer theorem for the pre-well-ordering property, a result that
is due to Moschovakis, and then discuss some of its applications in descriptive set
theory.

4.4.2 Theorem. Let T be a class of relations on integers and reals which contains all
recursive relations and is closed under finite unions, finite intersections, and sub-
stitutions by recursive functions. IfT has the pre-well-ordering property and Det(F)
holds, then the class OT also has the pre-well-ordering property. D

In order to give concrete applications of this transfer theorem, we first need the
following definition. We say that a relation P(xl9..., xn, a l 9 . . . , am) on integers
and reals is E° if there is a recursive relation R such that

P(x, «! , . . . , am)

• • • C>lk)R(x9 lu..., lk9 a ^ ) , . . . , am(lk)\

where all the quantifiers vary over the integers, and if a e a/° and k e a>, then ot(k) —
<oc(0),...,oc(/c-l)>.

It is quite easy to verify that for each k > 1 the class of all S£ relations is closed
under finite unions, finite intersections, recursive substitutions, and has the pre-
well-ordering property. Martin's Borel determinacy and the transfer theorem of
this section (4.4.2) now immediately imply the following:

4.4.3 Corollary. The class OZ£ has the pre-well-ordering property, where k > 1.
Moreover, each OE£ is a Spector class. D

The classical normal form for the U\ relations on the integers and Theorem 2.1.5,
in effect, state that

ox? = nj.

Solovay has obtained the characterization of the class 0 1 ° in terms of non-
monotone inductive definitions and this we present in

4.4.4 Theorem. Let N = <co, -f, •> be the structure of arithmetic and let £} be the
collection ofall?*\ second-order relations on co. Then a relation P of integers and reals
in OX2 if and only if it is ̂ {-{non-monotone) inductive', that is to say,

2 l D
In another direction, we first notice that

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.015
https://www.cambridge.org/core


4. Game Quantification and Local Definability Theory 421

for any n = 0, 1, 2 , . . . . Moreover, using the hypothesis of projective determinacy
(PD), it is easy to see that

for any n = 1, 2 , . . . .
The computations given above when combined with the transfer theorem (4.4.2)

give the next result, a result which was first proved directly by Martin and Mos-
chovakis.

4.4.5 Theorem. Assuming projective determinacy (PD), the classes ri2n+1 and
I-2K + 2 have the pre-well-ordering property for all n = 0, 1, 2 , . . . . In fact, n ^ + i
and ^in + i are Spector classes for all n = 0, 1, 2 , . . . . D

This result is part of the periodicity picture for the projective sets, assuming
projective determinacy. For more on the periodicity phenomena as well as on
transfer theorems involving much stronger properties, we again refer the reader to
Moschovakis [1980].

Recently work has been done on the game quantifier D2 on the set R03 of
infinite sequences of reals. This includes transfer theorems of the type we have
described here as well as a very useful characterization of the E2 in L(U) sets of reals.

The inner model L(R) is the smallest model of ZF which contains the structure
R = <cow u co, co, +, •, Ap} of analysis and all the ordinals as elements. If P is a
relation on integers and reals, we say that P is X2 in L(R) if there is a formula
cp(x, a, X) of the first-order language ^u of the structure R such that

P(x, a) o (in L(R) we have that R \= (3X)cp(x, a, X))

where, of course, the existential quantifier (3X) ranges over subsets of reals.
In the terminology of Sections 1 and 2 of this chapter, the Sf in L(R) sets of reals

are exactly the sets of reals definable in the sense of L(R) by Z} second-order
formulas of the structure R of analysis.

We will end this chapter with a theorem of Martin and Steel. This result can be
found in Martin-Moschovakis-Steel [1982].

4.4.6 Theorem. A relation P on integers and reals is Z2 in L(R) if and only if it is
O2Yl{; that is to say, if and only if there is a H{ relation S such that

P(x, a) o(3p0 Vy0 Ipi V7l • • .)S(5c, a, <jS0, 7o, Pu 7i, • • •»,

where the quantifiers in the infinite string range over the reals. •

The above result provides a representation of the Ef in L(R) sets of reals in
terms of the game quantifier O2 applied to a very simple matrix. This representa-
tion, together with appropriate transfer theorems and determinacy hypotheses,
makes it possible to obtain important structural properties for the class 1L\ in L(R).

Acknowledgements. The author is indebted to R. O. Gandy and A. S. Kechris for
several useful comments and suggestions on an earlier draft of this chapter.
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Chapter XI

Applications to Algebra

by P. C. EKLOF

In contrast to the situation in first-order finitary logic, the applications of infinitary
logic to algebra are so scattered throughout the literature that it is extremely
difficult to discern any coherent pattern. Nevertheless, there are some interesting
applications; and, in this chapter, we .will survey a few of them. This survey will
primarily be for the benefit of the non-specialist. That being so, proofs will not
always be given in detail, since our aim is simply to present enough background
to state a result, indicate its significance, and explain how infinitary logic enters
into the statement of the result and/or its proof.

The separate sections are organized by algebraic subject matter and are
essentially independent of each other. The first four sections involve i ? ^ , while
the fifth and sixth make use of £ff

a0K for arbitrary K. The last section is simply a
collection of references to other relevant literature.

The first two sections of our survey deal with applications of logic to algebra
in the purest sense that results expressible in algebraic terms are proved by logical
means. The first section's concern—arguably the most important application to
date of infinitary model theory to algebra—is the construction by Macintyre and
Shelah of non-isomorphic universal locally finite groups of the same cardinality.
In the second section we examine the use by Baldwin of some profound results
in the model theory of ^Wl(a to count the number of subdirectly irreducible
algebras in a variety. The remaining sections involve applications in which logical
notions are employed in the expression as well as in the proof of a result so as to
provide new insight into an algebraic notion or problem.

Sections 3, 4 and 5 make use of the notion of infinitary equivalence. In Section
3, the back-and-forth characterization of ££^ equivalence is used to formulate
precisely and prove the heuristic principle in algebraic geometry known as
Lefschetz's principle. Classification theorems in abelian group theory are studied
in Section 4 to see what information can be gained from their proofs about the
if ^-equivalence of abelian groups. Section 5 gives a characterization of the
algebras in a variety which are S£^-equivalent to a free algebra, and the question
of the existence of non-free such algebras is studied, in general, and specifically in
the variety of abelian groups. Finally, Section 6 presents both Hodges' formaliza-
tion of the notion of a concrete (or effective) construction and an examination of
his use of it in proving that certain algebraic constructions are not concrete.

I am deeply appreciative to the authors of the other chapters of this volume
for their help. And, to Wilfred Hodges, Carol Jacoby, David Kueker, and Alan
Mekler, I extend my special thanks.
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424 XL Applications to Algebra

1. Universal Locally Finite Groups

Using the model-theory of 5£^^ Macintyre and Shelah [1976] (to be denoted
hereafter simply as [M-S]) answered questions raised by Kegel and Wehrfritz
[1973] about the groups in the title.

Recall that a group is locally finite if every finitely-generated subgroup is
finite. The following class of groups is precisely the class of existentially closed
locally finite groups and was first studied by Hall [1959].

1.1 Definition. A group G is universal locally finite (or G e ULF) if it is locally
finite and:

(i) every finite group G can be embedded into G; and
(ii) any isomorphism between finite subgroups of G is induced by an inner

automorphism of G (see Kegel-Wehrfritz [1973, pp. 177 f]).

Hall has shown that any infinite locally finite group can be embedded in a
ULF group of the same cardinality, and that any two countable ULF groups are
isomorphic. In fact, the latter result is easily proved by a back-and-forth argument
which will show that any two ULF groups are if ^-equivalent and that if G ^ H
belong to ULF, then G<o0(0H.

Kegel and Wehrfitz [1973, Chapter 6] posed the following questions:

1.2 Questions, (a) Are any two ULF groups of the same cardinality isomorphic!
If not, are there 2K ULF groups of cardinality K!

(b) Does every ULF group of cardinality K > Kx contain an isomorphic copy
of every locally finite group of cardinality < K!

The key to the results of Macintyre and Shelah is the observation that ULF
is elementary in S£miiO. Indeed, for each m > 1 let {<j9m,n(^i,.. •, vm): n e co} be an
enumeration of all formulas of JSf ̂ ^ which describe the multiplication table of a
set of m generators of a finite group. Then a group G belongs to ULF iff G \= o
where a is the conjunction of the following sentences:

m n

[that is, G is locally finite];

(1) / \ / \ 3vx . . . vm(pm^n(vi . . . v m )
m n

[that is, G satisfies Definition l.l(i)]; and

(2) A A V u l • • • "m VMi . . . Um\ ((pm,n(v1 . . . Vm) A (pm,n(u1 . . . Um))
m n L

i= 1

[that is, G satisfies Definition l.l(ii)].
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1. Universal Locally Finite Groups 425

Since o has models of all infinite cardinalities, the method of indiscernibles (see
Keisler [1971a, Section 13]) implies the following:

1.3 Theorem. For every K > Kj there is a model GK of a of cardinality K such that
for every countable A c GK,GK has only countably many A-types. D

We will now use the following simple group-theoretic observation.

1.4 Lemma. For every infinite cardinal K, there is a locally finite group HK of
cardinality K+ and a subset AK of HK of cardinality K such that HK realizes at least
K+ quantifier-free AK types.

Proof. Let G be a finite group with two elements a and /? such that a/? # /fa. Then
GK, the direct product of K copies of G, is locally finite (the reader is referred to
[M-S, Lemma l(b)]). Let HK be the subgroup of G generated by AK u Y, where AK

consists of all functions fv e GK (v e K% where

e, i f f i ^ v ,
a, if/i = v,

and Y is a subset of {e9 f}}K of cardinality K + . Then any two distinct elements of Y
have different quantifier-free types over AK; in fact, if g, he Y, g(v) = e, and h(v) = /?,
then g satisfies xfv = fvx, but h does not. D

We can now proceed to prove (Refer to Questions 1.2)

1.5 Theorem (Macintyre and Shelah [1976]). (i) For any K > Kj there are 2K

groups in ULF of cardinality K.
(ii) For any K > Kt there is a locally finite group HK of cardinality K and a

group G e ULF of cardinality K such that HK is not embeddable in GK.

Proof. The HK of Lemma 1.4 is clearly not embeddable in the GK of Theorem 1.3,
so (ii) holds. Since HK is embeddable in some ULF group of cardinality K, there
are clearly at least two non-isomorphic ULF groups of cardinality K. In order to
obtain 2K different ULF groups, we appeal to a theorem of Shelah [1972a, Theorem
2.6] which says that if a sentence o of !£x+ia has for every cardinal K a model 93
with a subset A of cardinality K such that S realizes more than K quantifier-free
,4-types, then for all K > I a has 2K models of cardinality K. (The reader is also
referred to Hodges [1984] for a proof of (i) in a more general context). •

These results give rise to other questions which have been posed in [M-S].

1.2. Questions (continued) (c) Which locally finite groups H can be embedded in all
ULF groups of cardinality > | i / |? (Such groups are called inevitable).

(d) For K > Kj is there a universal ULF group of cardinality K! That is, is
there one into which can be embedded every locally finite group of cardinality < /c?

Hickin [1978] proved that no locally finite group of cardinality K2 is inevitable.
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426 XI. Applications to Algebra

In fact, he constructed a family of 2*1 ULF groups of cardinality Kx such that no
uncountable subgroup is embeddable in any two of them. Giorgetta and Shelah
[1984] obtained the same result with Kx replaced by any K such that Ko < K <
2Ko. Question (d) was answered in the negative (by Grossberg-Shelah [1983])
for K = 2Ko; and, assuming GCH, for all K of uncountable cofinality. The proofs
of the results mentioned above do not, however, use infinitary logic.

Problems similar to Questions 1.2(a) and (b) have been studied for alge-
braically closed groups and for skew fields. Here the statements of some of the
results use the notion of if ^-equivalence, although the proofs themselves use
specific algebraic constructions. For example, we have

1.6 Theorem (Shelah-Ziegler [1979]). Let A be a countable algebraically closed
group. Let K be an uncountable cardinal.

(i) There are 2K algebraically closed groups of cardinality K which are ^^co-
equivalent to A.

(ii) There is an algebraically closed group of cardinality K which is J^w-
equivalent to A and which contains no uncountable commutative subgroup. D

See also Macintyre [1976], Ziegler [1980], and Giorgetta-Shelah [1984].

2. Subdirectly Irreducible Algebras

Baldwin [1980] observed that some general theorems of the model theory of
J5?Wia) have applications to counting the number of subdirectly irreducible algebras
in a residually small variety.

Recall that a variety is a class V of algebras (all structures for the same
vocabulary T, consisting only of function symbols) which is closed under the forma-
tion of products, subalgebras and homomorphic images. A fundamental theorem
of Birkhoff says that V is a variety if and only if it is the class of models of a set
of equations, Z. In the following discussion we will assume that the vocabulary t
of V is countable.

2.1 Definition. An algebra 91 is called subdirectly irreducible if whenever 91 is
embeddable in a product of algebras, it is also embeddable in one of the factors.
This, of course, is equivalent to requiring that every family 3F of homomorphisms
on 91 which separates points of 91—that is, for all a ^ b in 913/ e & such that
f(a) z£ /(fo)—contains a one-one homomorphism. A variety V is residually
small if the class of subdirectly irreducible algebras in V forms a set, or, equivalently,
if there is an upper bound to the size of subdirectly irreducible algebras in V.
V is residually countable if every subdirectly irreducible algebra in V is countable.

Taylor [1972] has shown that if a variety V is residually small then every
subdirectly irreducible algebra in V has cardinality < (2*°) + .
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2. Subdirectly Irreducible Algebras 427

2.2 Definition. A congruence on 91 is a subset 6 ^ A x A such that there is a
homomorphism / on 91 such that 6 = {(a, b) e A x A: f(a) = f(b)}. 6 is non-
trivial, if 6 # the diagonal on A If (c, d) e ^ x A, the principal congruence gen-
erated by (c, d\ which we denote 9(c, d), is the smallest congruence containing (c, d).

Note that (a, b) belongs to 6(c, d) if and only if for every homomorphism /
on 91 such that/(c) = f(d) we have/(a) = f(b). Thus, by the compactness theorem
of finitary logic, we have:

2.3 Lemma. For any a, b,c,de 91, (a, b) e 9(c, d) iff there is a positive (existential)
formula cp(x, y, z, u) e if wca such that

(*) f= Vx, z, w[cp(x, x, z,u) -+ z = u]

and 911= cp[c, d, a,b\ D

Moreover, as an immediate consequence of the definitions we have:

2.4 Lemma. An algebra 91 is subdirectly irreducible iff there exists a # bin A such
that for every non-trivial congruence 6 on 91, (a, b)s6 iff there exists a ^ bin A such
that for every c ^ din A, (a, b) e 6(c, d). D

Using these results, we can now establish

2.5 Proposition. For any variety V, there is a sentence a e JSfWia, such that 91 f= a
iffS& is a subdirectly irreducible algebra in V.

Proof Let G> be the set of all positive existential formulas of if ww satisfying (*)
in Lemma 2.3. Let a be the conjunction of the defining equations of V and the
following sentence:

3z, u Vx, y\z # u A lx ^ y-+ \f cp(x, y, z, u)) .

By Lemmas 2.3 and 2.4, a has the desired property. D

We can now apply the model-theory of i?WlC0.

2.6 Theorem (Harnik-Makkai [1977]). If a is a sentence of J^WlC0 and a has at
least Xx and fewer than 2N° countable models, then o has a model of power Kx. •

2.7 Corollary (Baldwin [1980]). / / V is residually countable, then V has either
< Ko or exactly 2K° subdirectly irreducible algebras.

Proof. This result follows immediately from Proposition 2.5 and Theorem 2.6.
Baldwin [1980] has noted that all the possibilities for the number of subdirectly
irreducible varieties do occur. D
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The following theorem was proven by Shelah [1975c] under the assumption
that V = L and more recently (Shelah [1983a, b]) assuming only GCH.

2.8 Theorem (G.C.H.). If o is a sentence of ^m^ which has at least one but fewer
than 2Kl models of power Kj then it has a model of power K2. D

2.9 Corollary (Baldwin [1980]) (G.C.H.). / / V is residually small and it has a sub-
directly irreducible algebra of power K: then it has 2Nl subdirectly irreducible
algebras of power Kx.

Proof. As we remarked after the statement of Definition 2.1, Taylor has shown that
a residually small variety has no subdirectly irreducible algebra of power (2Xo)+ =
K2. D

Remarks, (i) Theorems 2.6 and 2.8 can also be used in an analogous way to count
the number of simple algebras in certain varieties, because the simple algebras
are axiomatized by the following sentence of JSfWl0> (where 0 is as in the proof of
Proposition 2.5):

Vx, y Vz, u \(x # y) -> V <P(x, )', z, u) V
L we® J

(ii) Mekler [1980b] uses the idea of Lemma 2.3 to prove that the class, 31,
of residually finite groups is axiomatizable in S£m^. It follows immediately from
the downward Lowenheim-Skolem theorem for J5?Wl£0 that 3t is of countable
character. That is, a group belongs to 01 iff every countable subgroup does. (This
result was first proved by B. H. Neumann.)

3. Lefschetz's Principle

Using notions from category theory and the model theory of i ? ^ , Eklof [1973]
gave a simple and yet comprehensive formalization of Lefschetz's principle from
algebraic geometry. The key idea was inspired by the work of Feferman [1972]
and basically asserts that certain simply characterized functors preserve S£ ̂ w-
equivalence.

Following Weil [1962], we will call K a universal domain if K is an algebraically
closed field of infinite transcendence degree over its prime field. We recall that
the prime field of K is the smallest field contained in K and that it is isomorphic
to Q (respectively the field with p elements) if char K, the characteristic of K, is 0
(respectively the prime p).
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3. Lefschetz's Principle 429

In his foundational work, Weil [1962, p. 306] gave the following explanation
of the heuristic principle attributed to S. Lefschetz:

"For a given value of the characteristic p[= zero or a prime], every result involving
only a finite number of points and varieties, which has been proved for some choice of
the universal domain remains valid without restriction; there is but one algebraic
geometry of characteristic p for each value of p, not one algebraic geometry for each
universal domain."

Seidenberg [1958] has rightly pointed out that Lefschetz had in mind a stronger
principle: That algebraic geometry is the same for any two algebraically closed
ground fields—not necessarily of infinite transcendence degree—having the same
characteristic. We will not deal with this stronger principle at all. The reader should
consult Barwise-Eklof [1969, Section 3] for historical remarks on formalizations
of Lefschefz's principle.

Notice that two universal domains are !£ ̂ -equivalent if and only if they have
the same characteristic. Let tfl be the category of universal domains. The nature
of the formalization of Lefschetz's principle will be that certain functors on °U into
a category <g of algebras preserve if ^-equivalence; any particular instance of
Lefschetz's principle will then follow by checking that the algebraic-geometric
result in question is a statement in £?„>„ about structures constructed by an
appropriate functor.

We shall fix a vocabulary x consisting of a countable set of function symbols
but no relation symbols. Let Alg[t] be the category of all t-structures and all
x-homomorphisms.

3.1 Definition. A subcategory # of Alg[x] will be called a quasivariety if it is a
full subcategory (that is, if it contains all t-homomorphisms between objects in
^) and the class of objects of # is axiomatizable by a set of strict universal Horn
sentences, that is, a set of sentences of the form

Vx1...V*ll[0o A--- A f l ^ - G J ,

where each 6{ is atomic.

Thus defined, the class of objects of # is closed under products and under
substructures. Clearly any variety is a quasivariety. In order to characterize the
quasivarieties, we recall an important notion from category theory.

3.2 Definition. Let K > co. D = (/, > ) is a K-directed set if it is a partially ordered
set such that for every subset X c D of cardinality < K, there exists; e / such that
i < j for all i e X. A diagram T) over D (in Alg[t]) is a family of i-algebras 21,- for
each i e / and T-homomorphisms <ptj: % -• 21, for each i <jinl such that cpik =
Vjk ° (Pij if i < j < k. The K-direct limit of a diagram T> over a /c-directed set D is
a structure 21 together with morphisms ^f: 2lf -• 21 for each i e / such that given
any 93 in Alg[t] and any family of morphisms 6t: 2lf -• S(i e / ) such that for all
i <j, 0j ° <Pij = 0i9 there is exactly one morphism 8: 21 -* 95 such that for all
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If K is co, we omit the reference to it, and simply say direct limit instead of
co-direct limit. It is a standard result of category theory that the direct limit is
unique up to isomorphism and that in Alg[x] it may be constructed as the disjoint
union of the % modulo the equivalence relation generated by all identities of the
form y = (Pij(x). Observe that for the latter result, it is necessary that D be directed.
We shall always use the term direct limit in this sense of "colimit over a directed
set" (see Mitchell [1965, pp. 44-49]).

Mal'cev [1973, Section 11] characterized the quasivarieties %> in Alg[t] as the
full subcategories which are closed under isomorphism, substructure, and direct
limits.

We will be interested in functors which preserve direct limits. The following
result gives a large class of such functors (see Feferman [1972, Lemma 4]).

3.3 Lemma. Let F'.^Q^^^ be a functor, where ^0 and c€1 are quasivarieties.
Suppose that:

(i) F preserves monomorphisms; and
(ii) for every SHE^Q and every finite subset X c: F(9I) there exists a finitely

generated substructure <H1 o/9I such that X c: F^CS^] , where e: <Hl -> 91
is the inclusion morphism.

Then F preserves direct limits. D

Feferman proved that functors satisfying properties (i) and (ii) of Lemma 3.3—
he called them co-local functors—preserve ^^-equivalence and noted that this
(and its generalizations for cardinals K > OJ) imply various preservation results for
algebraic constructions (see Chapter IX, Sections 4.5.2 and 4.5.3). G. Sabbagh
suggested means for obtaining some other preservation results by weakening the
hypotheses given in (i) and (ii) above (see Eklof [1975a, Section 3]).

We can now state

3.4 Lefschetz's Principle (Formalized). Let <g be a quasivariety and F\°U -><€
a functor which preserves direct limits. For any universal domains Kx and K2, if
char Kx = char K2, then F(Kt) =o0(OF(K2).

Proof. Kt is the direct limit of the family Sfx of all of its algebraically closed sub-
fields of finite transcendence degree (the morphisms are inclusions between sub-
fields). Thus, F(Kt) is the direct limit of the F(k\ k e Sfh relative to certain mor-
phisms \j/k\ F(k) -> F(Kt). Let F(k) denote the image of F(k) under \j/k. It is a sub-
algebra of F(Kt). If/: /q -> fc2

 ls a n isomorphism between kx e Sf± and k2 e 5^,
we will show that the isomorphism F(f): F(kx) -> F(k2) induces an isomorphism
/ between F(/cx) and F(k2) by means of the rule f(il/kl(

x)) — *l/k2(F(f)(x))> f°r

x e F(/Ci). It suffices to verify that if \l/kl(x) = 0, then il/k2(F(f)(x)) = 0. But
^kl(x) = 0 iff there is a k\ ^ /q in 5^ such that if ex: /cx -• k\ is the inclusion map,
F{ex)(x) = 0. In that case, there is a k'2 3 k2 and an isomorphism/': k\ -* k2 ex-
tending / such that if e2: k2 -* k'2 is inclusion, / ' ° ex = e2 ° / . Hence, 0 =
F(DF(ei)(x) = F(e2)F(f)(x), and so i^k2(F(f)(x)) = 0.
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4. Abelian Groups 431

Now we appeal to the back-and-forth criterion for j£? ̂ -equivalence (Refer to
Chapter IX, Theorem 4.3.1 or to Chapter XIII, Theorem 2.1.1). Indeed, the family,
I, of all / , as / ranges over all isomorphisms from an element of £fx to an element
of y2, is a family of partial isomorphisms such that I: F(K^) ~£ F(K2). U

Let us now consider as an example of a use of Lefschetz's principle, the paper
of Murthy-Swan [1976]. In this study, Lefschetz's principle is used to carry over
a result on uncountable universal domains to the case of countable universal
domains. It is striking that the methods used in this paper to justify the appeal to
Lefschetz's principle closely mirror the considerations of our general theorem. (In
fact, the authors specifically noted this; see pp. 141 f). Murthy and Swan proved
that the key constructions they were studying are functors on ^U (into Ab, the
category of abelian groups, or into Sets, the category of sets) which preserve direct
limits (Murthy-Swan [1976, Lemma 5.8]). They then used this result to show
that certain properties of the objects constructed by these functors are independent
of the choice of universal domain (the reader is referred to Murthy-Swan [1976,
pp. 142-143]). For example, one of the properties that concerned them is that a
certain abelian group SA0(X )—the value at K e °U of a functor on tft which
preserves direct limits—is a divisible group of infinite rank. They make an ad hoc
argument, using the limit preserving property of the functor, to show that if
SA0(XKl) has this property for some (uncountable) K1 in ^ , then SA0(XK2) has
the property for all (including countable) K2 on % of the same characteristic.
From our point of view, the property of being a divisible abelian group of infinite
rank is expressible in J^7^, so by Theorem 3.4, char Ki = char K2 implies that
SA0(XKl) = ^ SA0(XK2). And hence it follows that SA0(XKl) is divisible of
infinite rank iff SA0(XK2) is.

Another example of Lefschetz's principle, given by Weil [1962], is worked
out in detail in Eklof [1973].

4. Abelian Groups

Classification theorems in abelian group theory, due to Ulm and Warfield, were
generalized by Barwise-Eklof [1970] and Jacoby [1980], respectively, to classify
a larger class of groups up to <£^-equivalence. This suggests that the notion of
potential isomorphism, which has an algebraic formulation in terms of partial
isomorphisms, is a natural one to employ in the study of abelian groups.

For simplicity of exposition—especially in the case of mixed groups—we will
restrict attention to the local case. That is, we will fix a prime p and consider
abelian groups A which are Z^-modules, where Tp is the ring of rationals with
denominators prime to p. This means that every element of A is uniquely divisible
by every prime different from p. From now on, we will use the word "module"
to mean Zp-module. A torsion module is then a p-group (i.e., an abelian group A
such that for all ae A, there exists n e co such that pna = 0).
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432 XI. Applications to Algebra

For any module A and ordinal a, define pM by induction as follows: p°A = A;
P*+1 = P(P*A) = {px\xepaA}\paA = p)a<(TpM, if a is a limit ordinal. For any
a e A, the height, h(a\ of a is the unique a such that a e paA — pa+ XA, if it exists, or
h(a) = oo, otherwise. It is easy to see that there exists o <\A\+ such that paA —
pa+1A = pxA, for all T > a. Then p°A, denoted Ad, is a divisible module and a
direct summand of A. The structure of a divisible module is easily explicated: it is
a direct sum of copies of Q, the rationals, and of Z(p°°), the p-torsion component
of Q/Z. Thus, the classification problem easily reduces to the problem of classifying
reduced modules; that is, modules A such that Ad = {0}.

Define p*A\_p\ = {xepaA\px = 0}; this is a vector space over GF(p), the
field of order p. The dimension of the quotient space pM[p]/pa+ M[p] is called the
ath Ulm invariant of A and is denoted by /(a, ,4). Let/(a, 4) = /(a, ,4) if /(a, A)
is finite, and/(a, A) = oo otherwise.

Ulm's theorem asserts that two countable reduced torsion modules A and B
are isomorphic iff /(a, X) = /(a, B) for all a < a^. This result is not true for
arbitrary uncountable torsion modules, although the largest class of torsion
modules for which the theorem holds—the class of totally projective modules-
has been given a number of interesting characterizations (see for example, Fuchs
[1973, Chapter XII]). However, the back-and-forth method of proof (see Chapter
IX, Theorem 4.3.3) does yield a classification of arbitrary torsion modules up to
$£^-equivalence. More precisely, we have

4.1 Theorem (Barwise-Eklof [1970]). For any cardinal K and any reduced torsion
modules A and B, A is $£'^-equivalent to B ifff((x, A) = /(a, B)for all a < K. D

For an exposition of the proof of Theorem 4.1 the reader should see Barwise
[1973b]. The proof shows that every torsion module is i?^-equivalent to a totally
projective module. Barwise-Eklof [1970] also uses the back-and-forth method to
classify equivalence with respect to certain subclasses of sentences of J^K(0. For
instance, if we let f(B) = the rank of E, if finite and f(B) = oo, otherwise, we then
have

4.2 Theorem (Barwise-Eklof). / / A and B are reduced torsion modules then every
existential sentence ofS£ KiO true in A is true in B iff for all a < K, f{paA) < r(p'xB). U

For countable groups (and, even more generally, by a simple argument, for
direct sums of countable groups) this yielded the following result—a result which
was apparently not previously known.

4.3 Corollary. / / A and B are countable torsion modules then A is embeddable in
B iff rank(pM) < rank(pa£)/or all a < w,. D

This result was later extended, by different means, to all totally-projective
modules by May-Toubassi [1977].
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4. Abelian Groups 433

Remark. The Barwise-Eklof method is employed in Eklof [1977c, Theorem 1.6]
to give an J/^^-extension of a theorem of Kaplansky characterizing fully in-
variant subgroups of a countable p-group; the extended theorem characterizes
definable subgroups of arbitrary p-groups.

Warfield [1981] defined a class of modules whose torsion members were
precisely the totally projective modules and which included many non-trivial
mixed modules, these latter being modules that are not a direct sum of a torsion
and a torsion-free module. The modules in this class have come to be called
Warfield modules and are characterized by the property of being summands of
simply presented modules, where a simply presented module is a module that can
be generated by a set of elements subject only to defining relations of the form
pnx = 0 or pmx = y.

A Warfield module M has a decomposition basis, such a basis being a linearly
independent subset X such that, if [X] denotes the submodule generated by
X, M/[Z] is torsion, and for all

/ n \

x 0 , • • •, xn e X, r 0 , . . . , rn e Zp, hi £ rfxf = min{/*(>;xt): i < n}.
V=o /

In fact, a countable module is a Warfield module if and only if it has a decomposi-
tion basis. For uncountable modules, this is not the case, although the Warfield
modules can be characterized as those which have a certain kind of decomposition
basis X called nice, such that M/[X] is a totally projective torsion module (the
reader is referred to Hunter-Richman-Walker [1977]).

Warfield classified the Warfield modules by use of new invariants g(e, M)
defined as follow. If x e M, the Ulm sequence of x, denoted U(x) is the sequence
(h(plx))ie(O. Two Ulm sequences (oCi)ie(a and (Pi)ie(O are called equivalent if there
are positive integers n and m such that for all i e co, oci + n = /?I+m. Thus, U(x) and
U(y) are equivalent if there exists r,seZp such that rx = sy. If e is an equivalence
class of Ulm sequences, and M is a module with a decomposition basis X, define
g(e, M) = cardinality of {xe X: U(x) e e}. Warfield showed that this is an in-
variant of M and that two reduced Warfield modules M and N are isomorphic iff
for all ordinals a and all classes e,f(a, M) = /(a, N) and g(e, M) = g(e, N).

Jacoby [1980] extended Warfield's methods to give a classification result for
e. Let g(e, M) = g(e, M) if finite, and equal to oo, otherwise.

4.4 Theorem (Jacoby). / / M and N are reduced modules with decomposition bases,
then M^^N iff for all a and all e,f(a, M) = /(a, N) and g(e, M) = g(e, N). U

Now the class of (non-reduced as well as reduced) modules classified (up to
$£^-equivalence) using Theorem 4.1 is an elementary class in j£?O0(O: It is precisely
the class of all torsion modules. But the class of all modules with decomposition
bases is not even closed under if ^-equivalence. Jacoby [1980] defined in a natural
algebraic way a larger class of modules closed under <£^-equivalence (but not
ECooo) which can be classified up to J^^-equivalence using Theorem 4.4. But,
surprisingly enough, she was able to show that no class of modules that generalizes
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434 XL Applications to Algebra

the class of modules with decomposition bases in any reasonable way is an ele-
mentary class in i f ^ . The proof uses her classification theorem for modules with
decomposition bases. (Jacoby [1980] contains the proof in the global case).

4.5 Theorem. Let ^ be a class of modules satisfying:

(i) every Warfield module is in <6\ and
(ii) if A e # , then every pair of elements of A is contained in a submodule of A

which has a decomposition basis.

Then %> is not an elementary class in 5£^(a. D

4.6 Corollary. The class, <#, of all modules which are <£ ̂ -equivalent to a module
with a decomposition basis is not an elementary class in <£'O0(o.

Proof. Clearly # satisfies (i) of Theorem 4.5. Moreover, since every module with a
decomposition basis obviously satisfies (ii) of the Theorem 4.5, we can use the back-
and-forth method to show that every module in ^ satisfies (ii) of Theorem 4.5. D

5. Almost-Free Algebras

Algebras which are J^ ̂ -equivalent to a free algebra in an arbitrary variety have
been studied by Kueker, Shelah, Mekler, and Eklof among others.

Fix a variety V in a countable vocabulary (see Section 2). We will say that
A 6 V is V-free (on X) if there is a subset X c= A such that for any B e V and any
set map/ : X -+ B, there is one and only one homomorphism/: A -> B such that
/ [ X = f. X is said to be a set of free generators for A. Since V will be fixed, we
will simply say/ree instead of F-free.

If B is a subalgebra of C, we say B is a free factor of C (written B \ C) if B and
C have sets of free generators, X and Y, respectively, such that X c Y. In this
case, every set of free generators of B extends to a set of free generators of C. If
B\C, we say C has infinite rank over B, if there are X, Y as above such that in
addition Y — X is finite.

It follows easily from the back-and-forth criterion (see Chapter IX, Theorem
4.3.3) that if K > wu any two free algebras of cardinality > K are if ^-equivalent.
Define A to be !£ ̂ -free, if A is 5£^-equivalent to a free algebra. The back-and-
forth criterion implies that A is if 00K+-free iff A is the /c+-direct limit of a set S
of free subalgebras of cardinality /c, where the maps are inclusions, such that S is
co-directed under |(see Definition 3.2). The latter condition means that if G o , . . . ,
Gn e S, then there is an H e S such that for all i < n, G{ \ H.

Surprisingly enough, Kueker [1973] has shown that J^^- f ree algebras
satisfy the following stronger condition. The proof uses game-theoretic methods
(see Kueker [1981]).

5.1 Theorem (Kueker). A is ^^^-free iff A is the K+- direct limit of a set S of free
subalgebras of cardinality K such that S is K+-directed under |. In particular, if
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\A\ = K + , A is ^?
ODK + -free iff A = u v < K + Av where each Av is a free subalgebra

of cardinality K and for all \i < v < K+, v4 J>4V.

Proof. If Y is a subset of A of cardinality K, the Y-Shelah game on A is the game of
length co, where player I (respectively II) chooses Xn, a subalgebra of A of cardi-
nality K, when n is even (respectively odd), and II wins if for all fc, X2k <= Xuc+1
and Y1X2k+ il^2k+3- Let S(,4) = {Y: player II has a winning strategy in the
y-Shelah game on A}. Observe that if F is the free algebra on K+ generators,
y e SG4) iff for some B\F, (A, Y) S ^ H . (F, 5). Hence, S(/4) is J^*-definable
(see Chang [1968c, Proposition 7]). Now S(F) is clearly /c + -directed under | and
F is the K+-direct limit of S(F). Thus, since these facts are expressible in L00K+,
the same holds when F is replaced by A. U

5.2 Corollary (Kueker). If A is J£O0K + -free then there is a free algebra F on a set
of free generators of cardinality K+ such that F -< 00K A. U

It follows from the back-and-forth criterion that for any uncountable X, A is
J&f^-free iff ,4 is jSf00K+-free, for every K < A (see Shelah [1975a, Theorem 2.6(c)]).

A natural question is whether or not there are non-free jSf^-free algebras.
The following profoundly interesting result is due to Shelah (Shelah [1975a,
Theorem 2.6(d)]).

5.3 Theorem (Shelah). If X is singular and A is ^^rfree and of cardinality X then
A is free. D

Remarks, (i) Hodges [1981] gives a very clear exposition of Shelah's "singular
compactness theorem" in a general form. For those familiar with Hodges [1981],
we now indicate how to derive Theorem 5.3 from the results in that paper. It
suffices to prove that for every K < X, player II has a winning strategy in the K+-
Shelah game on A (see Hodges [1981, p. 207]). If S is a set of free subalgebras of
cardinality K such that A is the K+-direct limit of S and S is co-directed under |, then
player II can win by always choosing his subalgebra Bt (i is odd) to be an element
of 5 such that Bi_2\Bi.

(ii) Mekler [1980a, Theorem 1.6] proved that if K is a regular cardinal and A
is a /c+-free group (that is, every subgroup of A of cardinality <K+ is free), then
A is j^?

00K-free. For varieties in which it is not the case that a subalgebra of a free
algebra is always free, a different definition of /c+-free is needed; one (weak)
notion of /c+-free is that A is to satisfy

~~l(Vx2; 3x2i-+i);<K " ^ X i ' : * "^ K ) ^S n O t free"

(that is, it is not the case that almost every subalgebra of cardinality K is non-free.
The reader should consult Kueker [1977]). It follows from an argument similar
to that in Lemma 3.1 of Hodges [1981] that (for regular K) if A is a K:+-free algebra
in this sense, then A is if 00K-free (the reader should compare this result to that in
Shelah [1975a, Theorem 2.6(b)]). If A is not ££-non-free, then A is K+-free (in the
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above sense). Whether or not an if ^^-free algebra is always K+-free remains an
open question. (It is true under certain hypotheses on V.)

A general theorem of Shelah (see Chapter IX, Theorem 4.3.7) implies that,
assuming V = L, if K is regular and not weakly-compact, then there are either 1
or 2K ̂ ?

00K-free algebras of cardinality K. Eklof-Mekler [1982] recently proved the
following general result about the existence of non-free ifOOK-free algebras.

5.4 Theorem (Eklof-Mekler). (1) (V = L). If there is a non-free Se ̂ ^-free algebra
of cardinality co1, then for every regular non-weakly-compact K there is a
non-free ££^K-free algebra of cardinality K.

(2) If every i£^^-free algebra of cardinality co1 is free, then for every K, every
if'UK-free algebra of cardinality K is free. •

Moreover, under certain general conditions on the variety V, the hypothesis
given in (2) holds if and only if the class of free algebras is definable in JSf^c (see
also Kueker [1980]).

Much work has been done on the problem of constructing non-free ifOOK-free
algebras for V = the variety of groups or abelian groups. Kueker proved that a
group (or abelian group) is if ^-free iff it is a^-free. Higman constructed a non-
free («!-free group. Mekler, as well as Kueker, constructed a non-free if ^^-free
group of cardinality a>v See Mekler [1980a] for more results on groups. Pope
[1982] deals with other varieties of groups and rings.

The if 00K-free abelian groups (for uncountable K) are characterized by the
property that A is /c-free and every subset of A of cardinality < K is contained in a
subgroup B of cardinality < K, such that A/B is K-free (see Eklof [1974]). These
groups had arisen naturally in the study of Whitehead's problem: by Chase
[1963], CH implies that every Whitehead group is if ^-f ree . But by Shelah
[1979b] MA 4- —iCH implies that there are Whitehead groups which are not
if aD(Ol-free. The following theorem sums up the main results about the existence
of if 00K-free abelian groups. (See Eklof [1977c] for more details and references).

5.5 Theorem, (i) (Eklof [1975b]) For all new there is a non-free Sfaoton+rfi'ee

abelian group of cardinality con+1.
(ii) (Shelah [1979a]). G C H ^ for all K < Kw2 there is a non-free &\»K + -free

abelian group of cardinality K+.
(iii) (Magidor-Shelah [1983]). (Assuming the consistency of the existence of

many supercompact cardinals). It is consistent with GCH that if K = KW2
every /c4-free abelian group of cardinality K+ is free.

(iv) IfK is weakly compact, every K-free abelian group of cardinality K is free.
(v) IfK is strongly compact, every K-free abelian group is free.

(vi) (Gregory). V = L => for every non-weakly-compact regular K there exists
a non-free i f ^Kfree abelian group of cardinality K.

(vii) / / there is no inner model with a measurable cardinal, then there exist
arbitrarily large K such that there is a non-free ^?

aDK + -free abelian group
of cardinality K + . D
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5.6 Corollary. If there is a strongly compact cardinal, then the class of free abelian
groups is definable in 5£'OOOD. If the class of free abelian groups is definable in S£ *>«>
then there is an inner model with a measurable cardinal.

Proof. If K is strongly compact, then by (v) the class of free abelian groups is
defined by the sentence of <£KK which says that the group is K-free. Conversely, we
prove a little more: if there is no inner model with a measurable cardinal, then the
class of free abelian groups is not definable in any <£ which has the following
downward Lowenheim-Skolem property: there is a cardinal A such that for every
sentence 6 of if, if 911= 0, then 23 \= 9, for some substructure 23 of 91 of cardinality
< A. Suppose there is a sentence 8 of S£ which is true in a group G iff G is a free
abelian group, andlet A be as above. By (vii), there is a non-free ,5?^ +-free abelian
group A of cardinality K+ for some K > A. So A |= —\6. But every subgroup of A
of cardinality < A is free and hence satisfies 6—a contradiction. D

For Theorem 5.5(vii) and Corollary 5.6, the crucial fact from the theory of the
core model is that if there is a largest K such that DK+ holds, then there is an inner
model with many measurable cardinals.

6. Concrete Algebraic Constructions

Using notions from J ^ * , Hodges gave a formalization of the intuitive idea of an
effective algebraic construction and used it in conjunction with set-theoretic
methods to give a negative answer to Taylor's question (Taylor [1971]) as to
whether or not there is a concrete construction of the pure injective hull of every
abelian group.

6.1 Notation. Let <y and t be vocabularies consisting of function symbols (possibly
of infinite arity), and let Alg[cy] (respectively Alg[x]) be the category of a-structures
(respectively x-structures). Let ^ (respectively <%) be a quasivariety in Alg[t]
(respectively in Alg|>]) (see Definition 3.1). The following definition is a formaliza-
tion of the intuitive idea of a construction which is uniformly definable by gener-
ators and relations (see Hodges [1975]).

6.2 Definition. Let a, t, J*, ^ be as in Notation 6.1, and let K be a regular cardinal.
A function F from objects of & to objects of # is a K-word-construction if there is a
vocabulary & extending a, a set T of terms of 5£\_<5'\ a set A of atomic formulas of
JS?|V], and a function Y\T \J A^ ^^[x] such that, for all a e T u A, T(a) has
free variables among those in a; and, for all 23 in J1, F(23) is isomorphic to df(X, <£>,
the structure given by the presentation <X, O> where X = X93, the set of generators,
is {t(b): t G T, 95 1= r(r)[5]} and O = O®, the set of relations, is {cp{b)\ <p e A,
23 N F((p)[5]}. (Let b run over all sequences of elments of 23 of length <K). More
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438 XL Applications to Algebra

precisely, df(X, <D> is the structure whose universe is the closure X of X under
the function symbols of a, modulo the equivalence relation ~ on X defined by

xx ~ x2 iff $ 1= xx = x2;

if x denotes the equivalence class o f x e l , the operations on df(X, Q>} are given
by: if / is a n-ary function symbol of o,

f(xl9..., xn) = f(xl9 ..., xB)~

F is a word-construction if it is a /c-word-construction for some K.

6.3 Examples. (1) Let & = <& = the variety of rings in the vocabulary <r = x =
{ + ,•}. We will now show that the function F which takes a ring £ to the formal
power series ring £[[Y]] is an a^-word construction. Let & add to <r the extra
co-ary function symbol p. Let T = {p(v0, vl9 v29.. >)} and let T(p(v0, vi9 v2,...))
be Vx(x = x). Hence, X = {p(B): b e B^}. Let A = {<pl9 q>2}9 where cpx is p(v0, vl9

v2,---) + p(uO9ul9u29...) = p(wo,W!, w2,. . .) , and <jo2 is p(i;0,«i, «?2» • • •)'
p(u0, ul9 u2 ,...) = p(w0, wl9 w2, . . .)• Let r ^ J be /\iejvt + M£ = wf), and let
F((/)2) be Ajeco(wj = Z«+fc=i y^ + uk)- Observe that these are formulas of J?O0(Ol

but not of JSfooc since they have infinitely many free variables. Now it is easy to
check that df(XB, 0>*> = £[[Y]].

(2) Let & = the variety of sets; that is, St = Alg[x], where x = 0 and V =
the variety of groups ( c Alg[a], where a ={•}). We shall show that the function
F which takes a set f? to the free group on B is an co-word construction. Let <y'
be obtained by adding to <r a unary function symbol i9 and a 0-ary function symbol
(constant) e. Let T be the set of all terms in if [a'] and let T(t) be Vx(x = x), for
all t e T. Let A = {v • f(t?) = e, i(t;) • v = e, e • v = v, v • e = v, vx • (v2 • f 3) =
Oi • ^2) • ^3}; and, for each <peA9 let T(<p) be Vx(x = x). Then df{XB, 0>B) is the
free group on B.

Other examples of word-constructions are the following—the first three being
co-word-constructions, and the last an cox-word-construction.

(3) An integral domain to its quotient field (the example is worked out in
Hodges [1975, Example 6]).

(4) An ordered field to its real closure (see Hodges [1976, Theorem 2.1]).
(5) A valued field to its Henselization (see Hodges [1976, Theorem 2.4]).
(6) A rank 1 valued field to its completion (see Hodges [1976, Theorem 2.6]).

By using several sorts, the word construction can be defined so that (for
example, in Example (4)) it gives the embedding F -• F of F in its real closure.

Hodges [1975] advances the thesis that every effective—or, synonymously,
concrete—construction occurring naturally in algebra can be put into the form
of a word-construction. That word-constructions are effective is given by the
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6. Concrete Algebraic Constructions 439

following result. Let 3P<K denote the function given by 3P<K(X) = {Y: Y £ X and
Card(Y) < K}.

6.4 Theorem (Hodges [1975]). lfF'.Sft-*^ is a K-word-construction, then F is
provably E ^ ^ J . That is, there is a formula 6(x, y) in the language of set theory
including the symbol 3P<K (possibly with parameters) which has all universal quantifiers
bounded and which satisfies

ZF + definition of0><KhVx3\ y6(x, y)

and for all 95 e 31,

ZF + definition of 0><KV- 0(95, F(&)). D

Hodges [1975] also proves that /c-word-constructions preserve if ^-equiv-
alence, and discusses connections with Feferman [1972] Eklof [1973, 1975a] and
Gaifman [1974].

The following result provides a useful algebraic method of proving that certain
constructions are word-constructions (see, Hodges [1980a, Lemma]).

6.5 Lemma. Let 3ft, <€, <s, t be as in Notation 6.1 and let Kbe a regular cardinal. If
F: 3$ —• # is a functor which preserves K-direct limits (see Definition 3.2) then F is a
K-word-construction.

Proof. Any structure 95 is the ^-direct limit of ^(93), the ^-directed diagram of the
/c-generated—that is, is generated by fewer than K elements—substructures of 93,
where the maps between substructures are inclusions. So it suffices to define a
word construction which sends every 95 to the K>direct limit of F(i?(93)). To do
this, let {95V: v e X} be the set of all K-generated substructures of 93, and for each
93V let/v: pv -> 93V be a function (pv < K) whose image is a set of generators of 95V.
Then we extend a to & by adding a set T of function symbols £v>c where c ranges
over all elements of F(95V) and the arity of Cv,c is pv. Let A be the set of all atomic
formulas of JS?[<F']. We claim that, for all 95 in 3ft, the K-direct limit of F(D(S)) is
df(X, O>, where X is the set of all £VfC(S) and where the map/v0)i-> bi9 for i < p,
induces an isomorphism of 95V to the substructure <5> of 93 generated by B; and
where, furthermore, <X> consists of atomic formulas which are of the form
cp(Cv,Cl(5),..., Cv , J% where the Cv>Ci(6) are in X and F(»v) t= q>[cu . . . , c j , or
are of the form Cvc(5) = (>^e(d) (both terms in X), where there is an inclusion
/: <5> -^ <rf> and F(i)c = e\ or are logical consequences in the quasivariety #
of formulas of these forms. We leave it to the reader to verify that there is a function
T.TKJA-* JSf OOKCT] which determines ^ and <D as in Definition 6.2 (see Hodges
[1975, pp. 457 ff] for details). D

Note that, in fact, we need only that F preserve fc-direct limits over diagrams
whose map are monomorphisms. For example, for any right ^-module M, the
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440 XI. Applications to Algebra

functor which takes a left R-module N to the abelian group M ®RN preserves
co-direct limits and is thus an co-word construction. Observe that this functor is
not co-local, but does preserve if ^-equivalence (see Section 3).

Let Div be the functor which takes an abelian group A to the push-out diagram
illustrated below

Div'04)

where i is inclusion and g takes ca to a. It is not hard to check that Div preserves
co-direct-limits. Hence, by Lemma 6.5 there is a concrete construction which
takes every abelian group A to an embedding of A into a divisible group, Div'(A\
containing A. On the other hand, we have

6.6 Theorem (Hodges [1980a, Corollary 5]). There is no word-construction F on
the variety of abelian groups such that for all A, F(A) is an embedding of A in
a divisible hull of A.

Sketch of Proof. Suppose to the contrary, that there is such an F. Then, using the
definition of a word-construction, it is easy to see that F induces an embedding of
the automorphism group of A into the automorphism group of F(A). One obtains
a contradiction by taking A = Z5 © Z5, the direct sum of two copies of the cyclic
group of order 5, and by showing—via a direct computation—that the auto-
morphism of A, given by the matrix,

1 1
0 1

has order 5 but has no extension to the divisible hull—or even to Z25 © Z25—
which has order 5. (This argument—though different from the one in Hodges
[1980a]—is also due to Hodges). D

As a corollary, Hodges [1980a, Theorem 6] also gives a negative answer to
Taylor's question: if there were a word-construction sending an abelian group A
to an embedding of A in a pure-injective hull of A, then, using some constructions
satisfying the hypothesis of Lemma 6.5 one could define a word-construction of
divisible hulls.

Other negative results are given in Hodges [1976], such as, for example, that
there is no word-construction sending a field to its algebraic closure, or a formally
real field to its real closure (the reader should compare this to Example 6.3(4)).
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7. Miscellany 441

7. Miscellany

Here we mention a few other examples of the interaction of infinitary logic and
algebra.

One important application is Shelah's construction of arbitrarily large rigid
real closed fields. This result uses infinitary logic in a general construction that
has a variety of other uses (see Shelah [1983d]).

The model theory of J^wica has also been applied to group theory by
Kopperman-Mathias [1968]. There use was made of the downward Lowenheim-
Skolem notions for J ^ ^ to give new proofs of results of Hall, results showing that
certain classes of groups are bountiful, where a class # of groups is called bountiful
if whenever G c H and H e <$, then there exists H' e % such that G c H' and
|ff'| = |G| + K0.

Dickman has analyzed the Erdos-Gillman-Henriksen isomorphism theorem
for real closed fields from the point of view of the back-and-forth method (see
Chapter IX, Theorems 4.5.8 and 4.5.9).

Using the model theory of S£ ̂ ^ Eklof [1977b] contains a new proof of a result
of Hill characterizing the classes of abelian groups closed under substructures and
direct limits.

Eklof and Sabbagh [1971] discuss J^f^-equivalence and S£^-definability for
various classes of modules and rings. For example, it is proved that the class of
Noetherian rings is not definable in JS?^. But it is definable in £?

(Ol(Ol (see Kopper-
man [1969]). An algebraic result of Gordon and Robson [1973, Theorem 9.8]
implies that the class # of commutative Noetherian rings is not definable in ^oo^.
(The argument in Eklof-Sabbagh [1971, p. 644] immediately implies that # is not
definable in J£?WlW, but an argument found by Hodges—an argument which uses
the ordinal rank of prime ideals—yields the stronger conclusion).
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PartD

Second-Order Logic

This part of the book is devoted to the study of second-order logic and some of its
applications. We discuss the two chapters in the opposite order from that in which
they appear.

Chapter XIII is about monadic second-order logic, logic that allows quantifica-
tion over arbitrary subsets of the domain, but not over arbitrary relations or func-
tions. While this does not make any difference on structures like the natural
numbers with plus and times, where sequences can be coded by numbers, it turns out
to make an enormous difference in more algebraic settings. In these cases, monadic
second-order logic is a good source of theories that are both highly expressive yet
manageable. Section 2 illustrates the uses of finite automata and games in the proof
of decidability results. It begins with a simple case, the monadic theory of finite
chains, which it works out in complete detail, and shows how the method generalizes
to a number of results, including one of the most famous, Rabin's theorem on the
decidability of the monadic second-order theory of two successor functions. In
Section 3 more model-theoretic methods, generalized products, are used to prove
some of the same and related results. Some undecidability results are also presented.
Proofs of these have to be novel, since we are dealing with theories where one
cannot interpret first-order arithmetic.

If we think of monadic second-order logic as the part of second-order logic
obtained restricting the quantification in a simple definable manner, we can ask
whether there are any other natural sublogics that can be obtained by restricting
the second-order quantifiers in some other first-order definable manner. There is
one other. Namely, one might quantify not over arbitrary functions, but over
permutations of the domain. This is called permutational logic. It arose in Shelah's
study of symmetric groups. However, as it turns out, that's all! Up to a strong
form of equivalence, the only sublogics of second-order logic given by first-order
restricted second-order quantifiers are first-order logic, monadic second-order
logic, permutational logic, and full second-order logic. This result, first proved in
Shelah [1973c], is established by some new methods in Chapter XII. In addition,
a number of newer, related results are presented.
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Chapter XII

Definable Second-Order Quantifiers

by J. BALDWIN

In this chapter we investigate the class of second-order quantifiers which are
definable in a sense which will shortly be made precise. This subject arose from
investigations of the following sort. Let K be an infinite cardinal and let SK denote the
symmetric group on K elements. What can we say about the first-order theories TK

of the groups SK1 Isbell showed that there is a sentence in the language of group
theory that is true of SK just in case K = co. McKenzie [1971] showed that TKa =
T#p implies a and ft are elementarily equivalent as ordered sets. We can describe
the Isbell result as asserting that co is characterized by a sentence of group theory.
McKenzie asked whether or not the set of cardinals characterized in this way was the
same as the set of second-order definable cardinals. Shelah [1973a] showed that
this was not so. McKenzie had also reformulated the notion of characterization so
as to make the question more natural. Instead of discussing the first-order theory
of the group SK, we can discuss the theory of the set K in a logic allowing quantifica-
tion over permutations. Shelah [1973a, b] showed that the Hanf number of this
logic is KQC, where Q = (2W) + . This answers McKenzie's questions, since there
certainly are larger cardinals that are definable in second-order logic. In his proof,
Shelah discussed a similar quantifier: quantification over permutations of order
two. The first quantifier is certainly stronger than the second; moreover, it is
easy to describe the first quantifier in terms of the second. To see this, we simply
replace an arbitrary permutation / by three permutations g, hj of order two such
that on each orbit of/, g fixes "every other" element while, at the same time, h andy
are a product of two-cycles. These cycles agree with / on the elements fixed by g
and on the elements moved by g, respectively.

Prompted by questions raised by Stavi, Shelah [1973c] addressed the problem
of determining which quantifiers the discussion was about and how many of
them there were. The main aim of this chapter is to report his answer to this
question. That is, that there are four second-order quantifiers (which are
definable in the sense of Section 1.2 below): First-order (Qj), monadic second-order
(6mon)» permutational (Qi-X\ and full second-order (gn). These quantifiers
range over, respectively, elements, subsets, 1-1 functions, and arbitrary
relations. In Section 1, we will formulate the entire question more precisely
as well as provide some further examples of this class of quantifier. In Section
2 we will prove Shelah's theorem that there are only four second-order quanti-
fiers. The proofs in Sections 1 and 2 focus attention on two ideas. The argument
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446 XII. Definable Second-Order Quantifiers

that 2n is not interpretable in Qx-X depends on the computation of the Hanf
number of Qt _ v On the other hand, the argument that any quantifier weaker than
Qn is interpretable in Q1-1 depends on a decomposition theorem. This kind of
decomposition or Feferman-Vaught theorem is discussed in Section 3 (see also
Chapter XIII) and is applied in Sections 4 and 5. In Section 4, we will explore the
requirements on the notion of interpretation that are necessary to give a proof of
non-interpretability via the computation of Hanf numbers. Section 5 surveys the
classification of first-order theories by the interpretability of second-order quanti-
fiers. This classification naturally falls into the unstable case (discussed in Section
4) and the stable case (discussed in Section 5). Section 6 contains a brief survey of
some other generalizations that were found by Shelah.

1. Definable Second-Order Quantifiers

1.1. Logics, Theories, and Quantifiers

In Chapter II a logic L is defined as a function L which assigns to each vocabulary
T a set of sentences L(T) and a semantics \=z. In discussing higher-order quantifiers
it is natural to examine theories rather than logics. For, the properties of a specific
logic—say, monadic logic—vary tremendously depending on the vocabulary
involved. In a vocabulary with only unary predicates the Hanf and Lowenheim
numbers of monadic logic are Ko and the Feferman-Vaught theorem holds. On the
other hand, if the vocabulary contains a binary function symbol/, then, by specifying
/ to be a pairing function, we extend from monadic logic to full second-
order logic and all these pleasant properties are thus destroyed. Notice, however,
that we must not only make a binary function symbol available but we must, in
addition, specify that it defines a pairing function in order to induce the tragedy.
The major results in this chapter concern the relative interpretability of theories in
logics with second-order quantifiers.

Following are some notations and conventions which are perhaps peculiar to
this chapter. Small Roman letters x, y9 z etc. will represent individual variables while
small Roman letters r, s, t etc. will represent predicate variables. Similarly, capital
Roman letters R, S,T etc. represent relations, and small Roman letters a, b, c etc.
individuals. We will use a to denote a finite sequence of individuals and R for a
finite sequence of relations. We will also write aeA9 and Re A, without writing the
appropriate exponent on A. If <j>(x9 y9 s) is a formula and A is a structure with
b e A and S a relation on A, then <j)(A9 5, 5) = {aeA: A\= 0(5, 5, S)}. We will
regard the ordinary equality sign as a logical symbol. For any formula 0(x, y9 r),
(3</cx)0(x, y, f) abbreviates:

( x 0 ) , . . . , (xk)( A <f>(xi9 y,f)-+ V xi = XJ)
V < fc + 1 i < j < fc + 1 /
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1. Definable Second-Order Quantifiers 447

1.2. Definable Second-order Quantifiers

For any structure M, let Mn denote the power set of Mn. Now full second-order logic
allows quantification over [jn<co Mn. We could consider restricting our quantifica-
tion to n-ary relations for a fixed n. More restrictively, we could allow 3Xn to range
only over a specified subset of Mn. If we require that subset to be definable by a
formula in pure equality theory, quantifying only over elements of M, we arrive at
the class of definable second-order quantifiers. More formally, we have:

1.2.1 Notation. If \j/(r) is a formula whose only non-logical symbol is the rc-ary
relation r, then for each infinite set A, ffl^A) is the collection of rc-ary relations R on
A such that A 1= il/(R). We will use the same notation even if \jj contains a finite
sequence r of relation variables.

1.2.2 Definition. Let \jj(r) be a formula whose only symbols are r, =, first-order
quantifiers, and propositional connectives. Then Q^{r) is the second-order quantifier
whose semantics are given by:

M \= Qm<l>(r) iff (31?) e 9t^M\ M *

There is a first-order theory naturally associated with each quantifier Q^,
namely the theory, 7^, whose only non-logical symbol is R and whose only non-
logical axiom is ij/(R). Note, however, that this theory does not contain all the
information that the quantifier does. For, expressions in the language with the
generalized quantifier can contain more than one instance of R.

Naturally, first-order quantification (Q,) and full second-order quantification
(2n) a r e definable second-order quantifiers. As we will see in Section 2, the only
other examples are:

Monadic Quantification. Let r be unary and let </>(r) be any valid formula. Then Q^r)

is merely another name for the monadic second-order quantifier.

Pennutational Quantification. Let r be binary and let (f)(r) assert that r is an equiv-
alence relation such that every class has two elements. We call Q^(r) the permuta-
tional quantifier. The name "permutational" will be justified shortly.

Note that quantification over L-automorphisms of M is not a definable second-
order quantifier, since the assertion that / is an automorphism cannot be given in
pure predicate calculus.

1.2.3 Definition. For T a first-order theory and Q^ a definable second-order
quantifier we write (T, Q^) for the collection of all Q^ sentences in L(T) valid on the
models of T.

Convention. We write Q^ for (Th( = ), Q^) where Th( = ) is the theory of equality.
We write (Th( <), Q^) for the Q^ theory of order.
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448 XII. Definable Second-Order Quantifiers

1.2.4 Definition. Let r be Jc-ary. We say Q^(r) is (first-order) interpretable in (T, Q (̂s))
if the following conditions hold. There exist first-order formulas O0(x0,y,s),
9(x0,..., xk_ 1? y, s) and #(x, s) such that:

(i) If A \= x(a0, So) then 0o(A, a0, So) is infinite, So
 e ^ ^ ) , and

, a0, So), {0(A, a, S):aeA,SeSt^

= (0o(A, a, So\ M+(0o(A9 a, SO))).

(ii) For every infinite B, there exist A, a0, and So such that A \= x(a0, So) and

Even though <fi may contain only a single relation symbol r, the interpreting
formulas may contain a sequence <s 0 , . . . , sn>. Note that by modifying #0 we can
require, without loss of generality, that each structure (90(A\ 9(A)) satisfies \j/.

In accordance with our convention we will write Q^(r) < Q^(s) whenever T is the
theory of equality.

In this definition the theory which is interpreted is in the language with only the
equality symbol. No other notion is needed for Section 2. For the discussion in
Sections 4 and 5, we will extend the definition to (Tl9 Q^) < (T2, Q^) by requiring
that, for each relation symbol in the language of Ti, there be an interpreting formula
in the language of (T2, Q^). We actually employ this more general notion only when
Ti is the theory of order or Ti = T2.

The major results of this paper deal with the classification of the theories
(T, Q^\ where T is a first-order theory. Section 2 concerns the case in which T is the
theory of equality. It is easy to see that, for any theory T, we have

e*,<e</> implies (T, Q+) < (T, Q+).

Another formulation of this remark is that if Q^ < Q^, then, for every vocabulary
^J Lco,co(Qij;) ^ ĉo,co(2(/>X where ' < ' is taken in the sense of Chapter II. That is to
say, the finitary logic associated with Q^ is weaker than that associated with Q^.
Moreover, this result obviously extends to infinitary logics. Thus, the work described
in this chapter provides a refinement of the notions in Chapter II.

We will now use this observation to show that the four quantifiers we have dis-
cussed are distinct. However, these quantifiers may coalesce on some T. For
example, in the presence of a pairing function, Qmon is equivalent to Qn. This
phenomena is discussed in detail in Section 5.

One way to show that quantifiers are distinct is to observe that interpretations
as defined in Definition 1.2.4 preserve Hanf number. The Hanf number of a theory
(T, Q^) is the least cardinal such that any (Q^)-sentence which has a model of at least
that cardinality has arbitrarily large models. A number of variants on this notion
are discussed in Baldwin-Shelah [1982], and we discuss it in somewhat more detail
in Section 4. For the present, however, a quick application of this observation
shows the following.
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1. Definable Second-Order Quantifiers 449

1.2.5 Theorem. The four quantifiers are distinct: Qmon jt Q\, Q i - i ^ Qmon>

Proof The class of well-orders is definable in (Th(<), Qmon) but not in (Th(<), QY).

e m o n 2 i
Every sentence in (Th( =), Qmon), is either true on all infinite sets or is false on

infinite sets. Thus, the Hanf number of (Th( = ), Qmon) is Ko. As remarked in the
introduction, there are Q ^ sentences of equality theory with only uncountable
models. Thus, Ql.l £ Qmon.

Shelah [1973a, b] showed the Hanf number of (Th( = ), g i - i ) i s N«w and
thus that e n ^ Ql-V Q

In the introduction we showed that quantification over arbitrary permutations
is bi-interpretable in the sense of Definition 1.2.4 with quantification over permuta-
tions of order 2. It is clear that quantification over permutations of order 2 is bi-
interpretable with the permutational quantification introduced above.

We will now give a few easy examples to show that a definable second-order
quantifier which can define certain kinds of relations must be stronger than our
standard examples, monadic and permutational quantification. The key to our
argument will be to deal with very simple Q^ formulas, namely those of the form
0(x, R) with R e 0t^(A) and (j) a first-order formula.

1.2.6 Definition. If the relation S on A is defined by 0(x, 5, R) with Re^{A\
where </> is of the first-order, then we say S is simply definable by Q^.

It is easy to show from the definitions that Qn is maximal among all the definable
quantifiers

1.2.7 Proposition. For any 0, Q^ < Qn. D

1.2.8 Lemma. If Q^ simply defines an infinite, coinfinite set, then Qmon < Q^.

Proof Consider a definable second-order quantifier Q^, and a structure A. Suppose
that for some first-order formula 4>(x, a, R\ with R e ^^(A) and aeA, both
4>(A, a, R) and ~i(j)(A, a, R) are infinite. We will show that each subset of A is
definable by a formula 6(x, a, R\ with R e St^{A). Call X a regular subset of A if
| X | = | X — X | = | Y4 |. Since \jj contains no non-logical symbols, the assumption
that one regular subset of A is definable by a first-order formula </>(x, 5, R) implies
that any other regular subset is also. But any subset of A is a boolean combination
of regular subsets so that all subsets of A are Q^{r) definable. Thus, Qmon < Q^ir). D

We can view these remarks from another perspective, one that makes dis-
cussion of their consequences more concise. If R e 8t+(A), then (A, R) can be
thought of as a model of a first-order theory in a language with non-logical symbols
R and whose only axiom is i//(R). Then our last observation is simply the assertion
that every infinite model of this theory is strongly minimal in the sense of Baldwin-
Lachlan [1971] that T is strongly minimal if every definable (with parameters) sub-
set is finite or cofinite. Moreover, standard compactness arguments show that
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450 XII. Definable Second-Order Quantifiers

this implies that if for each E, </)(A, 5, R) is finite, then there is a uniform bound on
the cardinalities of these sets.

1.2.9 Lemma. / / Q^ simply defines an equivalence relation with infinitely many
infinite classes and Qmon < Q^, then Ql_1 < Q^.

Proof. Suppose there is a formula 0(x, y, a, R), an R e St^(A\ and anaeA such
that 0(x, y, a, R) defines on some infinite subset B of A an equivalence relation
having infinitely many classes with more than two elements. By shrinking B, we
may assume that each class has exactly two elements and that A - Bis infinite. By
the compactness and Lowenhiem-Skolem theorems, we may assume that every
infinite set C contains a regular subset Bc with such a definable equivalence relation.
Using again the fact that \// contains no nonlogical symbols, we see that a similar
equivalence relation can be defined on C — Bc. But then, since B is simply definable
(as every subset is simply definable), we can easily define an equivalence relation on
all of C such that each class has exactly two elements. Thus we have defined Q x _ 1. D

The main result asserts that the four quantifiers we have discussed are (up to bi-
interpretability) the only definable second-order quantifiers and that, in fact, they
are linearly ordered by interpretation. In fact, the argument shows that we would
gain no additional cases by considering definable second-order quantifiers with
finite strings of variables (that is, by replacing Q^r) by 8^(r)).

Most of the definitions in this section have described definable second-order
quantifiers in pure logic. We can, of course, consider the more general situation in
which we add definable second-order quantifiers to a non-trivial first-order theory.
We will consider this situation in some detail in Section 5.

1.3. Some Conditions for Interpretability

In this section we will describe a few conditions which suffice for interpreting
second-order logic into another logic.

We remarked in Section 1.1 that the introduction of a pairing function trans-
forms monadic logic into full second-order logic. We now want to discuss a slightly
weaker condition which has the same effect.

1.3.1 Definition. The theory T is codable if, for some n and some model M of T,
there are infinite sets <£,: i < n} and C contained in M and a first-order formula
(possibly with parameters), </>(*, y0,..., yn-i\ which defines a 1-1 map from
Bo x • • • x Bn_x onto C.

If T is codable, then, for any cardinal K, we have a pairing function from two
sets of power K onto a third. We can thus easily code any binary relation on K in
terms of the pairing function and a subset of the third set. This argument is carried
out in detail in Section II.2.4 of Baldwin-Shelah [1982]. Formally, we have

1.3.2 Theorem. / / T is codable, then Qu < (T, Qmon). D
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2. Only Four Second-Order Quantifiers 451

Arguments like those for 1.3.2 show:

1.3.3 Lemma. If there is a first-order formula (j)(x, y) which defines on some model M
of a first-order theory T and on some infinite subset A of M an equivalence relation
with infinitely many infinite classes, then Qu < (T, Qi-i). D

This is Chapter II, Section 2.6 of Baldwin-Shelah [1982].

2. Only Four Second-Order Quantifiers

In this section we will prove the main result of Shelah [1973c]: that up to interpreta-
tion (in the sense defined in Definition 1.2.4) there are only four (definable) second-
order quantifiers. In Section 2.1 we will begin by deriving some consequences of
Ramsey's theorem and the A-system lemma which will be used several times in the
proof of the main theorem. That done, we will then show successively in Section 2.2
thatif6mon £ G*>thene, < ft; in Section 2.3 that if d - i < Q+, then Q+ < Qmon;
and finally in Section 2.4 that if Qn £ Q^, then Q^ < Qx _ v These three assertions
and Proposition 1.2.7 yield the following theorem.

2.0 Theorem. IfQ^ is a definable second-order quantifier, then Q^ is bi-interpretable
with one ofQl9 Qmon, Q^u or Qn.

The proof of the first two of the three assertions constituting this theorem is
just a reworking of the argument given in Shelah [1973c]. We give the main idea
of the proof for the third in Section 2.4. In Sections 2.5 and 2.6 we give alternate
arguments for the crucial Theorem 2.4.6. The argument in Section 2.5 is derived
from Baldwin-Shelah [1982], while that in Section 2.6 is a modification of the
argument given in Shelah [1973c].

The argument for each of the three cases follows the same general line. To show
that ()# < Q^, we first define an appropriate notion of "a and h are (^-similar
over" respectively a finite set of elements in Section 2.2, a finite set of elements and a
finite set of subsets in Section 2.3, and a finite set of elements, a finite set of subsets,
and a finite set of 1-1 functions in Section 2.4. We say 5 determines 6 if a and h are
Q^ similar over some sequence S satisfying \j/ implies a and b satisfy the same
formulas 6(x; R\ for R e 01\(A). It is easy to see that if S determines each 6 then
Q<f> < Qtj,. The bulk of the argument which differs from case to case consists in
showing by induction on \g(x) that each 6(x\ R) is so determined.

2.1 Consequences of Some Combinatorial Lemmas. Our first result is an application
of Ramsey's theorem to the problem of interpretation.
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452 XII. Definable Second-Order Quantifiers

2.1.1 Lemma. Let 0(z, y, x, R) be a first-order formula. Suppose that for every A and
every R e 0t^A) and for some m < co we have

and

A |= (z)(y)8(y, z,x,r)^z* y.

Then either

(1) for some n < to, we have A |= (x)(3")[(3y)6(y, z, x, RJ\; or
2(a) Qmon < Qf and

Proof Assuming that (1) fails, we first show

(*) There are C = <cf: i < <x>> and B = (bf.j < OJ} and d such that
B n C = 0 ; ci = Cj iff i = j ; \= 0(bi9 Cj, d, R) iff i = j ; and

N= -iO(ci9 cj91 R) if i*j.

If, for each 3, there are only finitely many c such that \= (3z)0(z, c, 5, ^) , then (1)
holds by an easy compactness argument and we are finished. If not, then we can
certainly find disjoint sets B and C such that A \= 0(bh cj9 d, R) but A \=
~~\8(bi9 Cj, d, R), for i < j . By applying Ramsey's theorem to the partition of pairs
{ij} for i < j < CJ induced by whether or not Q{bt, cj9 3, R) holds, we can pass
to subsets of B and C so that the truth of 6{bh cj9 3, R) depends only on the order of i
and j . We know that 0(bh c}, d, R) fails if i < j and since (3<mz)0(z, cj9 d, R) and
some Cj has more than m predecessors, we must also have ~\6(bh Cj, d, R) if i > j .
A similar use of Ramsey's theorem allows us to assume that —16(ch c3) also if i / j .
This establishes (*).

We will now define a formula %(y, d, R, R') such that A t= x(ci> d, R, R') iff
i = 0 mod 3. Since we will have thus defined an infinite and coinfinite set, it will
follow by Lemma 1.2.8 that Qmon < Q^. We can assume that none of the fcf's or c/s
occur in d. Let / be the permutation of A which interchanges c3i + 2 and c3i+l and
leaves all other elements of A fixed. Let R' be the image of R under/ That is, / i s an
isomorphism between (A, R) and (A, Rf). Then

A \= (x)[0(x, cj9 3, R) ++ 0(x, Cj, I R')]

if and only if; = 0 mod 3. Thus, letting x(y, d, R, Rf) be

we have (2a).
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2. Only Four Second-Order Quantifiers 453

To obtain (2b), we note that 9(x, y, d, R) defines on a subset of B u C an equi-
valence relation having infinitely many classes with two elements. In the light of (2a)
and Lemma 1.2.9 we have (2b).

Our next step is an application of a weak version of the A-system lemma. The
remainder of this section is applied in Lemma 2.3.6 and 2.5.8.

2.1.2 Definition. A A-system with heart H is a family of sets {Ct: i < K) such that
if i ^ j , then Ct n C} = H. We will frequently fix an enumeration h of H. Then h
will be taken to mean either the sequence h or the range of that sequence (that is,
H\ whichever is appropriate.

An easy combinatorial argument establishes

2.1.3 Lemma(The Weak A-System Lemma). / / < Q : i < co} is a sequence of distinct
sets with the same finite cardinality n, then there is a subsequence of the Ct which is a A-
system with some heart H, and \H\ < n.

For our application we want to distinguish the following families of formulas.

2.1.4 Definition. A family of formulas {6n(z0,..., zn_ l9 y, r): n < co} is malleable if

(i) 8n is predicate of the set {z0 , . . . , zw_x}, not the sequence z.
(ii) If {ct: i < co} is a A-system with heart H(\c{\ = n and \H\ = m < n) and

A |= en(ch 5, R) for i, then A \= 8m(h, b, R).

2.1.5 Example. If 8n(z0,..., zn_ l5 y, r) is

(x) 0 (x o , . . . , xm_ 1? y, f) -+ /\ V xf = zj ,
L i<m j<n J

then {8n:n < co} is a malleable family. To see this, we let d be a solution of 4>(x, 5, R)
and let ct be a A-system of rc-tuples such that d ^ ct for each i. Then d is clearly
contained in h.

For {9n: n < co} a malleable family, we introduce the following notation: 0*
denotes (3zi) • • • (3zn_ i)8n(z0, z l 9 . . . , zn_ l5 y, R). 9'n(z, y, R) denotes the conjunc-
tion of 8n(z, y, R) with the formulas (z0) , . . . , (zm_ x) i 8Jz9 y, R), for m < n.

This definition is designed to yield the following lemma.

2.1.6 Lemma. Suppose 8n is a malleable family of formulas such that for every A, every
R G ^^(A), and every b in A, there is a finite sequence c with \c\ < M (for some integer
M) such that A N 0|C|(c, 5, R). Then

(i) There is an integer n(b) such that: 9*{h)(A, 5, R) is finite and

A N (3Z)0;(5)(Z, B,R)A A en(B)(^ ^ R)'
i < n(b)
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454 XII. Definable Second-Order Quantifiers

(ii) //, in addition, Qmon < Q^ then there is an integer k and a formula 0*(z, y, R)
such that:

(a) A\=(y)(^<kzW*(z9y R);
(b) A \= (y)®[0'Jz, y, R) -> A {0*(zi9 y9 R): i < m}\for all m < M.

Proof, (i) Fix b and some c of smallest cardinality such that A \= 0,c,(c, E, R) and sup-
pose \c\ = n. Suppose 6%(A, b, R) is infinite. Then there is an infinite family of n-
element sets Ct such that if ct is any enumeration of Ch A \= 9(ch b, R). By the
A-system lemma, we can find a heart H (h) for the C,'s with \H\ = m < n. Moreover,
by the very definition of malleable family, A N 8m(h, b, R). But this contradicts the
minimality of n and so yields (i).

(ii) Since Qmon < Q^, we know by Lemma 1.2.8 that any (A, R) with each
R e ffl^A) is strongly minimal. In particular, there is an integer k such that all the
sets 0J(5)C4, 5, R) have cardinality < k. Recall that by hypothesis all the n(b) < M;
and, furthermore, let 0* be the formula:

V (3u0)' ' • (3";- i)ej(u, y, R) -+ 0y(z, y, Rl
j<M

This formula clearly meets conditions (a) and (b). D

2.2 Lemma. IfQmon £ Q+, then Q^<Qj.

This subsection is devoted to the proof of Lemma 2.2. We will proceed by
induction to show that the hypothesis implies that every formula with parameters
R in ^^(A) and k free variables is expressible in first-order logic. When k reaches the
arity of R we must then have the lemma (see Lemma 2.2.2). In addition to the notions
from Sections 1 and 2.1, we will require the following concept.

2.2.1 Definition, (i) Let AT be a finite set of relation symbols or formulas. By
tpx(a; B) we mean the collection of formulas \jj(x\b) such that be B,
\l/(x; y)eX and |= ^(a, 5). We will simply write, t=(a;B) for t{=](a; B).

(ii) Two finite sequences of the same length, a and 5, are (first-order) similar
over B if tp=(a; B) = tp=(5; B). _

(iii) The set D u c determines (/>(x; c, R) if for any sequences a and b which are
similar over D u c: A \= </>(a, c, R) <-• 0(5, c, R)

Note. The notion D u e determines 0(3c; c, R) depends not just on the formula
(j)(x, y, R) but on the partition of the sequence xy.

2.2.2 Lemma. //, for every formula </>(x, y, r), there exists \ jormula <j>*(z9 y, f) and
an integer n such that for every A and every b in A and R in ^^(A)

(i) \<l>*(A9h9R)\ <n;and
(ii) 0*(v4, b, R) u {b} determines 0(x, ft, R\

thenQ+<Qx.
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2. Only Four Second-Order Quantifiers 455

Proof. We apply the hypothesis, taking r(x) as 0(x; y, r). Then R(x) is determined by
the finite set (j)*(A, R) so that a suitable coding of the equality types over (j)*(A, R)
defines R(x) as required. D

2.2.3 Definition. The formula %(w) is an = -diagram (read simply as equality
diagram) if x is a maximal consistent conjunction of equalities and inequalities
among the wf.

Shelah [1973] calls % a complete formula. The following lemma yields Lemma
2.2.

2.2.4 Lemma. / / Qmon ^ (?,/,, then for every formula 0(3c, y9 r\ there is a formula
0*(z, y9 r) and an integer k such that for every A, b, and R in 0t^(A): | (j)*(A, B, R)\ = k
and (j)*(A, 5, R) u {b} determines </)(x, 5, R).

Proof The proof is by induction on the length of x for arbitrary sequences y and f.
If lg(x) = 1, the result is immediate from the remark following the proof of
Lemma 1.2.8.

We now consider a formula <jy(x\ y9 r). Let x = x' w and y' = w y. Now, we
have 0o = </>(*; y, r) and (j)1 = (j>(xf; y\ f) which differ only in the position of the
semicolon. Suppose we have constructed by induction a formula </>*(z? y\ f) and
an m such that for each a, 5, and R e ^ ( ^ ) :

(i) 108(^^5,^)1 <m̂ _
(ii) (j)*(A, a, b, R) u {a, fe} determines 0(x'; a9 b, R);

(iii) 0*(z
? vv, 5, K) ^ z / w.

By explicitly listing {a, b) in (ii), we are left free to assume that (iii) holds. Now,
applying Lemma 2.1.1, we see A \= (y)(3 <fcz)(3w)(0J(z, w, y, R)). Let 0f (z, >;, .R) be
(3w)0$(z, w, y, K). Then, for each a and 5, it is easy to see that <j>*{A9 b, R) u {a, b}
determines <t>(x'9 a, b, R). It remains to remove the dependence on a. To do this,
however, we must first look more carefully at how the determination occurs.

Let c be an enumeration of (j)*(A, 5, R). Fix lg(z) = lg(c) and let &(*'; w, y9 z)
for i < p be a complete list of the equality diagrams in the displayed variables. For
each a e A and each /, we must have either

(i) A N (x')Ix(*', a, 5, c) - 0(x', a, 5, K)]_; or
(ii) ^ |= (x') [*,{*', a, 5, c) - , -i0(x', a, b, R)l

Now, for each S ^ p, let ^s(«? 5, R) hold just if (i) above holds for exactly those
i G S. Now, by strong minimality, there is an L (depending on S and b) such that if
A |= %s(a, 5, #) for more than L choices of a, then A \= /s(a, 5, £) for all but finitely
many a. By compactness and the fact that there are only finitely many
choices for S, we can choose a single L with this property for all b and S. Now,
0(x; 5, £) is clearly determined by </>*(,4, 5, £) u C(b) u 5, where C(B) denotes the
set of those a such that A \= xs(a, B, R) -• (3<Lx)^s(x, 5, ^) . Moreover, we now see
that (j)j(A, 5, R) u C(B) has less than (& + L) elements and is uniformly definable
from b. Thus, we have proven the lemma. •

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.018
https://www.cambridge.org/core


456 XII. Definable Second-Order Quantifiers

In Shelah's original proof, the C(b) are defined by an appeal to Lemma 2.1.6 so
that the structure of his argument is actually closer to that which follows in the
proof of Lemma 2.3.

2.3 Lemma. IfQ,_x £ Q^ then % < Qmon.

Our proof of this result is parallel to the proof of Lemma 2.2. We will require the
following concept—a concept that is analogous to the notion given in Definition
2.2.1.

2.3.1 Definition, (i) Two finite sequences, a, 5, of the same length, n, are monadically
similar over <£>; C o , . . . , Cm_ x> if for any d in D and any i < n, bt = d iff
at = d\ and, for j < m, at e C} iff bt e Cj.

(ii) A finite equivalence relation over F is an equivalence relation (on /c-tuples,
for some k) which is definable with parameters from F and has only finitely
many equivalence classes,

(iii) The set D and the finite equivalence relation E monadically determine
(j)(x, c, R) if, for any sequences a and b of the same length: if a and b are
monadically similar over <Z) u c; C o , . . . , Ck_x> where the C, are the
equivalence classes of E, then <fi(a, c, R) «-+ 0(6, c, R).

2.3.2 Lemma. If for every formula c/>(x, y, r) there exist formulas (/>*(x, w, y, f) and
0(z, y, r) such that for every A, c, and R e M^A):

(i) 6(A,c,R)is_finite;
(ii) 0*(x, w, c, R) is a finite equivalence relation;

(iii) 9(A, c, R) and </>*(x, u, c, R) monadically determine 0(x, c, K), then
% < Qmon-

2.3.3 Definition. For any formula cj)(x; y, r), any A and c, any .R e ^^(A), and any
C c i , define e((j)(x; c, R), C, A) = ety, C, A) by

e((f), C, A) = {<a, b>: tp{ = j^c-5F)}(a; A - C) = tp{ = 5^,c-,r-)}(fc; X - C).

The formulas in tp{= ^ ^ ?)}(a; X) are obtained by fixing any entry in x for sub-
stitution of a and leaving the others for substitutions from X. Note that e(4>, C, A)
is first-order definable (with parameters C, c and £).

2.3.4 Lemma. IfQ t _ x < Q^, then for every A,C,b, and (j)(x; y, r), e(cj), C, /I) /ias on/ y
finitely many equivalence classes.

Proof By Lemma 2.2, we can assume that Qmon < Q^. We first note that by Lemma
1.2.9, since e(4>, C, A) is definable, it can have only finitely many equivalence classes
with two or more elements. Since replacing C by a smaller set refines the equivalence
relation, we can, by proper choice of C, assume that each class of e(4>, C, A)
is a singleton. If e(</>, C, A) has infinitely many classes, we will define in terms of
R e 3t^{A)9 an equivalence relation possessing infinitely many classes with two
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2. Only Four Second-Order Quantifiers 457

or more elements. We thereby contradict Lemma 1.2.9. For this, fix a permutation
/with order 2 of A whose set of fixed points is (A — C) u {b}. Let Rx = f(R). Let
So denote the relation defined by (/>(*, b, R) and Sl the relation defined by
<j)(x, b, Rx). Let e^ be the following equivalence relation (this relation is clearly
definable from R, RUC and b and therefore by Q^):

{(a, c>: tp{So, =}(a: (A - C) u {b}) = tp{Sl, =}(c; (X - C) u {5})

and

tp{So, =}(c; (A-C)v {b}) = tp{5l, =}(a; (A - C) u {5}).

Clearly, if a, c E C and /(a) = c, then <a, c> e e^ Now, if (a, c} e eu then

tp{So, =}(c; (>1 - C) u {b}) = tp{Slt =)(a; (>1 - C) u {5}) = ^.

But since e(4>(x; 5, .R), C, A) has only singleton equivalence classes, the unique
element realizing q in the Sx interpretation is/(c). So a = /(c). Since ex is clearly
symmetric, we see that e^a, c) if and only if a = f(c). That is, we can define by
£i(X y) v x = y an equivalence relation with infinitely many two element classes.

Note that by invoking the compactness theorem, we can find a uniform n such
that, for all C and 5, e((j)(x', b, R\ C, A) has less than n equivalence classes.

The following technical result asserts that if a definable symmetric, reflexive
relation has a bounded number of pairwise incomparable elements then its transitive
closure also is definable. We need it for the next lemma.

2.3.5 Proposition. Suppose </>(x, y) defines a symmetric reflexive relation such thatjor
some m and for any set of distinct elements {a,: i < m}, there are i ^ j such that
(t){at, aj). Then the equivalence relation E which is obtained by forming the transitive
closure of the relation defined by 0(x, y) is itself defined by:

(3z0),. . . , (3z2w_3) / \ 0(zf, z£+1) A z0 = x A z2m_3 = y).
i<2m-3

Proof Let {a0,..., ak} be the shortest path connecting a0 and ak, and let k = 2u
or k = 2u + 1, depending on the parity of u. No pair from {a0,..., a j satisfies
(/>. Thus, u < m — 1 which yields the result. •

2.3.6 Lemma. / / Qx_x < Q^, then for each formula 0(x; c, R) there are formulas
(/>*(x, w, y, R) and d*(z, x, w, y, f) such that for every A, c, a and R e M^A):

(i) 0*(x, y, c, R) defines an equivalence relation with finitely many classes.
(ii) IfAt= <P(a9 b, c, R\ then <a, b} e e(<t)(x, c, R\ 6*(A, c, R) u {a, b}, A).

(iii) 6*(A, c, R) is finite.
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Proof. We first use Proposition 2.3.5 to establish (i) and the weakened version of (ii)
which is obtained by replacing e{(f)(x\ c, R\ 0(A, c, R) u {a, b}, A) by the equi-
valence relation e* which holds for two elements if and only if for some finite £,
e{<j>, B, A) also holds of those elements. The formula 0*(x, y, b, R) defines a finite
equivalence relation which refines the finite equivalence relation e*(0(x; 5, R), A, R).
Then two applications of Lemma 2.1.1 yield the full result.

For the first step, define for each A, b and R e St^(A) the binary relation en =
en{(j){x\ 5, R), A, R) to hold for <a, b> just if for some n-element subset B of A,
{a, by e e((p(x, b, R\ B, A). Note that en is reflexive and symmetric but not transitive.
Moreover, there is a formula 4>n(x, y, b, R) which defines en. Finally, en refines en+1.
Now, let the equivalence relation e* = (J {en: n < co}. For a fixed m, not depending
on £, each en(0, B, A) has at most m classes so there is no set of m + 1 elements,
each pair of which does not satisfy </>„. Thus e* has at most m classes. So for some /,
the set of sentences

is inconsistent. Let p be the least integer such that Tp is inconsistent. By Proposition
2.3.5, the transitive closure of (j)p(x, y, 3, r) is definable by a formula </>*, and defines
an equivalence relation with at most m classes. (/>* clearly satisfies (i) and the weak-
ened form of (ii). Thus, each equivalence class of e* is a union of </>* equivalence
classes.

To establish the full strength of (ii), we define the malleable family of formulas
0n(x, y, z, u, r) which assert that <x, y} e e(<K*; ", r), {*, y, z 0 , . . . , zn_ J , A). Tak-
ing p for the bound M in the hypothesis of Lemma 2.1.6, we deduce that there is
a formula 0*(z, x, y, u, f) such that for some k (first a k(b) but then, by compactness,
independent of b) we have:

(a) A \= (x)(y)(3<kz)9*(z, x, y, c, K).
(b) If A N 0*(a, b, c, R)then <a, b} e eifr 0*(A, a, b, c, R) u {a, b}9 A).
(c) If A \= -i 4>*{a, b, c, R) then 0*(A, a, b, c, R) = 0 .

Now, applying Lemma 2.1.1 twice to condition (a) we obtain

A \= (3 <kz)(3x)(3y)0*(z, x, y, 5, R) so

(3<kz)(3x)(3y)9*(z,x,y,u,R).

Now, to complete the proof of Lemma 2.3, we show by induction that every
formula is monadically determined.

2.3.7 Lemma. IfQi-i ^ 2 ^ , then for any 4>(x; y, r), there are formulas (/>*(x, w, y, r)
and 0(z, y, r) which monadically determine c/>(x; y, r).

Proo/. The proof is by induction on lg(x). If lg(x) = 1, we are merely restating
Lemma 2.3.6. Thus, suppose that we have the result if lg(x) < n, and consider a
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2. Only Four Second-Order Quantifiers 459

formula </>(x; y, R) with lg(x) = n. By Lemma 2.3.6 we can find a finite equivalence
relation (/>*(*, y, 5, R) and a set 6(A, 5, R) such that if

A \= <j)*(a9 c, 5, #), then <a, c> G e(0, 0*04, a, c, 5, R) u {a, c}9 A).

This means that the equivalence classes of e((/), 0*04, a, c, b, R) u {a, c}, A) are
finite unions of equivalence classes of 0*. Now, for each element d of 0*04, 5, #) u
{a, c}9 let cj)dj(x'; b, d9 R) be the (n - l)-ary relation obtained by substituting d for
xt in 4>t- Then, 0(x; 5, K) is first-order definable from the equivalence classes of \j/*9

the elements of 9(A9 5, R) u {a, c}9 and the <f>dt ^x', 5, .R). For, if a n 0(^, 5, .R) =
0 , then 0(a; 5, ^) depends only on the </>* equivalence class of the at. If a n
0(A9 5, R) ^ 0 , then 0(5; B, -R) depends on one of the 0dl- which are monadically
determined by induction. This completes the proof of Lemma 2.3. D

2.4 Lemma. IfQn £ % then Q* < Gi-i-

Once we have established this lemma, we will have completed the proof of the
four second-order quantifier theorem. We will first show that a certain decomposi-
tion of all structures (A, R) with R e 9t^{A) implies that Q^ < Qi_i- Afterwards, we
will show that the hypothesis Qn ^ Q^ implies that such a decomposition exists.

An extremely simple example of such a decomposition is the division of models
of Th(Z, S) into connected components. More complicated examples are elaborated
in Baldwin-Shelah [1982].

2.4.1 Definition, (i) If E is an equivalence relation then two sequences a and b are
similar for E if lg(a) = lg(B) = k and there is a partition of k into, say, n
sets Jo,..., Jn_! such that for any elements of the sequences ai9aj, bi,bj we
have diEcij if and only if bfibj if and only if i and; are members of the same
partition element Jx. We write a = <a 0 , . . . , 5n_ t > where 5j is the set of at

with ieJj.
(ii) The model M is decomposed over N if there is an equivalence relation E

on M - N such that if a is similar for E to 5 and, for each 5,-, 5,, we have
tp(af; AT) = tp(Bf; JV), then for each lg(a)-ary relation symbol, R, in the
vocabulary of the structure M \= R(a) <-+ R(b). We say E is an L-con-
gruence.

(iii) The L-structure M is strongly decomposed over N by E if each equivalence
class of E has no more than | L | elements.

(iv) The theory T is (strongly) decomposable if, for each M \= T and each
N -< M with | TV | < | 71, M is (strongly) decomposed over AT.

We will show that if Qn £ Q^, then each structure (A, R) with Re3t^(A) is
strongly decomposed by the following natural equivalence relation. (The
hypothesis Qu ^ Q4 is required to show the relation is symmetric.)
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460 XII. Definable Second-Order Quantifiers

2.4.2. Definition, (i) For an element a and a set £, we write a e cl(£) if, for some
formula (/>(x) with parameters from B, cj)(a) holds and </> has only finitely
many solutions,

(ii) Let N < M, then for a, b e M - N, a - N b if a e cl(JV u {&}).

We will show that such a decomposition suffices for the interpretation of Q^
in Q ^ and then that the decomposition exists. For the first task we require a few
more definitions.

2.4.3 Definition. Let C o , . . . , Cw_ x be a sequence of subsets of A and le t / 0 , . . . , fk_ x

be a sequence of partial 1-1 functions on A. Then

(i) Two finite sequences a and b of the same length are 1 - 1 similar over
<D; C o , . . . , Cw_ !;/<),...,/*_!> if for any d in D and any i < n =
lg(a), bt = d iff af = d, and for 7 < m, af e C, iff b£ e Cj and for / < k,
fiad = d(e Cj) if and only if ftf>d = d(e Cj).

(ii) The sequence <D; C o , . . . , Cm_ t ; / 0 , . . . , / k _ t> 1-1 determines 0(x, c, JR)
if for any sequences a and 5 of the same length we have that if a and ft are
1-1 similar over <D; C o , . . . , Cm_:; / 0 , . . . , /k_i>, then 0(a, c, .R)<->

2.4.4 Definition. A formula </>(x, y, n) is called a binding-formula if, for some integer
/c, |= (x)(3<ky)<K*, y, H) A (>;)(3<fcx)0(x, y, n).

Note that if M is strongly decomposed via ~N, then for any pair of elements
a,beM — N, if a and b are equivalent, then for some binding formula M 0(x, y, n)
with the n from N: \= cj)(a, b, n). Moreover, if a is a sequence of equivalent ele-
ments from M — N, t(a; N) is implied by the union of the types tia^ N\ for
i < n with the binding formulas which relate the at. Finally, if a is a sequence from
M — N involving elements from different equivalence classes, then t(a; N) is
implied by the types of the singleton ah the binding formulas which tie together the
elements from the same classes and the negations of all binding formulas which
might relate pairs that are not in the same class. With this in mind, we will establish
a final lemma and complete the proof of the theorem.

2.4.5 Theorem. If for every infinite A and every Re^lj/(A)(A, R) is strongly de-
composable by ~ N,for some proper elementary submodel N of (A, R), then Q^ <

61-1.

Proof Let M = (A, R) be strongly decomposed over N. Note that for any M* > N,
M* is also strongly decomposed over N. Thus, for any model M of Th(AT) and any
HEM — N, there is a type q(a) such that each formula in q contains only one ah

or is a binding formula, or the negation of a binding formula and is such that
q h- t(a; N) and if M \= R(a), then t(a; N) \- R(x). (The existence of this type is
guaranteed by the discussion preceding this lemma.) Now, a standard "double
compactness" argument shows that R(x) is equivalent to a disjunction of formulas
over a finite set No and that each of these formulas either contains at most one xi9
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2. Only Four Second-Order Quantifiers 461

or is a binding formula, or is the negation of a binding formula. Now, if D is No,
Ci picks out the solution set of the ith disjunct with only one x,-; and, for each
binding formula </>t(x, y, d\ the functions / / for j < k (the number of solutions of
<t>t{a, x, n)) are defined so that {f{(a):j < k} = {b: ^(a, b, d)}). Then R is 1-1
determined by D, C o , . . . , Cp and// for i < m and; < k (for appropriate p, fc, m). D

We will complete the proof of Lemma 2.4 by establishing in the rest of Section 2:

2.4.6 Theorem. If Qn ^ Q^, then for every (A,R) with Re^^A) and for some
elementary submodel N of (A, R\ A is strongly decomposed by ~N. D

We will explain two proofs of the above result. The first is both the most natural
and the most useful. We will continue to use its methods later in the paper.
However, it requires a minimal knowledge of stability theory (for instance, the
first half of Lascar-Poizat [1979]) so for those who might be unfamiliar with
those basic facts, we have included in Section 2.6 an ad hoc but self-contained
proof of Theorem 2.4.6.

2.5 Theorem. IfQu £ Q^, then for every A and every R e 0l^(A), (A, R) is strongly
decomposable. (1st Proof).

We first observe

2.5.1 Lemma. Qu ^ Q^ implies T is stable.

We give two arguments for this. Note that T being unstable implies there is a
definable linear ordering of rc-tuples. In Chapter VIII of Baldwin-Shelah [1982] it is
shown that in any theory with a definable linear order on rc-tuples one can mon-
adically define a linear order on singletons. From this one constructs an equivalence
relation with infinitely many infinite classes and finishes by Lemma 1.3.3. Altern-
atively, we use more of the machinery set up in Section 2.6 and deduce directly
from the definable linear order on rc-tuples the existence of a definable equivalence
relation on rc-tuples with infinitely many non-pseudofinite (see Definition 2.6.3)
classes which contradicts Lemma 2.6.4. D

2.5.2 Definition (The Fundamental Equivalence Relation). Let N < M and M a
model of a stable theory. We define a relation EN on M - N by aENb just if
t(a; N u b) forks over N.

Now the standard properties of forking in a stable theory assure us that E is
reflexive and symmetric. In general, E is not transitive. However, in our situation
we obtain this and more.

2.5.3 Lemma. IfT is stable, N -< M and E is the fundamental equivalence relation
then M is decomposed over N by E.

Proof. We must show that E is an equivalence relation and that condition (ii) of
Definition 2.4.1 is satisfied. We will give a brief outline of the argument.
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462 XII. Definable Second-Order Quantifiers

2.5.4 Lemma. Suppose that in a model of T, there exists an element a and B =
<ft,-: i < co} and C = (Cj'.j < co} such that

(i) B is a set of indiscernibles;
(ii) C is a set of indiscernibles over B and there is a formula (f)(x, y, z) such that

\= cf)(a, bh Cj) if and only if i = j .

Then T is codable.

This lemma is an easy reworking of the definition of codable given in Definition
1.3.1. Its proof as well as that of the following lemma are detailed as Sections IV.2.4
and IV.2.6 of Baldwin-Shelah [1982]. The following lemma is a fairly routine
calculation using the properties of the forking relation and Lemma 2.5.4.

2.5.5 Lemma. IfT is stable and either:

(i) There exists a subset A of a model of T and elements a, ft, c such t{a\ A u ft)
forks over A and t{b\ A u c) forks over A, but t{a\ A u c) does not fork over
A, or

(ii) There exists a subset A of a model of T and elements a9bl9...9bn such that
for each i t(a; A u ftf) does not fork over A but t(a;Au {ft1?..., ft,,}) forks
over A.

Then T is codable.

This result shows that if Qn ^ Qmon
 a n d R^^^(A), then Th(^, R) is decom-

posable (see Baldwin-Shelah [1982]). In order to show that it is actually strongly
decomposable, we will need one further fact from stability theory.

2.5.6 Lemma. / / T is stable and there exist a, ft G A \= T and B ^ A such that
t{a\B u ft) forks over B but t(b;B u a) is not algebraic, then on some subset of a
model of T there is a definable equivalence relation which has infinitely many infinite
classes.

(This result is Lemma VI.1.1 of Baldwin-Shelah [1982].) Now by Definition
1.2.4 we see the conclusion of Lemma 2.5.6 cannot hold unless Qu < Q^ (as we
have (>!_! < Af). Thus, we have established Theorem 2.5.

We turn now to the other proof of Theorem 2.5.

2.6 Theorem. IfQn ^ g^, then for every A and every R e 0t^A\ (A, R) is strongly
decomposable. (2nd Proof)

We first use an argument similar to the ones given in Baldwin-Shelah [1982]
to show that for any model JV, ~ N is symmetric and thus is an equivalence relation.
For this, we will require a few other concepts. The first is given in

2.6.1 Definition. Let JV £ A and p e S(A\ then p is finitely satisfied in N if every
formula in p has a solution in N.
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2. Only Four Second-Order Quantifiers 463

Using compactness it is easy to see that if A c B c C and p e S(B) is finitely
satisfied in A, then p extends to a p' e S(C) which is also finitely satisfied in A. Next,
we consider

2.6.2 Lemma. IfQn £ Q^ and R e St^{A\ then for any N < (A, R) if neither a nor b
is algebraic in N and t(a, N u b) is algebraic, then t(b, N u a) is also algebraic.

Proof Suppose not and choose bt for i < co, which are distinct, with t{bt\ N u a) =
t(b\ N u a). Let c0 = ba and choose ct for i < at such that t{ct\ Ct) = t(ci+1; Ct)
and t(ci+l; JV u Ci+ x) is finitely satisfied in N. Here Q = iVu {c,-:; < f}. Thus cf

has the form (bUj\ for; < co>at-. Clearly at- is algebraic in each buj by the same
formula \j/. But no aj is algebraic i n N u bitk with f > 7. For, if it were, we could, by
finite satisfiability, find afc'eN with at algebraic in N u b' and hence, in N, also,
which is impossible. But no at can be algebraic in bjk, with j < i since all ax with
/ > i realize the same type as af over N u bjk. Thus, by adding predicates A and B
to pick out the a's and fr's, we can define an equivalence relation on B with infinitely
many infinite classes by E(x, y) <-• (3z)0(x, 2) A 0(y, z) A yl(z). This contradicts
Lemma 1.3.3 and establishes the lemma. D

We now want to show that if N is chosen appropriately, then ~N actually
determines a strong decomposition of (A, R). To accomplish this, we return to the
original Shelah argument. We will proceed by extending the properties of strongly
minimal sets to finite sequences. We will accordingly arrive at a notion reminiscent
of the weakly minimal formulas that are examined in Shelah [1974a].

2.6.3 Definition. The family F = {f:i < a} is pseudo-finite, if there is a finite set C
such that for every /, C n f ^ 0 .

The formula 0(x, a, R) is pseudo-algebraic in (A, R) if its solution set is pseudo-
finite. The sequence a is pseudo-algebraic over B, if for some formula (j)(x) with
parameters from 5, 1= cf)(a) and 0 is pseudoalgebraic.

Note that a is not-pseudo-finite over B means that we can find arbitrarily many
disjoint finite sequences which realize t(a; B).

2.6.4 Lemma. IfQu £ Q^, then for any A and any Re&^A), there is no formula
</>(*, y, c, R) which defines an equivalence relation with infinitely many non-pseudo-
finite equivalence classes.

Proof If lg(x) = lg(;y) = 1, then this assertion is only Lemma 1.3.3. Using
Qi-x < Q^, we will reduce the case n > 1 to the case n = 1 and thus finish the
argument. By induction choose sequences aitj such that aUj is equivalent to ak * just
if i = k and such that the au} having distinct indices are pair wise disjoint and all are
disjoint from c. Now, define for each m < n a permutation fm of A which exchanges
the first and mth members of each sequence au j and which fixes all other elements of
A. Let B* consist of the first coordinates of the aitJ. Now the formula

</>*(*, y, c, R, f l 9 . . . , /„) = 0(/i(x), . . . , /„(*), /i(y), • • •, Ml c, R)

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.018
https://www.cambridge.org/core


464 XII. Definable Second-Order Quantifiers

defines on B* an equivalence relation with infinitely many infinite equivalence
classes. This is, of course, contrary to Lemma 1.3.3 and we are done.

2.6.5 Definition. The formula \j/(x, c, R) is (p(x, y, r)-minimal, if ^ is not pseudo-
finite but for every d either i/̂ (x) A C/>(X, 3, R) or i^(x) A -I0(5C, 3, R) is pseudo-
finite.

The search for a (^-minimal formula is similar to the search for a strongly
minimal formula in an co-stable theory. We will show that we cannot build a
complete binary tree of instances of 0 and negations of 0 such that each path is not
pseudo-finite. The main step for this is

2.6.6 Lemma. IfQu jt Q^ then there are no A and R e M^A) such that there exist a
</>(x, y, R) and anfor n < <x> so that for each n < co, the formula

0n = A <Kx, am, R) A -i0(x, an9 R)
m<n

is not pseudo-algebraic.

Proof Assume that the lemma fails. By the compactness theorem, we can assume
that each 6n is satisfied by more than 2No disjoint sequences. Let B be the collection
of elements which appear in any of the parameter sequences an. Define two sequences
5, c from A to be e equivalent just if for every a from B (/>(5, a, R) <-> (/>(c, a, R). Now,
for each n and m, if n ^ m a sequence satisfying 9m and a sequence satisfying 0n

are not equivalent so that e has infinitely many classes. But each of these classes is
not pseudo-finite. For, there are more than 2Xo disjoint sequences satisfying 6n and
at most (since B is countable) 2Xo classes of e so that some e-class intersects 9n in
uncountably many disjoint sequences and thus that class is not pseudo-finite.
Thus, for each n, we find a distinct class of the definable equivalence relation e which
is not pseudo-finite. By Lemma 2.6.4, Qu < Q[j/. D

2.6.7 Lemma. IfQu ^ Q^, then for any 0(x, y, r) there is an integer m(4>) and there
are formulas x,(5c, z, f) {depending on </>) for i < m((j)\ such that for any A and any
Reffl^A), there is a ce A such that the formulas x,(x, c, R) partition A and each
X(x, c, R) is ^-minimal.

Proof Build a binary tree of instances of 0(x, y, R) and its negation. Either, for
some rc, each path of length n defines a (/>-minimal set; or, for arbitrary /c, we can find
a{ for i < k such that taking Xt(x, y, R) as 0(3c, y, R) or ~i </>(x, y, R) (depending on i)
A {Af(5c, at,R):i < k} is not pseudo-algebraic. If k = 2m + 2, the formula 9m from
Lemma 2.6.6 is not pseudo-algebraic and we violate Lemma 2.6.6.

We will need one more nice property of pseudo-algebraic formulas to complete
the proof.

2.6.8 Lemma. If a = <a 0 , . . . , O is pseudo-algebraic over B,then some atis algebraic
over B.
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3. Infinitary Monadic Logic and Generalized Products 465

Proof. Let 0(3c, b, R) be a pseudo-algebraic formula satisfied by a. Let C be a set
with minimal cardinality n such that if A \= (f)(a\ b, R\ then a* n C ^ 0 . Recall
from Example 2.1.5 that if 0n(zo,.. . , zn_ l5 y, r) is

<n J

then {#„: rc < co} is a malleable family. Now, by applying Lemma 2.1.6, we see that
some component of a satisfies the algebraic formula 9*(x, b, R) and we are done. D

2.6.9 Theorem. IfQn ^ Q^, then for any A and any R e $${A\ there is an elementary
submodel N of (A, R) such that ~N strongly decomposes (A, R) over N.

Proof For each cj)(x, y, r), choose a sequence c and formulas Xi as in Lemma 2.6.7
and let N contain all the c. By induction on n we will prove that if a and b with length
n are similar for ~N and for each at, bt (see notation in Definition 2.4.1) t(at; N) =
r(5t; N), then t(a; N) = t(b; N).lfn=l, this assertion is tautogical. Suppose that
we have proved the claim for n. To prove it for n + 1, we consider a formula
<j)(x, y, z, f) with lg(j;) = n, and let n be in N. If all elements of a are in the same
~ N equivalence class, then there is nothing to prove. Let ax be a maximal pairwise
equivalent subsequence of a—as is indeed implied by our notation. Then, if we let a'
(respectively b') denote a without ax (respectively b without 5X), no component of a'
(respectively b') is algebraic in N u ax (respectively in N u b^) and thus a' (b') is
not pseudo-algebraic in N u a± (in N u bx\ (by Lemma 2.6.8).

We must prove that for any tie N, A\= 4>(al9 a', ti, R) ++ (j)(b1, b\ n, R). By
Lemma 2.6.7 and the choice of N, we can find a d e N and a ^-minimal /(x, d, R)
such that A \= x(a\ d, R). By the definition of (^-minimality, one of

X(x, d, R) A (j){au x, c, R) and %(x, d, R) A ~i(j){au x, c, R)

is pseudo-algebraic. Without loss of generality, we can take it to be the second one.
By a simple application of compactness, this means that for some m^X the
formula is satisfied by no more than m^cj)) pairwise disjoint sequences. As a' is not
pseudo-algebraic over au we have A f= (j)(au a\ n, R'). By induction, a' and b' have
the same type over N so A \- x(b\ d, R). Since ax and bx have the same type over N,
X(x, d, R) A ~\(j)(bu x, n, R) is not satisfied by more than m^cj)) pairwise disjoint
sequences. Since V is not pseudo-algebraic over N u Bl9 we thus have A \=
4>{bu b\ n, R) as was required. D

3. Infinitary Monadic Logic and
Generalized Products

Our primary focus so far has been on the classification of theories of equality, Q^.
Now we will consider the following question: What are the possibilities for theories
of the form (7, Q^X where T is a complete first-order theory and Q^ is one of the
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four second-order quantifiers? The notion of a decomposable model is a key tool
in the proof of Lemma 2.4. We will develop a generalization of this idea and use it,
for example, to compute the Hanf numbers of some logics (see Sections 4.5 and 5.2).
The major device for these computations is a Feferman-Vaught type theorem for
monadic logic. As Gurevich pointed out to me, this is a natural development of the
original Feferman-Vaught theorem which described the first-order properties of a
generalized product of a family {Mt\ i e 1} in terms of the first-order theory of the
factors and the monadic theory of the index set (enriched by unary predicates
which pick out the indices whose models have the same theory). The material in this
section is largely taken from Shelah [1975e] and Gurevich [1979a].

In many cases, it is artificial to consider the first-order monadic theory of a class
of structures, because this theory already encodes a certain amount of information
that we would normally think of as "LWl>(D" information. For example, we can
monadically define the closure of a subset of a group. Or, consider the class of all
structures containing two infinite classes, PO,PU and a binary extensional relation,
£, between them. (That is to say, one is the set of subsets of the other). Now, if T is
the monadic theory of this class, any model of the monadic sentence

(X) c P0(3y)ePx(z)eP0(zeX^zey)

has models only of power > ] x This kind of argument shows that the Hanf number
of LatJQmot) > the Hanf number of Lmum\ furthermore, it leads us to consider
infinitary monadic logic. We are going to prove a Feferman-Vaught type theorem by
way of a back-and-forth argument. This requires some means of handling variables.
Rather than deal with variables explicitly we will expand the language by adding
additional constant symbols. Since this is monadic logic, we must add not only
names for individuals but for subsets as well. We want to describe a specific sentence
in L^ A(Qmon) which contains the information we need in order to make our
induction. Individuals are considered to be subsets with only one element. Note
that if (A, R) and (£, R) are equivalent for existential first-order sentences, then R is
a singleton in A iff it is a singleton in B.

This section repeats the discussion in Section 3 of Chapter XIII in a superficially
more general situation. The chief differences here are that Chapter XIII restricts
itself to finitary logic and, for expository purposes, merely works out the preserva-
tion theorem for ordered sums. Here, however, we will give an abstract notion of
product in Section 3.4, a notion which focuses attention on exactly those properties
(for example, of the ordered sum construction) which allow the argument for the
preservation theorem to go through. In Chapter XIII monadic logic is interpreted
into a first-order logic; here, on the other hand, the monadic logic is taken as basic.
The following glossary connects the two chapters.

Chapter XIII Chapter XII
a sequence £ an ordinal a = lg(£)

an /-tuple of elements a A-tuple of elements
Z-Th(M,al9...9al) tatX(M9Q)

Z - '-Box taJL)
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Observe that the correspondence suggested by the tabular arrangement is not
exact since a £ — /-Box depends on a (suppressed) theory T.

XU...,X, (Qt:teX\
P(i, X, t) Q,(I),

Another difference in the presentation of results arises from the fact that one
chapter emphasizes decidability results, while the other stresses preservation results.
In Chapter XIII, the bounded theories are viewed as objects in their own right and
the ^-theory of the product is computed from the H(£, I) theory of the index set. In
this chapter, however, the bounded theories are viewed as properties of structures
and the theorem has the following form: If the bounded theories of two index structures
are the same, then so are the theories of the product structures.

3.1 Definition. We define by induction the set of formulas taA(M) as follows:

(i) For any L-structure M, let tOtX(M) = {9: M \= 9}.

Here 9 ranges over existential first-order formulas with at most A variables.
Note that tOt A(M) is the same for all infinite A. We would just say the existential
theory of M, but the decidability results require that if A is finite, then so is f0, x- We
require existential rather than quantifier-free formulas in tOi A(M) in order that we
may know the cardinality (mod Ko) of every subset of M defined by a boolean
combination of unary predicates.

Now, for any a and A, we define ta A(M) as follows: ta+1 A(M) = {ta A(M, Q):

tdtX(M) = (J {raA(M): a < 5}, if d is a limit ordinal.

(ii) For any a and A, let taA(L) denote {ra A(M): M is an L-structure}.

Thus, t(X+1ji(M) describes the L^A(Qmon)-theory of the expansion of M by A
unary predicates. Similarly, ta,A(L) denotes the set of all possible L^ ,A(gmon)-
theories.

Observe here that if a, A, and L are finite, then so is ta> A(L). Moreover, for each
L-structure M, ra A(M) is equivalent (that is, it holds of the same structures) to a
sentence in L](a A + )L() A. The following lemma illustrates the expressive power of the
td, AM). And, interestingly enough, it also provides the key technical step for our
Feferman-Vaught like theorem.

3.2 Lemma. Let A, A' and K be cardinals with A + A' < K. Let J and / be structures
{having, for the sake of simplicity, a finite language) and universes I and J respectively.
Suppose the sets I and J are partitioned by the sequences Qt(I), Qt(J), respectively Jor
t G A, and suppose further that

, Qt{J): t eA».
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468 XII. Definable Second-Order Quantifiers

If(Xt: i £ A'> is a partition of I refining the partition (Qt(I)'. t e A>, then there exists
< Y> i e A'>, a partition of J, such that:

t*.K«S> Qll\ xi- ^ A, i e A'» = r a , K « / , Qr(J), Yt:te A, i e A'». D

3.3 Generalized Products. We begin our treatment of the Feferman-Vaught
theorem by giving a rather "soft" definition of a generalized product. This notion
differs from that in Feferman-Vaught in several respects. Perhaps the most basic is
that it is designed to describe only operations taking a set of L-structures to an
L-structure. Thus, the definition focuses on the relation between the truth of basic
relations in the language L (as opposed to arbitrary definable relations) in the
factor structure and the product structure. The intent of this definition is to
emphasize those properties of the definition of the basic relations in the product
structure which allow the assertion, "truth of basic relations depends on truth in the
factors" to propagate to, "truth of all sentences in first-order logic (in infinitary
monadic logic) depends on their truth in the factors". This definition is abstracted
from the accounts of the monadic preservation theorem in Shelah [1975e] and
Gurevich [1979b]. The emphasis here differs from that in Feferman [1972] where
the role of functors from one similarity type to another is of central importance.

Examples of the notion of generalized product defined here—not of minor
modifications of it—include direct product, disjoint union, ordinal sum of linear
orderings, ultraproduct, and reduced product. Observe that in the last two, the
language for the index set contains symbols binding subsets. Note also that the
notion we are here examining does not include the concept of a sheaf over a
boolean space.

Following is the key idea of the definition. Since we are going to give a proof by
induction on quantifiers, we must describe how the product operation behaves with
respect to structures obtained by naming elements and—since we will work in
monadic logic—subsets. In fact, the notion of projection which we formulate below
would be harder to explicate if we were to deal with elements rather than with sets
since (for example, in disjoint unions) we frequently want to project to the empty set.

3.4 Definition. A generalized product is a function (or a family of functions) which,
to each language L and each sequence (At: i e /> of L-structures, assigns an
L-structure F((At: i e / » = A* satisfying the following conditions:

(i) For each i there exists a function p{\ 0>(A*) -> ̂ (At) such that if P is a
sequence of subsets of A*, then

F(((Ah Pi(P)>: i e / » = (F{A{: i e /), P>.

(ii) For any sequence a (of arbitrary length < |i4*|) and for each L-symbol
R, letting KR(a) = {i: Ax \= R(Pi(a))} and analogously in 5*, if
toMS>JZR@)>) = toMS>KR<P)>)> t h e n ^*NK(fl) if and only if
B* 1= R(b).
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3. Infinitary Monadic Logic and Generalized Products 469

Here and below, when a is a sequence of individuals, we will simply write
piia) for <Pi({a0}),..., £;({#&-1})>- Each p({at}) has cardinality at most 1. Now
we can state our version of the Feferman-Vaught theorem. The proof is similar
to that of Theorem 2 of Chapter XIII.

3.5 Theorem (Preservation Theorem). Suppose F is a generalized product operation
and suppose also that (At: i e /> and (Bj'.j eJ} are families of L structures.
For tetatX(L), let Qt(I) = {i: ta,x(At) = t] and let Qt{J) = {j: taJBj) = t}.
Moreover, let W = {t^x{A^)\ i 6 /} u {tatx(Bj)'J G J}- There exists aK = K(OL9 \W\)
such that if

t(I): teW}) = tatK«J, Qt{J): t e W»

then

As a corollary, we get a result mentioned in Chapter IX.

3.6 Corollary. If K is strongly inaccessible, then LK ^-equivalence is preserved by
generalized product.

Proof If 0eLKfA(Qmon) then for some IXKK^SL^ But then 0 e L«, x(Qmon)
where a < /i+ (this is a straightforward computation). Thus, the truth of (/> in M
is determined by tat A(M) which is equivalent to a formula in LK x since K is strongly
inaccessible. D

This argument also yields the results in 3.3.4, Corollary 2.3.5, and 3.3.6 of
Chapter IX.

We will now describe a generalization of disjoint union which is the example of
generalized product that is of most use in the study of second-order quantifiers.
This is a generalization of the notion of decomposition that was employed in
Lemma 2.4. If we form a disjoint union, no relation holds between sequences a, b
from different constituents of the union. We want to allow such relations to hold
but we also want to require that whether R(a, b) holds shall depend only the separate
properties of a and b. To make this notion precise, we require several preliminary
definitions.

3.7 Definition. (1) If <Mf: i e /> is a sequence of L-structures with Mt n M} — AT,
we call the M( a sequence with heart N.

(2) Let <Mf: / e /> be a sequence with heart N. To define the free union (with
respect to a) over N of the Mt, we first need the following auxiliary notions:
(i) An ̂ -condition risa pair <P, <0 O , . . . , </>fc_i>> consisting of a partition,

P, of n into sets Po,..., Pk_ x and a fc-tuple of first order formulas such
that <f>i has \Pt\ free variables.

(ii) o is a map which assigns to each m-ary relation symbol R of L a finite
set of m-conditions.
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470 XII. Definable Second-Order Quantifiers

(iii) Let M be ( J { M ; : i e / } . If a e M , then a satisfies the n-condition
<P, < 0 o , . . . , 0 f c _ i > > if for some Mio, ...,Mik_l9 we have Pj =
{m: ame Mtj}; and, letting a} = {am: m e Pj}, taken in increasing order
of subscript, Mtj \= 4>j(aj).

Now the free union of the Mt over N is the structure whose universe is
u {Mt: iel}, where RM = {a: a satisfies an m-condition ina(R)}.

It is easy to see that such a free union satisfies the definition of generalized
product. Technically, we note that one must make allowance for the amalgamation,
but this is straightforward. The details of Theorem 3.3.5 are, in this special case,
carried out in III.1.13 in Baldwin-Shelah [1982]. In that paper, the free union is
defined in terms of t(a; N). An easy application of compactness shows that when
every model of T containing N can be decomposed in the sense of Definition 2.4.1,
then each such model can, in fact, be written as free union over N in the sense of
3.7.3.

4. The Comparison of Theories

This section discusses a nuance in Shelah's argument, reported in Theorem 1.2.5,
that 6n ^ Qi -1- Namely, we consider the exact role of the assertion that interpreta-
tions preserve Hanf number. We show that a similar in form but technically easier
argument shows Qn ^ (Th( <, <2mon), the monadic theory of order. This last
remark is apparently paradoxical in the light of the proof (Gurevich-Shelah
[1982]) that it is consistent to interpret Qu into (Th(<), 2mon). To resolve this
paradox we must distinguish the usual notion of interpretation from the stronger
notions used in this paper.

4.1 Definition. The theory T: is syntactically-interpretable in the logic T2 if there is a
map* assigning to each Tj-sentence (j> a T2-sentence 0* such that Tx \- (f> iff
T2 h- 0*.

Clearly, if* is recursive the Turing degree of 7\ is less than or equal to the Turing
degree of T2. However, this map need not preserve model-theoretic properties.
Thus, using the Feferman-Vaught theorem for monadic logic, we will show that
the Hanf number for monadic sentences on linearly ordered models (the Hanf
number of the monadic theory of order) is strictly less than the Hanf number of
second-order logic. It is easily seen that this implies that there can be no strong
interpretation (in the sense of Definition 3.2) of Qn into Th(<), Qmon, (see
Baldwin-Shelah [1982, VIII.2.12]). Nevertheless, Gurevich-Shelah [1982] have
shown that it is consistent—indeed, it follows from the GCH—that there be a
syntactic interpretation of Qn into the monadic theory of order. The reader should
consult Chapter XIII for more details on the monadic theory of order.

Several variants on the notion of interpretation and their roles are discussed in
Baldwin-Shelah [1982]. We will use here only interpretations which satisfy the
following condition.
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4. The Comparison of Theories 471

4.2 Definition. The logic Tx is semantically interpretable in the logic T2 if there exist
a pair of maps (both denoted by *) taking Tx-sentences to T2-sentences and the
models of T2 onto the models of T2 such that:

(i) M c M*;
(ii) M\=

If, in addition, we have

(iii) |M* | can be computed from \M\,

then we say 7"i is strongly semantically interpretable into T2.

We will now show how bounds on the Hanf number of a theory can be used to
show that there is no strong semantic interpretation of one theory into another.
This, however, requires the technical notion given in

4.3 Definition. We say that the Hanf number of 7\ is bounded in terms of the Hanf
number of T2 and write B(TU T2) if there is a second-order definable function/(x)
such that / /(TJ < f(H(T2)).

Observe that this relation is obviously transitive. Now, if B(Qlh T), it is fairly
easy to see that there can be no strong semantic interpretation of Qn into T. Since
our notion of < is a strong semantic interpretation, this gives a more general
explanation for Theorem 1.2.5. We will now show that that theorem can be extended
to the monadic theory of order.

In some respects, Silver [1971] begins this program with his explicit computa-
tion of an upper bound for the Hanf number for logic with the well-ordering
quantifier (Chapter XVII). This shows that fewer classes of cardinals are charac-
terized as cardinals (that is, as, well-ordered sets) in the monadic theory of order
than in second-order logic. This leaves open the possibility that we might be able to
characterize the missing classes as sets of cardinals in which a sentence in the
monadic theory of order has a model (although not necessarily a well-ordered
one).

We use the following notation.

4.4 Notation. We denote the Hanf number of (Th( <), Qmon), the monadic theory of
well-orderings, and Qu respectively by HL, HW, and Hn.

We write H(T) for the Hanf number of theory T. If H(T) can be bounded by a
cardinal definable in second-order logic (for example, HW\ then Hn cannot be
bounded in terms of H(T). As, we would then have a second-order definable
bound on Hn, which is clearly impossible. Thus, the assertion HL < Hn follows
immediately from the next lemma.

4.5 Lemma. HL is bounded in terms ofHW.

Proof. Specifically, we will show that HL < Z {2A: X < HW}. Let (M, <) be a
linear order and suppose that X can be embedded in M as (at: i < Xs). Now, M is a
free union (in the sense of Theorem 2.6) of the intervals determined by the at. For
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472 XII. Definable Second-Order Quantifiers

any fixed monadic sentence </), say with quantifier depth m, we can find a k such that
h,k(^ QtWX where t ranges over the finitely many monadic theories of quantifier
depth n, determines whether M satisfies 0. Since A > HW, we can replace A with an
arbitrarily large X with *2>k(A, QtW) = xi,\kh At) for appropriate subsets At of A'.
But it is an easy matter to find an M' such that M is a free union of intervals indexed
by X and so that Qt(X) = At. But then M' \= cj).

Since, for any linear order M, if | M | > 2A, there is an order embedding of either
A or A* into M—and since the preceding argument works equally well for A*—we
see/JL < I{2A:A < HW}.

Clearly, if Qu could be strongly interpreted in (Th( <), gmon), then if,, would be
bounded in terms of HL. Thus, we have

4.6 Theorem. There is no strong semantic interpretation ofQn into (Th( < ) , Qmon). D

5. The Classification of Theories by
Interpretation of Second-Order
Quantifiers

We will not investigate the partial order of interpretability among theories (T, Q^).
That order refines the interpretability order of among first-order theories and so
defies model-theoretic analysis. Rather, we will discuss the following question for a
given first-order theory T: Do the four second-order quantifiers coalesce when
restricted to models of T? The answer to this question can be viewed either as a
comment on the quantifiers or as a comment on the theory T. We will adopt the
latter viewpoint here. The non-interpretability of second-order logic imposes an
extremely strong structure theory on the models of T. This structure theory and
some of its consequences are outlined below. In particular, we measure the com-
plexity of (T, Q^) by computing Hanf and Lowenheim numbers.

5.7. Outline of the Classification

In making such a classification, we consider those theories for which (T, Qmon)
interprets Qu as being beyond analysis. The remainder can then be divided into
four classes as follows. Assume Qu ^ (T, Qmon).

Gn ^ (T, d - i ) 2n £ Or, <2i-i)

Th( <, gmon) < (T, gmon) prototype impossible
(unstable) (Th( <, Qmon)

Th( <, Qmon) £ (T, Smon) tree decomposable strongly
(stable) prototypes decomposable
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5. Classification of Theories by Second-Order Quantifiers 473

We could discuss the desirable properties of a particular entry of this table in
two ways. We could prove a specific theorem (for example, that: the Lowenheim
number of a countable theory such that Qu ^ (T, 1 -1) is No). Even when such precise
information cannot be obtained, we may be able to reduce such questions to the
computation of, for instance, Lowenheim numbers for a specific theory To by
showing, for example, that if g n ^ (T, Qmon\ then (T, Qmon) is bi-interpretable with
the models of To. In some cases, we will prove a slightly weaker reduction than the
second alternative: We will replace the theory To by a class of structures which is
not first-order definable. In some respects, of course, such a reduction is actually
stronger than proving a particular theorem since it provides a "normal form" for
models of T; the strength of the reduction depends on how well we are able to
analyze the class to which we reduce.

The first line of the table distills an argument for the importance of studying the
monadic theory of order. First, interpretability of the monadic theory of order is
related to the important distinction between stable and unstable first-order theories.

5.1.1 Lemma. If the complete first-order theory T is unstable, then (Th(<), Qmon) <

This result is proven in detail in Baldwin-Shelah [1982]. In outline, the proof
proceeds by noticing (see Shelah [1978a]) that T is unstable iff T admits a definable
linear ordering of an infinite set of ^-tuples. A fairly complicated analysis of order
indiscernibles (see Baldwin-Shelah [1982, VIII.1.3] shows that with additional
unary predicates a linear ordering of a definable subset can be specified.

A second reason for the intensive study of the monadic theory of order as
opposed to (Th(<), Q^\ for some other \\i, is that no other \jj is really possible. We
have already shown in Section 2 that the only possibility for Q^ is Qi-V The
next theorem rules out even that. It is fairly easy to deduce from Lemma 1.2.9
that Qu < (Th(<), 1-1). Combining this result with Section 5.1, we obtain

5.1.2 Theorem. IfT is unstable, then Qu < (T, gi-i)-

Further expansion of the argument that Th(<, Qmon) is the prototype for those
monadic unstable theories which can be analyzed occurs in Shelah [198 ?b, 198 ?d].

We will now discuss the situation characterized by bottom line of this table:
The situation in which T is stable. In Section 2.5, we outlined the argument that if
Qn £ (T, Qi-i)and Tis stable, then Tis strongly decomposable. If Qn < (T, Qi-0,
the argument that the fundamental equivalence relation is the same as algebraic
closure and thus that each class is small (see Lemma 2.5.6) does not apply so that the
classes may indeed be large. In this case, we iterate the procedure by choosing
submodels inside each equivalence class and decomposing the class over this model.
Since T is stable, this process cannot be iterated more than | T | times (see Baldwin-
Shelah [1982, IV.2.1]). This decomposes each model by a tree of height < | T | in the
sense of the following definition.

Before we examine the definition in detail, observe that the notation T" denotes
the result of deleting the last symbol from a sequence.
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474 XII. Definable Second-Order Quantifiers

5.1.3 Definition. The model M is tree-decomposed by the tree / of sequences of
length at most K if there exist models {{Mv, Nv}\ rj e /} such that:

(i) 1^1 = | T| for every ly.
(ii) If rj ^ p then Nn <= Np c Mp c M,.

(iii) For each re I there are index sets J and functions o such that:
(a) MT is the free union of the {Mx-j\jeJ} amalgamated over Nx and

taken with respect to o.
(b) M is the free union over JVT (with respect to o) of {M^f.jeJ} u

{Mp u iVT:p # rbut p~" = T ~ } ;
(iv) M<> = M; if Ig(^) is a limit ordinal then Nv = (J {Nr: T £ ?;}, M , =

(v) M = U { J V T : T G / } .

If a theory is K tree-decomposable (that is, every model of T is tree-decomposed
by a tree of height K\ then the models of T are short in the sense that no matter
how large a model is, complete information about a finite sequence of elements
from the model depends only on the less than K elements which precede it in the
tree.

5.1.4 Definition. The theory T is shallow if every model of T can be tree-decom-
posed by a well-founded tree. Otherwise T is deep.

If T is shallow, then we assign a rank to models of T, namely, the ordinal rank
of the tree.

Now we can describe our prototypes.

5.1.5 Notation. Let Ko be the class of all trees {k<v>\ X e Ord} and Xx the class of
all trees {k^\ X e Ord}. If Qu < (T, Qmon), then the models of T are very closely
tied to the trees which arise as skeletons when the models are tree-decomposed.
Specifically, we have

5.1.6 Theorem, (i) / / T is a countable superstable deep theory and Qu < (T, Qmon\
then (T, LWl>£O(Qmon) and (Xo, LWl> J are bi-interpretable.

(ii) / / T is a countable stable but not superstable theory and Qlx ^ (T, <2mon),
then (T, Lw>a)(gmon) and (Kl9 LWj J are bi-interpretable.

This is Theorem VII.2.1 of Baldwin-Shelah [1982].

5.2. Computations of Hanf and Lowenheim Numbers

In this section we will briefly discuss the results on Hanf and Lowenheim numbers
which can be derived from the preceding classification. We will then indicate how
such computations are made. For the sake of simplicity, we will discuss only the
case of countable languages here. The results extend to uncountable languages and
such extensions are considered in Baldwin-Shelah [1982].
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5. Classification of Theories by Second-Order Quantifiers 475

5.2.1. Finitary Monadic Logic

Lowenheim Number Hanf Number

(L)
A^deep * ( ] J +

k<(O shallow . , _ . _ . .
depth = B mmQfi> L ) minQ,, ] J

strongly decomposable ], ]j

* Shelah [1983b] has shown that there are superstable deep theories such that the Lowenheim number
of (T, Qmon) is (assuming V = L) the same as that of second-order logic.

This table and the one in 5.2.3 reports the Hanf number for sets of sentences.
For a single sentence the ' + ' can be dropped in some cases. See III.2 of Baldwin-
Shelah [1982].

In order to completely determine the Lowenheim number, we must consider
one further property. This we do in

5.2.2 Definition. The free union of <M,: i e /> over N is nice if for each / there exist
finite subsets Ht of N and Ut of M, such that for any meM, t(m; Ht u Ut) \-
t(m;N).

If the decomposition is nice, then the Lowenheim number of a shallow theory
is Ko; otherwise, it is 2No. Details on this nicety are given in VI.2 of Baldwin-Shelah
[1982].

5.2.3 Infinitary Monadic Logic (L^ w). For the sake of simplicity, assume that
a > (Dx, then the following arrangement is possible.

Lowenheim Number Hanf Number

r-deep * ]J+1
X<(O shallow n x+ n \ +

shallow: depth =/J Up) Ufi)

strongly decomposable (] t )
+ (] j)+

* Shelah [198?b] has shown that for every superstable deep theory such that the Lowenheim number in
infinitary logic of (T, Qmon) is, assuming that V = L, the same as that of second-order logic.

5.2.4 Outline of the Argument. These computations depend on (i) the decomposi-
tion of the models; (ii) the generalized Feferman-Vaught theorems; and (iii) the
computation of the cardinality of taA(L). The general program is simply this: to
decompose a model as free union of structures Nt for i e I. Suppose we are trying to
extend (Hanf number) or restrict (Lowenheim number) M for a sentence with k
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quantifiers (either individual or monadic) and a alternations. Let W = \JUJ ra>A(ATf).
Then, by Theorem 2.5, we can find a K such that tak(M) is determined by
ta ,*««/, 2r(/): t e W». Thus, if we can guarantee the cardinality of/ to be sufficiently
greater than \W\, there will be a large number of indices with the "same theory".
We can then expand or contract this set at will. The full details are given in Chapters
III, VI, and VII of Baldwin-Shelah [1982]. One sample is perhaps instructive. If T
is strongly decomposable, then each model is a free union of countable structures.
Since there are only ] x possible Lm(a{Qmot) theories of a countable structure, this
reduces both the Hanf and Lowenheim numbers of (T, 2mon) to ~]x precisely. In
fact, for theories with a nice decomposition these numbers can be reduced to Ko.

The situation when T is only tree-decomposable is somewhat more subtle. We
can compute the Hanf number for Loo> A by noting that if \M\ > ] a + x somewhere
in the tree, we have a free union with more that | £a> A(L) | factors and then extend M.
But this argument yields no information on the Lowenheim number. If T is shallow
and P is the sup of the ranks of models of T, then we obtain the bound min(]^, ]w)
for both the Hanf and Lowenheim numbers by induction on this rank.

6. Generalizations

This work can be extended in several directions. In particular, the results in
Section 5 can be sharpened, and the notion of quantifier can be extended. With
respect to the first direction, Shelah [198 ?d] confirms the close connection between
Hanf number and interpretability by showing

6.1 Theorem. For any first-order theory T the Hanf number o/(T, Qmon) is at most
it(T,Qmon). D

In the other direction, we again return to the definition of a second-order
quantifier.

1.2.2 Definition. If \jf{f) is a formula of pure identity theory, then Q^r) is the second-
order quantifier whose semantics are given by:

M 1= Q^(f)0(f) iff for some sequence R e ^ ( M ) , M \= (j)(R).

There are several ways to extend this definition. Perhaps the most obvious one is
to replace the requirement that 0 be a first-order formula by introducing a param-
eter for the language. Thus, we have been discussing first-order definable second-
order quantifiers. One could discuss infinitarily definable second-order quantifiers,
or second-order quantifiers defined in stationary logic, or second-order definable
second-order quantifiers etc. ad nauseum. A second possibility is to partition the
variables r into a sequence si. Then, by freezing the s, we move out of pure logic and
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are thus able to discuss automorphisms, congruences and other algebraic concepts.
Finally, we could remove the restriction that the relations r be subsets of An, for
some n, and allow them, for example, to be families of subsets. Thus, we would
obtain definable third-order quantifiers. At this level, we spread our net to include
L(aa). Another approach is to relax the definability requirement and allow the
class of subsets defining a quantifier to be any class that is closed under isomor-
phism. This is the line adopted by Shelah [1983a]. Thus, we identify a quantifier
with a class K of subsets of (J An. Naturally, we may also deal with a finite sequence
of quantifiers (classes) K = <K 0 , . . . , Kn}.

In discussing this widened class of quantifiers, Shelah weakens the notion of
interpretability somewhat.

6.2 Definition. We say K is expressible in K if for each ReK there is a formula
0(x, f) (with quantifiers over the Kt) such that for some R0,...,Rn each in one of
the Ki9 R(x) <-> (j)(x, R). The problem—already hinted at in Shelah [1973c]—was
finally addressed in Shelah [1983a], and it asks the following: Is every quantifier
(that is, class K) bi-interpretable with a finite sequence X, where each Kt is an
equivalence relation? The main result on this is given in

6.3 Theorem (Expressibility with Equivalence Relations), (i) If V = L, then every
K is bi-expressible with an equivalence relation (see Shelah [1983c]; p. 53).

(ii) It is consistent that there is a K which is not biexpressible with an equi-
valence relation. (Shelah [1983c]; pp. 48-57).

There is still another way these methods might be used. In many of the technical
successes of stability theory over the last few years—for example, Vaught's con-
jecture for co-stable T (Harrington-Makkai-Shelah [1983]) and the solution by
Shelah [1982f, 198 ?c] of Morley's conjecture that (with the obvious exception) the
spectrum function is increasing—the part of the proof showing there are many
models can be viewed as an interpretation of Qn into the L(au0}(Qmon) theory of T.
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Chapter XIII

Monadic Second-Order Theories

by Y. Gurevich

In the present chapter we will make a case for the monadic second-order logic
(that is to say, for the extension of first-order logic allowing quantification over
monadic predicates) as a good source of theories that are both expressive and
manageable. We will illustrate two powerful decidability techniques here—the
one makes use of automata and games while the other uses generalized products
a la Feferman-Vaught. The latter is, of course, particularly relevant, since monadic
logic definitely appears to be the proper framework for examining generalized
products.

Undecidability proofs must be thought out anew in this area; for, whereas
true first-order arithmetic is reducible to the monadic theory of the real line R,
it is nevertheless not interpretable in the monadic theory of R. Thus, the examina-
tion of a quite unusual undecidability method is another subject that will be
explained in this chapter. In the last section we will briefly review the history of
the methods thus far developed and give a description of some further results.

1. Monadic Quantification

Monadic (second-order) logic is the extension of the first-order logic that allows
quantification over monadic (unary) predicates. Thus, although binary, ternary,
and other predicates, as well as functions, may appear in monadic (second-order)
languages, they may nevertheless not be quantified over.

LL Formal Languages for Mathematical Theories

We are interested less in monadic (second-order) logic itself than in the applica-
tions of this logic to mathematical theories. We are interested in the monadic
formalization of the language of a mathematical theory and in monadic theories
of corresponding mathematical objects. Before we explore this line of thought in
more detail, let us argue that formalizing a mathematical language—not necessarily
in monadic logic, but rather in first-order logic or in any other formal logic for
that matter—can be useful.
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480 XIII. Monadic Second-Order Theories

We begin by observing that the first-order Zermelo-Fraenkel set theory
stands as a very important case in point, since it provides the most popular way
to avoid known paradoxes in set theory. Another excellent example is related to
the Lefschetz principle in algebraic geometry. This principle asserts that any
algebraic statement that is true for the field of complex numbers is also true for any
algebraically closed field of characteristic 0. Tarski proved a meaningful exact
versioruof the Lefschetz principle, namely, that all algebraically closed fields of
characteristic 0 are elementarily equivalent.

The task of classifying all mathematical structures of a kind up to isomorphism
(or homeomorphism, etc.) may be impossible. For example, nobody can classify
all abelian groups up to isomorphism. Formalizing (a portion of) the language
may allow classification by properties that are expressible in the formal language.
Szmielew [1955] did, in fact, classify all abelian groups up to elementary equiv-
alence. The classification of structures up to indistinguishability in a formal
language may indeed be a reasonable alternative to the original classification
problem provided, of course, that the formal language expresses enough of the
relevant mathematics.

Another impossible task is that of learning everything about a specific structure.
For example, nobody can learn all about the binary tree of words in a two-letter
alphabet. Formalizing (a portion of) the language may enable us to learn all
about the structure that is capable of being expressed in the formal language. It is,
of course, a reasonable approach if the formal language is sufficiently rich. Indeed,
Rabin [1969] has constructed an algorithm which is capable of recognizing the
true statements in the very expressive monadic (second-order) language of the
binary tree with two successor functions.

The study of mathematical structures in a formal language may, of course,
degenerate to a mere logic exercise if the language is not sufficiently expressive.
For example, imagine studying first-order properties of dense linear orders. On
the other hand, the study itself may become intractable if the language is over-
expressive. For instance, imagine studying second-order properties of dense
linear orders. A good formal language has to meet two conflicting demands. It
must express an interesting portion of the relevant mathematics, and it must also
provide a manageable theory. One of the main aims of this chapter is to demonstrate
that the monadic (second-order) logic is a good source of expressive and manage-
able theories.

1.2. Ordered Abelian Groups and Restricted Monadic
Quantification

I began to think in terms of monadic logic while I was working on ordered abelian
groups. The original problem I faced was the decision problem for the elementary
theory of such groups—a question of Tarski. It appeared, however, that monadic
logic gives a better formalization of the informal theory of o.a. groups. The story
was an important lesson for me and I will briefly relate it to you.
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1. Monadic Quantification 481

An o.a. group is a group and a chain, the two structures being connected by
the law

Here is a particular example: the additive group of complex numbers ordered
thus:

a + bi < c + di iff b < d, or b = d and a < c.

The subgroups of an ordered abelian group that form intervals are called convex
subgroups. For example, the real numbers form a convex subgroup in the o.a.
group of complex numbers just described. It is easy to verify that the convex
subgroups of any o.a. group are linearly ordered by inclusion. Before proceeding,
we should point out that throughout this chapter the terms chain and linear ordering
will be used interchangeably.

The elementary first-order theory of o.a. groups was shown to be decidable in
Gurevich [1964], there was proven that two o.a. groups are elementarily equivalent
iff their chains of definable convex subgroups with some definable weights are
elementarily equivalent. Of course, in that study most of the informal theory of
o.a. groups was left aside, such theory tending as it does to deal with convex
subgroups. In particular, we note that the o.a. group of complex numbers described
above is elementarily equivalent to the naturally ordered additive group of real
numbers, although only one of these o.a. groups has a non-trivial convex subgroup.

The elementary language of o.a. groups was expanded in Gurevich [1977a] by
adding quantifiable variables that range over arbitrary convex subgroups, and
the expanded theory of such groups was there proven to be decidable. You might
suspect that the expanded theory is decidable because the expansion did not
greatly increase the expressive power, and that the restricted monadic quantifica-
tion can be essentially eliminated. However, this is not at all the case! Not only
does the expansion considerably increase the expressive power, but it is also the
elementary quantification that can be essentially eliminated in the expanded
theory. Two o.a. groups are equivalent in the expanded language iff their chains
of convex subgroups with some definable weights are elementarily equivalent.
Moreover, the decision procedure is clearer and less cumbersome in the case
of the expanded theory. Thus, in the case of o.a. groups, the monadic logic really
does provide a better formalization.

Not too much work has yet been done on this kind of algebraic application
of restricted monadic quantification. In this connection, the reader might consult
Kokorin-Pinus [1978], an informative, although somewhat biased, survey.
The remainder of this chapter is devoted mainly to unrestricted monadic quantifica-
tion, an area in which some very impressive progress has been made. In the original
papers, many of the results on unrestricted monadic quantification are accom-
panied by restricted monadic quantification results. The work on unrestricted
monadic quantification seems to be a natural step in the development of ways
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482 XIII. Monadic Second-Order Theories

that are capable of dealing with the presumably more applicable restricted monadic
quantification.

13. Monadic Languages

The monadic (second-order) logic is the fragment of the full second-order logic
allowing quantification only over elements and monadic predicates. One way to
define the monadic version of an elementary language L is to augment L by a
sequence of quantifiable set variables and by new atomic formulas teX, where t
is an elementary term and X is a set variable. The intended interpretation here is
that 6 is the membership relation and the set variables range over all subsets of a
structure for L. Observe, however, that in the case of restricted monadic quan-
tification the set variables range only over special subsets; that is to say, they only
range over subgroups, or normal subgroups, etc.

The following proposition shows that the monadic theory of a structure may
easily be intractable.

1.3.1 Proposition. Let P be a ternary predicate on a non-empty set S. Suppose that,
for every x, y e S, there is zeS, with (x, y9 z) e P, and for every zeS there is at most
one pair (x, y) with (x, y, z) e P ; such P may be called a pairing predicate. Then the
true {full) second-order theory of S is interpretable in the monadic theory of(S, P).

Proof. The proof is quite clear. First, we code ternary, quaternary, etc., predicates
by binary ones. That done, we then code a binary predicate B by a monadic
predicate {z: there is a pair (x, y) in B with (x, y, z)e P}. D

We will be interested in the monadic theories that are not able to express
pairing such as monadic theories of (linear) orders, monadic theories of trees, etc.
In these theories it is useful in many cases for us to rid ourselves entirely of
elementary variables by coding the original structure on singleton sets. For
example, we consider the monadic language of order as the (formally) first-order
language whose vocabulary consists of the binary predicate symbols c and <.
Every chain (that is, every linearly ordered set) gives a standard model: the
variables range over all subsets of the chain, c; is the usual inclusion, and X < Y
means that there are elements x < y with X = {x}, Y = {y}. The (formally)
first-order theory of these standard models is, by the definition, the monadic
theory of linear order.

2. The Automata and Games Decidability
Technique

The first technique for dealing with nontrivial monadic theories originated in the
theory of finite automata. In Section 2.1 we will demonstrate this technique on an
easy example of the monadic theory of finite chains. Section 2.2 is devoted to the
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2. The Automata and Games Decidability Technique 483

monadic theory of the chain co of natural numbers, while Section 2.3 is devoted
to the central result proven by the technique which is decidability of the monadic
theory of the binary tree.

2.7. Monadic Theory of Finite Chains

We define the monadic language of one successor as formally the first-order language
with binary predicates c and SUC. It is convenient here for us to view a finite
chain as a model for the monadic language of one successor, that is, the variables
range over the subsets of the chain, c is ordinary inclusion, and SUC(X, Y)
means that there are points x, y such that X = {x}, Y = {y}, and y is the successor
of x. The linear order (on singleton sets) is then easily definable.

Throughout this section E is an alphabet (all of our alphabets are finite and
are not empty). A H-automaton is a quadruple A = (S, T, sin, F), where S is the
finite set of states, T ^ S x E x S is the transition table, s i n e S is the initial state,
and F ^ Sis the set of final (or accepting) states. A is generally a non-deterministic
automaton. It is deterministic if T is a total function from S x E to S.

A run of the E-automaton A on a word a1 . . . ol in E is a sequence sx . . . sz of
states such that (sin, <rl9 st) e T and every (si9ai+l9si+1)eT. The automaton
accepts (Tl9..., GX if there is a run sx . . . st on this word with st e F.

2.1.1 Theorem. T/zere is an algorithm that, given an alphabet E and a ^-automaton
A, constructs a deterministic ^-automaton accepting exactly the words accepted by A.

Proof. See any standard text in automata theory or, for the original proof Rabin-
Scott [1959]. •

2.1.2 Theorem. There is an algorithm that, given an alphabet E and a ^-automaton A,
decides whether A accepts at least one non-empty word.

Proof. Let A — (S, T, sin, F). First, we construct a singleton alphabet Er = {a}
and a E'-automaton A' = (S, T',sin,F) that accepts a non-empty word iff A
accepts a non-empty word. Set

T = {sifls2: 5^52 e T, for some a e E}.

Second, we use the algorithm of Theorem 2.1.1 to construct a deterministic
E'-automaton A" that accepts exactly the words accepted by A'.

Third, let n be the number of states of A". Consider now the unique run
s1... sn+1 of A" on the E'-word of length (n + 1). There are i < j < n + 1 with
st = Sj. Hence, any run of A" is purely periodic from the ith place on. Thus,
A" accepts a non-empty word iff a final state appears among su ..., s7-_ x. D

A finite chain C with n subsets Xl9...9Xn can be considered as a word
Word(C, X1,...,Xn) of length | C \, in the alphabet En that is the Cartesian product
of precisely n copies of {0, 1}. If n = 0, then Eo is a singleton. In case n > 0, a
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484 XIII. Monadic Second-Order Theories

letter of £„ can be viewed as a column of n zeros and ones. For example, if C is the
chain Sunday,..., Saturday and X1 = {Monday, Thursday} and X2 = {Monday,
Tuesday, Wednesday}, then we have

2.1.3 Theorem. There is an algorithm that, given n and a Hn-automaton A, constructs
a formula <t>(Xu . . . , Xn) in the monadic language of one successor such that for
every finite chain C and any subsets Xl9..., XnofC,we have that

C\=<KXl9...,XH) iff A accepts Word(C, Xl9..., Xn).

Proof. Without loss of generality, C can be taken as the chain 1 , . . . , / for some /. Let
sl9..., sm be the states of A. The desired formula says that there are subsets
Yi9..., Ym describing an accepting run of A on Word(C, Xu ..., Xn). The intended
meaning of Yk is {i: A is in the state sk after reading the ith letter}. D

2.1.4 Theorem. There is an algorithm that, given a formula <t>(Xu..., Xn) in the
monadic language of one successor (with free variables as shown), constructs a
Hn-automaton A such that for every finite chain C and any subsets Xl9..., Xn of C,
we have that

C \= $(XU..., Xn) iff A accepts Word(C, Xl9..., Xn).

Proof. We will merely sketch the proof. The automaton is built by induction on
the formula. The atomic cases and the case of disjunction are quite easy. As to
the case in which cj> = 3Xn+1\j/9 the desired £n-automaton guesses Xn+i and
mimics the E n + 1 -automaton corresponding to \jj. The case of negation is easy
for deterministic automata. We will now use Theorem 2.1.1 and the result will
follow. D

Theorems 2.1.3 and 2.1.4 together constitute a kind of normal form theorem
for the monadic theory of finite chains.

2.1.5 Theorem. The monadic theory of finite chains is decidable.

Proof. Given a sentence 0, we use the algorithm of Theorem 2.1.4 to find an
appropriate automaton. The sentence <\> is satisfiable iff the automaton accepts
at least one non-empty word. Now, using Theorem 2.1.2, the assertion follows
immediately. D

2.2. Monadic Theory ofco

As usual, co will denote the chain of natural numbers. We consider it here as a
model for the monadic language of one successor: The variables range over the
subsets ofco, c is the usual inclusion, and SUC(X, Y) means that there is a natural
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2. The Automata and Games Decidability Technique 485

number x such that X = {x} and Y = {x + 1}. The monadic theory of co is
known as SIS which is an acronym for second-order (monadic) theory of one
successor. Observe that the linear order (on singleton sets) is easily definable in
SIS.

A sequential ̂ -automaton is a quadruple A = (S, T, sin, F), where S is the set
of finite states, T^SxZxS is the transition table, sin is the initial state and F is
the set of final collections of states. A is generally a non-deterministic automaton.
However, it is deterministic if T is a total function from S x £ to S. A run of A on a
sequence c r ^ . . . is a sequence s ^ . . . of states such that (sin, a1? sx) e T, and
every (st, cri + 1, si+l) e T. It is an accepting run if {s: sn = s for infinitely many n}
belongs to F. And, finally, A accepts a sequence <7XG2 . . . if there is an accepting
run of A on this sequence.

2.2.1 Theorem. There is an algorithm that, given an alphabet Z and a sequential
^-automaton A, constructs a deterministic sequential ^-automaton accepting exactly
the sequences accepted by A.

This result is proven in McNaughton [1966]. However, simpler proofs can be
found in Rabin [1972], Choueka [1974], Thomas [1981]. D

2.2.2 Theorem. There is an algorithm that, given an alphabet £ and a sequential
^-automaton A, decides whether A accepts at least one sequence.

Proof. The argument here is simple, since we only need repeat the proof of Theorem
2.1.2, speaking about sequences rather than words and changing the last sentence
to: Thus A" accepts the unique E'-sequence iff the collection {st,..., s7-_ j} is final.

D

Subsets Xl9..., Xn of co form a sequence SEQ(Zl 9 . . . , Xn) in the alphabet
£„. The following three theorems and their proofs are similar to the corresponding
theorems and proofs in Section 2.1.

2.2.3 Theorem. There is an algorithm that, given n and a ̂ -automaton A, constructs
a formula 4>(X1,..., Xn) in the monadic language of one successor such that for
any subsets Xl9..., Xnof co,

aj \=(t)(X1,...,Xn) iff A accepts SEQ(X,,..., Xn). U

2.2.4 Theorem. There is an algorithm that, given a formula (f>{Xu..., Xn) in the
monadic language of one successor (with free variables as shown), constructs a
^-automaton A such that for any subsets Xl9 ...,Xnof co,

co\=(/)(Xl,...,Xn) iff A accepts SEQ(X t,..., Xn).

2.2.5 Theorem. The monadic theory of co is decidable. D
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486 XIII. Monadic Second-Order Theories

23. Monadic Theory of the Binary Tree

The binary tree is here defined as the set {/, r}* of all words in the alphabet {/, r).
The empty word e is the root of the tree. The words xl and xr are respectively the
left and the right successors of a word x.

The monadic language of two successors is (formally) the first-order language
with binary predicates c ? Left and Right. We regard the binary tree as a model for
the monadic language of two successors: the variables range over the subsets, c
is the usual inclusion, Left(X, 7) means that there is a word x with X = {x},
Y = {xl}, and Right(X, Y) means that there is a word x with X = {x}, Y = {xr}.
The monadic theory of the binary tree is known as S2S which is an acronym for
the second-order (monadic) theory of two successors.

S2S is a very expressive theory. The relation "x is the initial segment of y"
and "x precedes y lexicographically" are easily expressible (when coded on
singleton sets). Rabin [1969] interpreted in S2S the monadic theories of 3, 4, etc.
successors, the monadic theory of a> successors, and a good deal more.

A mapping V from the binary tree to an alphabet E will be called a ^-valuation
or a 1,-tree. We say that a tree ̂ -automaton is a quadruple A = (S, T, Tin, F) where
S i s t h e finite a l p h a b e t o f s t a t e s , T ^ S x {I, r j x E x S i s t h e transition table,
Tin c I x S is the initial state table, and F is the set of final collections of states.
In order to describe when the automaton A accepts a E-tree V, we introduce a
game T(A, V) between the automaton A and another player called Pathfinder.

A chooses: Pathfinder chooses:

Here each sne S and each dn e {/, r}. The choices of A are restricted by the following
conditions:

(V(e),so)eTin and (sn, dn+1, V{d, ... dn + 1),sn+1) e T.

We would like to avoid the possibility of the automaton not being able to
make the next move. One way to do this is to provide our automata with an
additional state FAILURE in such a way that a transition into FAILURE is
always possible, but a transition from a FAILURE to another state is never
possible. Of course, the singleton set {FAILURE} will not be a final collection.
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2. The Automata and Games Decidability Technique 487

The automaton A wins a play so^151d2 . . . if {s e S: sn = s for infinitely many n}
belongs to F. Otherwise, Pathfinder wins. The automaton A accepts V if it has a
winning strategy in T(A, V). Otherwise, it rejects V. The notion of strategy is
clarified below.

A position in T(A, V) is a word in the alphabet S u f t r } that is an initial
segment of some play s0d1s1d2... • The last appearance record LAR(p) in a
position p is the string of last appearances of states in p. Consider the following
example:

A

a

b

a

c

c

a

Pathfinder

/

r

I

r

I

Position

e
a
al
alb
albr
albra
albral
albralc
albralcr
albralcrc
albralcrcl
albralcrcla

LAR

e
a
a
ab
ab
ba
ba
bac
bac
bac
bac
bca

Here is an inductive definition of the last appearance record LAR(p). If p is
the empty word e (that is, the initial position), then LAR(p) is empty. If p = ql or
p = qr, then LAR(p) = LAR(g). Suppose now that p = qs, u = LAR(g) and v!
is obtained from u by erasing all appearances of 5. Then LAR(p) = M'S. Every last
appearance record is a word in alphabet S, where each state appears at most once.

A (deterministic) strategy for the automaton A in the game T(A, V) is a func-
tion assigning a legal state to every position of even length. A (deterministic)
strategy for Pathfinder is a function assigning a direction / or r to each position of
odd length.

Unfortunately, deterministic tree automata are too weak and Theorem 2.1.1
cannot be generalized to them. That theorem played a key role in Section 2.1;
and in the case of tree automata the proper form of determinacy will play an
analogous role.

2.3.1 Theorem (Forgetful Determinacy Theorem). One of the players has a winning
strategy fin T(A, V) such that ifp, q are two positions, where the winner makes moves
and p, q define the same residual game (that is, they have the same continuation)
and have the same last appearance records, then f(p) = f(q).

Proof See Gurevich and Harrington [1982]. •
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A strategy /for a player in T(A, V) will be called forgetful if/(p) = f(q), for
all positions p, q such that the player makes moves in p, q and p, q define the same
residual games, and moreover, the last appearance records in p and in q coincide.
The reason for this term is that any value/(p) depends on the residual game and
an only limited information about the history. Thus, in brief, we may say that a
forgetful strategy "forgets" most of the history.

2.3.2 Theorem. There is an algorithm that, given an alphabet Z and a tree 1,-auto-
maton A, decides whether A accepts at least one 1,-tree.

Proof. As in the proof of Theorem 2.1.2, we first reduce the problem to the case
of a singleton alphabet. Thus, suppose that Z is a singleton and V is the unique
Z-tree. By the forgetful determinacy theorem, one of the players has a forgetful
strategy winning T(A, V). List all forgetful strategiesfl9... ,/m for the automaton
A and all forgetful strategies gl9..., gn for Pathfinder. It is possible to check each
f against each g} because the play eventually becomes periodic. This way we can
find the desired winning strategy and determine whether or not A accepts V. D

Subsets X1,...,Xn of the binary tree give a Zn-tree that will be called
TREE(Xl 9. . . , Xn), where Zn is as in Section 2.1.

2.3.3 Theorem. There is an algorithm that, given n and a tree Zn-automaton A,
constructs a formula (j)(Xl9 . . . , Xn) in the monadic language of two successors such
that for any n subsets Xl9 ..., Xnofthe binary tree,

{l,r}*\=<KXl9...,Xn) iff A accepts TREE(X,,..., Xn).

Proof. A run of a tree Z-automaton A on a E-tree V is a function R from the binary
tree to the set of states of A such that every sequence

R(e)d1R(d1)d2R(dld2)...

is a legal play in T(A, V). If A wins all these plays then the run R is accepting.
The desired formula says that there are subsets Ys, where s ranges over the

states of the given tree Zn-automaton A, that describe an accepting run R of A on
TREE(Xl9.. . , Xn). The intended meaning of Ys is

{xe{l,r}*:R(x) = s}. D

2.3.4 Theorem. There is an algorithm that, given a formula (\)(XX,..., Xn) in the
monadic language of two successors, constructs a tree Y<n-automaton A in such a
way that for any n subsets Xl9..., Xnofthe binary tree,

{l9r}*\=<KXl9...,Xn) iff A accepts TREE(Xu...,Xn).

Proof. The argument here is similar to that given for Theorem 2.1.4, except for the
case of negation which is treated in Theorem 2.3.6 below. D
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2.3.5 Theorem. The monadic theory of the binary tree is decidable.

Proof. The argument here is similar to that given for Theorem 2.1.5. D

2.3.6 Theorem (Complementation Theorem). There is an algorithm that, given an
alphabet Z and a tree ^-automaton A, constructs a tree ^-automaton accepting
exactly the 1,-trees rejected by A.

Proof. Let V be a Z-tree rejected by A. By the forgetful determinacy theorem,
Pathfinder has a forgetful strategy / winning T(A, V). If p is a position in T(A, V\
let Node(p) be the string of even letters in p. For example, if p = albralcrcla then
Node(p) = Irlrl. If p, q are two positions of odd length, Node(p) = Node(g),
and A is in the same state in p, q (that is to say, p, q have the same last letter),
then p, q define the same residual game. This allows us to code/by an appropriate
valuation of the binary tree.

Let RECORDS be the set of words u in the alphabet of states of A such that
every state appears at most once in u. Elements of RECORDS will be called
records. Let Z' be the set of functions assigning a letter / or r to each record.
There is a Z'-tree V such that for every position p in T(A, V) we have

= (F'(Nodep))(LARp).

Since / is winning, every path

e, dl9 d1d2, d1d2d3,...

through the binary tree {/, r}* satisfies the following condition:

(*) There are no sequences s0
5i52 • • • a n d u0u1u2 . . . such that

s0dls1d2 . . . is a play with respect t o / a n d w0, uu u2,...
are corresponding last appearance records and {5: for
every i there is j > i with Sj = s} is a final collection of
states.

Clearly (*) abbreviates a formula in the monadic language of one successor
whose parameters code the path e9 dl9 dxd2, d1d2d3,... and the corresponding
sequences V(e), V{d{)9 V{dxd2\ . . . and V\e\ 7'(di), V'id^X . . . . By Theorem
2.2.4 there is a sequential automaton A' = (S\ T", s'in, F') over the alphabet
(Z x E') u ({/, r} x Z x Z') that accepts a sequence

V{e)V\e\ d.Vid^VXd,), d2 Vid^V'id^X ...

iff it satisfies (*).
Let A" = (S\ T", 77n, F') be the deterministic tree Z x Z'-automaton with

T"(s, d, 00') = T'(s, doo') and T'{n(oof) *= T'(s[n, aa'). A" mimics A' and accepts
the Z x Z'-tree V x V given by V and V. Finally, let A be the Z-automaton that
guesses V and mimics A". Note that each successor in the row A, A', A", A is
computable from the predecessor. Evidently A accepts V.
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490 XIII. Monadic Second-Order Theories

A is the desired Z-automaton complementing A. For, suppose that A accepts
a Z-tree V. There is a I'-tree V such that A" accepts V x V. Then A' accepts
every sequence

V{e)V\e\ dJWJVX&lU d2 Vid^V'id^),....

Thus, every path e, du dxd2, ... through the binary tree satisfies (*), where / is
the strategy for Pathfinder defined by

= (F'(Node p))(LAR p).

Evidently / is winning. Hence, A rejects V. D

3. The Model-Theoretic Decidability Technique

The most important tools for dealing with monadic theories are composition
theorems. The term "composition" here means generalized products in the sense
of Feferman-Vaught [1959]. The Feferman-Vaught theorem reduces the first-
order theory of the given composition to the first-order theories of the parts
(summands, factors) and the monadic (!) theory of the index structure. Monadic
composition theorems reduce the monadic theory of the given composition to the
monadic theory of the parts and the monadic theory of the index structure (see,
for example, the monadic composition theorem for chains in Section 3.2). Thus,
monadic composition theorems appear to be more natural. Moreover, the inter-
play of monadic theories opens absolutely new and unexpected approaches to the
decision problem. One of these approaches is demonstrated in Section 3.3 by a
model-theoretic proof of decidability of the monadic theory of co. Limited by the
size of this chapter, we have chosen in the present section to explain only an easy
part of the model-theoretic technique for proving decidability of monadic theories
and to make this exposition as comprehensible as possible. We hope that this
discussion—selective though it may be—will assist the interested reader in
examining the more comprehensive exposition to be found in either Shelah [1975e]
or in the papers Gurevich [1979a] and Gurevich-Shelah [1979].

3.1. Bounded Theories

Recall that the prefix of a prenex first-order formula is a word in the alphabet
{V, 3}. Blocks of universal quantifiers alternate with blocks of existential quantifiers
in a prefix. The alternation type of a prefix is the sequence of lengths of the quan-
tifier blocks. For example the alternation type of both V334V5 and 33V435 is
3, 4, 5. Clearly, the alternation type of the empty prefix is the empty sequence.
Letters £ and rj (without subscripts) will be used to denote alternation types. We
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3. The Model-Theoretic Decidability Technique 491

use the symbol ^ to denote concatenation of sequences. Thus, if £ is 3, 4, 5 then
Z~ 8 is 3, 4, 5, 8.

Let L be a first-order language. For every n, indistinguishability by prenex
sentences with prefix of length n gives an equivalence relation on structures for
L. The n-step Ehrenfeucht game was introduced to provide a convenient sufficient
condition for this equivalence relation to hold. Indistinguishability by prenex
sentences with prefix of a given alternation type is also an equivalence relation on
structures for L. We generalize Ehrenfeucht games to provide convenient sufficient
conditions for these new equivalence relations to hold.

Proviso 1. The vocabulary of L consists of finitely many relation symbols and
individual constants.

Let M and N be structures for L and £ be an alternation type ^ . . . £„. The
game £ - T(M, N) is played between players I and II in n steps. On the fcth step,
player I chooses a structure M or N and a tuple of £k elements of the chosen
structure; and, in response, player II chooses a tuple of £k elements of the remaining
structure. Let al9 ..., am be the tuple of all ^ + ••• + £„ elements chosen in M;
the ^-tuple of the first step concatenated with the £2-tuple of the second step,
etc. Let bl9... ,bm be the corresponding tuple of elements chosen in N. Player II
wins if the quantifier-free type of al9..., am in M coincides with the quantifier-
free type of bl9..., bm in N, otherwise player I wins.

3.1.1 Theorem. If player II has a winning strategy in £ — T(M, AT), then M and N
are indistinguishable by prenex sentences with prefix of type £.

Proof. Any distinguishing prenex sentence of type ^ gives a winning strategy for
player I. D

We will say that L-structures M and N are ^-equivalent if player II has a winning
strategy in £ — F(M, N).

By induction on the length of £, we define the ^-theory of an L-structure M
with a tuple of additional elements. 0 — Th(M, al9 ...9at) is the quantifier-free
type of al9..., at in M. If £ is n ~ k then £ — Th(M, al9..., at) is the set of all
n - T h ( M , al9..., ah b u . . . , bk) w h e r e bl9...,bkeM.

3.1.2 Theorem. Two structures for L are ^-equivalent iff they have the same ^-theory.

Proof. The proof is simple and we will omit it here. D

The usual n-step Ehrenfeucht game corresponds to the case when £ is a sequence
of n ones. This sequence will be denoted 1". 1 "-equivalent structures are called
usually n-equivalent. The T-theory of a structure is called usually the ^-theory.

It is important for us that our bounded theories—in particular, quantifier-free
types—are finite objects. This explains Proviso 1. This proviso is, however, too
restrictive for applications. Is there any way to have finite quantifier-free types in
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492 XIII. Monadic Second-Order Theories

a situation when Proviso 1 fails? The answer is Yes. In fact, consider the first-
order theory of boolean algebras. There are infinitely many terms in a given
finite set of variables, but only finitely many of these terms are in disjunctive
normal form and each term is equal to one in disjunctive normal form.

Proviso 2. L may have function symbols but it has only finitely many relation symbols.
Tis a theory in L, Tallows a definition of normal terms in such a way that:

(i) there are only finitely many normal terms for any given finite set of variables;
and

(ii) every term is equal in T to a normal term (in the same variables).

An atomic formula P(T1? . . . , rk) will be called standard if the terms T1? . . . , xk

are normal. We identify the quantifier-free type of a tuple (a1 ? . . . , at) in a model
M of T with the set of standard atomic formulas (j>(vl9..., vt) such that
M \= (f)(a1,..., at). Now we can simply repeat the definition of ^-theories. Proviso
2 will suffice for our purposes here. A more liberal proviso can be found in Gurevich
[1979a].

3.1.3 Theorem. T is decidable if there is an algorithm computing
{£ — Th(M): M \= T} from £. T is decidable if there is an algorithm computing
{l"-Th(Af):M |= T}fromn.

Proof. As in the case of Theorem 3.1.2, the proof of this result is simple and will
not be given here. D

Even if T is not decidable, there is often an algorithm which computes a box
including {£ - Th(M): M \= T} from £. We define these boxes by induction on
the length of £. The 0-/-Box is

{0 - Th(M, «! , . . . , at): M \= T and al9..., ax e M}.

If £ is n ~ fc, then the £-/-Box is the power-set of the rj-(l + /c)-Box. We now turn
our attention to

3 . 1 . 4 Propos i t ion . If M \= T and ax,...,al^M then

£ - Th(M, a!,..., az) e £-Z-Box.

Proof. Again, the argument for this result is obvious and is omitted here. D

It will be convenient to view elements of every £-/-Box as ordered in a standard
manner. For example, the order may be lexicographical.
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3. The Model-Theoretic Decidability Technique 493

3.2. Monadic Composition Theorem for Chains

To fit this section into the framework of Section 3.1, we should say what the
language L and the theory T are. Let BOOL be the first-order language of boolean
algebras containing all the usual boolean operations and the equality predicate.
L is the monadic language of order that is obtained from BOOL by adding the
predicate X < Y. Every chain gives a standard model for L in the following way:
We consider the boolean algebra of subsets and define X < Y iff there are points
x < y with X = {x} and Y = {y}. Tis the monadic theory of order in L. In other
words, T is simply the first-order theory of the described standard models for L.
L and T satisfy Proviso 2 and we can freely use ^-theories as well as other notions
defined in Section 3.1.

Suppose that M is the lexicographic sum

of chains Mt with respect to a chain /. This means that M is itself a chain, the
chains M; are disjoint, the universe of M is the union of the universes of the chains
Mi9 and a point x e Mt precedes in M a point y e M} iff i < j or i = j and x < y
in Mt.

Let X be an /-tuple X1,...,Xl of subsets of M. For iel, the /-tuple
Xx n Mi9..., Xt n Mt will be denoted X\Mt. For every alternation type £ and
every t e £-/-Box, let

P(£ X, t) = {i: £ - Th(Mi9X\Mt) = t}.

Furthermore, let P(£, X) be the sequence <P(£, X,i):te £-/-Box> that partitions

3.2.1 Lemma. There is an algorithm that computes 0 — Th(M, X) from
0 - Th(/, P(0, X)) when /, M and X are varied.

Proof. Let P = P(0, X) and Pr = P(0, X, t). If T is a boolean term in variables
tf1?..., vh then we let T* = T(XU ..., Zz), where the complements are taken in
M. It is easy to check that

T* n M( = T(X1 nMh...,Xln Mt\

where the complements are taken in Mt.
In order to compute 0 - Th(M, X) it suffices to compute the truth values of

statements a* = T* and a* < T*, where u and T are in disjunctive normal form.
a* = T* iff ff*nMi = T*n Mj, for every i e /, iff for every t e 0-/-Box, we

have that either Pt = 0 or t implies a = x. Given 0 - Th(/, P), we can check the
last necessary and sufficient condition.
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494 XIII. Monadic Second-Order Theories

Note that T < T means that x is a singleton set. T* is a singleton iff there is
s e 0-Z-Box such that Ps is a singleton, 5 implies T < T and for every other r e 0-/-Box,
we have that either Pt = 0 or t implies T = 0. Given 0 - Th(7, P), we can check
the necessary and sufficient condition.

Finally a* < T* iff both a* and T* are singleton and either

(i) there are distinct s, t e 0-/-Box such that Ps < Pt and s implies o # 0, t
implies T # 0; or

(ii) there is t e 0-Z-Box such that Pt # 0, and t implies o < T.

Given 0 — Th(J, P), we can check the necessary and sufficient condition. D

3.2.2 Definition. If £ is empty, then for every /c, H(£, k) is the empty alternation
type. If £ is Y] ~ j , then H(^, k) = H(rj, k + j)~ p, where p is the cardinality of

3.2.3 Theorem. There is an algorithm COMP that computes £ - Th(M, X)from
£, /)-Th(/, P({, X)), wfen /, M, X and £ are varied.

Proof. By induction on n, we construct algorithms COMP,, such that every
COMPW computes f - Th(M, X) from #(£, /) - Th(/, P(£, X)), for every ^ of
length n. The construction is uniform in n and results in the desired algorithm
COMP.

The case n = 0 was treated in Lemma 3.2.1. Suppose that COMPn is already
constructed. Instead of defining COMPn + 1 formally, we will simply explain how
it works.

Let ^ be an alternation type of length n.^^k — Th(M, X) is the set

51 - {£ - Th(M, X~Y): lh(Y) = k},

where Y ranges over tuples of k subsets of M. COMPW will compute SI from

52 = {rj - Th(7, P(& X - Y)): lh(Y) = k}9

where rj = H(£, I + k). S2 is computable from

53 = {rj - Th(7, P(^ - k, X\ P({, X - Y)): lh(Y) = k}.

From the other side, H(£ ~ k, 1) - Th(7, P(^ ^ fe, X)) is the set

54 = {rj - Th(J, P({ - k, X) - Q): /fc(Q) = \Hl + fc)-Box|},

where rj is again H(£, / + k). Evidently, S3 is included into S4. We give a verifiable
necessary and sufficient condition for an element u = rj — Th(7, P(£ ~ fc, X) ^ Q)
of S4 to belong to S3:

The sequence

partitions /, and t e s whenever Qt meets P(£ * k, X, s).
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3. The Model-Theoretic Decidability Technique 495

The argument for necessity is obvious. To prove the sufficiency, suppose that
u satisfies the condition. We need to find a tuple Y of k subsets of M such that
P(£, X - Y) = Q. For every i e I, there are s e ^ fc-/-Box and t e £-(/ + /c)-Box
such that ieP(£^ k, X, s) n Qt. Then t e s; that is to say, t s ^ k -
Th(M;, X\Mt). Hence, t = £- Th(M,, (X\Mt) ~ Yl\ for some tuple Yl of k
subsets of Mt. Now choose Y such that Y\Mt= Y\ for is I. U

33. Monadic Theory of Countable Ordinals

3.3.1 Theorem. There is an algorithm PLUS such that if M is the lexicographic
sum Mx + M2 of chains MY and M2 and if X is a tuple of subsets of M, then for
every alternation type £,

£ - Th(M, X) = PLUS(£ - Th(M!, X\MX)9 £ - Th(M2, X\M2)).

Proof. Simply take / = < 1,2> in the composition theorem and the result follows. D

We write t = tt 4- t2 if t = PLUS^ , t2). The induced addition of bounded
theories is obviously associative.

3.3.2 Theorem. The monadic theory of finite chains is decidable.

Proof. By Section 3.1, it suffices to show that {T - Th(M): M is a finite chain}
is computable from n. Given n, we compute the T-theory tx of singleton chains.
We thus compute t2 = tx + tl9 t3 = t2 + tl9 etc., stopping when we find i <j
with tt = tj. The set {tu . . . , t5 _ x} is equal to {T - Th(M): M is finite}. D

3.3.3 Theorem. There is an algorithm MULT satisfying the following condition.
Let M be the lexicographical sum of chains Mt with respect to a chain I, and let X
be a tuple of I subsets of M. If £ - Th(Mf, X \ Mt) = s for every i and n = H(£, /),
then

£ - Th(M, X) = MULTO7 - Th(/), s).

Proof. The algorithm COMP computes { - Th(M, X) from rj - Th(/, P(£, X))
which is itself computable from n - Th(/) and s, because P(£, X, s) = I and any
other P(£, X, 0 = 0. D

We write s' = t- s if s' = MULT(t, s).

3.3.4 Theorem. The monadic theory of co is decidable.

Proof. By induction on n, we construct an algorithmfn such that, given an alterna-
tion type £ of length n and a natural number /,/„ computes {£ - Th(co, X): X is
an /-tuple of subsets of co}. The construction is uniform in n and provides an
algorithm which will subsume every/,,. By Section 3.1, we know that this is enough
for decidability.
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Case n = 0 is easy. Suppose that n > 0 and/n_: is already constructed. Given
and /, we compute rj = f/(£, /) which is equal to rj ~ /c, for some alternation type
of length n — 1 and some /c. Also, we compute

t = rj - Th(co) = {// - Th(co, Y): 7 is a /c-tuple of subsets of co}

Using the decision procedure for the monadic theory of finite chains, we
compute A = {£ — Th(M, X): M is a finite chain and X is an /-tuple of subsets
of M}. And, finally, using the algorithms PLUS and MULT, we compute B =
{s0 + t • s: 50, 5 e^4}.

Evidently, B ^ c = {£ - Th(co, X): X is an /-tuple of subsets of co}. We prove
that B = C, which fact allows us to compute C.

Given an /-tuple X of subsets of co color every non-empty interval [/, j) of
natural numbers by the "color" £ — Th([i,j), X|[i,7*)). By the Ramsey theorem,
there is an infinite sequence 0 < nx < n2 < • • • such that all intervals [ni9 ni+1)
have the same color s. If s0 is the color of [0, J^), then £ — Th(co, X) =
so + t-seB. U

3.3.5 Theorem. T/ze monadic theory of countable ordinals is decidable.

Proof. We explain how to compute {1" — Th(a): a is a countable ordinal} from a
given number n. First, we use the algorithm of Theorem 3.3.4 to compute
t = rj- Th(co), where n = H(\\ 0). By Theorem 3.3.3 T - Th(a • co) =
t - (ln - Th(a)), for any a. Second, compute the minimal set S of T-theories which
contains the T-theory of singleton chains and which is also closed under addition
and under multiplication by t. It is easy to see that S is the desired {T — Th(a): a
is a countable ordinal}. D

4. The Undecidability Technique

The monadic topology of a topological space U is the first-order theory of the
structure <PS(t/), £ , OPEN), where PS(U) is the power-set of U, c is the usual
inclusion and OPEN is the unary predicate "X is open." In this section, we will
describe a proof of undecidability of the monadic topology of the Cantor dis-
continuum CD. The monadic topology of CD is easily interpretable in the monadic
theory of the real line R. In this way, we get undecidability of the monadic theory
of R. We could, of course, deal directly with the monadic theory of R—it would be
practically the same proof. Undecidability of the monadic topology of CD seems
to be even more mysterious and more difficult to prove.

In Section 4.1 we will give a rough idea how one can talk about natural
numbers in the monadic topology of CD—explaining the details would require
more space. However, the details can be found in Gurevich-Shelah [1982]. There
is a serious restriction on how much we can say about natural numbers in the
monadic topology of CD: true first-order arithmetic is not interpretable (in the
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usual sense of this word, for example Monk [1976]) in the monadic theory of R,
see Gurevich-Shelah [1981a]. In Section 4.2, we show that whatever we can say
about natural numbers in the monadic topology of CD is enough to reduce true
first-order arithmetic to the monadic topology of CD. Actually, a much stronger
result is proven in Section 4.2.

4.1. How Can One Speak About Natural Numbers in the
Monadic Topology of the Cantor Discontinuuml

The idea is to slice a countable everywhere dense set D into everywhere dense
slices So, Sl9... and to code this decomposition by parameters. First, we choose
an everywhere subset D° of D such that D — D° is everywhere dense also. Then,
we slice D in such a way that the sets Ao = So n D°, At = Stn D°, A2 =
S2 n Z)°,... are disjoint as well as everywhere dense. We then prove that there is a
parameter W such that a certain monadic formula (j)(X) with parameters D,
D°, W defines the slices locally: that is, every Sn satisfies cf> and if some X satisfies
0, then every non-empty open set G has a non-empty open subset H where X
coincides with one of the slices Sn. We have not said anything about sets So — Ao,
Sx — Al9... . They can be used to code additional information. In particular, a
pairing function can be coded.

The coding described is best explained in Gurevich-Shelah [1982]. Here we
can only summarize results of the coding in a convenient form. There are monadic
topological formulas Premise(w), Share(w, v0) and Pairing(w, v0, vl9 v2, v3) which
satisfy the following conditions. Both u and (v0, vl9 v2, v3) are sequences of (set)
variables. The formulas Premise, Share, and Pairing do not have any free variables
except those shown. Premise(w) is satisfiable in CD. If t is a sequence of point
sets and Premised) holds in CD then there is a sequence (At: i < co} of disjoint
subsets of CD which satisfy the conditions C0-C2 below:

CO. Each An is everywhere dense and each intersection At n Aj9 with i ̂  j , is
empty.

Cl. Share(£, X) holds iff every non-empty open set G has a non-empty open
subset H such that X n H is equal to some An n H.

We will say that X is a t-share if Shared, X) holds. We order the ordered pairs
of natural numbers first by the maximum and then lexicographically:

(0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (1, 2), (2, 1 ) , . . . .

Let P be the set of triples (i9j, k) of natural numbers such that (ij) is the fcth
pair (when (0, 0) is pair number 0).

C2. Suppose that X, 7, Z are t-shares and G is a non-empty open set. Then,
Pairing^, X, Y, Z, G) holds iff, for every non-empty open Gx c G, there
is a triple (ij, k)eP and a nonempty open H c Gx with X n H =
AtnH,Y nH = AjnH,ZnH = AknH.
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Before we go on to discuss reduction, let us recall that an open subset G of a
topological space is called regular if the interior of the closure of G coincides with
G. The following propositions is well known.

4.1.1 Proposition. The regular open subsets of any topological space U form a
complete boolean algebra with:

(i) GH = G nH;
(ii) G + H = Interior(Closure(G u #));

(iii) - G = Interior((7 - G); and
(iv) 1 = (7, and 0 = 0.

4.2. Reduction

Models of ZFC, the Zermelo-Fraenkel set theory with the axiom of choice, will
be called worlds. In this discussion we will work in a world V. By sets is meant
elements of V. For every complete boolean algebra B (in the world V) a standard
construction provides a B-valued world VB (see Jech [1978]). If (/> is a formula
in the language of ZFC with possible parameters from VB, then the boolean value
of <\> will be denoted as usual ||0||. Some simple but useful facts about VB are
summarized in the following

4.2.1 Proposition, (a) Suppose that {bt: ie 1} is an antichain in B (which means
that bt • bj = 0 for i ^j). For every {at e VB: i e 1} there is a e VB such
thatbi < || Gi = (j|| fori e /.

(b) Let ij/(v) be a formula in the language of ZFC with exactly one free variable
and perhaps some parameters from VB, then there is a e VB such that \\ ̂ (cr) || =
l|3#(tOI|.

(c) Let \jj(v) be as above and r e VB. Suppose \\3v(v e T)|| = 1, then there is
aeVB such that \\G e T|| = 1, and ||^(<r)|| = ||(3i; e T)^(I;)||.

Proof. For the proof of (a), see Lemma 18.5 in Jech [1978]. As to part (b), see
Lemma 18.6 in Jech [1978]. Turning now to part (c), we let b = \\(3v e x)^(t;)||. By
part (b), there are <J0 and ax such that ||o0 GT|| = 1 and \\G1 GT and i/K î)!! = b.
Moreover, by part (a), there is a such that ( — b) < \\a = ao\\ < \\GET\\, and then
b < \\a = ax\\ < \\aex\\ • ||^((j)||. a is the desired element of VB. D

In the remainder of this subsection B is the boolean algebra of regular open
subsets of the Cantor discontinuum CD (in V). An element o e VB will be called
a quasi-element (of co) if ||(TGCO|| = 1. It will be called a quasi-set (of natural
numbers) if ||a c QJ\\ = 1. Hereafter, we ignore the difference between an element
of V and the canonical name for it in VB.

Let t be a sequence of subsets of CD satisfying Premise^). We will say that a
t-share X represents a quasi-element a if

e B\ X n b = An n b} = \\a = n\\ for n < co.
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Subsets of CD will be called point sets, and we will say that a point-set Y represents
a quasi-set T if

B:Annb^Y} = \\ne T\\ for n < co.

4.2.2 Proposition, (a) Et;ery t-share represents some quasi-element, and every
quasi-element is represented by some t-share.

(b) Suppose that t-shares Xo, Xl9 X2 represent quasi-elements cr0, <rl9 o2. For
every b e B, Pairing (t, Xo, Xl9 X2, b) holds in CD iffb < \\((TO,<T19 <?2)

 eP\\-
(c) Every point set represents some quasi-set, and every quasi-set is represented

by some point set.
(d) Suppose that a t-share X represents a quasi-element <r, and a point set Y

represents a quasi-set T. Then

||<7GT|| = T{b e B: X n b ^ Y}.

Proof, (a) Given a t-share X let

bn = Z{ft e B: X n b = An n b} for n < co.

By condition CO, distinct regular open sets bn are disjoint. Moreover, by condition
Cl, they partition CD. By Proposition 4.2.1, there is a with \\a = n|| > bn9 for all
n. G is the desired quasi-element. Conversely, if a is a quasi-element, then the
desired t-share is

X=[j{Ann\\a = n\\:n<co}.

For the proof of part (b) we use condition C2.
Turning now to part (c), we see that if Y is a point set, then the desired quasi-set

T is a function from co to B with

5 : i n n f e c y } for all n.

Conversely, if T is a quasi-set, then the desired point set is

Y=[j{Ann\\nGT\\:n<co}.

We now consider part (d). To prove ^ , we will suppose that 0 < a < \\(TET\\.

It then suffices to show that there is 0 < b < a with X n b ^ Y. Since a is a quasi-
element and T is a quasi-set, there are n and 0 < ax < a such that ax < \\a = n\\
and ax < \\nex\\. Since X represents <r, there is 0 < a2 < ax such that X n a2 =
An n a2. Since 7 represents T, there is 0 < b < a2 such that An n fe c y. Thus,
Inter,

To prove 3 , we will suppose that a > 0 and I n a c 7. It then suffices to
show that there is 0 < b < a with b < \\a e T||. Since a is a quasi-element, there
are n and 0 < ax < a with ax < \\o = n\\. Since X represents a, there is 0 < b < a1
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500 XIII. Monadic Second-Order Theories

such that X n b = An n b and, therefore, An n b ^ Y. Since Y represents T, we
have b < \\ne T||. Thus, b < \\a e T||. D

4.2.3 Theorem. The full second-order theory of Ko m £fe world VB is reducible to
the monadic topology (in the world V) of the Cantor discontinuum. In other words,
there is an algorithm (not depending on the choice of the ground world V) that
assigns a sentence <j>* in the language of monadic topology to every second-order
sentence 4> in such a way that CD |= </>* iff \\a> \= (j>\\ = 1. D

This theorem tells us that the monadic topology of CD is very complicated.
In particular, true first-order arithmetic is reducible to the monadic topology of
CD. For, V and VB share the same true first-order arithmetic. Moreover, there is
an algorithm interpreting true first-order arithmetic in (and therefore reducing it
to) the full second-order theory of Ko in any world. This algorithm, in conjunction
with the algorithm of Theorem 4.2.3, reduces true first-order arithmetic to the
monadic topology of CD.

Proof of Theorem 4.2.3. The algorithm of Proposition 1.3.1 interprets the full
second-order FB-theory of co in the monadic FB-theory of the structure (co, P),
where P is the pairing predicate defined in Section 4.1. Let L be the monadic
language of (co, P). We will view individual variables (respectively set variables)
of L as variables ranging over quasi-elements (respectively quasi-sets). Thus, we
view L as a sublanguage of the language of ZFC. If (j> is a sentence that is an
L-formula with parameters, we will write ||(/>|| instead of \\co \= </>||.

Let t be a tuple of point sets such that Premise^) holds in CD. By induction
on L-formulas (j>(ul9..., um, Vl9...9 Vn\ we define a formula

(w< \\(Kul9...9um,Vl9...,K)\\)t

in the language of monadic topology in such a way that if r-shares Xu ..., Xm

represent quasi-elements <ru . . . , crw, and point sets Yu ..., Yn represent quasi-sets
Tl9...9zn a n d b e B , t h e n

(*) C D \= (b < \ \ < K X l 9 . . . , Xm9 Yl9..., Yn)\\)t

iff b < \\(/>(<T19 ...9om9xl9 . . . , T B ) | | .

In the case m = n = 0, b = l w e will have the desired:

Premise^) - • (1 < ||0||)r holds in CD iff ||(/>|| = 1.

Case 1. (j) is (w0, ul9 u2) e P. Let (w < \\(j)\\)t be Pairing(t, uo,uuu2,w\ and
use Proposition 4.2.2(b).

Case 2. (j) is u e V. Let (w < \\4>\\)t be a formula saying that u n w — V is
nowhere dense, and use the result of Proposition 4.2.2(d).

Case 3. </> is (j>1 & <f>2. Set

(w < \\<t>\\\ = (w < U,\\\&(w< | |02| |) t .
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Case 4. <f> is ~ x//. Let (w < || 01|), be a formula saying that there is no 0 < W < w
satisfying (w' < ||^||)f. To check (*), we suppose for simplicity that 0 is a sentence.
Then (ft < \\(j)\\)t holds ifif there is no 0 < a < ft with a < ||^|| iff b < ||0||.

Case 5. 4> is 3u\jj(u). Let (w < \\4>\\)t be a formula saying that there is a t-share
u satisfying (w < ||^(w)||)r TO check (*) assume for simplicity that 0 is a sentence.
We first suppose that b < ||0||. By the results of Proposition 4.1.1(c), there is a
quasi-element a with ||^(a)|| = ||(/>|| > ft. If a r-share X represents a, then by the
induction hypothesis (b < | ^ ) | ) f holds. Hence, (ft < \\4>\\)t holds. Next, we
suppose that some t-share X satisfies (ft < \\il/(X)\\)t. It represents some quasi-
element o. By the induction hypothesis, ft < ||^(o")||. Hence, we have ft < \\(j)\\.

Case 6. 4> is 3Vi//(V). Let (w < \\4>\\)t be a formula asserting that there is a
point set V which satisfies (w < ||^(F)||)f. To check (*) in this situation is similar
to the task of checking in Case 5. D

5. Historical Remarks and Further Results

We will first review very briefly the history of the method of automata and games.
We will also mention delimiting undecidability results and some other closely
related results obtained by model-theoretic methods. In Section 5.2 we will, very
briefly review the history of the model-theoretic methods used to deal with monadic
theories. Some later results use model-theoretic methods as well as the method of
automata and games. It seems to make no real sense to divide the two approaches
too sharply, however.

5.7. Emphasizing the Method of Automata and Games

Church [1963] gave "a summary of recent work in the application of mathematical
logic to finite automata." Exploring connections between logic and finite automata
proved fruitful indeed; but the most interesting applications appeared to be
applications of finite automata to the decision problems for monadic second-order
theories. Decidability of the monadic theory of finite chains could have been the
first, the most natural and the easiest example—but it was not. I only just made
up this particular application and inserted it into Section 2 for expository purposes.
Arithmetic was too much on the minds of those who first explored the connections
between logic and finite automata. The first results were related to the weak
monadic theory of CD with the successor relation. This theory was called weak
second-order arithmetic. (Let us recall that the weak monadic theory of a structure
is the theory of that structure in the monadic second-order language when the set
variables range over finite sets of elements.) We will not speak about weak monadic
theories here. A survey of the results in this area can be found in Thatcher-Wright
[1968]. Let us note merely that the game technique given in Section 2 can be used
to give an alternative (and relatively simple) proof of decidability of the weak
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502 XIII. Monadic Second-Order Theories

monadic theory of the binary tree. We should also note that the decidability
schema of Section 2, a schema that is based on correspondence between monadic
formulas and automata, had already taken shape in the work on weak monadic
theories.

Decidability of the monadic theory SIS of co with the successor relation was
proved by Biichi [1962]. He established a correspondence between SIS formulas
and Biichi automata. These machines are ordinary finite automata A = (S, T, sin,F)
with F <= S that work on sequences. A is said to accept a sequence ala2 • • • in the
input alphabet of A if there is a run sts2 • • • of A on the given sequence (which
means, of course, that (sin, ou sx) e T and every (si5 <Ti+usi+1)eT) such that for
every i there is j > i with Sj e F. Biichi also solved the emptiness problem for
Biichi automata. Unfortunately, a non-deterministic Biichi automaton may be not
equivalent to any deterministic Biichi automaton, and Biichi used the Ramsey
theorem to solve the complementation problem for Biichi automata. Our se-
quential automata were introduced by Muller [1963] in order to prove Theorem
2.2.1. However, the first correct proof of that theorem was published by
McNaughton [1966]. Simplifications of McNaughton's proof can be found in
Rabin [1970], Choueka [1974], Thomas [1981].

Decidability of the monadic theory S2S of the binary tree with two successor
relations was proven by Rabin [1969]. He established a correspondence between
S2S formulas and Rabin automata that are somewhat different from our tree auto-
mata, and his proof of the complementation theorem is an extremely difficult
induction on countable ordinals. He used the same technique to solve the emptiness
problem for Rabin automata, although Rackoff [1972] found a simple reduction
of the emptiness problem for Rabin automata to the emptiness problem for auto-
mata on finite binary trees. Our simple proof of the decidability of S2S follows
Gurevich and Harrington [1982].

The idea of using games had been exploited earlier however. Biichi-Landweber
[1969] used a strong determinacy of more special games to prove the following:
Suppose that a sentence VZ 3Y4>(X, Y) holds in SIS where X, Y are tuples of
variables. Then there is a deterministic sequential automaton which outputs an
appropriate output Y when reading X. In particular, there is an SIS formula
</>*(AT, Y) uniformizing </>; that is, </>* implies (f> in SIS and, for every X, there is a
unique Y such that <£*(X, Y) holds in SIS. Buchi [1977] sketched a reduction of the
complementation problem for Rabin automata to a strong determinancy for
boolean-/7,, games. This determinacy result was proven independently in
Gurevich-Harrington [1982] and in the manuscript Buchi [1981]. The latter
solution, however, is much more complicated (and it still uses an induction on
countable ordinals).

Let me add a few words about Rabin's uniformization problem for S2S.
Suppose that a sentence VZ 3Y<j)(X9 Y) holds in S2S (where for the sake of sim-
plicity, X, Y are just single variables). Is there an S2S formula <f)*(X9 Y) such that
(/>* implies <\> in S2S and, for every X, there is a unique Y such that </>*(X, Y) holds
in S2S? Using model-theoretic methods and forcing Gurevich-Shelah [1983b]
solved this problem negatively. Their counterexample $(X, Y) asserts that if X
is not empty, then Y is a singleton subset of X.
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Rabin [1969] proved the decidability of many interesting theories by inter-
preting them in S2S. Among those theories we find the monadic theory of count-
able chains and the theory of the real line with quantification over countable sets.
More direct model-theoretic proofs of these two results as well as delimiting
undecidability results can be found in Gurevich-Shelah [1979]. For more on
this the reader may also see Section 5.2. Finally, we note that Rabin [1969]
also proved that S2S allows us to quantify over Fa subsets of (infinite) branches
of the binary tree. (Basic open sets of the topology in question are sets of branches
through a given node.)

Open Question. If we augment the language of S2S by allowing quantification of
arbitrary Borel sets over branches, is the resulting theory of the binary tree in the
augmented language decidablel

Shelah [1975e] states the reducibility of the monadic theory of a tree of height
ao with a given structure S on the successors of each node to the monadic theory
of S. The details appear in Stupp [1975]. Their proof uses Rabin's technique. The
game technique of Gurevich-Harrington [1982] gives the generalized result
fairly easily.

Biichi [1973] used automata to prove decidability of the monadic theory of
co1 (with the order). See also Litman [1972], Biichi-Siefkes [1973], Biichi-Zaiontz
[1983] for additional results about monadic theories of ordinals of cardinality at
most Kx. There is a good reason why these results cannot be generalized to oo2.
Using model-theoretic methods and assuming the existence of a weakly compact
cardinal, Gurevich, Magidor, and Shelah [1983] prove:

(i) for any given S c: co, there is a forcing extension of the given set-theoretic
world, where the monadic theory of co2 has the Turing degree of S; and

(ii) there is a forcing extension of the given set-theoretic world, where the
monadic theory of oo2 and the full second-order theory of co2 are reducible
each to the other.

5.2. Model-Theoretic Methods

The paper Shelah [1975e] represented a breakthrough in the study of monadic
theories of chains. Shelah developed the model-theoretic decidability method,
which we illustrated in Section 3, and proved all known decidability results about
monadic theories of chains in a uniform way. Assuming the continuum hypothesis,
he reduced true first-order arithmetic to the monadic theory of the real line. This
was the first undecidability result in the area.

Shelah's decidability method was rooted in achievements of his predecessors.
In this connection, let me mention Feferman-Vaught [1959], Ehrenfeucht [1961],
and Lauchli [1968]. Working on well-orderings, Shelah used ideas of Buchi and
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Rabin. For more on this, see the references in Shelah [1975e]. A detailed version of
the model-theoretic decidability method, a version which prepared the ground for
stronger results, is given in Gurevich [1979a]. Shelah's undecidability method was
absolutely new. Actually, he wanted to prove decidability of the monadic theory
of the real line. He was developing and sharpening the decidability method to
achieve this goal when he discovered the undecidability. Later, he reduced true
first-order arithmetic to the monadic theory of the real line just in ZFC, without
making any additional set-theoretic assumptions. See Gurevich-Shelah [1982] in
this connection.

Sometimes model-theoretic analysis is less informative than is the automaton-
theoretic. For example, the decision procedure in Section 2 for the monadic theory
of a) gives more than the corresponding decision procedure in Section 3: It estab-
lishes the correspondence between monadic formulas and deterministic sequential
automata. In many other cases, however, the model-theoretic analysis is more
informative. For example, Shelah answered negatively a question posed by Rabin,
a question asking whether or not countable orders can be characterized in the
monadic theory of chains.

Let us examine the monadic theory of countable chains a bit further. Shelah
[1975e] conjectured that the monadic theory of countable chains can be finitely
axiomatizable in the monadic theory of chains. However, Gurevich [1977b]
refuted this conjecture. He provided a certain axiomatization of the monadic
theory of countable chains. A chain is short if it embeds neither (DX nor cof, where
cof is the dual of CD1. A chain without jumps (that is, a densely ordered chain) is
perfunctorily n-modest if for all everywhere dense subsets Xu ..., Xn, there is a
perfect subset Y without jumps such that Y c Xx u • • • u Xn and every Xt n Y
is dense in Y. A chain is n-modest if all its subchains without jumps are perfunctorily
n-modest. A chain is modest if it is n-modest, for every n. It appears that a chain is
monadically equivalent to a countable chain iff it is short and modest. Rabin
[1969] proved decidability of the monadic theory of countable chains. Thus, the
monadic theory of short modest chains is decidable. Gurevich-Shelah [1979]
proved directly decidability of short modest chains.

The situation is very different for non-modest chains. Assuming the continuum
hypothesis, Gurevich-Shelah [1979] reduced true first-order arithmetic to the
monadic theory of any nonmodest chain. The use of the continuum hypothesis
was removed in Gurevich-Shelah [1982]. The reader may also consult
Gurevich-Shelah [1979] for a model-theoretic analysis of the theory of the real
line with quantification over countable subsets.

In order to discuss undecidability results, we need to clarify the terminology.
A reduction of a theory T to a theory T* is an algorithm associating a sentence 0*
in the language of T* with each sentence </> in the language of T in such a way that
<fi* holds in T* iff 0 holds in T. An interpretation of one theory in another is a
special case of reduction when models of T are defined inside models of T*. An
exact definition of interpretation can be found in Monk [1976] for example.

As we mentioned above, Shelah [1975e] reduced true first-order arithmetic to
the monadic theory of the real line. In Section 4 we did not say much about the
undecidability method of Shelah [1975e]. This method was augmented in Gurevich
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[1977b] by a technique of towers, a technique that has been exploited extensively
in subsequent papers. Confirming Shelah's conjecture, Gurevich [1979b] reduced
true third-order arithmetic to the monadic theory of the real line (in fact, to the
monadic theory of any short non-modest chain) in Godel's constructive universe.
The converse reduction is obvious. Only during the Jerusalem Logic Year 1980-81
we—Saharon Shelah and I—realized that our reductions are really a kind of inter-
pretation of (in terms of Section 4) theories in the "next world" VB in theories in
"this world" V. Subsuming all mentioned undecidability results, Gurevich-
Shelah [1981a] managed:

(i) reduce true second-order arithmetic in VB to the monadic F-theory of any
short non-modest chain; and also

(ii) to reduce true third-order arithmetic in VB to the monadic F-theory of any
short non-modest chain if the continuum hypothesis holds in V.

In contrast to this, Gurevich-Shelah [1981a] proved that true first-order arith-
metic is not interpretable in the monadic theory of the real line.

Gurevich-Shelah [1983a] reduce true second-order logic to the monadic
theory of (linear) order under very weak set-theoretical assumptions. This gives
the complexity of the monadic theory of order. It does not mean, however, that
the monadic theory of order is as un-manageable as second-order logic. From a
model-theoretical point of view, there is an enormous difference between these
two theories (reflected somewhat in different Lowenheim and Hanf numbers).
This topic is, however, beyond the scope of this chapter and the reader may see
Chapter 12 in this connection.

A few words about topology. Grzegorczyk [1951] introduced the monadic
topology (see Section 4) and interpreted (in a simple and natural way) true first-
order arithmetic in the monadic topology of the Euclidean plane. It does not take
much more sophistication to verify that the monadic topology of the Euclidean
plane and true third-order arithmetic are interpretable, each in the other. For
more on this, the reader may see Gurevich [1980]. Grzegorczyk's question
about the decision problem for the monadic topology of the real line was, however,
long open. Reading the paper Shelah [1975e], I noted that Shelah had solved
negatively the question of Grzegorczyk under the continuum hypothesis. Several
papers—especially Gurevich-Shelah [1981c]—give undecidability results about
the monadic topology. In particular, all mentioned above undecidability results
about the monadic theory of the real line apply to the monadic topology of the
Cantor discontinuum. For a positive result on monadic topology see Gurevich
[1982].

Gurevich-Shelah [1981b] use both model-theoretic methods and the method
of automata and games to construct a decision procedure for the theory of trees
(all trees, not necessarily well-founded) with quantification over maximal branches.

Finally, let us mention some results that are not directly related to decision
problems. Gurevich [1977b] proved (thus refuting Shelah's conjecture) that the
predicate "X is countable" is expressible in the monadic theory of the real line if
the continuum hypothesis holds. Gurevich [1979b] also proved (and thus partly
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506 XIII. Monadic Second-Order Theories

refuted and partly confirmed Shelah's conjectures) that the monadic theory of the
real line can be finitely axiomatizable (in the monadic theory of chains) and cate-
gorical under natural set-theoretic assumptions. By "Shelah's conjectures" here,
we mean the collection of conjectures that are given in Shelah [1975e]. Almost all
of these conjectures have been decided by now, and a majority of those decided
are true. Thus, the program sketched in Shelah [1975e] is essentially fulfilled.
Moreover, I have an impression that an important and natural phase in the study
of monadic second-order theories is now completed.
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PartE

Logics of Topology and
Analysis

This part of the book is devoted to logics which presuppose different kinds of
structures than those underlying first-order logic and its extensions so far dealt
with in Parts B, C and D.

Chapter XIV is about logics where the underlying structure is a probability
space, a structure with a countably additive probability measure. In addition to
the usual propositional operations, the basic form of quantification is given by
allowing formulas

(Px > r)<Kx),

which means that the probability of the set {x: (f)(x)} is at least r. Structures take
the form of probability spaces with countably additive measures. To have a
successful theory here a number of changes in perspective must be made. In the
first place, one must arrange things so that all definable sets are measurable. As a
result, the logics considered here are not closed under the usual quantifiers V and
3. Consequently, these logics do not contain first-order logic, nor do they satisfy
all the assumptions on logics given in the general definition. They also have model-
theoretic properties that have no first-order analogue, like the Law of Large
Numbers.

While the lack of ordinary quantifiers entail a loss in expressive power, we can
compensate for that, in part, by the use of countable conjunctions and disjunctions,
as in JSfcjeo, since such operations preserve measurability (due to countable
additivity of probability measures). Expressed in terms of admissible sets, one
finds the appropriate forms of completeness and compactness results. Interestingly,
there is also an analogue of the Robinson consistency property, which fails for
^cono' This chapter should be read after reading the relevant sections of Chapter
VIII.

In his retiring address as president of the Association for Symbolic Logic in
1972, Abraham Robinson (Robinson [1973]) asked what logic for topological
structures was the analogue of first-order logic for algebraic structures. Chapter
XV presents the work that has gone into this problem. Obviously the structures
to be considered are of the form (9K, T), where T is a topology on the domain of the
first-order structure 9W. Examples include topological space, topological groups,
and topological fields. It has taken a lot of effort to arrive at what appears to be
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the right answer to Robinson's question. The chapter begins by describing three
of the logics for such structures that have been studied: <£(T\ logic with the interior
operator, ^mon, a version of monadic second-order logic but where the set quan-
tification is taken to be only over open sets, and a sublogic of this, 5£\ where such
second-order quantifiers are restricted in a certain way. The logic t£l is stronger
than ^(In) but weaker than &mon. Chapter XV presents results and arguments to
support the claim that 5£x is the solution to Robinson's problem by being the
"right" analogue of first-order logic for topological logic. Unlike ifmon, <£l (and
a fortiori, its sublogic ^(In)) is compact, has the Lowenheim-Skolem property
and has a completeness theorem. However, unlike ^{In\ 5£l allows one to express
continuity, surely a desirable property for the logic of topology.

The logic !£x also satisfies the interpolation property, a result which leads to a
persuasive analogue of Lindstrom's theorem: <£x is the strongest logic for topological
structures which is compact and has the Lowenheim-Skolem property. The chapter
concludes with some applications of the theory to specific topological theories,
including the theory of abelian Hausdorff groups, the theory of the complex num-
bers as a topological field and topological vector spaces. (The reader may find
this chapter is rather dense, but it repays study.)

Chapter XVI presents some previously unpublished work on the logic of
Borel structures, due largely to Harvey Friedman. Friedman's basic idea is that
while there are some very pathological sets and relations of real numbers, the
collection of Borel sets and relations is much better behaved. Why not restrict
attention to structures on the reals that are Borel and study the resulting logic? A
Borel structure is one whose domain is a Borel subset of R and whose relations
and functions are all Borel. Given a logic ^£, a structure is totally Borel for 5£ if all
relations definable using if-formulas are Borel.

Thus, whereas an essential feature of the other logics discussed in this part is
the structures they consider are richer, the logics studied here are richer in that
their structures are constrained to be totally Borel. The chapter applies the notion
to two different logics, ̂ {Q, Qm) and &(Q, Qc) where Q is "there exist uncountably
many," Qm is "there exist a set not of measure 0" and Qc is "there is a set which is
not meager." For example,

QmxQmy<Kx, y) <- QmyQmx<Kx, y)

expresses a version of the Fubini theorem, which is true of all totally Borel struc-
tures for ^(Qm). The main results of Chapter XVI are abstract and concrete
completeness theorems for the logics ^(Q, Qm) and if(<2, Qc) relative to the
collection of totally Borel structures. These logics are less well known but seem
very interesting in their potential applications and because they represent a really
different direction in the study of extended logics.
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Chapter XIV

Probability Quantifiers

by H. J. KEISLER

In this chapter we develop logics appropriate for probability structures, these being
first-order structures endowed with a probability measure on the universe. We
consider logics having the property that in every probability structure, every
definable set is measurable. The price for this is high: The logics do not have the
ordinary quantifiers Vx and 3x. Instead, they have probability quantifiers and
countable conjuctions. The main probability logic LAP satisfies the Barwise
completeness and compactness theorems, but does not satisfy finitary compactness.
In spite of this, however, this logic does possess the Robinson consistency property.
And it also has model-theoretic properties with no first-order analog, such as the
law of large numbers, a principle that is presented in Section 3. In Section 4 we will
study logics for richer structures with conditional expectations. This development
will lead to a model theory which is closely tied to current research in stochastic
processes and which has applications to stochastic differential equations.

1. Logic with Probability Quantifiers

In this section we will introduce the logic LAP, which is quite similar to the in-
finitary logic LA except that instead of the ordinary quantifiers (Vx) and (3x),
the logic LAP possesses the probability quantifiers (Px > r). A structure for this
logic is a first-order structure with a (countably additive) probability measure on
the universe, such that each relation is measurable. The formula

(Px > r)cp(x)

means that the set {x | (p(x)} has probability at least r. Axioms and rules of inference
appropriate to our investigation will be presented in this section. The following
sections will then examine the subject in more detail.

1.1. Syntax

1.1.1 Convention. We will assume throughout this chapter that A is an admissible
set (possibly with urelements) such that co e A, and each a e A is countable (that is,
A c: HC, where HC is the set of hereditarily countable sets).
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We refer the reader to Chapter VIII of this volume for a detailed treatment of
admissible sets and the infinitary logic LA. Briefly, however, we note that the set of
formulas of LA is the set of all expressions in A that are built from atomic formulas
using negation ~i, finite or infinite conjuction, and the quantifier (Vx).

1.1.2 Definition. We will assume throughout our exposition that L is a countable
A-recursive set of finitary relation and constant symbols (no function symbols).
The logic LAP has the following logical symbols:

(a) A countable list of individual variables vn9 for n e N.
(b) The connectives ~i and / \ .
(c) The quantifiers (P3c > r), where 3c = <x1 ?. . . , xn> is a tuple of distinct vari-

ables and r e A n [0, 1].
(d) The equality symbol = (optional).

1.1.3 Definition. The set of formulas of LAP is the least set such that:

(a) Each atomic formula of first-order logic is a formula of LAP.
(b) If cp is a formula of LAP, then —I q> is a formula of LAP.
(c) If O e A is a set of formulas of LAP with only finitely many free variables,

then AQ> is a formula of LAP;
(d) If cp is a formula of LAP and (Px > r) is a quantifier of LAP, then (Px > r)cp

is a formula of LAP.

It is understood that the formulas are constructed set theoretically so that
LAP ^ A. We denote LAP where A = HC by L^j,. Thus,

LAP = A nLaiP.

The notions of free and bound variables are defined as usual, with the quantifier
(Px > r) binding all the variables in the tuple 3c.

The equality relation plays only a minor role in the logic LAP, a fact which
stems from the absence of the universal quantifier and of function symbols.

1.1.4 Definition. It is convenient ot use the following abbreviations in LAP:

(i) (P3c < r)cp for ~i (Px > r)cp.
(ii) (P3c < r)cp for (Px > 1 - r) ~i (p.

(iii) (P3c > r)(p for ~i (P3c > 1 - r) ~i (p.

(JV) VU® <P f ° r ^ A«>etf ~> <P'
(v) The finitary connectives A , v ,-•,<-• are defined as usual.

The quantifier (Px > 1) is a weak analog of (Vx), while (Px > 0) is a strong
analog of (33c). In principle, it would be possible to make do with the one-variable
probability quantifier (Px > r) alone and introduce the n-variable quantifier
(P3c > r) as an abbreviation. However, this abbreviation would be quite compli-
cated, and it is simpler to include (P3c > r) explicitly in the language.
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1. Logic with Probability Quantifiers 511

7.2. Probability Models

We will begin with some very basic notions from probability theory. First, a
finitely additive probability space is a triple <M, S, /a} where S is a field of subsets of
M, //: S -* [0, 1], /i(M) = 1, and for X, Y e S,

fi(X u 7) = MX - 7) + /i(7 - X) + /*(* n 7).

The sets I e 5 are /i-measurable, and // is called a finitely additive probability
measure on M. Next, we say that <M, S, /i> is a probability space if, in addition, 5
is a ff-field and \i is countably additive; that is, whenever Xo c ^ ^ • • • in S, then

In this case, jn is said to be a probability measure on M. We emphasize that "prob-
ability measure" without an adjective will mean "countably additive probability
measure."

A set X is said to be a null set of \x if there is a 7 2 X with ji{Y) = 0. The product
of two probability spaces <M, 5, /i> and <N, T, v> is the probability space

(M x N9S® T,ii®v},

where S ® 7 is the o--algebra generated by the set of measurable rectangles
X x 7, with X e S, 7 6 T and where

Gu®v)(Xx 7) = /i(X)-v(7).

The H-fold product space is denoted by (Mn, Sn, / / ) .
In general, the diagonal set

{<x, x}:xeM}

is not /^-measurable. However, if each singleton is measurable, then there is a
canonical way to extend the product measure to the diagonal. In the case that
every singleton has measure zero, the diagonal is given measure zero. In general,
however, only countably many singletons have positive measure, and the measure
of the diagonal is the sum of the squares of the measures of the singletons.

1.2.1 Definition. Let <M, S, //> be a probability space such that each singleton is
measurable. Then, for each n e M, we have that <M", S(n\ fi{n)} is the probability
space such that S(n) is the cr-algebra generated by the measurable rectangles and the
diagonal sets

Dij = {xeMn:xt = Xj}9

and fi(n) is the unique extension of / / to S{n) such that

jceM
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512 XIV. Probability Quantifiers

In the sequel, we will use A A B for the symmetric difference of the sets A and B.
The above ideas clear, we will now consider

1.2.2 Proposition. / / <M, 5, ./i> is a probability space such that each singleton is
measurable, then the measure ji{n) on S{n) given in Definition 1.2.1 exists and is unique.
Moreover, for each set X e S(n) there is a jun-measurable set U such that fi{n)(X A U)
= 0.

Proof. We will give the proof in the case n = 2. Here, S(2) is the set of all sets X c M2

of the form

X = (Yn Dl2) u (Z - D12), Y,Ze S2.

Let v: S{2) -+ [0, 1] be defined by

v(X)= X l*{x})2 + i*2(Z) - £ MM)2-
<jc,x>ey <x,x>eZ

Then v = fi{2) is the unique countably additive probability measure on S(2) which
extends n2 and satisfies

(1) v(£»12)=
xeM

Finally, let E = {<x, x) eD12: JK({X}) > 0} and let U = (Y n E) u (Z - E). Since
E is countable and each singleton is measurable, E and hence U are /^-measurable.
Also, v ( D 1 2 - £ ) = 0 , a n d I A [ / c D 1 2 - £ ? whence, we have that v(X A U) = 0.

D

We are now ready to define a probability structure for L, where L is a set of
nrplaced relation symbols Rh for i e /, and constant symbols cr for; e J.

1.2.3 Definition. A probability structure for L is a structure

where /i is a (countably additive) probability measure on M such that each singleton
is measurable, each Rf is ju(ni)-measurable, and each cf e M.

1.2.4 Theorem. Let ^# be a probability structure for L. The satisfaction relation
Ji |= cp[a], for (p(x)eL&P and a in M, is defined recursively exactly as for LA

except for the following quantifier clause:

Ji 1= (Py > r)<p(x, y)[fl] iff { 5 e M " : J ^ (p[5, B]}
is /i(n)-measurable and has measure at least r.

Moreover, Ji is a mode/ of a sentence cp i

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.021
https://www.cambridge.org/core


1. Logic with Probability Quantifiers 513

1.2.5 Theorem. For each probability structure Ji, formula (p(x, y) e LAP, and tuple
a in M, the set {beMn\Ji |= cp[a, 5]} is ̂ -measurable. D

This theorem is needed to show that the satisfaction relation has the intended
meaning for LAP, and its proof follows easily by induction from a "diagonal" form
of the Fubini theorem. A function f:M -• U is \i-measurable \i f~l{ — oo, r] is
ju-measurable for each reU.

1.2.6 Fubini Theorem. Let fi be a probability measure such that every singleton is
measurable, and let B c Mm + n be ix{m+n)-measurable. Then

(i) Each section B^ = {ye M": xy e B} is ^-measurable.
(ii) The function f{x) = fi(n\B^) is ^-measurable.

(iii) We have fi{m+n)(B) = J f(x) d^m\ U

The proof here is exactly like the proof of the usual Fubini theorem for product
measures. Theorem 1.2.5 would fail if we were to include both the universal
quantifier and the probability quantifiers in the language, because projections of
measurable sets need not themselves be measurable.

The model-theoretic notions of isomorphism, LAP-equivalence, and LAP-
elementary substructure are defined as one would expect, and are respectively
written as Jt = Jf, M =A P Jf, and M <;AP Jf.

1.3. Examples

The following examples of sentences of LAP indicate the expressive power of the
language.

(1) "There is a countable set of measure one" is expressed by:

(Px > l)(Py > 0)x = y.

(2) "There are no point masses" (that is, there are no singletons of positive
measure) is expressed by:

(Px > l)(Py > l)x T* y.

Every model of this last sentence is uncountable. In the class of structures with
no point masses, every sentence of LAP with equality is equivalent to the sentence
without equality that is obtained by replacing vn = vn by "true," and vm = vn by
"false" ifm^n.
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514 XIV. Probability Quantifiers

(3) The reader can check that no two of the sentences

(Py>i)(Px>±)R(x,y)',

and

P(xy > i)R(x, y\

are equivalent. (Consider structures with three elements of measure ̂ .)
A measurable function X: M -• R is sometimes called a random variable. By

the Fubini theorem, each binary relation R(x, y) in a probability structure M
induces the random variable X(u) = fi{v\R(u, v)}. In the following examples,
let the language L have binary relation symbols R, Rn, neN, and denote the
corresponding random variables by X, Xn, n e N.

(4) The condition X(u) > r is expressed by:

(Pv > r)R(u, v).

(5) \Xx(u) - X2(u)\ < r is expressed by:

A ( * i ( " ) > q - X2(u) >q-r)A (X2(u)
qsQ

(6) Xn -* X almost surely (a.s.) is expressed by:

n m k>m "'

(7) Xn -• X in probability is expressed by:

AVA(
n m k>m \

Pu>l--)\Xk(u)-X(u)\<-.
n n

(8) Xl and X2 have the same distribution is expressed by

A A (Pu ^ r)(xi(u) ^ti~ (Pu ^ r)(x2(") ^ <i)
qeQ reQ

(9) X± and X2 are independent is expressed by

A A (Pu ^ a)xi(u) >q * (Pu> b)X2(u) > r
q,reQ a,beQ

-+ (Pu > abXX^u) >q A X2(u) > r\

and similarly with (Pu <) in place of (Pu >).
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1. Logic with Probability Quantifiers 515

(10) l/X(u) is integrable is expressed by

-n A V A(Pu>sk)\x(U)\<l.A
i +--+sn>m k =

1.4. Proof Theory

LAP has the following set of axioms, where cp eLA P and r , s e A n [ 0 , 1]. All but
the last axiom B4 are in Hoover [1978a, b].

1.4.1 Definition. The Axioms for weak LAP are as follows:

Al. All axioms of LA without quantifiers.
A2. Monotonicity:

(Px > r)cp -• (Px > s)q>, where r > s.

A3. (Px > r)cp(x) -+ (Py > r)cp(y).
A4. (Px > O)cp.
A5. Finite additivity:

(i) (Px < r)cp A (Px < s)\l/ -• ((Px < r + s)((p v i^));
(ii) (Px > r)cp A (Px > s)\jj A (Px < 0)((p A ij/) -+ (Px > r + s)(cp v i//).

A6. The Archimedean property:

(Px > r)cp +-> V (Px > r + -)(/)

1.4.2 Definition. The axioms for (full) LAP consist of the axioms for weak LAP plus:

Bl. Countable additivity:

A (̂ * > r) A -̂* ( p *^ r ) A°>
«PEO

where ^ ranges over the finite subsets of O.
B2. Symmetry:

( P X i • • • xn > r)cp <r+ (Pxnl " - x n n > r)<p,

where n is a permutation of { 1 , . . . , n}.
B3. Product independence:

(Px > r)(Py > s)cp -> (Pxy > rs)cp,

provided all variables in x, y are distinct.
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516 XIV. Probability Quantifiers

B4. Product measurability: For each r < 1,

(Px > l)(Py > 0)(Pz > r)(cp(xz)

provided all variables in x, y9 z are distinct.

The central purpose of Axiom B4 is to guarantee that cp(x, y) can be approxi-
mated by a finite union of measurable rectangles. It is obviously valid if cp(x, z) is a
"rectangle" i^(x) A 9(Z). We will see later on that it is valid in general (the Sound-
ness Theorem).

1.4.3 Definition. The Rules of Inference for LAP are as follows:

Rl. Modus Ponens:

<p,(p-nl/\-\l/.

R2. Conjunction:

R3. Generalization:

q> -> iA(x) \- cp -> (Px >

provided x is not free in cp.

1.4.4 Definition. The notion of a deduction of a formula i// from a set of sentences
O, and the expressions

are defined in the usual way. A theorem of LAP is a sentence \jj such that f- \j/.

1.4.5 Deduction Theorem, /n either LAP or w â/c LAP, ifxjj is a sentence and O u
{iA} h- 0, then O h- ^ -^ 0.

1.4.6 Proposition. T/ie following are theorems of LAP, anrf their proofs do not
require use of Axiom B4:

(i) (Px < l)q>.

(ii) {Px > r) V O ^ V^^o (F^ > r) V ^ w ^ r e ^
(iii) (P3c > r)q> ^ f\n(Px>r - l/n)q>.
(iv) (Px < a)cp(x) A (Py < b)^{y) -* (Pxy < ab)(<p(x) A
(v) (Px > r)<p(x) -> (Pxy > r)cp(x).
(vi) (Pxy > a + b - afe)<p -• (Px > a)(P^ > b)<p.

Taking a = b = 1:

(vii) (Px > l)(Py > l)<p++(Pxy > \)cp D
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1. Logic with Probability Quantifiers 517

1.4.7 Theorem (Soundness Theorem). Any set <D of sentences o/LAP which has a
model is consistent.

Outline of Proof. As usual, to prove the soundness theorem it suffices to show that
each axiom is valid and the rules of inference preserve validity. The only difficulty
lies in checking the validity of the product measurability axiom, (Axiom B4).
In view of part (iii) of Proposition 1.4.6, it suffices to show that for each q, r < 1,

(Px > q)(Py > 0)(Pz > r)(cp(xz)^(p(yz))

is valid. This can be proven by use of the Fubini theorem, Proposition 1.2.2, and
the direction (ii) implies (i) of the following lemma. •

1.4.8 Lemma. Let /u,v, and X be probability measures on M, JV, and M x N such that

fi (x) v ^ X. Let U be X-measurable. The following are equivalent:

(i) For every e > 0, there is a finite union B of [i ® v-measurable rectangles
such that X(U AB) < s.

(ii) There is a /i (x) v-measurable set C with X(U A C) = 0.

Idea of Proof From (i) to (ii), we may take C to be a limit of the B's. We then use
the monotone class theorem to show that for each fi ® v-measurable U, (i) holds.
It then follows at once that (ii) implies (i). •

Remark. D. Hoover has pointed out the curious fact that the logic LAP is equivalent
to the richer logic on L with ord(A) variables, which allows formulas with A-
finitely many free variables and quantifiers (Px > r) over A-finite sequences x. The
axioms and rules are as before with the additional scheme

(Px1x2 . . . > r)cp(xh ... x/n) ^ (Pxjl . . . xjn > r)cp(xh ... xjn\

where none of the other x/s are free in cp. It can be shown by the logical monotone
class theorem (Keisler [1977c]) that every sentence of the richer logic is equivalent
to a sentence of LAP. The situation is radically different, however, when universal
quantifiers are present, since well-ordering is definable in L ^ ^ .

7.5. Weak Models

We will now begin working toward the completeness theorem for LAP. To this end,
we first examine

1.5.1 Definition. A weak structure for LAP is a structure

Ji = <M, Rf, cf, fOielJeJ.neN
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518 XIV. Probability Quantifiers

such that each \xn is a finitely additive probability measure on M" with each single-
ton measurable, and (with the natural definition of satisfaction) the set

is ^-measurable for each <p(3c, y) e LAP and a in M.

By Theorem 1.2.5, every probability structure Jt induces a weak structure for
LWlP with fin = i£n\

1.5.2 Weak Soundness Theorem. Let 0>bea set of sentences ofL&P. If® has a weak
model then <X> is consistent in weak LAP.

1.5.3 Weak Completeness Theorem (Hoover [1978b]). Let A be countable. If®
is consistent in weak LAP, then O has a weak model.

Sketch of Proof. Let C be a countable set of new constants, and let K = L u C.
By a Henkin construction, 0 can be extended to a maximal weak XAP-consistent
set F of sentences with the following witness properties:

(1) IfO c r a n d A # e K A P , t h e n A O e r ;
(2) If cp(c) G T for all c in C, then (Px > l)cp(x) e T.

Let C be the set of constants of K. T induces a first-order structure

Mo - <M, Kj , C ) i e I t ceC,,

for K in the usual way, and M = {cM\c e C'}. Define fin by

\in{cM | cp(c, d)eT} = sup{r |(Px > r)cp(x, d) e T}

for each <p(5c, y) and d. Axioms Al through A5 insure that \in is well defined and is a
finitely additive probability measure. This gives us a weak structure Ji. Axiom A6
(in the dual form of Proposition 1.4.6(iii)) insures that the above supremum is
always attained, and it follows by induction that Jt 1= F; and, hence, Ji \= O. D

1.6. Atomic and Countable Models

In this section we will dispose of the degenerate case in which there is a countable
set of measure one; that is, we will consider the situation in which

(*) (Px > \)(Py > 0)x = y

holds. Notice that the last axiom of LAP, namely Axiom B4, is provable from (*)
and the other axioms.

Assume first that L has no constant symbols.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.021
https://www.cambridge.org/core


1. Logic with Probability Quantifiers 519

1.6.1 Definition. Let Ji be a probability structure. An element a e M i s a n atom
if {a} has positive measure. Ji is atomic if every element is an atom.

We list some easy facts in the next proposition.

1.6.2 Proposition, (i) If JI is atomic, then JI is countable.
(ii) If Ji is countable, then Ji satisfies (*).

(iii) / / Ji satisfies (*), then there is a unique atomic model Jf such that
Jf -<Ap Ji.

(iv) If Ji and Jf are atomic and L^-equivalent, then they are isomorphic.
(v) If Ji is atomic, then for every formula cp(xy) ofLAP and b in M, we have

Ji N (Vx)(p(xb) <-• (Px > l)(p(xb);

and

Ji N (3x)(p(xb) <-• (Px > 0)(p(xb). D

Part (v) of the proposition shows that in atomic structures the ordinary quanti-
fiers can be defined in terms of probability quantifiers.

1.6.3 Theorem (Completeness Theorem for Atomic Models). A countable set of
sentences O o/LAP has an atomic model if and only */<D u {(*)} is consistent in LAP.

Sketch of Proof. We may take A to be countable. Suppose <I> u {(*)} is consistent in
LAP. Then it has a weak model Ji0 in which all theorems of LAP hold. From
Section 1.4, for each m, the following are deducible from (*) in LAP:

(Px

and

It follows that Mo has a finite subset of /^-measure greater than 1 - 1/m. Thus
can be extended to a probability measure \x defined on all subsets of Mo by

\i(X) = sup{^(y): Y ^X,Y finite},

forming a probability structure Ji =Ai> Ji0. The atomic model J/* <^F Ji is the
required model of O. D
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520 XIV. Probability Quantifiers

We now consider the general case where L has constant symbols. Define JI to
be atomic if every element of Ji is either of positive measure or equal to a constant
symbol. With this definition, all the results remain true except for part (v) of
Proposition 1.6.2. If the set of constant symbols is ^-finite, we can still define the
ordinary quantifiers in terms of probability quantifiers in an atomic structure
Jtby

>(Px > l)(p(xb) A f\ (p{Cjb)\

and

Ji |= 3xcp(xb) <-> (Px > O)(p(xb) v \J (p(Cjb).

2. Completeness Theorems

The main result of this section, to be given in Section 2.3, states that the set of
axioms given in Section 1 is complete. As a preliminary result, in Section 2.2 we
prove a completeness theorem for LAF without using the axiom B4. However, this
is done for a wider class of models. The chief difficulty is the construction of a
countably additive probability structure from a finitely additive one. The key to
getting past this difficulty is the Loeb measure construction from non-standard
analysis, and this we examine in the following discussion.

2.1. The Loeb Measure

We assume once and for all that we have an OJ1 -saturated non-standard universe

where U is a set of urelements large enough for our purposes (see Keisler [1976] or
Loeb [1979a] for the details). For r e *M,°r denotes the standard part of r. We will
briefly state the definition and main facts about the Loeb measure. They are due to
Loeb [1975].

2.1.1 Definition. Let M be an internal set in Kw(* U) and let <M, S, //> be an internal
•-finitely additive probability space. (Thus, [i and S are internal and fi: S -» *[0, 1].)
The Loeb measure of /a is the unique (countably additive) probability space
<M, d(S\ £> such that:

(i) G(S) is the cr-algebra generated by 5.
(ii) fl(X) = °ii{X) for all XeS.
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2.1.2 Theorem. The Loeb measure exists and is unique.

Proof. Use co:-saturation and the Caratheodory extension theorem. D

2.1.3 Theorem. Let X e a(S). Then,

(i) for each neM, there exist Y,ZeS such that Y c X c Z and \i(Z - Y) <

(ii) there exists Y eS such that jl{X A Y) = 0.

Proof. Part (i) of the theorem uses the monotone class theorem, and part (ii) follows
from part (i) by col -saturation. D

Intuitively, part (i) says that every Loeb measurable set can be approximated
above and below by internal measurable sets.

2.2. Graded Probability Models

A graded probability structure is a generalization of a probability structure in
which the diagonal product fi(n) is replaced by any probability measure on Mn which
satisfies the Fubini theorem. We will show that the set of axioms for LAP without
axiom B4 is sound and complete for these structures.

2.2.1 Definition. A graded probability structure for L is a structure

df — (A/1 D ^ C-M ,j \

such that:

(a) Each \in is a (countably additive) probability measure on Mn.
(b) Each n-placed relation Rf is /immeasurable, and the identity relation is

/^-measurable.
(c) If B is /immeasurable, then B x Mn is /im+n-measurable.
(d) The symmetry property holds; that is, each /nn is preserved under permuta-

tions of { 1 , . . . , n).
(e) (fin\n e N} has the Fubini property: If B is /im+n-measurable, then

(1) For each x e Mn, the section B^ = {y\B(x, y)} is /^-measurable.
(2) The function/(x) = fin(B^) is /^-measurable.
(3)

2.2.2 Proposition, (i) If Ji is a probability structure, then

/A/I J?-^ n-M n^\

is a graded probability structure.
(ii) Every graded probability structure is a weak structure for LWlP. D
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2.2.3 Proposition. In a graded probability structure Ji, \in is an extension of//"\ D

An important example of a graded probability structure arises from the Loeb
measure construction.

2.2.4 Theorem (Keisler [1977b]). Let M be a *-finite set. For each n, let vn be the
internal probability measure on Mn giving each element the same weight {the counting
measure)^ and let \in — vn be the Loeb measure ofvn. Then <(//„ | n e f̂ J) has the Fubini
property. Hence, if each n-ary relation of Jt is [immeasurable, Jt is a graded prob-
bility structure. D

The following example of Hoover provides a graded probability structure which
is not LAP-equivalent to any ordinary probability structure.

2.2.5 Example (White Noise). Let H be an infinite *-finite set, let M = *^(H) be
the set of all internal subsets of if, and take \in as in Theorem 2.2.4. Let/: M -• H be
an internal function partitioning M into H equal parts. Let R(x, y) iff/(x) e y.
Then R is internal and hence ^-measurable.

Iff (a) ^f(b), then the sets R(a, v) and R(b, v) are independent; similarly, for
f{ax\ ... ,f(an) distinct. This suggests the name "white noise." Thus,

Ji\=(Px> \)(Py > \){Pz < \)

But then,

M 1= (Px < 0)(Py > 0)(Pz > $)

Thus axiom B4 fails in M. In fact, R is not measurable in the completion of fif\

2.2.6 Definition. By graded LAP we mean LAP with all the axioms except for the
product measurability axiom B4.

One may check that all axioms except axiom B4 hold in all graded probability
structures.

2.2.7 Theorem (Graded Soundness Theorem). Every set of sentences o/LAP which
has a graded model is consistent in graded LAP. D

2.2.8 Theorem (Graded Completeness Theorem by Hoover [1978b]). Every
countable set O of sentences which is consistent in graded LAP has a graded model.

Sketch of Proof Let A be countable, and assume L has countably many constants
not appearing in O. From the proof of the weak completeness theorem, <£ has a
weak model

M = <M, Ri9 cj9 finyi€ij€j,n^

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.021
https://www.cambridge.org/core


2. Completeness Theorems 523

such that Jt satisfies each theorem of graded LAjP, M = {c}\j e J}, and the domain
of each \in is the set of LAP-definable subsets of M". Form the internal structure

= <*M, *RJ9 *Cj

Let

Jt =

where fln is the Loeb measure of \in. By Theorem 2.1.3, every jln- measurable set can
be approximated above and below by *-definable sets in n variables. Using this
fact and axioms B2 and B3 in Jt, it can be shown that Jt is a graded probability
structure. An induction on formulas will show that Jt is LAP-equivalent to Jt.
Axiom Bl is used in the A step, and axioms B2 and B3 in the quantifier step.
Therefore, J t = $ . D

Remark. The graded soundness and completeness theorems hold with little change
if L has function symbols, and graded probability structures are defined so that the
interpretation of every atomic formula in n variables is ^-measurable. This is
done in Hoover [1978b].

2.3. The Main Completeness Result

We are now ready to prove the completeness theorem for LAP. The results of this
section, including the completeness theorem, are new. We make use of axiom B4
by way of the following lemma.

2.3.1 Lemma (Rectangle Approximation Lemma). Let Ji be a graded probability
structure satisfying every theorem of LAP. Then for each e > 0 and formula q>(y)
ofL&p there are finitely many formulas ^/xy/X where i = 1 , . . . , m, and j = 1 , . . . , n,
such that

J?\=(Px> 0)(Py > 1 - s)((p(y) <-> V A tijixyj))- D

The lemma asserts that any definable set cp{y) in Ji can be approximated within
s by a finite union of definable rectangles, uniformly in parameters x from a set of
positive measure. The proof is rather technical, and axiom B4 is used n times.

2.3.2 Definition. Let Ji and JV be graded probability structures. We say that
Ji= Jf almost surely, (in symbols, Jt = yTa.s.) if Jt and Jf have the same universe,
constants, and measures, and if for each atomic formula cp(x) of LAP,

Ji 1= <p[a] iff JT\= (p[a]

for /valmost all a.
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2.3.3 Lemma. If' Jt = Jf a.s. then Jt and Jf are L^-equivalent. Also for each
formula (p(x) o/LAP,

J(\=<p[a] iff JTt=q>[a]

for fin-almost all a.

Proof The proof here is by induction on cp. D

The following theorem is the last step needed for the completeness theorem.
The proof of this result would break down if we were to allow function symbols in L.

2.3.4 Theorem. Let Jt be a graded probability structure satisfying every theorem of
LAP, and let \i = /ix. Then there is a graded probability structure Jf such that
Jt = Jf as., and each relation Rf is f/n)-measurable. Thus, Jf induces an ordinary
probability structure.

Sketch of Proof By the Rectangle Approximation Lemma, for each £ > 0 and
LAP-definable set U c M" in Jt, there is a finite union B of //"-measurable rect-
angles such that fin(B A U) < e. Then, by Lemma 1.4.8, there is a //-measurable set
C such that jun(C A U) = 0. By patching diagonals together, we find that for each
/ e /, there is a /i(/l)-measurable relation Rf such that Ji = Jf a.s. D

2.3.5. Theorem (Completeness Theorem for LAP). Every countable consistent set
Q> of sentences of LA P has a model.

Proof The proof of this result is by the Graded Completeness Theorem, Theorem
2.3.4, and Lemma 2.3.3. D

By the usual LA arguments (as given in Chapter IX), we obtain Barwise-type
results. Similar results for graded LAP are given in Keisler [1977b].

2.3.6 Theorem (Barwise Completeness Theorem). The set of valid sentences of
LAP is Z on A.

2.3.7 Theorem (Barwise Compactness Theorem). Let A be countable and let 0
be a set of sentences o /L A P . lf<& is l o n A and every /\-finite *¥ ci <X> has a model,
then O has a model.

2 A. Hanf and Lowenheim Numbers

We have seen in Section 1 that the sentence stating that Ji is atomless has no
countable models. Thus, the Lowenheim number of LAP is at least CQX. On the other
hand, given any probability structure Jt, we can obtain LWlP-equivalent structures
of arbitrarily large cardinality by adding a set of new elements of measure zero.
Thus, the Hanf number is co but for a trivial reason. When considering cardinalities,
we should restrict our attention to reasonable structures.
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2.4.1 Definition. A probability structure Jt is reasonable if every set of measure one
has the same cardinal as M. The reasonable Lowenheim or Hanf number of LAP is
obtained by restricting to reasonable probability structures.

2.4.2 Proposition. A reasonable structure is countable if and only if the set of atoms
has measure one. D

Let Jt and Jf be probability structures for L. Notice that if Jt -<AP Jf, then
the first-order part of Jt is a substructure of the first-order part of N but is not
necessarily an elementary substructure in the sense of Lwco.

2.4.3 Proposition. Every probability structure Jt has a reasonable L&P-elementary
substructure Jf such that fi(N) = 1 and v is the restriction of n to N. The cardinal of
N is unique. D

The following theorem and corollary are new.

2.4.4 Theorem (Downward Lowenheim-Skolem Theorem). Let Jibe a reasonable
probability structure of power at least X, where X = X10. Then, for every set X ^ M
of power < X, Jt has a reasonable L^^-elementary substructure Jf of power X with
X c N.

Proof. Let X c Xo c M where Xo has power X and contains all constants. Form a
chain Xa, a < X of subsets of M of power X such that for every Borel combination
B of sets L^p-definable in Jt with parameters in Xa,

(1) if
(2) if fi(B) = 1 then \BnXa+1\ = X.

Take unions at limit a. Form the structure JV, with N = (Ja Xa and v(B n N) =
n(B), for each Borel combination B of setsL^p-definable with parameters in N.
Then JV is as required. D

2.4.5 Corollary. Let X be the reasonable Lowenheim number for LA P. Then,

(i) CD, < X < 2 W ;
(ii) Martin s axiom implies X = 2W.

Proof. As to the argument for (i), we note that Theorem 2.4.4 shows that X < T°.
In order to prove (ii), we let cp say that Rn(x\ n e l\l are independent sets of prob-
ability \. By Martin's axiom, every subset of 2^ of power < 2W has Lebesgue
measure zero, and it thus follows that cp has no reasonable model of power < 2W. •

2.4.6 Theorem (Hoover [1978b]). Every uncountable reasonable probability
structure Jt has reasonable L^^-elementary extensions of arbitrarily large cardi-
nality.

Sketch of Proof. Working in a K + -saturated universe, form *Jt and use the Loeb
process to get a graded structure Jt >colPJt and probability structure JV >(OlP Jt.
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By Proposition 2.4.2, Jt has an atomless set of positive measure e. By K+-satura-
tion, every internal set in *M of measure > 1 — e/2 has power at least K+, SO every
Loeb measurable set of measure one has power > K+. D

2.4.7 Corollary. LAP has reasonable Hanf number co t. D

2.5. Random Variables

In this section we will consider structures with random variables instead of rela-
tions. From the examples of Section 3.1 we saw that structures with random
variables are of interest in probability theory. In general, -one could consider
random variables with values in a Polish space. We will restrict our discussion here
to random variables with values in U and will use a language L = {Xh c} \ielje J}.

2.5.1 Definition. An n-fold random variable on a probability space <M, S, pC) is a
jU(n)-measurable function X: M" -• R. A random variable structure for L is a structure

M = <M, Xf, cf, ii>ieIJej,

where \i is a probability measure on M, Xf is an nrfold random variable, and
Cj e M, and each

2.5.2 Definition. The auxiliary language of L is the language L' which has the same
constant symbols c,-ofL but has new relation symbols \_Xi(u) > r], and [^ (M) < r],
for each i e I and r e Q.

Each random variable structure Ji for L induces a probability structure Ji'
for L', where [X/w) > r] is interpreted in the natural way.

2.5.3 Definition. We will use the following abbreviations:

>r] for ^\X{u)>r\

\X(u)<r\ for ~\\X(u)>r\

2.5.4 Definition. The language LAP(R) has the same set of formulas as LAP. It has
all the axioms and rules of inference of LAP, plus four new axioms, where r,seQ:

Cl. [X{u) > r] -> [X(u) > s], where r > 5;
C2. [X^fi) > r]
C3. [X,(M) > r] < A ^ /]

C4. \/M ([Xj(w) > — n] A [Xi(u) < ri]\ and each singleton is measurable.

2.5.5 Theorem (Soundness and Completeness Theorem for LAP(R)). A countable
set O of sentences o/LAP([R) /zas « random variable model if and only if it is consistent
in LAP(R).
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Proof. The soundness is easy. Suppose Q> is consistent. Let *F be the set of sentences
of the form (Pv > 1)^, where \jj is one of the axioms Cx through C4. Then, 0> u *F
is consistent and has a probability model «^'. Make Jt' into a random variable
model J( by defining

r]}.

Use *F to show that XM is almost surely finite and uniquely defined. D

2.6. Finitary Probability Logic

We will now discuss the situation when co is not an element of A, so that each
formula of LAP is finite. We will assume that the rationals are defined in such a
way that Q c A, so LAP has at least the quantifiers (Px > r), r e <Q n [0,1]. By
throwing additional reals into A as urelements, we can obtain more probability
quantifiers. When co <£ A, the infinitary axiom Bl and the infinite conjunction rule
R2 become finite. However, the other infinitary axiom A6 is outside the language
LAP and must be replaced by a new infinite rule of inference, a rule which is due to
Hoover [1978a].

2.6.1 Definition. The rule of inference for finitary LAi> is given by

{\jj -» (Px > r)(Py > s - l/n)(p\ne N} h- i// -> (Px > r)(Py > s)cp.

With this new rule of inference, the weak, graded, and full completeness
theorems hold for the finitary case co <£ A. Hoover [1978b] has shown that when
A = HF, the set of valid sentences of LAP is complete IIJ and thus not recursively
enumerable. This was done by interpreting the standard model of number theory
in a finite theory of LAP. The compactness theorem fails for LAP, so that some
infinitary rule of inference is needed.

2.6.2 Example. Let 3> be the set of sentences containing (Px > 0)R(x\ and
(Px < l/n)R(x), for n = 1, 2, Then every finite subset of O has a model, but (!)
itself has no model.

However, there is a compactness theorem for special sentences, which we will
state for LWlP.

2.6.3 Definition. The set of universal conjunctive formulas of LWlP is the least set
containing all quantifier-free formulas and closed under arbitrary / \ , finite v, and
the quantifiers (Px > r).

2.6.4 Theorem (Finite Compactness Theorem (see Hoover [1978b])). Let <£ be a
set of universal conjunctive sentences ofL&P. If every finite subset o/O has a graded
model, then O has a graded model.
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Proof. Suppose each finite subset *F c Q> has a model ^ y . Take an ultraproduct
*Jt of the Jf^s such that, for each (pe<b, almost every M^ satisfies (p. Form a
graded probability structure M from * ^ by the Loeb construction. Then, by
induction show that every universal conjunctive formula holding in almost all
Jt^> holds in M also. D

The above proof, of course, does not work for probability models, because
axiom B4 is not universal conjunctive.

2.6.5 Example. Let <D be the set of universal conjunctive sentences

(Px >

where nsN. Each finite subset of O has a (finite) probability model. However,
implies the white noise sentence

(Px > l)(Py > l)(Pz < ±)

of Example 2.2.3. Thus, <X> has no probability model.

However, if in Theorem 2.6.4 every instance of axiom B4 is deducible from <X>
in graded LAi>, then <X> does have a probability model.

2.7. Probabilities on Sentences o

We can easily generalize our treatment of LAP to two-sorted logic. It is more
interesting that there is a mixed two-sorted logic which has probability quantifiers
on one sort and ordinary quantifiers on the other sort. In this mixed two-sorted
logic, we can study models which assign probabilities to sentences of LA. We will
use x, y,... for the first sort of variables, and 5, t , . . . for the second.

2.7.1 Definition. LA(P, V) is the two-sorted logic which has probability quantifiers
(Px > r) on the first sort and the universal quantifier (tit) on the second sort.
Probability structures for L(P, V) have the form

Jl = <M, T, JR£, cj9 n>ieItjej,

where \i is a probability measure on M, and R^x; t) is /^-measurable for each t in T.

If T is countable, there is no difficulty in defining the satisfaction relation in
Jt, with the usual clause for (tit). This is the case which is needed for the complete-
ness theorem.
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There is also a definition of satisfaction which applies to any probability
structure for L(P, V), as introduced by Gaifman [1964] and extended by Krauss-
Scott [1966]. The idea underlying this development is to assign, for each (p(x; t) and
b in T, an element <p(x; b)M of the measure algebra of ju(n) modulo the null sets. The
V clause is

(V0ff<x; b)M = inf{(p(x; b, cY\ce T}9

taking inf in the measure algebra. This coincides with the natural definition of
satisfaction when T is countable, but not when T is uncountable.

2.7.2 Definition. The axioms for LA(P, V) consist of all axiom schemes for LAP and
LA, with quantifiers on the appropriate sort, plus the new axiom

(Px > r)(\/t)cp(x; 0 «-> A CO • • • WnWx ^ r) A <**'> '*)•
n fc=l

The rules of inference for L&(P,V) are the natural combination of rules for LAP

and LA.

2.7.3 Theorem (Soundness Theorem). Every set O of sentences of L&(P, V) which
has a model is consistent. U

2.7A Theorem (Completeness Theorem). Every countable consistent set of sen-
tences ofL&(P, V) has a model Jt with T countable.

Proof. Form a countable weak model. Then keep the second sort fixed while using
the method of Sections 2.2 and 2.3 to extend the first sort to a probability model. D

The following simpler logic is of particular interest.

2.7.5 Definition. Let L be a first-order language with variables t0, tl9... and rela-
tion symbols R(t). By L-probability logic we mean the two-sorted logic L'MC(P, V)
which has only one variable x of the new sort and where L is formed by replacing
each relation R(t) of L by R(x; f).

L-probability logic is a logic which assigns probabilities to sentences of
LWlC0 = LHC. Its model theory was studied by Krauss-Scott [1966]. A probability
structure

for L-probability logic may be regarded as an indexed family (Jtx\xeM} of
first-order structures Jix for L each with universe T, together with a probability
measure / ionM such that each {x\R£x; t)} is measurable.
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2.7.6 Definition. A probability on L(Ol m is a function \x from sentences of LWlC0 to
[0, 1] which is countably additive with respect to \j, ~\ and such that each valid
sentence has measure one.

Each structure M for L-probability logic induces the probability \iM on LW1W

given by

liM{cp) >r iff Ji t= (Px > r)cp.

The axioms and rules for L- probability logic are like those for LMC(P, V) except
that axioms A3, B2, B3, and B4 disappear. The soundness and completeness
theorems still hold and have easier proofs which avoid graded structures.

The following completeness theorem was proved by Krauss-Scott [1966],
extending results of Gaifman [1964] andZos [1963]. Although it does not follow
from Theorem 2.7.4, it can be proven by a similar argument.

2.7.7 Theorem. Let \ibe a probability on L^^ which assigns 0 or 1 to pure equality
sentences. For every countable set *¥ ^ LWlC0, there is a structure Jijor L-probability
logic such that \iM agrees with /* on *F. D

Other work on probabilities of sentences can be found in Havranek [1975],
Fenstad [1967], Fagin [1976], Compton [1980], Lynch [1980], Gaifman-Snir
[1982], and Krauss [1969].

The logic LAP should be compared with the logic L(Qm) of H. Friedman, which
is discussed in Chapter XVI. This logic also has models with measures as well as
both the classical quantifier (Vx) and the measure quantifier (Qmx) which has the
same interpretation as our (Px > 0). In order to have both quantifiers, one must
pay the price of restricting attention to those structures in which every definable
set is Borel (the absolutely Borel structures). A similar treatment of logic with both
quantifiers Vx and (Px > r) for absolutely Borel structures should be possible
and interesting.

3. Model Theory

In this section, we will develop the model theory of the logic LAP. In Section 3.1
we state a model-theoretic form of the law of large numbers, showing that every
probability structure is "approximated" by almost every sequence of finite sub-
structures. This result is used in Section 3.2 to prove the existence and uniqueness
of hyperfinite models, which play the role for LAP that saturated models play in
classical model theory. These models are used in Section 3.3 to prove the Robinson
consistency and Craig interpolation theorems for LAF. The section concludes with
the development of integrals, which eliminate quantifiers from LAP in a manner
analogous to Skolem functions in classical logic.
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3.1. Laws of Large Numbers

The results in this section hold for all graded probability structures. First, we have

3.1.1 Definition. A finite universal formula o/LAP is a formula of the form

(Px, > r 1 ) .

where (/̂  is a finite quantifier-free formula of L. A finite existential formula of LAP is a
formula of the form

(Px, > n ) . . . (Pxn > rn)xjj,

where \// is as before.

Note that since —i (Px > r)\j/ is equivalent to (Px > 1 — r) —i i//, the negation
of a finite existential formula is equivalent to a finite universal formula, and vice
versa. We shall see that the laws of large numbers for LAP deal with finite existential
sentences. To state them, however, we need the notion of a finite sample of Ji.

3.1.2 Definition. Let Ji be a graded probability structure for L, and let ak =
<a1 ?. . . , ak} e Mk be a /c-tuple of elements of M. The finite sample Ji(ak) is the
probability structure whose universe is the union of{al9...9ah} and the constants
(if any) of Ji, whose first-order part is a substructure of Ji, and whose measure v
is given by

v(S)=\{m<k\ameS}\/L

Thus, the finite set {al9..., ak} has measure one in Ji(ak), and the measure of a
singleton {a} is l//c times the number of occurrences of a in the sequence ak.

3.1.3 Theorem. Let Ji be a graded probability structure for L with measures jun,
and let cp be a finite existential sentence o/LAP such that Ji' |= cp.

(i) Weak Law of Large Numbers for LAP:

(ii) Strong Law of Large Numbers for LAP. Let JJ,N be the completion of the
measure on MM determined by the \in. Then, for \in almost all sequences
a e MN

9 Ji{ak) \= cpfor all but finitely many keN. D

The above theorem is a reformulation of Lemma 6.13 in Keisler [1977b]. In
the special case in which cp has the form (Px > r)\l/(x), the result follows directly
from the weak and strong laws of large numbers in probability theory. Hoover
has pointed out that the case in which cp has the form (Px > r)ij/(x) can be proved by
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the same argument as the proof of the strong law in probability theory, using the
martingale convergence theorem. The general case uses an induction on the
number of quantifiers.

3.1.4 Theorem (Normal Form Theorem (Hoover [1982])). Every formula (p(x) of
graded LWlP is equivalent to a countable boolean combination of formulas of the
form (Py > r)\l/(xy\ where il/(xy) is a finite conjunction of atomic formulas ofL.

Proof By a prenex normal form argument, it can be shown that every formula of
graded L^^ is equivalent to a countable boolean combination of finite universal
formulas (with the same free variables). By the Weak Law of Large Numbers, each
statement below implies the next, where ^ is a finite quantifier-free formula.

(1) J?\=(Px> r)(Py > s)\l/

(2) / \ Jt \= (PX > r - ^\(py > s -

(3) A l i m ^k\ak\Ji{ak) t=\Px>r-^(py>s- % \ = 1

(4) y\ Ximiik\ak\J!{ak) \= [Px > r--)[Py > s - -
C \ n/\ n

(5) /\J?

(6) Jt 1= (Px > r)(Py > s)il/

Hence, these statements are equivalent. Each property

Jt{zk) \= [Px > r - -)\Py > s - -
\ n/\ n

is expressible in Jt by a finite quantifier-free formula 6(zk) of L. It follows, then,
that each formula is equivalent to a countable Boolean combination of formulas of
the form (Pz > t)9, where 6 is finite and quantifier-free. Finally, we reduce to the
case in which 8 is a conjunction of atomic formulas using the probability rules

and

P(cp v i/0 = P(cp) + P(iA) - P(cp A
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3.1.5 Corollary. Let Jt and Jf be graded probability structures for L. The following
are equivalent.

(a) Jl =miPjr.
(b) Jt =A P JT.
(c) Jt\= (p iffJf 1= cpfor each sentence cp ofL&P in the normal form of Theorem

3.1.4. D

The following consequence characterizes LAP equivalence in terms of truth
values in finite samples. It has no analog in first-order logic.

3.1.6 Theorem. Let Jt and Jf be graded probability structures for L. The following
are equivalent.

(a) Jt and Jf are L^-equivalent.
(b) For every sentence cp ofL&P and keN,we have

Hk{ak\Jt(ak) \F= (p) = vk{bk\jr(bk) N <p}.

That is, cp has the same probability in the set ofk-element samples of Jt as in
the set ofk-element samples of Jf.

(c) For each sentence cp ofLAP,

lim tik{ak\J((ak)\= <p} = 1

if and only if

That is, cp has large probability in large finite samples in Ji iff it does in Jr.

Proof. We give a proof using Hoover's normal form theorem. The result can also be
proved directly from the Weak Law of Large Numbers for LAP. Now, (a) implies
(b), because for each k and \j/ there is a formula \jj(yu..., vk) of LAP which says that
a fe-element sample satisfies cp. It is trivial that (b) implies (c). Assume then that
(c) holds, and let cp(x) be a finite quantifier-free formula. Suppose that Jt 1=
(Px > r)(p(x\ and let s < r. By the Weak Law of Large Numbers, we have

limfik{ak\Jt(ak) \= (Px > s)cp} = 1.
k-+oo

By (c), the same holds in Jf. Applying the Weak Law again, we thus have Jf 1=
(Px > s)cp. Since this holds for all s < r, Jf 1= (Px > r)cp. It follows from the
Normal Form Theorem that Jt =w l F Jf. D
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3.2. Hyper finite Models

We will assume throughout this section that L has only finitely many constant
symbols. We have seen in Example 1.3.2 that the sentence

(Px > l)(Py > l)x =£ y,

stating that Ji is atomless, has no countable models. In this section, we prove an
analogue of the Lowenheim-Skolem theorem for atomless probability structures,
but with infinite *-finite numbers in place of infinite cardinals. We will show that,
for each atomless structure Ji and infinite *-finite number H, there is an essentially
unique hyperfinite probability structure Jf = WlP Ji of *-cardinal H. We will use a
fixed co x -saturated nonstandard universe.

3.2.1 Definition. A (uniform) finite probability structure is a probability structure
Ji whose universe M is finite and whose measure is the counting measure \i(Y) =
| Y |/| M |. A *-finite probability structure is a finite probability structure in the
sense of the nonstandard universe. A hyperfinite probability structure is a prob-
ability structure Ji such that the universe M is an infinite *-finite set and JX is the
Loeb measure determined by the *-counting measure on M. A hyperfinite graded
structure is a graded probability structure whose universe M is an infinite *-finite
set and each \xn is the Loeb measure determined by the *-counting measure on Mn.

3.2.2 Proposition. Every hyperfinite probability structure or graded structure is
atomless. D

Here is a reformulation of Proposition 2.2.4.

3.2.3 Proposition. Let Ji0 be a first-order structure such that the universe M is an
infinite *-finite set and each relation of Ji0 is Loeb measurable with respect to the
^-counting measure on M". Then there is a unique hyperfinite graded structure with
first-order part Ji0. D

We will now introduce an important relation between hyperfinite and *-finite
structures, called a lifting.

3.2.4 Definition. Let Ji be a hyperfinite graded structure. A lifting of M is a
•-finite probability structure Jf such that Jf has the same universe and constants
as Ji, and for each atomic formula cp(x\ the set

{a\Ji 1= (p[a] iff Jf t= q>[a]}

has /^-measure one. By a lifting of a hyperfinite probability structure Ji we mean a
lifting of the unique hyperfinite graded structure Ji' which has the same first-order
part as M.
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3.2.5 Lemma, (i) Every infinite *-finite probability structure is a lifting of some
hyperfinite graded structure.

(ii) Every hyperfinite graded structure has a lifting.
(iii) / / Ji and Jf are hyperfinite graded structures with a common lifting, then

Jt = Jf a.s. and Jt =WlP Jf.

Proof. The argument for part (i) follows by Proposition 3.2.3. The argument for
part (ii) follows by Theorem 2.1.3. And the argument for part (iii) follows by
Lemma 2.3.3. D

3.2.6 Theorem (Existence Theorem for Hyperfinite Models (Keisler [1977b])).
Let JV be an atomless probability structure for L, and let M be an infinite *-finite set.
Then there exists a hyperfinite probability structure Ji with universe M which is
L^-equivalent to Jf.

Proof. Assume first that L has no constant symbols. Let S be the set of all infinite
sequences a of elements of Jf such that for every finite existential sentence cp of
LAP, if JV \= cp then J^(ak) \= cp, for all but finitely many k. By the Strong Law of
Large Numbers, v^(5) = 1. Since Jr is atomless, vH almost every sequence a is
one-to-one; and, hence, each Jfi^a^) is a uniform finite probability structure.
Thus, there exists a e S such that a is one-to-one. Let K be an infinite hyperinteger.
Then ^{a^ is a *-finite probability structure of *-cardinal K and is a lifting of a
hyperfinite graded structure Jt'. Since a e 5, for each finite quantifier-free sentence
\l/(x) and each r, Jf \= (Px > r)\// implies Jt' \= (Px > r)ij/. It follows then that,
for each i// and r, Jf 1= (Px > r)\/j iff Jt' 1= (Px > r)\jj. By the Normal Form
Theorem, Jt' is LAP-equivalent to JV. By Theorem 2.3.4, there is a hyperfinite
probability structure Jt with Ji = Jt' a.s. Then Jt is LAP-equivalenttotyV".

The case in which L has finitely many constants is the same except that the
measure on *Jr(aK) is slightly different from the counting measure since constants
have measure zero. D

The Existence Theorem also holds for graded probability structures, with the
same proof. For LAP without equality, the existence theorem holds even without
the hypothesis that Jf is atomless.

3.2.7 Definition. Let Ji and Jf be probability structures. An almost sure isomorph-
ism from Jt to JV (in symbols, h: Jt = JV a.s.) is a bijection h:M -+ N such that

(a) h is an isomorphism on the probability spaces, h: <M, /x> = <iV, v>;

(b) for each atomic formula (p(x\

Jt \= cp\a] iff JT\= (p[ha\

almost surely in fiin\
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3.2.8 Lemma. Suppose h:Jt^Jr a.s., then

(i) for each formula q>(x) of LAP,

Jt \= cp\a~] iff Jf 1= (p[ha]

almost surely in fiin);
(ii) Jt and Jf are L ^-equivalent.

Proof The proof follows by induction on cp. D

The following result is new.

3.2.9 Theorem (Uniqueness Theorem for Hyperfinite Models). Let Jt and Jf
be hyperfinite probability structures with the same universe M. The following are
equivalent:

(a) Jt and Jf are L^-equivalent.
(b) There is an h: Jt = Jf a.s.
(c) There is an internal h such that \i\M = Jf a.s.

Idea of Proof We assume that (a) holds and prove that (c) must hold also. Note
that any internal bijection preserves measure. Consider an n-tuple of atomic formu-
las (Piiy),..., (pn(y) of L and let s > 0. Using the Rectangle Approximation Lemma
(Lemma 2.3.1), one can find a bijection ho:M -> M such that

fiim)(f)fr\J?\=cpkla] iff ^ \= (pklhoa]}\ > I - s.

The idea is to use Theorem 2.1.3 in choosing an h0 which approximately preserves
each coordinate of the rectangles which approximate cpk. Now let Jl> N be liftings
of Jt^ Jf. By co 1 -saturation, we can find an internal bijection h so that for all atomic
q>(y) and all real s > 0,

\x{m\{a\M 1= (p[a] iff Jf j= <p[Ha]}) > 1 - e.

It follows then that h: Jt ^ Jf a.s., and thus (c) holds. D

As a consequence of the preceding, we obtain a "soft" characterization of the
LAP-equivalence relation, namely

3.2.10 Corollary. Let « be an equivalence relation on the atomless probability
structures for L such that:

(a) IfJi^JT a.s., then Jt « Jf.
(b) For each Jt and each infinite *-finite set H, there is a hyperfinite probability

structure Jf with universe H such that Jt « Jf.
(c) ifJt&Jf, then M =AP Jf.

Then « is the relation =AF.
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3.2.11 Example (D. Hoover, unpublished). This example shows that the unique-
ness theorem (Theorem 3.2.9) is false for hyperfinite graded models. Let M be a
hyperfinite set of the form M = i u 5 u C u D where A, B, C, D are disjoint sets
with *-cardinalities

Let/be an internal bijection from C to D. By using an exponential form of Cheby-
shev's inequality, it can be shown that there is an internal binary relation R c
A x (BvCvD) such that: "V

(1) F o r a l l y e £ u C u D ,

li{x\R(x,y)}=h

(2) ForallyeC,

{x\R(x,y)} = {x\R(xJy)}.

(3) For all y, z e B u C u D with z^y,z^fy,

li{x\R(x,y) A R(x9z)} = | .

Let Jt and Jf be the graded hyperfinite structures with first-order parts Jt0 =
<M, B, JR>, and JT0 = <M, CuD, î >. The reader can check that Jt and JV are
LWlp-equivalent but for any internal bijection h on M which maps B onto CuD,
the set

{(x,y)|K(x,y) iff K(fcc,*30}

has measure at most |^.

A weak uniqueness theorem for hyperfinite graded models is given in Keisler
[1977, p. 34].

3.3. Robinson Consistency and Craig Interpolation

The results of this section are due to Hoover [1978b]. The hyperfinite structures
play the same role that saturated structures play in first-order model theory.

3.3.1 Theorem (Robinson Consistency Theorem for LAP). Let L1 and L2 be two
languages with L° = L1 nL2. Let Jt1, Jt2 be probability structures for L1, L2

respectively whose reducts Jt1 [L°9 Jt2 \ L° are L%P-equivalent. Then there exists
a probability structure Jf for L1 u L2 such that

Jf\Ll=Li Jt1 and JT{L2=L2 Jt2.
1 Ll\? AP
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Proof. We give the proof when L1 and L2 have no constants and Jtl, J(2 are
atomless. The general case will follow by adding a new relation symbol for each
atomic formula, and working with the atomless parts. By Theorem 3.2.6, we may
take Jtx and J(2 to be hyperfinite probability structures with the same universe
M. By Theorem 3.2.9 there is an internal bijection h\Ml \L° ^ Jf2 \L° a.s.
Renaming elements, we can take h to be the identity map. By changing the L°
relations of M2 on a set of measure zero, we get Ml \ L° = Jt2 \ L°. Let Jf be
the common expansion of Mx and M2. D

3.3.2 Theorem (Craig Interpolation Theorem for LAP). Let L° = L1 n L2 and let
cpl e L A P , and <p2 e L A P be sentences such that \= (p1 -• cp2. Then there is a sentence
cp° e L A P such that \= cp1 - • cp°, and \= (p° -• cp2.

Proof. Suppose there is no such cp°. By a Henkin construction, there then are weak
models M1 of cp1 and Ji2 of -i cp2 for L\P and L | P such that Jt1 \ L° and Ji2 \ L°
are LAP-equivalent, and all the axioms of L^P, L\P are valid. By the completeness
proof, we then obtain probability models Jf^ of cp1, Jf of ~\cp2, where JV1 \ L°
and Jf2 [ L° are L^P-equivalent. By Robinson consistency, cp1 A ~K/)2 has a
model—contradicting 1= cp1 -• cp2. •

Since the compactness theorem fails for LAP, we cannot apply the general fact
that Robinson consistency and compactness implies Craig interpolation. A separate
Henkin construction is thus needed. Mundici, in Chapter VIII, showed that for
many logics, Robinson consistency implies compactness. The logic LAP fails to
satisfy several of his hypotheses, including closure under universal quantification
and under disjoint unions.

Hoover [198?] has recently proved the following stronger interpolation
theorem, thus improving an earlier result which appeared in Hoover [1982].

3.3.3 Theorem (Almost Sure Interpolation Theorem). Let L° = L1 n L2 and
suppose the symbols ofL° have a well-ordering in A. Let s > 0 and let cp1^) e L A P ,
and (p2(v) G L A P be formulas such that

\=(Pv>l- s)((p(v)

Then, for every S > e1/4 + e1/2, there is a formula 9(v) e L A P such that

t=(Pv>\- S)(cp(v) -> 8(v)) and 1= (Pv > 1 - 5)(6(v) -* xl/(v)).

Moreover, if

N (Pi; > l)((p(v) - Hv)l

then there is a formula 0(v) e L% such that

1= (Pv > l)(q>(v) ^ 6(v)) and 1= (Pv > l)(6(v) -+ \j/(v)). D
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Hoover proved each of the results Sections 3.2.1-3.2.3 for graded probability
structures, and the results for probability structures follow. His proof of the
Robinson consistency theorem was somewhat more difficult, because the unique-
ness theorem for graded hyperfinite structures is false.

Additional model-theoretic results for LAP are in Keisler [1977b] and Hoover
[1982]. Hoover [1981] gives some applications to probability theory. Kaufmann
[1978a] in his thesis gave a back-and-forth criterion which is sufficient for two
graded structures to be LAP-equivalent, and necessary for two hyperfinite graded
structures to be LAP-equivalent.

3.4. Logic with Integrals

Properties of random variables are usually easier to express using integrals rather
than probability quantifiers. We will now introduce a logic LAj- (from Keisler
[1977]), which is equivalent to LAP. It has no quantifiers, although it does have
an integral operator which builds terms with bound variables. Indeed, the logics
LAP and LAJ correspond to two alternative approaches to integration theory:
Lebesgue measure theory and the Daniell integral. The completeness proof for
LAP used Loeb's construction of a measure by non-standard analysis, while the
completeness proof for LAJ will use the construction of the Daniell integral as
given in Loeb [1982].

Given a relation R(x\ the indicator function \{R(x)) is defined by

if ^(x) is true,
if R(x) is false.

The language LAJ- will have atomic terms interpreted as the indicator functions of
the atomic formulas of L, and more complex terms will be built from these by
applying continuous real functions and integration. The atomic formulas of LAJ will
be inequalities between terms.

3.4.1 Definition. Let L be an A-recursive set of finitary relation and constant
symbols. For each atomic formula

R(x) or x = y

of the first-order logic L, LA j has an atomic term

\{R{x)) or l(x = y).

The set of terms of L&s is the least set such that:

(a) Every atomic term is a term.
(b) If T is a term and x is an individual variable, then j x dx is a term.
(c) Each real number r e A n R is a term.
(d) If T19 . . . , zn are terms and F belongs to the set CA(Rn) of continuous

functions/1: Rn -> R such that F [ Qn e A, then F ^ , . . . , in) is a term.
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Clause (c) is just the special case of Clause (d) when n = 0. We will usually
identify the function F and the corresponding logical symbol F. Note that indivi-
dual variables and constants are not terms of LAJ-. The notion of free and bound
variables in a term are defined as usual, with the integral j T dx binding x. A
closed term is a term with no free variable.

3.4.2 Definition. The set offormulas o/LAJ is the least set such that:

(a) For each term t of LA 5, x > 0 is an atomic formula.
(b) If cp is a formula, so is —i (p.
(c) If O is a set of formulas with finitely many free variables and O e A, then

AQ> is a formula.

A sentence is a formula with no free variables. The structures for LAJ are the same
as the structures for LAP, namely, the probability structures for L.

3.4.3 Definition. Let Jt be a probability structure for L. The value x{a)M of a term
T(V) of LAj in ^ at a tuple a in M is defined by:

for each atomic formula cp(v) of Lma.
(b) (J t(x, a) dxy = | z(fc, 5>" d^b)-
(c) r1^ = r.
(d) F(T!,..., xn){a)M = FMaf*,..., xn{a)M\

Since each atomic term has values in {0, 1}, by induction we see that each function
T(O)M is bounded and /*(k)-measurable. In particular, the integral in Part (b) exists
and is finite. The satisfaction relation Jt 1= cp[_a] for LAj is defined in the natural
way, with the atomic formula rule

> 0)[a] iff %(a)M > 0.

3.5. Completeness Theorem with Integrals

3.5.1 Definition. The axioms for LAJ, where a, T are terms, r, s are elements of
A n R , and x, y are individual variables are:

Dl. All axiom schemes for LA without quantifiers, with l(x = y) = 1 in place
of x = y.

D2. For each atomic term T, we have T = 0 v T = 1.
D3. Order axioms. Using abbreviations, we have

(i) r > r.
(ii) T > r -• T > 5, when r > s.

D4. For each rational closed rectangle S c [Rm
? and each F e CA([Rm) with

image F(S) = [a, b], we have

<T19 . . . , TW> e S -* F(T1? . . . , TM) e [a, b].
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D5. Integral axioms.
(i) | r dx = r.

(ii) f T(X) dx = J %{y) dy.
(iii) JJ T(X, y) dx dy = JJ T(X, y) dy dx.
(iv) J (r • a + 5 • T) dx = r • J a dx + 5 • j r dx.

D6. Archimedean axiom.

T > r<-*\/ T > r + - .

D7. Product measurability. For each m e f\J, we have

V j W l - JFm(j\«*> ~z) - «?> *)\ dz\ dy)dx>l-~,

where dx is dxx . . . dxM, and

fO ifii<l/fc,
(w) = J linear for l/k < u < 2/k,

[ ifu>2/k.

This is essentially a translation of the axiom B4 for LAP.

3.5.2 Definition. The rules of inference for LAJ are:

51. Modus ponens: (p,<p -n// \- ij/.
52. Conjunction: {cp-+\j/\\jjem}Y- (p-> AT.
53. Generalization: cp -> (T(X) > 0) h- (p -• (J T(X) dx > 0), where x is not free

in cp.

This set of axioms was motivated by the thesis of Rodenhausen [1982].

3.5.3 Theorem (Soundness Theorem for LA5). Any set O of sentences for LA j which
has a model is consistent. U

3.5.4 Theorem (Completeness Theorem for LAJ). A countable consistent set Q> of
sentences ofL&s has a model. U

Idea of Proof. As in the case of LAP, the main steps are to prove a weak complete-
ness theorem, and then use a construction from non-standard analysis to obtain a
graded model of <£. This done, the product measurability axiom is then used to
get a model of O.

A weak structure for LAj is a structure
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where <M, Rt, Cj} is a first-order structure and / is a positive linear real function
on the set of terms of LAj- with at most one free variable x and parameters from M.
That is,

(1) I(r) = r.
(2) I(r • a + s - T) = r • /(a) + s • /(T).
(3) If r(b, 5)-* > 0, for all fc e M, then J(T(X, a)) > 0.

The recursive definition of x^a)M is the same as for ordinary probability structures
but with the integral clause

Y
T(X, a) dx\ = /(x(x, a)).

A Henkin argument is used to construct a weak model of O in which each
axiom of LA s is valid. Then the internal structure Jl is formed in the non-standard
universe. The Daniell integral construction of Loeb [1984] produces a probability
measure /i on *M such that for each *-term T(X), the standard part of */(T) is the
integral \ ox{b)Ji dfi(b). Define measures fin on *M" using iterated integrals. This
yields a graded model of O,

which satisfies the produce measurability axiom almost everywhere. Finally,
Theorem 2.3.4 is used, as before, to obtain a probability model Jf of O. D

3.6. Conservative Extension Theorem

We will now show that the logics LAP and LAJ are equivalent in a strong sense.
This is done by considering their common extension LA Pj.

3.6.1 Definition. LAPJ is the language which has all the symbols and formation
rules of LAP and LAJ. The satisfaction relation in probability structures is defined
as before.

3.6.2 Theorem. L&Pf is a conservative definitional extension of both LA P and L&s.
That is:

(i) (Conservative): For any sentence <p in LA P , we have LA Pj 1= cp iffL&P \= cp.
And,for any cp in L A J , we have L A P J \= cp ijfL&s \= cp.

(ii) (Definitional): For each cp(v) in L A P J , there are \j/{v) in L A P and 6(v) in L A J

such that LA P j |= cp{v) <-* \l/(v\ and L A P J |= cp(v) <-> 6(v).

Remark. The LAf case is given in Keisler [1977b] and the LAP case in Hoover
[1978b]. In his work Hoover also gave an axiom set and completeness theorem
forLAPJ.
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Idea of Proof of Theorem 3.6.2. The proof of part (i) is trivial. Concerning the proof
of part (ii), interpretations

can be defined first for atomic formulas T > r by induction on terms T, and then by
induction on formulas. The idea is to formalize the definitions of integral in terms
of measure and vice versa. It is important in this result that co e A, so that the
appropriate limits can be expressed in LA / and LAP. The finitary analogs of LAP

and LAJ do not seem to be equivalent. D

This theorem often allows one to convert a theorem about LAP to a similar
theorem about LAJ, and vice versa.

3.6.3 Corollary (Keisler [1977b] and Hoover [1978b]). Let Ji and Jf be probability
structures for L. The following are equivalent:

(a) Ji =A P Jf.
(b) Ji =^JT.
(c) For each closed term T O / L A | , T J = r^.

Proof The proof of this result follows from the conservative extension and normal
form theorems. D

The Barwise completeness and compactness theorems also hold for LAJ.
For these one must check that the interpretation functions / and g in the proof
of Theorem 3.6.2 are A-recursive.

3.6.4 Theorem (Finite Compactness Theorem (Keisler [1977b])). Let 0>be a set of
sentences o/LAj of the form T e [r, s]. If every finite subset o/O has a graded model,
then O has a graded model

Proof The proof follows by an ultraproduct construction. D

The Strong Law of Large Numbers takes a particularly nice form for LA x.

3.6.5 Theorem (Strong Law of Large Numbers forLAJ). For any (graded) prob-
ability structure Ji and term % with no variables in LAJ,

for ^-almost all sequences a e MM.

3.6.6 Definition. When the product measurability axiom, (Axiom D7), is omitted,
we obtain the logic graded LAf. Satisfaction in graded probability structures is
defined in the natural way.

All the results in Sections 3.5 and 3.6 hold for graded LAJ and graded LAP.
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4. Logic with Conditional Expectation
Operators

The logic LAP is not rich enough to express many basic notions from probability
theory, notions such as martingale, Markov process, and stopping time. The missing
ingredient here is the concept of conditional expectation. In this section, we will
develop an enriched language in which these notions can be expressed. It is easier
to work with logic having integral operators rather than with probability quantifiers
when we add conditional expectations.

4.1. Random Variables and Integrals

We first prepare to extend our logic by introducing a random variable form of
LAJ which is equivalent to the random variable logic LAP(R) of Section 2.5. In
LAJ, each term T(V) is interpreted by an rc-fold random variable r*[a] , and the
atomic terms have values in {0, 1}. In the new logic LAJ(R) the atomic terms are
allowed to have values in U. Let L be the language L = {Xi9 Cj\ielje J}.

4.1.1 Definition. The logic LAJ(R) has atomic terms

where u is a tuple of constants or variables and reQ + . The set of terms and formulas
of LAJ([R) is defined exactly as for L A J .

The structures for LAJ(R) are the random variable structures

M = <M, Xf, cf, ii>

as defined in Section 2.5.

4.1.2 Definition. The value x{a)M of a term T(V) of LAJ(R) in a random variable
structure Jt is defined as for LAj- except for the following new rule for atomic
terms:

XXf(a)>r,
[Xi(a)\rY=\-r iiXf{a)< -r,

^(a) otherwise.

Thus, [Xi(a) T r\M is equal to Xf(a) truncated at r. The reason the atomic
terms are truncated is so that each term will be interpreted by a bounded, and
hence integrable, random variable.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.021
https://www.cambridge.org/core
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4.1.3 Definition. The axioms and rules of inference o/LAJ(R) are exactly the same
as for LAJ except that the atomic term axiom, (Axiom D2), is replaced by the
following list of axioms, where u is an n-tuple of constants or variables.

E l . l(u = v) = 0v \{u = v)=l.
E2. [Xt(u) \ s] = min(s, max(-s, \_X{u) \ r])) when 0 < s < r.
E3. V ( i ™ o r * + i]i<*)-

k

This says that Xt{u) is finite.

E4. For each me M,

V [
k J rn

(The probability that |X;(w)| > k approaches zero as k -> oo.)

We state the main facts without proof.

4.1.4. Theorem (Soundness and Completeness Theorem). A countable set Q> of
sentences o/LAj-(R) has a model if and only if it is consistent. D

4.1.5 Theorem. The logics LAJ(R) and L&P(M)for random variable structures have
a common conservative definitional extension. D

In other words, LAy(R) and LAP(R) are equivalent logics. Those logics may be
generalized to study random variables with values in a Polish space S instead of in
R. The only changes needed are in the definition and axioms for atomic formulas of
LAP(S) and atomic terms of LAJ(§).

4.2. Conditional Expectations

We will introduce the logic LA£(R) by adding a conditional expectation operator
E to the logic LAJ(R). A structure for LA£(R) has the form (J(9 &) where Jt is a
random variable structure and $F is a ^-algebra of measurable subsets of M. We
first review the notion of conditional expectation.

4.2.1 Definition. Let <M, S9 ji) be a probability space, let 2F be a a-subalgebra of
S, and let g: M -• R be bounded and measurable. A conditional expectation of g
with respect to 2F is an ^-measurable function h: M -> R such that for all
$Bgdju = $Bh d/JL. It is denoted by h = E[g\P], or h(x) = £[»(•

4.2.2 Proposition, (i) The conditional expectation h(x) = E[g{-)\^{x) exists
and is almost surely unique in the sense that any two such functions are equal except on
a null set. D
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This is a standard consequence of the Radon-Nikodym theorem. Here, h is
the Radon-Nikodym derivative of the measure v(B) = j B g d\i, for Be^, with
respect to \i \ 3F.

We now introduce the logic LA£(R).

4.2.3 Definition. The logic LA£((R) has all the formation rules of LAJ(R) plus the a
term-builder, the conditional expectation operator'. If T(W, V) is a term and w, w are
individual variables (with u not in v\ then

E[_T(U,V)\U-](W)

is a term in which the occurrences of u are bound and w is free.

This logic has not been considered before in the literature.

4.2.4 Definition. We will use the abbreviation:

Elx(u,v)\u] for E£c(u,v)\u](u).

Thus, u is free in £[T(M, V)\U].

The values of a term of LA£(IR) are only almost surely unique in a structure.
Here are the details.

4.2.5 Definition. A conditional expectation structure for L is a pair M = (Jt§, 3F\
where Ji0 is a random variable structure and !F is a cr-field of /i-measurable sets.

4.2.6 Definition. An interpretation of LA£(R) in a conditional expectation structure
M assigns to each term T(UU ... ,un) a ju(w)-measurable function xM\ M" -• U such
that

(a) The clauses of the definition of x{a)M for LAj(R) hold.
(b) (£[i(a, v) | v~]Q)))M is /i(w) x J^-measurable and, for each a s M",

for /^-almost all b.

4.2.7 Lemma. For every conditional expectation structure Ji for L, there exists an
interpretation o/LA£(IR) in M^ and two interpretations agree almost surely on each
term. The values of closed terms and sentences in Jt are the same for all interpre-
tations. D

4.2.8 Definition. The logic LA£(R) has all the axiom schemes and rules of inference
of LAj(R) as well as:

Fl. £[T(X, tO|x](w) = E[r(y, £0|y](w) where x and y do not occur in v.
F2. j E[_G(U) I u] • T(M) du = ] E[p(u) \ u] • E[x{u) \ u] du. This formalizes the defi-

nition of conditional expectation.
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4.2.9 Definition. The bound \\T\\ of a term T of LA £ is defined by:

(i) IIMO Mil =r'
(ii) \\\{x = y)\\ = 1.

(iii) | | jTdx| | = ||T||.

(iv) | | £ [T | I I ] (W) | | = ||T||.

(V) ||^(Tl9 . . . , TJH = SUP{|F(Sl, . . . , Sn)\ I \s{\ < || Tf. | |} .
(vi) ||r|| = r.

4.2.10 Lemma. \x(a)M\ < ||T||. D

4.2.11 Theorem (Soundness and Completeness Theorem for LA£(R)). A countable
set of sentences ofL^E(U) has a model if and only if it is consistent.

Proof. The proof of soundness is easy. Let Q) be consistent. Form a new language
K 2 L by adding a new random variable symbol Xz(v) for each term T(V) of
LA£(R) of the form E[G\U\(W). Each such term T(V) translates to the atomic term
\_Xz(v) |" n\ where n > \\x\\; and, hence, each term and sentence of LA£(R) has a
translation in XA j(R). Let *F be the theory in XAj(IR) consisting of: all translations
of sentences of O, all translations of theorems of LAE([R), and

(Pv > l)[Xx(v) p r] = lXT(v) r 5], r, 5 > ||T||.

P̂ is consistent in KAj(R) and has a random variable model Jt. Let 3F be the a-
algebra on M generated by the sets

where T(W, W) has the form E[a(u, v)\v](w) and c is in M. Let ̂ 0 be the reduct of
Ji to L and ,#" = ( ^ 0 , «F). Using the axioms, it can be shown by induction on T
that if T has translation a, then xi^af = oM(a) is an interpretation of LA£([R) in Jf,
and thus Jf is a model of <£. D

Our treatment of LA£(R) can be readily extended to logics with two or more
conditional expectation operators and to logics with conditional expectation
operators on n variables. A case of particular interest is two operators Ex and E2

where one (7-algebra is to be contained in another. The author's student, S. Fajardo,
has proved the following.

4.2.12 Theorem. Let Q>bea countable set of sentences in LA£(R) with two conditional
expectation operators. $ has a model M = (y#0> &u ^i\ witn ^\ - ^i if and
only i/O is consistent in LA£ with the additional axiom scheme

£ I M K , V)\U] = £2[£iW«, v)\u]\u]. U
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4.3. Adapted Probability Logic

We now consider a special case of the logic LAE(U), a case that is appropriate for
the study of stochastic processes. Throughout this section we will assume that \i
is a probability measure on M and P is the Borel measure on [0, 1]. By a (continuous
time) stochastic process we mean a (/i ® ^-measurable function

X:M x [0,1]-> U.

In probability theory, the evolution of a stochastic process over time is studied
by means of an adapted probability space as defined below.

4.3.1 Definition. If B c M x [0,1] and t e [0, 1], the section Bt is the set Bt =
{weM|<w,r>e£}.

4.3.2 Definition. An adapted (probability) space (or stochastic base) is a structure

^ = < A f , f t ^ X 6 l O i l ] ,

where:

(a) \i is a probability measure on M.
(b) Each 2Ft is a d-algebra of /^-measurable subsets of M.
(c) For each t e [0, 1], ̂ r = f]s>t^

r
s^ that is, #", is increasing and right con-

tinuous.

The family of tr-algebras < J% 11 e [0, 1] > is called the filtration of Sf. Intuitively, M
is the set of possible states of the world, and a set B c M belongs to J% if JB is an
event whose outcome is determined at or before time t.

Adapted spaces have been extensively studied in the literature (see, for example,
Dellacherie-Meyer [1981], or Metivier-Pellaumail [1980]).

4.3.3 Definition. Let L be a set of "stochastic process" symbols Xt, iel. An
adapted (probability) structure for L is a structure

such that <M, JU, ^ f > is an adapted space and each Xf:M x [0, 1] -> U is a
stochastic process on <M, JU>.

4.3.4 Definition. The adapted probability logic LAad(IR), or more briefly Lad, is a
two-sorted form of LA£((R) with just one variable w of the first sort, and countably
many variables tl912,... of the second sort, called time variables. The non-logical
symbols of L are stochastic process symbols Xt with just one argument place of
each sort. Lad has no equality symbol. This logic was introduced in Keisler [1979]
and has been studied further in Rodenhausen [1982].

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.021
https://www.cambridge.org/core


4. Logic with Conditional Expectation Operators 549

4.3.5 Definition. The terms of Lad are as follows, where s, t are time variables.

(a) For each r e Q + , [_Xt(w, 0l>] is an atomic term.
(b) Each time variable r is a term.
(c) Each real r e A n R is a term.
(d) If T is a term, so are

\Tdw, \xds,

(e) If TU . . . , rn are terms and F e CA(R"), then i 7 ^ , . . . , TW) is a term.

For each term T, T > 0 is an atomic formula, and formulas are closed under
and A.

4.3.6 Definition. The adapted structure

for L is identified with the two-sorted conditional expectation structure

M = <M, [0, 1], Xf, fi, p, #->.

Here, P is Borel measure on [0, 1], and ^ is the <r-algebra on M x [0, 1] generated
by the set of (fi ® jS)-measurable sets B such that for each t, Bt e 2Ft and Bt =
f]s>t Bs. & is called the optional a-algebra.

4.3.7 Definition. The notion of an interpretation xM of a term T(W, t) in an adapted
structure M is defined as in Definition 4.2.6 for LA£((R), but with the following
stronger clause for the conditional expectation operator.

For each term T(W, S, b) with n parameters b from [0,1], (bl) through (b3) hold:

(bl) ( £ [ T O , 5, 5)|s](w, d))M is ^ (x) j8"-measurable.
(b2) ForeachB,(E[T(w,s,B)|s](w,a))^ = £[<•,-,5)^|#"](w,a)0i®)8)-almost

surely.
(b3) For each 6 and a e [0, 1], (£[T(W, 5, E)|s](w, a))^ = £[<•, a, b)J(\^r

a](^)
/z-almost surely.

4.3.8 Lemma. £t;ery adapted structure M has an interpretation T I—• xM. For each
term T(W, 5) and all tuples a in [0,1], any two interpretations agree at T(W, a) for
fi-almost all w. In particular, ifw is not free in i(a), then any two interpretations in
M agree at T(a)for all a in [0, 1].

Idea of Proof The main difficulty here lies in proving the existence of an interpre-
tation by induction on r, at the conditional expectation step. We use the fact that
for any random variable/(w), £ [ / ( • ) | ̂ JCw) has a right continuous version, and
any right continuous process is measurable in the optional cr-algebra !F (see
Dellacherie-Meyer [1981]). This done, we then show that £[#(-, 0 1 ^ J O ) is
^-measurable by applying the monotone class theorem. D
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550 XIV. Probability Quantifiers

Remark. In case L is the empty language, the adapted structures for L are just the
adapted spaces. In this case, the value of each term T^(W, a) depends only on a and
not on w or Ji.

4.4. Examples

As an indication of the expressive power of the logic La d , we formalize some central
notions from the theory of stochastic processes. In each example, the process xM

has the stated property if and only if the formula holds for all 5, fin [0, 1]. We use
the abbreviations

£ [ T | S ] for £ [ T | S ] ( W , S ) ,

and

G(S) = T(S) a.s. for | o(s) — x(s) | dw < 0.

(1) a(s) is a version of T(S): G(S) = T(S) a.s.
(2) z(s) is adapted: z(s) = £[T(S) |S] a.s.
(3) T(S) is a martingale: s < t -• z(s) = £ [ T ( 0 | S ] a.s.; recall that s and t are

terms of Lad.
(4) T(S) is a submartingale: T(S) < £[t(t)|5] a.s.
(5) T(S) is Markov process with continuous transition function F H->> TF (a

Feller process): For each F e CA(R),

(6) T(W) is a stopping time: min(i, 5) = £[min(i, s)\s] a.s.
(7) X is a Brownian motion (X is not bounded, so this would have to be modi-

fied to fit within the language Lad):
(a) X is a martingale
(b) s = 0 -> X(s) = 0 a.s.
(c) s < t -• £[(X(r) - X(s))2|s] = t - s a.s.
(d) s < t -> £[F(X(r) - X(s))|s] = J F(Z(0 - X(s)) rfw a.s.; that is, X(t)

— X(s) is independent of ^s.

4.5. Axioms and Completeness

4.5.1 Definition. The logic Lad has all the axiom schemes and rules of inference
for two-sorted LA£([R) (with only one variable of the first sort, and E applied to
one variable of each sort) as well as:

Gl. For any F e CA([0, 1]) with JJ F(x) dx = r,

\F(t) dt = r.
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G2. s < t -• E[T\S] = £ [ £ [ T | S ] | O ; that is,s<t implies J% ^ # \ .
G3. / \m V* JJJ |T(W, S) - T(W, 01 • max(0, 1 - \s - t\ • n) ds dt dw < l/m • n.

That is, T is (fi® /?)-measurable. Intuitively, on a small diagonal strip
{<vv, 5, t}: \s — t\ < 1/n}, T(W, 5) is usually close to T(W, t).

This set of axioms is essentially due to Rodenhausen [1982].

4.5.2 Theorem (Soundness and Completeness Theorem for Lad (Rodenhausen
[1982])). A countable set Q> of sentences of Lad has a model if and only if it is con-
sistent. D

The proof of Rodenhausen is direct and quite long. A fairly short alternative
proof can be given using the completeness theorem for the two-sorted logic
LA£(R). The idea is to add an extra stochastic process symbol I(t) to L to represent
the term t. A two-sorted model Jl for LA£ is made into an adapted model by using
lM to replace the second universe of Ji by [0, 1]. The extra axioms Gl through G3
are needed at that point.

The Barwise completeness and compactness theorems, and the finite compact-
ness theorem, carry over to Lad.

4.6. Elementary Equivalence in Adapted
Probability Logic

There are two natural notions of elementary equivalence in Lad.

4.6.1 Definition. Let Jl and Jf be adapted probability structures for L.

(i) M and Jf are weakly Lad-equivalent, in symbols,

JJ W AT

JvL = J\ ,

if Jl and Jf satisfy the same sentences of Lad.
(ii) Ji and Jf are strongly Lad-equivalent,

Jl =sJf,

if for each tuple a in [0, 1] and formula cp(t) of Lad in which w is not free,

Jl |= cp[a] iff JV \= <p\a\.

4.6.2 Proposition. Any two adapted spaces (adapted structures for L = 0 ) are
strongly Lad-equivalent. U

The strong Lad-equivalence relation is more important than weak Lad-equiva-
lence, because each adapted structure has the same second universe [0,1]. Each
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notion in Example 4.4 is preserved under strong Lad-equivalence but not under
weak Lad-equivalence. Following are some useful characterizations of these
relations.

4.6.3 Proposition (Hoover and Keisler [1984]). The following or equivalent:

(a) Ji =w Jf.
(b) There is asetT ^ [0, 1] of measure one such that for each a in T and formula

(p(s) ofLad, Ji N cpla] iff Jf N q>\a\.
(c) For each term T(S) ofLad with no integrals over time variables, x{a)M = x{df \

for almost all a in [0, 1]. D

4.6.4 Proposition. The following are equivalent:

(a) Ji =S Jf.
(b) For each term T(S) with no integrals over time variables, and all a in [0, 1],

x{af = x{af. D

The function x(a) i-> x(a)M is called the adapted distribution of Ji and it is
analogous to the distribution of a random variable. Most stochastic processes
which arise naturally are right continuous (in t for almost all w). For right continu-
ous processes the two notions of Lad-equivalence coincide.

4.6.5 Theorem (Hoover and Keisler [1984]). If Ji =" Jf and each stochastic
process Xf and Xf is right continuous, then Ji =s Jr. U

Brownian motion plays a central role in the study of stochastic processes. The
following result shows that the Lad-theory of independent Brownian motions is
complete.

4.6.6 Theorem (Keisler [1984]). Let Ji and Jf be adapted structures for L whose
stochastic processes are mutually independent Brownian notions. Then Ji =s Jf. D

4.7. Robinson Consistency and Craig Interpolation

The results of this section are all from the paper Hoover and Keisler [1982], a
paper which studies Lad-equivalence and which gives its applications to the theory
of stochastic processes. The following notion corresponds to saturated structures in
first-order model theory, except that stochastic processes take the place of both
relations and constants.

4.7.1 Definition. An adapted space

se = <M, fi, i^>

is saturated if whenever L1 c L2, Ji1 is an expansion of ^ to L1, Jf1 =s Ji1,
and Jf1 is an expansion of Jf1 to L2, there exists an expansion Ji1 of Jix to L2,
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such that Jf2 = s Ji2. The space <? is weakly saturated if the above condition holds
with weak Lad-equivalence instead of strong Lad-equivalence.

4.7.2 Proposition. Every saturated adapted space 9* is universal; that is, for every
adapted structure Jf, there is an expansion M of 9 with M =s Jf. Furthermore,
every weakly saturated adapted space is weakly universal.

Proof Take L1 = 0. D

4.7.3 Proposition (Hoover and Keisler [1984]). Every saturated adapted space is
weakly saturated. D

4.7.4 Definition. An adapted Loeb space is an adapted space

such that for some internal *-adapted space

<M, v, ^ s > s e * [ 0 , i ] ,

with universe M, }i is the completion of the Loeb measure of v and ^ is the a-
algebra generated by

(J ^ s u (null sets of ju).
°s = t

The following theorem is the main result in Hoover and Keisler [1984].

4.7.5 Theorem. Every adapted Loeb space which admits a Brownian motion is
saturated. D

Remark. Anderson [1976] constructed an adapted Loeb space which admits a
Brownian motion. Hence, saturated adapted probability spaces exist.

4.7.6 Theorem (Robinson Consistency Theorem for Lad). Let L° = L1 n L2, and
let Jf1, M2 be adapted structures for L1 and L2 such that Mx [ L° =s Jf2 [L°.
Then there is an adapted structure Jf for L1 u L2 such that Jf \LX =s Jt1, and
Jf \ L2 =s J(2. A similar result holds for weak L^-equivalence.

Proof. There is an adapted structure Jfx =s Jtx on any saturated space. Then
Jfx \ L° =s Ji2 Is L°; so, by saturation, there is an expansion Jf2 ofjV1 \ L° with
JT2 =s M2. Let Jf be the common expansion of J^1 and Jf2. D

4.7.7 Theorem. The Craig interpolation theorem holds for Lad, with or without time
constants from [0, 1].
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Proof. As in Theorem 3.6.2 for LAP, we first use a Henkin construction and then
apply Robinson consistency. D

Following is a characterization of Ji =s JV as a coarsest equivalence relation
in the style of soft model theory.

4.7.8 Theorem (Hoover). Let « be an equivalence relation on adapted structures
for L with the following properties for all adapted structures Ji, Jf for L\

(a) IfL° ^LandJi^JT, then Ji [ L° « Jf [L°.
(b) If Ji &JV, then for each term x(w, I) with no integral or conditional expecta-

tion operators and all a in [0, 1], (j T(W, a) dw)M = (j T(W, a) dwY.
(c) IfXf is a martingale and Ji « Jf, then Xf is a martingale.
(d) The relation « has the Robinson consistency property.

Then Ji « JT implies Ji ~sJf. D

Aldous [198?] introduced the notion of synonymous adapted structures.
Ji and Jf are synonymous if x(a)M = T(a)^, for each term T(V) with at most one
conditional expectation operator and each a in [0, 1]. He showed that each prop-
erty in Section 4.4 is preserved under synonymity. In Hoover-Keisler [1982]
there is an example of two synonymous adapted structures which are not weakly
Lad-equivalent. It follows from Theorem 4.7.8 that the Robinson consistency
property fails for synonymity.

A theory of hyperfinite adapted structures has been developed in Keisler [1979]
and Rodenhausen [1982] with results that parallel those on hyperfinite probability
structures in Section 3.5, for both =w and =s.

The adapted Loeb structures have a number of applications to standard
probability theory, this is particularly true of existence theorems for stochastic
differential equations where the richness of the space is necessary. See Cutland
[1982], Hoover-Perkins [1983a, b], Keisler [1984], Kosciuck [1982], T. Lindstrom
[1980a-d], and Perkins [1982].

Our treatment of adapted probability logic can be extended in several ways
such as the following:

(a) The optional cr-algebra ^ may be replaced by any ^-algebra ^ 3 $F of
(/i (g) jS)-measurable sets such that for each U e ̂  and t e [0, 1], Ute&t.
Each interpretation in (Ji, !F) is then an interpretation in (Ji, ^ ) , and
hence (Ji, &) = (Ji, <&).

(b) The language L has constant time symbols cr, r e A n [0, 1], which occur
in place of time variables (only finitely many in a single formula). The
additional axiom scheme is

G4. cr = r.

(c) The time variables range over [0, oo) instead of [0, 1]. Changes must be
made since /? is no longer a probability measure.
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5. Open Questions and Research Problems

Following is a list of questions and problems which suggest some fruitful areas of
research with respect to some of the notions and relationships that were examined
in this chapter.

Problem 1. Develop a form of LAP which has the universal quantifier (Vx).

Three ways to add (Vx) so that the satisfaction relation behaves properly are:

(a) Restrict to absolutely Borel structures as indicated at the end of Section 2.
(b) Add (Vx) to LAP with the restriction that no universal quantifier may occur

within the scope of a probability quantifier.
(c) Add (Vx) to LAJ with no restrictions.

None of our major proofs carry over to these logics, because the Loeb measure
construction does not preserve truth values involving (Vx).

Problem 2. Develop a logic with (Vx) and quantifiers for inner measure at
least r and outer measure at least r.

Since inner and outer measure are defined for all subsets of M, there is no dif-
ficulty in defining the satisfaction relation.

Problem 3. Study a logic such as LAP for structures with infinite measures
instead of probability measures.

Problem 4. Study a logic such as LAP for structures with two measures (and
corresponding quantifiers). Obtain completeness theorems for structures with two
measures \i, v such that:

(a) n is orthogonal to v.
(b) in is absolutely continuous with respect to v.

Problem 5. Define hyperfine conditional expectation structures appro-
priately and prove an existence and uniqueness theorem for LA£.

Problem 6. Does LAE have the Robinson consistency and/or the Craig inter-
polation property?

Problem 7. Extend the results for adapted probability logic to allow universal
quantifiers (W) for the second sort [0, 1].

Problem 8. Study various operations on probability structures from the
viewpoint of the logics examined in this chapter.

A small beginning for LAJ is in Keisler [1977b].

Problem 9. The results on graded LAP carry over without difficulty when L
has function symbols (Hoover [1978b]). Do the results on LAP carry over when
L has function symbols ?

The difficulty lies in the proof of Theorem 2.3.4.
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Problem 10. Reexamine abstract model theory in the light of logics such as

The hypotheses for a logic in the enriched abstract model theory of Mundici,
Chapter VIII, fail badly for LAP and the other logics of this chapter. Mundici
proved (under the set-theoretic assumption b|) that every logic with relativization
which has the Robinson consistency property is compact. Since LAP is not compact,
it follows that no extension of LAP which is a logic with relativization in the sense
of Mundici has the Robinson consistency property.

The logic LAP does not have universal quantifiers and does not allow function
symbols. The relativization property holds only for relativizing to a set of positive
measure. Moreover, there does not seem to be a way to make the class of prob-
ability structures into a semantic domain in the sense of Mundici. Closure under
strict expansion fails. The natural notions of isomorphic enibedding which come
to mind fail to satisfy either factorization, or existence and closure under disjoint
union.

An essential characteristic of LAP is that sets of measure zero are unimportant.
It appears that to prove that Robinson consistency implies compactness, con-
structions are needed which make sets of measure zero important.

Problem 11. Is there any equivalence relation « on adapted structures
which satisfies conditions (a)-(d) of Theorem 4.7.8, is strictly finer than =s, and is
strictly coarser than ^ ? Here h: M = Jf means that h sends \i to v modulo null
sets, and for all t, h(^t) = <&t modulo null sets, and Xt(w, t) = Xt{hw, t) for \i-
almost all w.

Added in proof: Problems 3, 4, 5, and 6 were solved while this article was in press.
M. Raskovic solved Problem 3 in the forthcoming paper " Model Theory for LAM

Logic ". M. Raskovic and R. Zivaljevic solved Problem 4 in " Barwise Completeness
for Biprobability Logics". S. Fajardo will publish affirmative solutions to Problems
5 and 6 in "Probability Logic with Conditional Expectation".
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Chapter XV

Topological Model Theory

by M. ZIEGLER

1. Topological Structures

A (one-sorted) topological structure 21 = (21, a) with vocabulary T consists of a
r-structure 21 and a topology a on A. Familiar examples are topological spaces
(T = 0) , and topological groups and fields. Note that in general we do not assume
that the relations and operations of 21 are compatible with a. This in contrast to
Robinson [1974].

A logic for topological structures is a pair (if, |=), where if[i] is a class (of
"J^-sentences") for each vocabulary x and (= is a relation between topological
structures and if-sentences. We will now assume that the axioms of a regular logic
hold for topological structures (see Examples 1.1.1 and Discussion 1.2). The
relativization axiom is, of course, an exception to this general assumption. The
reader should consult Section 2 for a description of the many-sorted case.

7.7. Three Logics for Topological Structures

We first consider quantification over oc and the logic ^l
mon. We say that an ^ ^ [ T ] -

formula is built up from atomic if ̂ [-fl-formulas and atomic formulas

teX,

where t is a T-term and X a "set variable" (which ranges over a), using ~i, A , v,
Vx, 3x, VX, 3X. The semantics are self-explanatory. A logic (for r = 0 ) equivalent
to i f ^ was introduced in Grzegorczyk [1951] and Henson et al. [1977].

1.1.1 Examples, (i) (A, a) N VX VY(3x 3y(x e X A y e Y) -> 3x((x e X A X e Y)
v ( n x e l A -ixe 7))) or, more briefly, (A, oc) t= VX, Y(X # 0 A
y / 0 ^ ( l n 7 ^ 0 v l u ^ universe)) which holds iff (A, a) is
connected,

(ii) (A, F, a) I- VX 37 7 =/"1(X) iff F: A -> .4 is continuous with respect
to a.

(iii) (A, B, a) N 3X Vx(P(x) <-> x e X) iff £ is open, i.e., Bea.
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The next idea is that of restricted quantification over a and the logic JS?^.
We say that the formulas of if ^w are those if r

mon-formulas in which quantification
over set variables is allowed only in the form

3X(t e X A cp) (more briefly, 3X 9 tcp),

where X (that is, any atomic formula s e X) occurs only negatively in cp, and dually
in the form

MX(t e X -• cp) (more briefly, VX 3 tcp\

where X occurs only positively in cp. if ^ was introduced by McKee [1975], [1976]
and developed in Garavaglia [1978a] and Flum-Ziegler [1980]. Indeed, most of
the material in the present chapter is explored in greater detail in Flum-Ziegler
[1980a].

1.1.2 Examples, (i) (A, F, a) N Vx V7 3f(x) 3Xax Vz(z e X ->/(z) e Y) iff" F is
continuous.

(ii) (A, B, a) N Vx(P(x) -> 3X 9 x Vy(y e X -+ P(y))) iff B is open.
(Hi) (A, a)|= VxVX9x373xVy(yeX v 3Zay A Z n 7 = 0 ) or, more

shortly, iff (A, a) is regular—regular meaning simply that every point has
a base of closed neighborhoods.

Finally, we consider the interior operator and the logic J^wco(/
n) for n > 1. We

pass from if wco to if wa)(/"), adding the formation rule that if cp is a formula and
xx • • • xn are distinct variables, then

I n x l . . . x n q >

is a formula the free variables of which are xx . . . xn and the free variables of cp. The
semantics is given by

f\=rx1...xn<p(x,y)tal..._an,b] iff
2 is in the interior of {c e An \ 91 \= cp(c9 b)}.

^aM") w ^ investigated in Sgro [1980a] and Makowsky-Ziegler [1981].

1.1.3 Examples, (i) (A, B, a) 1= Vx(P(x) -• 71xP(x)) iff B is open.
(ii) (4, a) N Vx, y(x = y v I2xy ~i x = y) iff (X, a) is a Hausdorff space.

7.2. Discussion

From the preceding developments, we clearly have that &*„„ < ifmon. Also,
^a)Mn) ^ ^Lco? since / % . . . xncp can be expressed by

3Xl 3Xl9...93Xn3 Xn VXX . . . X
/ n \

/\Xi€Xi^(p .
V=i /
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1. Topological Structures 559

We will now prove that

Cf (jn\ ^ Cft ^ eft
°^ cocoK1 Jn<<o ̂ - °^ wo ^- -z- mon >

the first inequality following from

1.2.1 Lemma. Regularity is not expressible in if ^(7").

Proof. By an easy induction on cp, we show that for every ifcoco(/
w)[0]-formula cp

there is an quantifier-free i?W£O[0]-formula which is equivalent to cp in any
Hausdorff space having no isolated points. Whence, all such spaces are if ^(7")-
equivalent. But there are regular and non-regular examples of such spaces. D

Remarks, (a) ifww(7") < ifW0X7"+1).
(b) Continuity is not expressible in i^wco(7").
(c) Sgro [1977a] initiated the study of topological model theory by proving a

completeness theorem for if^(Q), where ^^(Q) is obtained from
<̂wco by adding the quantifier Qx cp whose meaning is " {x | (p(x)} is open."
y<o(o(Q) is weaker than if^jY1), and does not have the interpolation
property even though if ^(7") does.

To see that ifmon *s strictly stronger that i?Lft>> w e fifSt observe that ifr
mon is

not K0-compact and does not have the Lowenheim-Skolem property down to
Ko. (We say that (21, a) is countable if 21 is countable and a has a countable base.)
Moreover, if 'mon is not recursively axiomatizable. To see these facts, we will let a
be the natural topology on U. Then (R, 0, 1, + , — , - , < , a) is characterized by
the i f ' -sentence

mon

6 = "ordered field with connected order topology."

This proves the first two assertions. For the third, we observe that for discrete a
iPr

mon reduces to monadic second-order language, which we can use to char-
acterize (N9 +, •)• On the other hand we have:

1.2.2 Theorem. The logic i ^ w

(i) is compact;
(ii) has the Lowenheim-Skolem property down to Ko, and

(iii) is recursively axiomatizable.

We use the notion of a weak structure to prove this result, such a structure
being a pair (21, /?), where /? is a set of subsets of A. If we consider if mon a s a l°gic

for weak structures, we have—by first-order model theory—compactness, the
Lowenheim-Skolem property, and recursive axiomatizability. But the sentences
of £"„„ are just designed to be basis-invariant:

1.2.3 Lemma. Ifcp e i f Leo > (2l> °0 is a topological structure and /? is a base of on, then

(9U)l=p iff W/DNp.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.022
https://www.cambridge.org/core


560 XV. Topological Model Theory

This is a fact familiar from e - ^-calculus. The proof follows immediately
from an easy induction on cp.

Finally, consider the if ^-sentence

<pbas = MX^XBX A VXVX'BXVYSXIZBX Z C X nY.

Clearly, we have that (A, /?) f= cpbas iff ft is a base of a topology.

1.2.4 Corollary. T cz i f j ^ has a topological model iff T u {9bas} ^flS a ™eak
model.

Remark. This can be rephrased as T \=t cp iff T u {cphas} 1= <p. (" N " for weak
models).

Theorem 1.2.2 thus follows immediately from Corollary 1.2.4.
In the next section we will prove that for topological structures i f ^ is a

maximal logic for which is compact and has the Lowenheim-Skolem property.
We thus can regard ^ ^ as the logic which is to topological structure as ^W(O

is to ordinary structures. Interestingly enough, Robinson [1973] asked for just
such a logic.

The weaker logic if wco(/") is important because, in some respects at least, it
is better behaved than ^ ^ There is an omitting types theorem—a theorem
which is false for ^^^ as was shown by Flum-Ziegler [1980, Chapter I, Section
9]—and there is a useful notion of elementary extension.

In subsequent sections we will present results on interpolation, preservation,
and definability. That done, we will treat if^w, and, in Section 5, examine the
model theory of some special if ^-theories. A series of examples will be given at
the end of the chapter, a series that will illustrate how to obtain logics for structures
that are similar to topological structures—for example, for uniform structures or
for proximity structures. We refer the reader to Flum-Ziegler for more detailed
information on these notions.

2. The Interpolation Theorem

We discuss the notion of partially isomorphic topological structures and its finite
approximations. The methods of Chapter II yield the interpolation theorem and a
Lindstrom theorem for ^l

W(O. We will use the interpolation theorem to show that
basis-invariant if Jnon-sentences are equivalent to if ^-sentences. Finally, we will
prove that two topological structures are if ^-equivalent iff they have isomorphic
ultrapowers. The results stem from Garavaglia [1978a] and Flum-Ziegler [1980].

A many-sorted topological structure is a many-sorted structure with a family
of topologies on every sort. Thus, a many-sorted vocabulary for topological
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2. The Interpolation Theorem 561

structures consists of sort symbols, relation symbols, function symbols, constants,
and topology-sort symbols, which are equipped with sort symbols for the universe
on which the topology is defined. Thus, we see that the set variables are themselves
sorted.

We will often give definitions, theorems, or proofs for only the one-sorted case.
However, this is only for the sake of notational simplicity.

2.1. Partial Isomorphisms

We begin our discussion with the notions contained in

2.1.1 Definition. Let (91, a) and (95, p) be topological structures.

(i) A partial isomorphism between (91, a) and (23, /?) is a triple n = (nO9nl9 n2\
where
(a) n0 a A x B is a partial isomorphism between 91 and 23;
(b) nl c a x /? satisfies anQb,U nlV and a e U imply beV;
(c) n2 <= a x j8 satisfies an0b,Un2V and beV imply aeU;

(ii) (91, a) and (23, /?) are rc-isomorphic (^£), if there is a sequence 10 ... I „ of
non-empty sets of partial isomorphisms such that for all peli+l (i < n)
the following holds
(a) For all b e B there is an extension n e It of p that is, TT£ 3 pf , for i = 0,1,2

such that b e Rng n0;
(b) For allaeA there is an extension neltof p such that a e Dom n0.
Furthermore, for all (a, b)e p0, we have
(c) For all neighborhoods V of b, there is an extension n e It of p and a

pair (17, K) e 7rx such that aeU and beV cz V.
(d) For all neighborhoods £/' of a, there is an extension n e It of p and a

pair (£/, V) e TC2 such that fo e F and aeU a V.
(iii) (91, a) and (23, /?) are partially isomorphic (^ p ) , if they are 1-isomorphic

with Io = II.

2.1.2 Proposition. Isomorphic topological structures are partially isomorphic. The
converse is true for countable topological structures.

Proof. Iff: 91 -• © is an isomorphism, set / = {(/, TT, n)}9 where

7c={(l7,/(t7))|l7 6a}.

Then 91 ~p © via /.
If, conversely, 9t and S are countable and partially isomorphic via /, we

construct an ascending sequence nl (i e co) of elements of / such that 91 ̂ p © via
{7f |i£co}. (Note that in Definition 2.1.1((ii)(c), (d)) it is enough to let 17' and V
range over a countable base of a and jS.) But now (J {nl

0 \iea>} is an isomorphism
of 91 and ©. D
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562 XV. Topological Model Theory

2.1.3 Proposition. Suppose x is finite. Then for every n and every topological T-
structure © there is an ^Jz^-sentence f̂i such that

®~J® iff ®t=«.

Proof. Let© = (93, 0). We define for b0 . . . b ^ efland 70 • • • ^-i> ^o • • • ̂ m-i e £
the formula

YhiV;V'(XO • • • Xk-1> ^ 0 • • • Xl-li ^0 • • • ^ro-l)

as the conjunction of all reduced basic S(x), where S N 9(fo), n x ^ I j , where
bf £ Ky, and x£ e Y,-, where ft, e F}.

Using induction, we define

to be the conjunction of the following four formulas which correspond to Definition

beB

beB

and

*,• V
j<m

Note that we can prove by induction that all conjunctions and disjunctions are in
fact finite and that the X} (Y,) occur only negatively (positively) in i/^1.... We set

If $T ̂  © via / 0 . . . / „ , then we show by induction on i that

whenever aj n0 bj9 Uj n1 Vj and U) n2 V'j9 for some
For the converse, for $t = (91, a) define
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2. The Interpolation Theorem 563

Then, 91 ~n
p © via / 0 . . . / „ , to see that /„ is not empty we notice that 911= i//%

implies ( 0 , 0 , 0 ) GJn. •

Remark. In fact, 91 =#t © iff 91 ~n © for all n.

2.2. The Interpolation Theorem

2.2 A Theorem. JSf^ has the interpolation property.

To prove this result we need the following

2.2.2 Lemma (See Chapter II, Section 5.5). For finite x ~p is an RFC-relation with
definable approximations ~n

p. This, in effect, means that there is an extension T* of X
containing a new copy of x and a new relation symbol < and there is Z G JSf^[T*]
such that for all topological x-structures 91, ©:

(i) 9t ~ p 33 iff the pair (91, 3?) can be expanded to a model of *£, where < defines
a non-well-ordering.

(ii) 91 ~n
p S iff the pair (91, 95) can be expanded to a model ofT, where < defines

a linear ordering of its field with more than n elements.

We leave the proof to the reader.
To prove Theorem 2.2.1 we let K1 and K2 be two disjoint RPC-classes in

£?t(o(olT]> Let the \j/^ be as in Proposition 2.1.3. For every n, we have

Thus, by compactness K1 |= f for a finite disjunction -f of the 0g (© e KX).
We want to show that K2 \= ~i /", for some n. If not, then there is 9tn e K2 ,

$*„ e FCX such that 9IW1= ^»n. Whence, 9tn ^ J 95n, for every n. By Lemma 2.2.2,
compactness and the Lowenheim-Skolem property, there are countable 91 e K2 ,
© e jq such that 91 ̂ p ©. But then 91 = © and KX and K2 are not disjoint—a
contradiction. D

2.2.3 Corollary (Flum-Ziegler [1980]). if^w is a maximal logic for (many-sorted)
topological structures which is compact and has the Lowenheim-Skolem property
down to Ko.

(See Chapter II) Proof Let if be a compact extension of J^ w , with the Lowenheim-
Skolem property. The above proof shows how to separate disjoint EC^-classes by
an EC <?t -class. D

2.2.4 Corollary. The basis-invariant sentences of ££l
mon are equivalent to JS?^-

sentences.
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564 XV. Topological Model Theory

Proof. This follows directly from Corollary 2.2.3, since invariant sentences form a
compact logic with the Lowenheim-Skolem property. Instead of proceeding on the
basis of Corollary 2.2.3 we give a derivation which stems from Theorem 2.2.1.

Let (91, a) be a topological structure and let fiu fi2 be two bases of a. We code
Px and jS2 in the structure

(%0L9Bl9B29El9E2)

u s i n g t w o n e w s o r t s B X , B 2 a n d t w o r e l a t i o n s £ f c i x Bt s u c h t h a t

where Etb = {a\aEtb}. If cp is an if ^-sentence, let cpi denote the if wco-sentence
obtained by replacing the set variables X, Y,. . . in cp by x\ y\ ... of sort i and the
atomic sentences t e X by rt^x', where Ef is the symbol for Et.

If cp is basis-invariant (in the vocabulary of 9t), then we have

\=t (E1 codes a base A <p{) -• (E2 codes a base -» cp2)

By Theorem 2.2.1, we find an interpolant \// in i ^ w - But then \=tqx-nl/. D

The final result in this section makes use of the notion of the ultrapowers, in
particular the ultrapower (91, 0L)lSr of (91, a) is (91^1, y), where y is the topology
with base ai/fr-

2.2.5 Corollary. Two topological structures are ^^-equivalent iff they have iso-
morphic ultrapowers.

Proof. Since if ^-sentences are basis-invariant, a topological structure is if „„-
equivalent to its ultrapower. This proves one direction.

Suppose (9119 a j ^j?^ (9I2, a2). Expand the vocabulary T by two new sorts
and two new relation symbols as in the proof of Corollary 2.2.4. Code a base of af

in C,. = (9tf, Bf, £f). By assumption and Theorem 2.1.1 the if ^-theory

T = Th^^^^i) u Thyuu(([2) u {Ej codes a base} u {E2 codes a base}

is consistent. Whence there is a model (91, a, B'l5 JB2, E'U E'2) of T. Moreover, by
the Keisler-Shelah theorem (see Chang-Keisler [1977]) there is an ultrafilter U
such that

But this implies that

(91, ,^.)^/ = (91, a) 1^. U

Remark. It is easy to construct compact logics for topological models having the
Lowenheim-Skolem property and which extend ^fflfl) but are not contained in
^t

(OiO. However, these examples are not natural.
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3. Preservation and Definability 565

3. Preservation and Definability

In Section 3.1 we give some examples which will show how to extend preservation
theorems from j£?wco to JSf^. Here the classical theorem characterizing the ^(O(a-
sentences which are preserved under substructures as the sentences equivalent to
universal formulas splits into two.Thus, in this discussion we will use two notions of
topological substructure: the just "substructure" (with the subspace topology)
appearing in Theorem 3.1.1 and the "open substructure" in Theorem 3.1.2.

In Section 3.2 we prove the topological Feferman-Vaught theorem by an
adaptation of the classical proof. This result asserts, in effect, that Y\tei % a n d
Y[ieI $, are if [^-equivalent if, for all i e /, % and ®f are if ^-equivalent. Interest-
ingly enough, a new feature comes into the picture in the case of Beth's theorem.
For, according to Definition 2.1.1 an if ^-theory defines a new relation symbol
explicitly (by an if ^-formula), if it defines the relation implicitly. But we can now
ask what happens if T defines a topology implicitly. If there is no other topology in
the vocabulary, then T defines the topology by an 5£^-formula (see Theorem
3.3.2). If not, then no such theorem exists (see Remark 3.3.4)

3.1. Substructures

(91, a) is a substructure of (93, ft) if 91 is a substructure of 93 and a is the restriction of
ft to A. If A e ft, then 91 is called an open substructure of 93.

An if ^-formula in negational normal form (that is, built up from atomic and
negated atomic formulas using A , v , V, 3) is universal if it contains no existential
individual quantifier. An example of this is the sentence "regular" in Section 1.1.)

3.1.1 Theorem (Flum-Ziegler [1980], Garavaglia [1978a]). An g^-sentence is
preserved under substructures iff it is equivalent to an universal sentence.

Proof. Let 9t <=£ © mean that there is a family 70 • • • /„ of non-empty sets of partial
isomorphisms between 9t and © such that for all peli+1 (i < n) assertions
(b), (c), (d) of Definition 2.1.1(ii) hold. If the above holds for Jo = Il9 we write
9 J C p S .

The following facts can be shown as Propositions 2.1.2 and 2.1.3 and Lemma
2.2.2:

(a) If 21 is a substructure of 93, then 9t ap ©.
(b) If 9t and © are countable and if 9t <=p ©, then 91 is isomorphic to a sub-

structure of ©.
(c) For every n and every ©, there is an universal if ^-sentence (p& such that

9lj= <pj, iff 91 an
p ©, where T is finite.

(d) "91 ap ©" is an RPC-relation with definable approximations cn
p9 where

T is finite.
Suppose now that cp is preserved under substructures, or—even more generally

—that cp holds in all substructures of models of \jj. Set KX = Mod i// and K2 =
Mod -i<p. Now the proof of Theorem 2.2.1 shows that there is a universal x
(equal to a finite disjunction of some <p£, © e KX) such that jq \=t x, K2 \=t i / . D
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566 XV. Topological Model Theory

We next treat open substructures. The if^-sentences that are preserved here
are the Il-sentences: In negation normal form the existential individual quantifier
can only occur in bounded form: 3x(xeX A cp). The next theorem is related to
the Feferman-Kreisel theorem on end extensions (See Section 6) and clarifies
the idea of a "local" property.

3.1.2 Theorem (Flum-Ziegler [1980]). An J^^-sentence is preserved under open
substructures iff it is equivalent to a Tl-sentence.

Proof. As the proof of Theorem 3.1.1, we need the proper definition of" ap
n (open)".

Thus, we use in conditions (b), (c), and (d) of part (ii) of Definition along with

(a') For all ([/, V) e p2 and all beV, there is an extension n e It of p such that
b G Rng n0. D

Remark. The if ^-sentences preserved under continuous images are the positive
sentences without existential set quantification.

3.2. The Feferman-Vaught Theorem

Let $tj = (91;, a*), for i e I be a family of topological structures. The product

n*.
isl

is (flie/ 2liJ °0> where a is the product topology. Furthermore, let a be the vocabu-
lary of the structure (^(/), n, u, Fin), where Fin is the set of finite subsets of/, we
can now consider

Theorem (Flum-Ziegler [1980]). For every ^^-sentence cp there are ^t
(a(O-

sentences 3X . . . Sn and an <£\zJ_o~\-formula x such that for all families (%)ieI

Y\%t=cp iff mi), n, u, Fin)

Proof Suppose that the Xt only occur negatively in cp(x, X~,Y+) and the Yt only
positively. JThen we can show by induction on cp that there are 9X0c9 X~, Y+),...,
$„(% X~, Y+) and x(y\,..., yn) such that x is monotone in all variables and

Y[ % N cp(a, U, V) iff (<?(/),...)
16/

for all ae(]Jiei Atf and for all U,Ve ak. D
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3.3. Definability

First of all, we note that interpolation implies the Beth definability theorem:

3.3.1 Theorem. Let x c T* be vocabularies, T c J ^ I J * ] , and RET*. If in all
models 91 ofT the interpretation ofR is determined by 91 [ r, then there is an ^\O(O[T']-

formula cp(x) such that T \=t Vx(cp(x) <-• R(x)).

We will now try to define the topology explicitly. Let (91, a) be a topological
structure. A formula (p(x, j)) defines a, if

{{aeA\$L\=q>(a,b)}\beA}

is a base of a. If, for example, a is the order topology of (A, <**), then a is defined
by ^1 < * A x < y2. In general, however, a topology is not definable. But we
have:

3.3.2 Theorem (Flum-Ziegler [1980]). Let T be an g^-theory, then the following
are equivalent:

(a) T defines the topology implicitly; that is, (91, af) 1= T implies a1 = oc2-
(b) There is an &'^co-formula which defines the topology in all models of T.

Proof. The reader should consult Flum-Ziegler [1980] for a more detailed proof
of this result. The assertion that (b) implies (a) is clear. To prove the other implica-
tion, we assume that (a) is true. The interpolation theorem implies:

Claim 1. Every if ^-formula is equivalent (modulo T) to an JSf^-formula.

Now we will further suppose that (b) does not hold and thus derive a contradic-
tion. To this end, we assert

Claim 2. There is a countable model (91, a) of T9 an element a0 of A and an
open neighborhood P ofa0 which contains no J^^-definable neighborhood of a0.

Otherwise, there are j£?W£O-formulas Sx(x, y\..., Sn(x, y) such that in every
model (91, a) of T every a0 e A has a base of neighborhoods of the form

{*|ffl 1=3^,6)}.

We can thus code the #, in one formula and so assume that n = 1. But then

defines the topology in all models of T. By Claim 1 <pf is equivalent to an if(O(O-
formula cp(x, y). Whence (b) must hold. Contradiction. We now make

Claim 3. There is a topological structure (91*, P*9 a*) such that (91*, a*) |= T,
(91, P) < (91*, P*) and P* is not a neighborhood of a0.
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568 XV. Topological Model Theory

This is a contradiction of Claim 1, because "S is a neighborhood of a" is an
JSP ̂ -expression, and so the theorem will follow.

Proceeding with the argument we add a new sort C and a relation E c A x C
such that (v4, C, £) codes a countable base of a. We need, however,

Claim 4. Let £c = {a: 911= aEc}, for c e C, be a neighborhood of a0. Then
there is an extension (9T, P', C, F ) of (91, P, C, £) such that (91, P) < (91', P'),
(91, C, £) -< (91', C, F ) and Fc £ F.

Otherwise,

Th(9l, P, a)flGy4 u Th(9l, C, £, a, d)aeA,deC h- Vx(xEc - P(x)).

By interpolation, there is an if ^-formula 3(x, a) (a e A) such that (91, C, £) |=
Vx(xEc -* S(x, 3)) and (91, P) t= Vx(S(x, a) -> P(x)). But then £(x, 2) defines a
neighborhood of a0, which is contained in P. This contradicts Claim 2.

We can now continue the proof of Claim 3. Starting with (91, P, C, £), we can
iterate the construction of Claim 4 so as to construct an ascending sequence of
countable structures with union (91*, P*, C*, £*) such that (91, P) -< (91*, P*),
(91, C, £) -< (91*, C*, £*) and £*c ^ P*, whenever c e C*, a0^*^- Let a* be the
topology generated by {£*c | c e C*}.

3.3.3 Remark. Theorem 3.3.2 can be generalized to a Chang-Makkai type
theorem: that is, for an if ^-theory Tthe following are equivalent:

(a) For all countable 91, {a|(9l, a).N T} is countable.
(b) For all countable models (91, a) of T,

(c) There is an if ^-formula d(x, J, z) such that in every model (91, a) of T
there are a e A for which #(x, 3), 2) defines a base of a.

3.3.4 Remark. In concluding this section, we point out two interesting facts
about the notions we have discussed. First, we note that there is no Chang-
Makkai version of Theorem 3.3.1; and, second, if T is an if Jow-theory of structures
with two topologies on it, and if we know that (91, a, &) N T implies that /?x = /?2,
then in general we cannot conclude that B is definable in (91, a). The reader should
consult Flum-Ziegler [1980] for a more detailed examination of this material.

4. The Logical

Much of the theory of JSfWlC0 and J?*^ can be transferred to ^a^, the latter being
equal to Jg*^ with countable conjunctions and disjunction. For example, the
if ^-sentences are (up to equivalence) the basis-invariant if r

moncoiW-sentences,
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4. The Logic <e^m 569

where Ĵ moncoi© *s ̂ mon with countable disjunctions and conjunctions. Moreover,
the interpolation theorem, the preservation theorems, and the definability theorem
of Section 3, where a is defined by a sequence of formulas, are all true for jSf̂ lC0. In
the present discussion, we will present the covering theorem (see Chapter X), a
theorem which immediately implies the interpolation theorem.

4.1 Theorem. Let x <= T* be countable vocabularies, and let \jj be a sentence of
J ^ I C 0 [ T * ] . Then there is a sequence #a (a < (o^ of ^^^[x^-sentences such that

(ii) for all countable x-structures 91: i/9l N Aa<«i $«> tnen ^ ™ tne deduct of a
model of i//;

(iii) ifx+ nx* = x, cpe ^?t
(Oi(O[_x+^\ and \\J \=t (p, then Sa \=t <p,for some a < cox.

Before undertaking the proof of the theorem, we will consider

4.2 Example. Let T be empty, T* = {P}, P a unary predicate, and \j/ = "P is
perfect." Then, for 5a we can take the sentence which says that the a-th Cantor-
Bendixson derivative is non-empty.

Proof We will indicate the proof of the special case in which x is one-sorted,
T* = T u {P}, and ^ e ^ L w It is easy to supply the details a proof of the general
result (see Chapter VIII).

First, we observe that \\f can be put in the form

Vxx V*! 3xx lyx 3Y, 9 y, Vx 2 , . . . , 3Yn 3 yn

V Uk(xu Xf, ...,yH9 Y;) A A P(tj(% y)) A A
k<m \ j<rk f<rk

We now associate to \j/ a game sentence. First, we choose a 1-1 enumeration
(sdi«o o f Uo</<«i(jQ s u c h t h a t s/ ^ SJ implies f < 7. Set

r = Vw0 VC/0 3 w0 3i>o 3^o ̂  v0 V V W l , . . . , A *,
fc<

where $ is the union of

{nkijiuil9 Uil9...,Vin)\sil£si2£->£ sin}

and of

{t /x £ l , . . . , yin) # t7(x f i , . . . , y^) |sfl £ • • • £ 5ln,

5fi £ ••• £sVn,j <rkin,f
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570 XV. Topological Model Theory

Now it is easy to see that \jj \=t F and that every countable model (91, a) of F
can be expanded to a model of \\J. For the 3a, we take the approximations of F:

= f\ {(pE<b\(p c o n t a i n s o n l y k O 9 . . . , k i - 1 , u O 9 . . . , ^ _ i } ,

ki<m P<<x

Finally, one shows that F N,/\a<COl Sa N / F and that T\=t cp implies #a \=tq>,
for some a < col9 where N=/ means Nf for countable models. D

5. Some Applications

In the following discussions we will give four examples of the expressive power of
i f^ . In Section 5.1 we show that the theory of T2-spaces is undecidable while the
theory of T3-spaces is decidable. We will also give invariants that determine the
elementary type of T3-spaces. In Section 5.2 we will show that the theory of torsion
free locally pure abelian groups is decidable, although the theory of all topological
groups is not. In Section 5.3 we present a complete axiomatization of the theory
of the topological field of complex numbers. And finally, in Section 5.4, we show
that all infinite dimensional, locally bounded real topological vector spaces are
if'-equivalent: They are, in fact, models of an explicitly given complete theory.
The results given in Section 5.1 are explored in Flum-Ziegler [1980].

5.7. Topological Spaces

Let T2 be the theory of Hausdorff spaces; that is, the set

VxV.y(x />;-> 3X3x3Y3y X n Y = 0) ,

then we can consider

5.1.1 Theorem. T2 is hereditarily undecidable.

Proof. Let cp(x, y)_ be the formula -i(3Xsx3Y3y X n F = 0) , then, for
Hausdorff spaces S, we can make

(UA(a,b)eU2\M\=(p(a,b)}\

where U = {ae A\tyLt= 3y # acp(a, y)} is isomorphic to any graph without
isolated points. But the theory of these graphs is known to be hereditarily un-
decidable. Thus, the assertion in the theorem is established. D
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5. Some Applications 571

Remark. We recall that totally disconnected spaces are spaces in which any two
points can be separated by a clopen set. Let 7W be the theory of all totally discon-
nected spaces (that is, Tm is the set of all &*„„ sentences true in all these spaces),
then every finite subtheory of Tm is hereditarily undecidable (for example, the
T2>5 separation axiom). However, relative to 7^, every formula is equivalent to a
boolean combination of formulas x = y and of formulas having only one free
variable. Whether Tw is decidable, remains an open question.

Let T3 be the theory of regular Hausdorff spaces, then we have

5.1.2 Theorem. T3 is decidable.

Proof. Every T3-space is if ^-equivalent to a countable T3-space. But the countable
T3-spaces are just the topological spaces which come from a countable linear order.
Therefore, our result follows from the decidability of the elementary theory of
linear orders.

Remark. T^ is a subtheory of T3, since in countable regular spaces disjoint closed
sets can be separated by clopen sets.

In order to define elementary invariants of a T3-space 5t we divide A into sets
As of all points of "type s", where s is an element of

S = (J {Sn|n e N}, where S° = {*} and Sn+1 = 0>(Sn).

We set A* = A and, for s e Sn+ \ we set

As = {a G A | a is an accumulation point of Ar iff r e 5, for all reSn}.

5.1.3 Theorem. Two T3-spaces % and © are ^^-equivalent iff \AS\ = \BS\
(mod N0)/or all seS.

Example. All T3-spaces without isolated points are JSf^-equivalent. For then
As = A, if s is of the form *, {*}, {{*}},..., and As = 0 otherwise.

Proof. One direction follows from the observation that the As are ifr
wco- definable

in S. For the converse, we can assume that 91 and S have bases a and j? of clopen
sets such that (A, a) and (B, fi) are K0-saturated. It is then easily proved that
(S, As)seS and (©, Bs)seS are partially isomorphic via the system I which consists
of all finite partial isomorphisms (TT0, nl9 7T2),where7c1 = n2 = {(Ui9 V^\i < rc},the
Ut E a (respectively the Vt e /?) form a clopen partition of A (respectively B), and
\U*\ = \V1\ (mod No) for all i < n. D
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572 XV. Topological Model Theory

5,2. Topological Abelian Groups

We will now consider Hausdorff topological abelian groups. Noting first that this is
an if ^-elementary class, we proceed to examine several interesting results, the
first of which is

5.2.1 Theorem (Cherlin-Schmitt [1981]). The theory of Hausdorff abelian groups
is undecidable.

Proof. Let p be a prime and q = p9. Baur [1976] has proven that the theory of all
abelian groups (no topology) A of exponent q with a distinguished subgroup B
is undecidable. But such a pair can be interpreted in a suitable topological group
(E by letting

A = C/qC and B = qC/qC. D

Call a group locally pure, if (partial) division by n is continous at 0. That is, a
group is locally pure if the following i?'wco-sentence holds for every n

VX s 0 37 s 0 \/x(nx e Y - 3y e X ny = nx).

Cherlin-Schmitt [1981] also proved that the theory of all locally pure groups is
hereditarily undecidable. Furthermore, we have

5.2.2 Theorem (Cherlin-Schmitt [1980]). The theory of all torsion free, locally
pure groups is decidable.

Proof. Since the theory of all (discrete) torsion free groups is decidable and the
theory of all non-trivial ordered abelian groups is decidable (see Gurevic [1964]),
the theorem follows from

5.2.3 Lemma. A topological abelian group is torsion free, locally pure, and non-
discrete iff it is J^^-equivalent to a non-trivial group with the order topology.

Proof. One direction is easy to establish. For the converse suppose that $t is torsion
free, locally pure and non-discrete. We choose an if^-equivalent group (9119 ax)
where ax has a basis ^ such that (9115 px) is Kj-saturated. Then, as can be easily
shown, OLI is closed under countable intersections. Starting with an arbitrary
Uo, we construct a sequence (Ui)i<(O of open neighbourhoods of 0 such that for
all / = 0, 1, 2 , . . .

Ui+i — Ui+! c Ut and nx e Ui + x -» 3y e Ut ny = nx.

Then the intersection of the Ut is an open pure subgroup of 9IX. Thus, ^Lr has a
base ji of neighborhoods of 0 consisting of pure subgroups. Choose a countable
(912, y2) that is elementarily equivalent to (3I1? 7X). Then {a + U\aeA2, Ue y2}
is a base of a topology a2 on A2 such that 91 and (9l2, oc2) are j^^-equivalent.
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5. Some Applications 573

From y2 we now choose a descending base for the neighborhood filter of 0, writing
U = Uo => Ux =>•••. We then fix an ordering <t of the torsion free group
Ui/Ui+1 (i e N). If we define x < y iff x , yeUi9x + Ui+1 <t y + Ui+1? for s o m e /,
we then obtain an ordering of 9l2 which generates a2.

5.3. Topological Fields

Theorem (Prestel-Ziegler [1978]). The ^^-theory of the topological field of
complex numbers is axiomatized by the sentences asserting

(a) "algebraically closed field of characteristic 0";
(b) "non-discrete Hausdorff topological ring";
(c) " V-topology"; that is, in symbols, we have

VX303Y30Vx,y(xyeY^xeX v yeX)

Proof Let 91 be a model of the axioms. Choose (95, /?) <£^-equivalent of 91, where
P is closed under countable intersections. Choose a sequence (Ui)i<(O of neighbor-
hoods of 0 such that (i + l)$Ui9 Ui+1Ui+l cr Ui9 Ui+1 - Ui + 1 c [/. and
x,yeUi+1 -^xeUi or yeU(. Then the intersection U of the Ut is a neighborhood
of 0 and has the following properties:

(1) NnU = {0}.
(2) UU c U.
(3) U - U c [/.
(4) x, y e (7 => x G [/ or y e U.

Set
(5) R = {beB\bU a £/}.

Because of Property (3), # is a subring of 5. In fact, we prove that R is a valuation
ring of £. That is, we can prove that for all b e B, either b e R or b~1 e R. For,
otherwise there are ut e U such that bux $ U and b~ 1u2 $ U. But by (4) this implies
that u1u2 = bu1b~1u2 $ U—& contradiction to (2).

By (3) U is an ideal of R and is is proper by (1) and prime by (4). But then (5)
can hold only if U is the maximal ideal of the valuation ring R. Since U # 0, we
must have that R ^ B. Furthermore, (1) implies that R/U has characteristic zero.

By Robinson [1956b], all (S3, R) are elementarily equivalent, where 33 is alge-
braically closed and R is a proper valuation ring of 33 with residue class of char-
acteristic 0. Therefore, in order to show the completeness of our axioms, it remains
to show that ft is the valuation topology of (93, R); that is, that {rU \ r e R\{0}} is
a base for the neighborhoods of 0.

To that end, we now assume that V is a neighborhood of 0 and choose another
neighborhood- Wof 0 such that x,y$VnU=>xy$W. Then rU c K, for any reW.
For UGU implies u'1 $U by (1) and (2). Therefore, ru$ V would imply that
r = ruu'^W. D

The methods used in the above proof can be used to prove the following result,
a theorem due to Stone [1969].
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574 XV. Topological Model Theory

Approximation Theorem. Let ocl9..., ocn be different V-topologies of the field K.
Then the intersection of any sequence of non-empty open sets U\ e a( is non-empty.

Proof The theorem claims that (K, a l 9 . . . , a j has a certain J^^-property. But we
have seen that (K, a l 5 . . .) is ^'-equivalent to a structure (L, j81?.. .), where the pt

are defined by valuations. In this case, the theorem is well known from valuation
theory. D

5.4. Topological Vector Spaces

We look at topological vector spaces as two sorted topological structures (R, V, a),
where R is an ordered field, V is an K-vector space with a compatible non-discrete
Hausdorff topology a. We let x, y range over Fand £ range over R.

Theorem (Sperschneider [1979]). The J^^-theory of locally bounded real vector
spaces of infinite dimension is complete and can be axiomatized by sentences as-
serting :

"infinite dimensional topological vector space over an ordered real closed field";

"locally bounded": 3X 9 0 V7 9 0 3£ X c £Y;

"the Riesz Lemma": For all n, VZ 9 0 37 9 0 such that for all subspaces F of
dimension < n and all x$F 3y yeF + <x> A y eX A y $(F + Y).

Proof It is easy to see that locally bounded real vector spaces satisfy our axioms.
(If V is normed, the last axioms follow directly from the Riesz lemma.) Since all
infinite dimensional vector spaces over a real closed field with a distinguished
Euclidean bilinear form are elementarily equivalent, it is enough to show that
every model (R, V, a) of our axioms is if ^-equivalent to a topological vector
space whose topology is defined by an Euclidean norm.

We can suppose that a is closed under countable intersections. Then, taking
the intersection of a suitable descending chain, we find a bounded neighborhood
U of 0; (that is, {r(7|reR\{0}} is a basis for the neighborhoods of 0) and an
infinitesimal r > 0 such that U — [/ cz 17, [—1, l ] l / c 1/ and for all finite
dimensional F and x $ F, there is y e F + <x> such that y e U and y $ (F + rU).
Finally, we choose a neighborhood V of 0 that is contained in all rnU (n < N).

Now (proceed to an elementarily equivalent situation) we drop the assump-
tion that a is closed under countable intersections, and instead assume that V
is countable. We can then construct a basis (xt)i<(O of V such that xte U and
*i $ (Xxo» *IJ • • • 5 Xi-!> + rU). Define an Euclidean bilinear form on V such that
(xi)i<a> becomes an orthonormal basis. Now set B = {xe V\(x, x) < 1}. We will
complete the proof by showing that Va B a U.

If roxo + r1x1 + • • • + rnxne V <= rn + 2U, we can conclude that \rn\ < rn+1

and roxo -\ \-rn_1xn_1ern+1U, etc. Whence, we have that | rt | < ri+ x < r, for all
i = 0, 1, — It now follows that roxo + • • • + rnxn e B. This again implies that
\rt\ < 1, for all j . Whence, r^Xi e U and roxo + • • • + rnxn eU. D
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6. Other Structures 575

6. Other Structures

As a logic for topological structures, if^w was constructed in the following three
steps

(1) The second-order notion of a topology was replaced by the first-order
notion of a base of topology.

(2) An appropriate logic (if mon) f°r the "weak structures" (91, /?) was chosen,
where /? is a base of a topology.

(3) That the if ^-sentences are (up to equivalence) just the base-invariant
sentences of if mOn was shown.

There are many other cases in which this philosophy is successful. In the following
examples, all of the general theorems given in Sections 1, 2, 3.3, and 4 hold true.

6.1. Quasitopologies

A set of subsets of A is a quasitopology on A, if it is closed under arbitrary unions.
Every set /? of subsets of A is the base of a quasi-topology a on A since it is possible
to set a = {(J s\s a /?}. Thus, a weak structure (91, /?) consists of a structure 91
and a set of subsets of A. The appropriate logic for weak structures is if J^ . The
sentences of &l

mon
 a r e basis-invariant are also, up to equivalence, the sentences of

<£x
m(O. Thus, if ^w can also serve as a natural logic for quasi-topological structures.

Topological structures form an elementary class of quasi-topological structures.
It is now clear why <pbas (see Corollary 1.2.4) was taken as an if ^-sentence.

6.2. Monotone Systems

Let n be a non-zero natural number. An n-monotone system on A is a system of
subsets of A" which is closed under supersets. A set /? of subsets of An is the base
of the n-monotone system

{C cz An\B a C for some B e j8}.

Thus, a weak structure (91, jS) is a structure 91 with a set jS of subset of An. The logic
1£ for these weak structures adds set variables X, 7, . . . and atomic formulas
(tl...tn)GX to ^ „„ .

Now, up to equivalence, the base invariant if-sentences are the sentences in
which set quantification 3X q> (respectively VX cp) is allowed only if X occurs only
negatively (respectively positively in cp).

We use these sentences as a logic ^ for rc-monotone structures. We observe in
passing that the same can be done for antitone systems.
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576 XV. Topological Model Theory

Example, v is a uniformity on A iff (A, v) is a 2-monotone structure which satisfies
the following if *-axioms:

3X(true), (that is, v is non-empty;

\/X V7 3Z Vx Vy(x, y)eZ-+ ((x, y) e X A (X, y) e 7);

VX 37 Vx Vj; Vz((x, ^ 7 A (X, Z) e 7) -> (y, z) 6 X).

It is easy to prove that v is an uniformity on A iff (A, v) is if *-equivalent to a 2-
monotone structure (5, //) where fi is closed under finite intersections and has a base
of equivalence relations.

6.3. Point Monotone Systems

A point monotone system ji on A assigns to every as A an 1-monotone system
fi(a) on A. The function fl:A^> ^(A) is a base of the point monotone system
(monotone system with base P(a)\ae A).

Precisely what constitutes a logic for these structures? Letting S£ denote the
logic for such structures, we use sentences that are built-up like ifwco-sentences
along with set variables X, 7, . . . , atomic formulas t e X, and quantification
3X(t)cp and \/X(t)cp as the constituents of if. The interpretation of these last two
formulas is X e f}(i) such that <p and for all X e P(t\ (p. Now, the quantification
3X(t)cp (respectively, \/X(t)cp) is only allowed in if *-sentences if X occurs only
negatively (respectively, positively) in cp. These are, up to equivalence, the base
invariant if-sentences. Thus, we can use 5£^ as a logic for point monotone struc-
tures.

Example. We can interpret a topology on A as a point monotone structure (A, //),
where jj,(a) is the neighborhood filter of a. Moreover, we can formulate Hausdorff's
axioms in ^ as follows: A point monotone structure (A, fi) is a topological space
iff the following if *-axioms are satisfied:

Vx3X(x)(true);

VxVX(x)xeX;

Vx VX(x) V7(x) 3Z(x) Vy y e Z -> (y e X A y e 7);

Vx VX(x) 3 Y(x) My(y e 7 -> 3Z(y) Vz Z G Z ^ Z G I ) .

The resulting logic for topological structures is, of course, equivalent to JSf ^ .
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Remark. Call the point monotone structure (91, //) an open substructure of the
point monotone structure (95, v), if 91 is an substructure of 23 and every jii(a) is a
base of v(a). Then, up to equivalence, the JS?*-sentences preserved under open
substructures are the 11-sentences (which are similarly defined as in Theorem 3.1.2).
This result generalizes both Theorem 3.1.2 and the Feferman-Kreisel theorem on
end extensions.

6.4. Antitone Systems of Pairs of Sets

A set S of pairs of subsets of A is antitone—and, for the sake of brevity, we write
ASPS on A—if (Bl5 B2) e <5, Cx c Bu C2 c B2 implies (C1? C2) e 5. Every set of
pairs of subsets of A is a base of an ASPS in the obvious way. This notion clear,
we can arrive at the logic JSf * for ASPS-structures (91, d) as follows: We extend
J^uco by set variables X, 7 , . . . (for pairs of sets) and new atomic sentences t ex X,
t e2 X whose meaning is that t is in the first (respectively, the second) component
of X, and we allow quantification 3Xq> (respectively, VX<p) only if X occurs only
positively (respectively, negatively) in cp.

Example. A proximity space is an ASPS-structure (A, S) with the following prop-
erties :

(a) if£<SC, thenC(5B;
(b) if Bx d C and B2 S C, then B2 u £x S C;
(c) for no a e A {a} 5 {a};
(d)0SA;
(e) if B S C, then there are B\ C such that B c f f , C c C, B'nC = 0 ,

B d (A\Bf% and (A\C)5C.

Each of the properties can be formulated in if*. Thus, for example, property (e)
reads

VX 37 3Z(\/x(x e2 Y v x e2 Z) A VX(X GJ X -> x el Y)
A Vx(x E2X ^ XEX Z))

Finally, in concluding this discussion, we briefly note that we write B 5 C, for
(B, C) G 5 to mean that Band C are wctf proximate.
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Chapter XVI

Borel Structures and Measure and
Category Logics

by C. I. STEINHORN

Two very significant ways in which the theory of models has been extended beyond
first-order logic are the enrichment of the syntax to include additional quantifiers
and the restriction of the class of structures to be considered. These two means
will be brought together in this chapter. The focus here will be on the model
theory of structures whose domain and some subset of whose definable relations
and functions can be built from the subsets of Un that are most frequently encount-
ered in analysis and topology: the Borel sets (see Section 1.1 for precise definitions).
Such first-order structures are studied in Sections 1.2 and 1.3. The most widely-
used notions of size for Borel sets are category, measure, and uncountability. The
model theory of "Borel structures," when the syntax is expanded to allow quanti-
fiers capable of expressing one or more of these concepts will be explored in the
final two sections of the chapter.

Friedman initiated the study of the structures and logics which are the subject
of this chapter in the series of abstracts (Friedman [1978], [1979a] and [1979b]).
Most of the major results presented here are due to him. Friedman has expressed
the hope that by restricting the available class of structures for a theory to those
which are in some sense Borel, the negative results obtained by using arbitrary
uncountable or non-separable structures can be largely eliminated. That is to say,
the abundance of positive results found in many areas of mathematical practice
for countable, separable, or even well-behaved uncountable and non-separable
structures may also be discovered for the classes of structures to be discussed here.

At present it is not at all clear that the study of these structures and logics can
quite realize the aims sketched above. Nevertheless, the techniques and notions
that have already been developed seem powerful, and the wealth of interesting
problems that arise in this area surely warrants our further attention.

1. Borel Model Theory

1.1. Measure and Category Logic, and Borel Structures

In this chapter, all theories will be built from a countable vocabulary T, even
though we will usually suppress explicit reference to T. First-order logic and several
finitary extensions of it obtained by adjoining various combinations of the new
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580 XVI. Borel Structures and Measure and Category Logics

quantifiers Q, Qc, and Qm will be considered in this chapter. The intended interpre-
tation of Q is "there exist uncountably many," and that of Qc, "there exist non-
meager (= not first-category) many," while that of Qm is "there exist non-measure
0 many." Thus, for example, the logic if(Q, Qc) whose formulas consist of those
finitary formulas that are constructed from the symbols of first-order logic and the
additional first-order quantifiers Q and Qc will be studied.

The domain of any structure mentioned in this chapter will be a subset of U9 the
set of real numbers. The extra clauses in the definition of satisfaction dealing with
the new quantifiers are then given naturally. The definition is as usual for Q (see
Chapter II). For Qc and Qm, if M is a i-structure, dom(^) = M c u, and a e nM,
then

J( )= Qcx ij/(x, a) iflf {x e M: Jt \= \j/(x9 a)} is non-meager,

and

J? \= Qmx \//(x, a) iff {x e M: Jl N \j/(x9 a)} is not of measure 0.

Structures whose domain and/or relations and functions are arbitrary subsets
of U or Um will not be considered here. Rather, this chapter will focus attention on
various specializations that are obtained in different ways when the subsets to be
considered are required to be Borel.

1.1.1 Definition. A Borel structure will be a structure whose domain is a non-
empty Borel subset of U and whose relations and functions are all Borel. A structure
for one of the logics if just described is said to be totally Borel if all relations
definable by if-formulas with parameters are Borel. Moreover, if cp is a formula in
one of these logics then an if-structure Jl is Borel for cp if it is Borel and every
relation definable over M from a subformula of cp is also Borel. If Tis an if-theory,
then the if-structure M is Borel for T if it is Borel for every cpeT.

We now illustrate the expressive capabilities of some of the logics to be con-
sidered. The reader is encouraged to produce further examples.

Example 1. A definable instance of the property that a countable union of meager
sets is meager can be expressed by the J£(Q, Qc) formula

Vy -iQcx <p(x9 y) A -iQy 3x <p(x9 y)-+-\Qcx3y <p(x9 y).

Obviously, this formula is true in any ^(Q, Qc)-structure.

Example 2. The following if(Qm)-formula expresses a definable form of the
Fubini theorem:

Qm* Qmy <K*, y) *-* Qmy Qm* <K*> y\

This formula certainly is valid for all totally Borel J?(Qm)-structures.
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1. Borel Model Theory 581

Example 3. If "Qm" is replaced everywhere in the above formula by "Qc," then the
resulting formula asserts a definable form of the Kuratowski-Ulam theorem (see
Oxtoby [1971, Theorem 15.1]), which is true in all totally Borel J2?(gc)-structures.

1.2. The Borel Completeness Theorem and Some
Classical Applications

The primary result to be examined in this section is

1.2.1 Borel Completeness Theorem (Friedman [1978]). A first-order theory T has
an uncountable totally Borel model iff it has an infinite model. D

Remarks. Before we prove this theorem, some comments are in order. First, since
every countable subset of M is Borel, the ordinary completeness theorem implies
that every consistent first-order theory has a totally Borel model. Thus, the real
content of Theorem 1.2.1 lies in the construction of an uncountable totally Borel
structure for T. Second, this result can be considerably sharpened. It is well known
that every uncountable Borel subset of U is Borel isomorphic to U itself. Con-
sequently, if T has an infinite model, then T has a totally Borel model whose
domain is U.

Proof of Theorem 1.2.1. All that requires proof is the assertion that if T has an
infinite model, then T has an uncountable totally Borel model. So we assume that
T has an infinite model. The uncountable totally Borel model that we will construct
will be the Skolem hull of a sequence of indiscernibles.

First, extend the theory T to a theory 7* in an expanded language so that T*
has built-in Skolem functions. As usual, T* has a model with an infinite sequence of
indiscernibles (/, <) having the same order type as the rational numbers. This
sequence of indiscernibles may then be stretched to obtain a sequence of in-
discernibles (J, <) which also has the same order type as the irrational numbers.
We will construct the totally Borel model of T from ^<J> , the Skolem hull of J.

Any element of H<J> can be generated as t(il9..., in)9 where t(vl9 . . . , vn) is a
term having exactly the free variables vl9...,vn and i1 < i2 < • • • < in are distinct
elements of J. We will restrict our attention to such representations for the re-
mainder of the proof. The following two statements may be verified with only a
little effort:

(1) For any term t(vl9..., vn)9 there exists a smallest S ^ {1,. . . ,«}, so that for
any il < i2 < • • • < /„ and j t < j2 < • • • < jn from J, t(il9 ...,*„) =
t(ji> - • • Jn)iff h = A, f o r everY k 6 s>

(2) Suppose t(vl9...9vn) and tf(ul9...9un^) are two terms with associated
St c { 1 , . . . , n} and St> £ { 1 , . . . , m}. If for some ix < < in and;*! <
< jm from J, it is true that t(il9 . . . ,/„) = t'(Jl9... 9jm\ then {k: ik = ji for
some /} = St and {l:jt = ik9 for some k} = St.
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582 XVI. Borel Structures and Measure and Category Logics

Also, we fix an enumeration (tk:k < co> of terms, each with its corresponding Sk

given by (1) above.
As in descriptive set theory, we will identify the irrational numbers with wco.

Furthermore, for any k, (^coif is homeomorphic to "co. Since the irrational numbers
are homeomorphic to their intersection with any open interval of R, it follows that
for any fc, ("cof is homeomorphic to the intersection of the irrationals and any
open interval contained in R. With these facts in hand, we can now undertake the
construction of the totally Borel model of T.

Our main task is to map if <J> properly to a Borel subset of U. To accomplish
this, we first map (J, <) ordermorphically onto wco n ( - 1 , 0). Then, by induction
on k, this mapping will be extended to include all elements generated by tk. Thus,
assume that we have extended the mapping to include those elements generated by
tl9 I < k. We show how to extend it to include those elements generated by tk.

The construction for tk splits into two cases according to whether or not there
is some / < k and sequences ^ < • < im and jx < • • • < jn from T so that
M)'i> • • • > *m) = kUu • • • Jn)- Suppose first that there are such an / and sequences 1
and/. Let lQ be the least such /. From (2), \Slo\ = \Sk\ = p. Then, from (1) it follows
that the value of tk, for any increasing rc-tuple from J and that of tlo for any increas-
ing m-tuple from J, depend only on the p coordinates in Sk and S/o, respectively. To
simplify notation, we assume that both Sk and Slo are { 1 , . . . , p}. It then follows
that

tk(il9..., ip9 ip+!,..., in) = tlo(il9..., ip,jp+1, • •. J m ) ,

for any ix < • • • < / „ and ip < jp+1 < • • • < jm from J. We may then naturally
identify the elements generated from tk with that subset of U to which the terms
generated from tlo have already been mapped via the correspondence

M>'l> • • • > In) *-+ tlo(il9 . . . , ipjp+1, • • • Jm)

Notice that if Sk = 0 , then tk is constant for all increasing n-tuples from J. In this
case, tk (and hence tlo) generates only one element of if < J>.

Let us now carry out the construction in the second case. Hence, assume that
there is no / < k and sequences ix < • • • < im and ]\ < - — < jn fr°m J s u c h that
hih* • • •»im) = hUu - • • Jn)- Suppose also that |Sfc| = p. In this case we will map
the elements generated by tk into the intersection of the irrationals and (k, k + 1).
Since the value of tk depends only upon the p coordinates of Sk9 we may map the
elements generated by tk canonically to

0 = {(xu...yxp):xle
(0co for each I < p,

and Xj < x2 < - - < xp}.

Then, since ("coy is homeomorphic to (wco) n(k9k + 1), the open set (9 of "ele-
ments" can be identified with a relatively open subset of ("co) n(k,k+ 1). Again,
if Sk = 0 , then tk generates one element of H(J}, which can be mapped to the
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real number (2/c + l)/2. Regardless, the elements of H< J> have been identified with
a subset of U that is at worst n%.

To complete the proof of the theorem, we must show that every definable rela-
tion of tf <J>— the domain of J»f <J> being identified with the Borel subset of U
constructed above—also is Borel. To this end, observe that in ^f <J> every formula
is equivalent to a quantifier free one. Then it is routine, but tedious, to check that
the model just constructed is totally Borel. D

Some additional information may be extracted from the proof of the theorem.
First, it is apparent that all of the definable Borel relations of the model constructed
fall within the first co levels of the Borel hierarchy. Second, we could begin the
construction with a Borel subset of arbitrary complexity, and thereby build a
Borel model of complexity as high as we please. We must pay the price, unfortu-
nately, for such simultaneous control and flexibility: it is not always easy to build
models with desired properties from a Skolem hull of indiscernibles. This point is
emphasized by the proof of the first application of the Completeness theorem given
as Theorem 1.2.2 A more versatile technique for building models will be introduced
in Section 3.

The first use of the completeness theorem establishes the existence of recur-
sively saturated totally Borel structures. That there are limits to the saturation of
Borel structures beyond the a priori ones will be shown by Theorem 1.3.3. The
proof of the next theorem is essentially an adaptation of that given by Barwise
[1975] in proving that any structure has a recursively saturated elementary
extension of the same cardinality.

1.2.2 Theorem. Every countably infinite &-structure Jt = <M, Rl9..., Rn} has
an uncountable totally Borel elementary extension that is recursively saturated.

Proof. We will use the notation and definitions from Barwise [1975]. Hence, let
M be as in the hypothesis of the theorem. To HYP^, considered as the one-sorted
structure 91 = <M u A, M, A, Ru . . . , Rn, e>, add a one-to-one function F: M u
A -> M. By the compactness theorem, we obtain a countable <23, G> >- <9l, F>
having non-standard natural numbers. Applying the Borel completeness theorem
to <93, G>, there exists an uncountable totally Borel

<<£, H> = <Nu C, JV, C, Rl9..., RH9 E9 H>

The well-founded part of (£, <£', is admissible and N e (£'. Consequently, o((T) = co,
and Jf is recursively saturated. Furthermore, Jf clearly is totally Borel, and H
insures that Jf is uncountable. D

The second application of Theorem 1.2.1 that we will present deals with the
existence of Borel two-cardinal models.

1.2.3 Theorem. Let T be a stable first-order theory in a vocabulary have a distin-
guished unary predicate P. If Thas a model M so that \M\ > \ P(J?)\, where P(J?) =
{aeM'.Jf \= P(a)}, then T has an uncountable totally Borel model Jf with

X O . D
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584 XVI. Borel Structures and Measure and Category Logics

Before proving this result, we observe that it is best possible, as an infinite Borel
subset of U has power Xo or 2Ko. The proof uses the following proposition.

1.2.4 Lemma. Any first-order theory T with distinguished unary predicate P that
has a model M of power Hw in which \P(Ji)\ = Ko has an uncountable totally Borel
model JT with \P{JT)\ = Ko.

Proof Expand T to a theory T* with built-in Skolem functions in an expanded
vocabulary T*. Then make Jt into a model of T*, and let {tn(vu . . . , vmn): n < co}
be an enumeration of the terms in T*. By the Erdos-Rado theorem, the theory con-
sisting of sentences of the kinds given in (1) through (4) below in the vocabulary
T* u {c;: i < co} can be seen to be consistent:

(1) all sentences of T*;

(2) c{ # cjjori # ; ;

(3) cp(ctl,..., cip) <-» cp(cjl9..., cjp), where cp is a r*-formula and ix < • • • < ip,
h<"'<fp\

(4) P(tn(cil9 . . . , cim)) -> tn(cil9 . . . , cim) = tn(ch, . . . , cjm\ where n < co and
h < < imnjl< •'• <Jmn-

It is clear that the interpretation of {ct: i < co} will be a sequence of indis-
cernibles in a model of the set of sentences above. Furthermore, the Skolem hull of
a stretched sequence of such indiscernibles having the order type of the irrationals
will be a model of T of power 2 K° in which the interpretation of P has power Ko.
This structure can be turned into a totally Borel model of T by repeating the
relevant part of the proof of Theorem 1.2.1. D

Proof of Theorem 1.2.3. From Lachlan [1973] the stability of T implies that T has
a model M of power Hw in which the interpretation of P has power No. The result
then follows from Lemma 1.2.4. •

1.3. Two Theorems on Borel Structures

The results in the preceding sections do not seem to support the reasons given in
the introduction for studying Borel structures. The two theorems of this section by
contrast reveal in striking ways the effect of restricting one's model theory to Borel
structures.

1.3.1 Theorem (Shelah). A Borel linear order is either separable or has uncountably
many pairwise disjoint open intervals.

A linear order which is not separable and which has no uncountable collection
of pairwise disjoint open intervals is known as a Suslin line (See Kunen [1980] for a
detailed discussion). The statement asserting the non-existence of Suslin lines is
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1. Borel Model Theory 585

known as Suslin's hypothesis, and it is of interest since it is tantamount to asking
whether or not (R, <) is, up to isomorphism, the only unbounded, dense, complete
linear order that does not have an uncountable collection of pairwise disjoint open
intervals. It is now well known that Suslin's hypothesis is independent of Zermelo-
Fraenkel set theory. In contrast, the theorem shows that the Borel version of
Suslin's hypothesis is true.

Proof of Theorem 1.3.1. (For unexplained notions from set theory, refer to Jech
[1978] or Kunen [1980]). Work in a countable transitive model of set theory.
To obtain a contradiction, we will suppose that the conclusion fails. Assume, then,
that there is a Borel linear order <£, < > which is a Suslin line. In the standard way,
a Suslin tree (that is, a tree of height a^ having neither an uncountable anti-chain
nor an uncoutable branch) can be constructed from (B, <). The nodes of the tree
can be taken to be open intervals of (B, <) that are ordered by reverse inclusion
so that incomparable intervals are disjoint. In the generic extension obtained by
forcing with the partial order taken from the tree, the linear order <£*, <*> given
by the Borel code for <£, < > has uncountably many pairwise disjoint open inter-
vals. This last assertion may be written as a sentence of ^Wl£0(2), where Q means
"there exist uncountably many." Since the sentence is consistent (in the generic
extension), the completeness theorem for Sg^^O) in Keisler [1970] implies that
the sentence is satisfiable in the ground model by a structure <C, <c>. Then, since
<C < c> looks sufficiently like <B, <> (it will actually be a submodel!), it can be
seen that <B, < > must have uncountably many pairwise disjoint open intervals
contrary to the hypothesis. D

Theorem 1.3.1 has been strengthened in Friedman [1979a]:

1.3.2 Theorem. A Borel linear order is either separable or contains a perfect totally
isolated set (that is, a perfect set A such that, for any aeA, there is an open I con-
taining a with I n A = 0 ) . D

The final result of this section demonstrates that the restriction to Borel
structures does not permit the full saturation of models that we can obtain in
classical model theory. Indeed, if we adopt the view that uncountable chains in a
linear order reflect pathology and prefer to work with separable orders instead,
then Theorem 1.3.3 points out the naturalness of the class of Borel structures.

1.3.3 Theorem (Harrington and Shelah [1982]). A Borel linear order cannot have
an uncountable increasing or decreasing chain. D

The proof of Theorem 1.3.3 uses forcing and may be found in Harrington and
Shelah [1982]. Since the proof is indirect and, consequently, does not say much
about Borel linear orders, we can ask:

1.3.4 Problem. Is there a structure theorem for Borel linear orders that accounts
for Theorem 1.3.3?
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2. Axiomatizability and Consequences for
Category and Measure Logics

2.1. Axiomatizability of <£{Q, Qc)

The first subsection is devoted to the proof of axiomatizability, while the second
contains a survey of consequences. We remark that an explicit set of axioms for
^(Q» Qc) will be given in Section 3. The main result of the present discussion is due
to Friedman.

2.1.1 Theorem (Friedman [1978]). The set of sentences of^(Q9 Qc) that are valid
in all totally Borel ^£(Q, Qc)-structures is recursively enumerable.

Proof. We will work both with and in second-order arithmetic Z2 (see Apt-Marek
[1974] for the axioms of Z2 as well as other facts about second-order arithmetic).
It is known that the theory of Borel sets and functions and category and measure
for the same can be carried out in Z2. In particular, any model of Z2 will have its
own version of the syntax and semantics for JS?(Q, Qc). Let cp be an j£?(Q, Qc)-sen-
tence. The theorem will be proved if we show

(1) There is a totally Borel model of cp iff there is a model Jl of Z2 that also
satisfies "there is a totally Borel model of q>"

The left-to-right implication in (1) is trivial, and it remains to prove the other
direction.

Consequently, we assume that M N Z2 + that "there exists a totally Borel
model of cp." To ease the exposition, we further assume that Ji is a countable, co-
standard model. The argument to be given can be modified to deal with the possi-
bility that Jl is a non-standard model.

In what follows, we will make liberal use of forcing over Jt. We will obtain
^-generic extensions of Jt by adding ^-generic subsets of co, or "reals" to Jt.
The reader can check that this may be done just as for set theory and that all the
usual facts about forcing—for example, the Generic Model Theorem—hold in
this context.

First, we will construct a certain extension, Jt\T\ oiJt. To do this, we observe
that by standard techniques, we can build a perfect

T < = 2 < c o = (J "2,
new

considered as a tree ordered by inclusion, such that any path through T is a
Cohen generic real over Jt. And, moreover, any finite number of such reals are
mutually generic. Let [T] be the set of all infinite paths through T. We then let

G finite

where each Jt[G] is just the generic extension obtained by iterating k times the
construction used to add a single Cohen real to a model of Z2. It can be shown that
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is the model constructed from Jl and [T*] in the sense appropriate for
arithmetic (for a detailed discussion, see Halpern-Levy [1971]). It may be shown
(the reader should consult Friedman [1975b]) that ^ [ 7 ] will be a model of Z2.
For what follows, it is crucial to observe that each element of Jt\T] is really con-
structed from finitely many elements of [T].

For some a e M, we have that JP\= "a is a totally Borel model of cp" We will
have to show that this fact is absolute. Without loss of generality, a Borel structure
may be thought of as having as its domain a subset of W2. Since there are only
countably many formulas in i?(Q, Qc\ a totally Borel ££(g, gc)-structure Jf can
be considered as a Borel subset B c (Jweco co x (C02)w, where / N f l ( f l i ojiff
(T0(i>i, • • •, vn)\ au . . . , an) G #([.] represents some fixed coding of the formulas
of if (Q, Qc) on col). In other words, that JV is totally Borel implies that its satisfaction
relation is totally Borel. Let ba G M be the version in Jt of the B that corresponds
to a. It is well known that Borel subsets admit codings by single reals c so that the
property "c codes a Borel set" is a 7i}-statement (see Jech [1978]). If we let ca be
the code for ba9 then

(2) M \="ca codes a Borel set"
A "the set that ca codes is the complete diagram of an J£?(Q, Qc)-

structure"
A "cp is true in this structure."

Hence, we must analyze the statement in (2) to see that it is absolute. The first
conjunct in (2), is TT}, as we have already observed, and the last is elementary.
If we show that the second conjunct is no worse than n^ then by the Schoenfield
Absoluteness Lemma (see Jech [1978]) it follows that the statement in (2) will be
absolute, as we wish to establish. To prove that the second conjunct is as claimed,
we simply write down the conjunction of the clauses in the definition of J?(Q, Qc)-
satisfaction in a 712 manner. We only indicate how this is done for Qc clause, as the
other clauses are easy. (For the Q clause, we use the fact that a countable set of
reals may be coded by a single real and that any uncountable Borel set contains a
perfect subset). We must show that the statement

S = "{e: ( | > ( x , vl9..., v n ) \ e,al9...9 an) e ba} is n o t m e a g e r "

has both a n\ and a l j form so that

([Qcxil/(x, vl9..., v n ) \ al9...,an)eba++S

will be n\.
For the n\ version, observe that

S <-• —i3c["c codes a Borel set"

A "the set coded by c" = (Jneco "set coded by cn"

A Vn("the set coded by cn is closed"
A "the complement of the set coded by cn is dense and open")
A Ve((l>(*i, vu...9 vn)\ e9al9...9 an) eba-+ the set coded by c")].
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The expression under the scope of the outermost quantification can be seen to be
n\ (For instance, the property of being open and dense involves only quantification
over a> if one uses codings of intervals with rational endpoints; see Jech [1978] for
further details). Hence, the entire expression is 712, as desired. To produce a Z2 ren-
dition of S, we invoke the fact that Borel subsets have the property of Baire. Now,

S <-• 3c 3e["the set coded by c is a non-empty open set"
A "the set coded by e is of first category"
A V/z("/i e (set coded by c) — (set coded by e)"

x, vl9...9 vn)]9 M i , • • . , an) e bj].

It is easy to check that the right hand side of the equivalence is Z^-
Consequently, ^ [ T ] N "ca is a Borel code for a totally Borel model of cp" by

absoluteness. The remainder of the argument is given to the extraction of a real
totally Borel model of <p from that which Ji\T^\ understands to be coded by ca.
To this end, we first will define a mapping f:m2n Jt[T~\ —i (o2 so that the
image of any ^[Tj-Borel set is Borel, and moreover,

(3) an ^[Tl-Borel subset of M\T\ is Jt\T~\ meager iff its image under/is
meager.

Let S = {an: 2
<(0 -> 2<<a\ n < 0} be a list, which includes the identity, of order-

preserving permutations, a, of 2<ca so that:

(4) for some k, if lh{s) = k then a(s ~ t) = a(s) " t (i.e. each such a is determined
by its restriction to some k2);

(5) for the least k as in (4), there is no 5 6 k2 and m < k such that a(s) —
o(s [m)~ s(m)" • • • ~s(k — 1);

(6) for each /c, there is exactly one o e S satisfying (4) and (5); and
(7) For any k and any distinct s, f e fc2, there is a e S with a(s) = t.

The permutations all will be in M. Let

{g: o) -> 2: (3/i

Clearly, each [TJ is a perfect subtree of W2. More importantly, if on ^ am, then
[^J n [̂ m] = 0 - Indeed, suppose (with a permissible abuse of notation) that
on9 = °mh' Since all the elements of [T] are mutually generic, we have that g = h,
and so ang = omg. But then the requirements imposed on S imply that om = on.

The mapping/satisfying (3) will be defined separately for \Jn<(O [TJ and for

Before defining/ though, we must make one more observation. Each reJ?[T~\
n m29 as noted earlier, is generated by some unique smallest finite G = {gl9..., gn)
c [T], where g± < -- < gn under the lexicographic order on W2. That is, r is given
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by the G-interpretation, t(gl9..., gn) of a name t consisting of order pairs of ele-
ments of co and rc-tuples of forcing conditions. It can be seen that the mapping

ft(9i>'->9n) = t(gl9...9gn)

defined on the Borel domain

has a Borel image in W2. Then, since for each n, there are only countably many
names {Ji is countable), we conclude that Ji\T] n W2 is Borel.

We may now define/ Let Q c W2 be a nowhere dense perfect set and, for each
n < co let Pn = {0 6 W2: # T (w + 2) = <0. . . 01>}. For each n, Pn\Q, and with the
exception of one point, [TJ, can be written as the disjoint union of basic open sets.
Hence,/ [ [TJ: [7J ^-~^Pn\Q can be defined so that the image of every relatively
open subset of [7J is not meager in m2. Finally, since W2 n Jl\T] is Borel, we can
define/ [ R: R ^—^ Q so as to insure that/sends Borel sets to Borel sets, as required.

We still must prove that / satisfies (3). First, suppose that B is an M\T\
meager, ^[T]-Borel set. A Cohen generic real is characterized (see Jech [1978,
Section 42]) by not belonging to any meager Borel set coded in the ground model
over which the real is generic. It follows then that B cannot contain any reals that
are generic with respect to the finitely many reals of [T] that generate the Borel
codes for B and the countable union of closed, nowhere dense sets that compel B
to be meager. Consequently, for every n,Bn [TJ is finite, whence B n [jn<(O [TJ
is countable, and so f(B) must be meager. On the other hand, suppose that B
is an ^#[T]-non-meager, ^[T]-Borel set. Then, for some s e 2<ft), relative to

[_s] = {fe(O2:f{n = s9 for n = lh(s)}9

the set B n [5] is ̂ [T]-comeager. For some on e S, a basic open subset of [TJ lies
in [5]. As before, by Cohen genericity, only finitely many elements of [TJ n [s]
may lie outside B. Thus a basic open subset of [TJ must be contained in B n [s];
and, finally,/(B) itself must be non-meager.

Consequently, we see that the </#[T]-totally Borel structure that ca codes in
Jt\T~] becomes a real totally Borel structure under/ By (3), Qc is preserved under
this transformation. Also, Q is preserved because Ji\_T] n W2 is uncountable, and
internally Jt\T] will reflect the property that any uncountable Borel set contains
a perfect subset which must be isomorphic to its understanding of W2. Therefore,
the real totally Borel structure will satisfy cp, completing the proof of the theorem.

D

2.2. Consequences of Theorem 2.1.1 and Its Proof

We first remark that a random real is characterized by not being an element of any
measure 0 Borel set with code in the ground model over which it is generic. Thus,
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if the proof of Theorem 2.1.1 is carried out using random reals instead of Cohen
generic reals, the result is:

2.2.1 Theorem (Friedman [1978]). The set of sentences of&(Q, Q J that are valid
in all totally Borel <$f(Q, Qm)-structures is recursively enumerable. U

The definition of/in the proof of Theorem 2.1.1 could be modified in another
way. That is, Q could be chosen to be of measure 0 as well as meager, and each
relatively open subset of [TJ could be mapped to a set of positive measure. With
these changes, we are able to prove the left-to-right implication in:

2.2.2 Theorem (Friedman [1978]). For any sentence cp of <£(Q, Qc) let cp* be the
<$f(Q, Qm)-sentence obtained from cp by replacing each "Qc" by "Qm". Then, (p has a
totally Borel i?(Q, Qc)~model iffy* has a totally Borel <£{Q, QJ-model. U

The reverse implication can be shown by appropriately modifying the proof of
Theorem 2.2.1. Theorem 2.2.2 might be seen as a transfer theorem between

> Qc) a n d ^ ( 6 , Qm)- Of further interest would be a duality theorem for
, Qc, Qm) that parallels Erdos-Sierpinski duality on the real line (see Oxtoby

[1971], Theorem 19.5). More explicitly, for an 5£{Q, gc, QJ-sentence cp, let cp* be
the J?(Q, Qc, gm)-sentence obtained by interchanging "Qc" and "Qw". Such a
duality principle would state that cp has a totally Borel model iff cp* does.

2.2.3 Problem. Is there such a duality principle? Also, are the validities of
, Qc, Qm) recursively enumerable?

The proof of Theorem 2.1.1 can be adapted in yet another way to yield
results for sets of sentences O = {cpt: i < CD} of J?(Q, Qc). It can be shown that O
has a totally Borel model iff there is Ji f= Z2 and an ^-non-standard formula cp*
having each cpt e O as a conjunct so that M N "cp* has a totally Borel model"—the
left-to-right implication follows from the ordinary compactness theorem. There-
fore, we have:

2.2.4 Theorem (Friedman [1978]). The logic ̂ (Q, Qc) is countably compact. D

Again, by suitably interchanging the roles of category and measure, the same
result follows for S£(Q, Qm).

2.2.5 Theorem (Friedman [1978]). The logic j£?(Q, Qm) is countably compact. U

A central thesis of this chapter is that Borel structures permit a more manage-
able model theory. We offer some further evidence of this with the observation
given below. Let Q* be interpreted by "there exist 2Xo many," then we have

2.2.6 Theorem.Gii;en an <£(Q) sentence cp, let cp* be the ^(Q*) sentence obtained
by replacing each "Q" by "Q*'\ Then cp is valid on all totally Borel structures iff
cp* is. D
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The proof rests simply on the fact that any Borel set has power either Ko or
2*°. Observe in support of our claim, that for arbitrary structures, the analogue
of Theorem 2.2.6 depends on set theory: It is true if the continuum hypothesis
holds, but false if, for example, 2Ko = KW2. This raises the following question:

2.2.7 Problem. How badly behaved can the set of valid sentences of ££(Q*) be?

We remark that further refinements of the results above (they can be proved
using similar techniques) are announced in Friedman [1979a]. In particular,
all the results above are true, if suitably modified, for countable admissible
languages.

3. Completeness Theorems

Although the results of Section 2 suffice to establish that if(g, Qc) and if(Q, Q J
have recursively enumerable validities, explicit sets of axioms are not exhibited
and the proofs of the theorems do not contribute very much towards building a
model theory for these logics. Here we present simple complete sets of axioms for
these logics and various sublogics. Furthermore, in proving these theorems a
genuine model building tool which we might call a "continuous" Henkin con-
struction is developed.

3.1. The Completeness Theorem for

The axioms for if (Qm) are as follows:

(A) All the usual axiom schemas for first-order logic (as in Chang-Keisler
[1973], for example).

(MO) ^(Qmx)(x = y).
(Ml) (Qmx)4,(x, ...)«-> (Qmx)\lt(y,...), where tfr(x,...) is an if(QJ-formula in

which y does not occur and \j/{y,...) is the result of replacing each free
occurrence of x by y.

(M2) (Qmx)(cp v i/0 - (QmX)cp v (Qmx)iA.
(M3) l(Qmx)cp A (Vx)(<p -> <A)] - (QmxW.
(M4) (Qmx)(Qmy)cp -> (Qmy){Qmx)cp.

Notice that axiom (M4) represents a definable form of Fubini's theorem. The rules
of inference for ^(Qm) are the same as for first-order logic: modus ponens and
generalization. Let the system just described be denoted by Km.

3.1.1 Theorem (Friedman [1979a]). A set of sentences T in ^(QJ has a totally
Borel model iffT is consistent in Km. D
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Before proving the theorem, we require one further notion. An equivalence
Borel structure is a Borel structure equipped with a Borel equivalence relation
defined on its domain so that in addition:

(a) equality is interpreted by E;
(b) each ^-equivalence class is both meager and null (that is, it is of measure 0);
(c) the quantifier Q counts the number of Inequivalence classes; and
(d) the relations and functions of the structure are preserved by E.

This last clause, (d), simply means that if Jl |= E(ai9 bt) for i = 0 , . . . , n - 1, R
is an rc-place relation symbol and F an n-place function symbol, then

M 1= R(a0,..., an-x) <~+R(b0,..., 6B-i)

and

Jf N E(F(a0,..., an_x), F(b0,..., bn^)).

In other words, £ is a congruence relation.

Proof of Theorem 3.1.1. To simplify the presentation, we assume that no sentence
in T contains a universal or existential quantifier. The argument sketched here can
be modified to yield the theorem in full generality; and, along the way, we indicate
the changes that must be made. Clearly, only the direction from right-to-left
requires proof. Moreover, we assume that "(Qmx)(x = x)" eT. For if T u
{(Qmx)(x = x)} were not consistent in Xw, then T \- ~~\(Qmx)(x = x). In this case,
any countable model of the ^-theory T obtained from T by replacing the outer-
most subformulas of members of T of the form Qmxcp by (3x)(x # x) will suffice. It
can be verified that Y could be derived from T within Km in this case.

The proof will be carried out in two steps: An equivalence Borel model for T
will be constructed first, and from this a totally Borel model for T will be built.

Let us fix an enumeration {cp{: i < co} of the formulas in if(Qm) without first-
order quantifiers. We add a new set of variables V = {xs:sea><to A (Vn > 0)s(n) e
{0, 1}} to the vocabulary of ^(Qm). Next, by induction on n, we define sets Vn c V
and Fn contained in the set of J^(Qm)(F)-formulas in which only variables in Vn

are free and only i?(gm)-variables are bound.
Let Vo = {x<0>} and Fo = 0. Given Vn and Fn, we define Vn + 1 and Fn + l so

that the following conditions are met:

(1) xs ^ xteFn+1 foral lx s ,x ,eP; ,s ^ t\
(2) if <p(xSl,..., xSk) eFn, then for all il9 . . . , ik e {0, 1}, cp(xSl A i l , . . . , xSkAik) e

Fn+1, where " A " represents concatenation;
(3) for all i < n, if the free variables of <pt are vl9..., vk, k < n, then for all

distinct xSl, . . . ,x S k eF n , either q>lxSl,..., xSk) eFn+1or-i <pt{xSl9..., xSk) e
r n+1 j

(4) if (Qmx)\lf eFn and all free variables of xjj are in Vn, then i|/(x(

where p is the least q e co with x<q> $ Vn\
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(5) Vn+1 = Vnu V'n, where V'n c V consists of all members of V\Vn introduced
in(l)-(4);

(6) if xsi,..., xSr lists Vn+1 in lexicographic order, then the sentence (QxSl)...
(QxSr)(A<peFn+l <p) is consistent with T in Km.

By extensive syntactic manipulation and making heavy use of the "Fubini" axiom
given in (M4), it can be seen that Vn+1 and Fn+1 can be defined. If first-order
quantifiers were present, then Skolem functions would have to be introduced
before defining Vn and Fn, and (6) would have to be replaced by a modified
consistency criterion. Let F = [jn<0) Fn and notice that V = \Jn<(OVn.

We define an equivalence Borel structure by first defining a structure Ji and
then mapping M suitably to a Borel subset of U. The universe of Ji will consist of
the union of

BT ={f:co^ co: (Vn > 0)f(n) e {0, 1}},

called the set of basic terms, and the set of all proper formal terms,

FT = « / 1 ? . . . ,/„): t(vu . . . , vn) is an jSP-term and/i, . . . , /„ e B}.

For a relation symbol R, we define

M |= R(tx(fll9... , / U l ) , . . . , t£fll9... Jlkl))
iif for some finite initial segments, sx l9..., s/kl

offa,-.. Jikl, respectively,
K(t1(x11,..., xS l k i ) , . . . , tt(xSll9..., xSlk))eF.

The equality relation is defined in exactly the same way.
Let B c: R be a Borel set consisting of countably many disjoint perfect subsets,

so that U\B has measure 0, U\B has power 2X°, and any basic open subset of any
of the perfect sets has positive measure. The map g: Ji - ^ R is then defined so
that BT is mapped canonically to J5, and FT is mapped in any Borel way into
U\B.

Once this has been done, it can be shown by an easy induction on complexity
that for any J2?(Qm)-formula (p(vu . . . , vt) without ordinary quantifiers, we have

(7) M |=

ifif for some finite initial segments sll9..., slkl

o f / u , . . . , A , , respectively,

cp{tx{xsn,..., x S l k i ) , . . . , U{xsn,..., xSlki)) e F,

where the universe of M is now identified with its image under g. In particular, Ji
is an equivalence Borel model of T.
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If remains only to convert Ji into a totally Borel model. To accomplish this, it
will suffice to produce h\Jt -> Jt, where again JK is identified with its image in
U under g9 so that h takes Borel sets to Borel sets, and also if

J(\=t(fi,.-..,fJ = t'(f'l9...9f'n), then

Although we omit the details, that such an h can actually be defined follows from
(7) above. To see that h(M) still satisfies T9 observe that (1) implies that no basic
terms will be identified under h. Consequently, the property of having measure
greater than 0 is preserved. D

3.2. Further Completeness Results

We indicate, without proof, several more completeness theorems that can be
established using techniques similar to the one employed in Section 3.1. Let
axioms (C0)-(C4) be the results of replacing " g w " everywhere in (M0)-(M4) by
"Qc", and let Kc represent the resulting proof system.

3.2.1 Theorem (Friedman [1979a]). A set of sentences T in ^(Qc) has a totally
Borel model iffT is consistent in Kc. D

The axiom systems for logics involving Q will entail expanding the vocabu-
laries to contain a unary predicate, N(\ and a binary function symbol F(v).
To make the axioms more comprehensible, we remark that the intended inter-
pretation for N(-) is, of course, fU Also, as x varies, F(x, •) is intended to represent
one-to-one maps from the universe of the structure to all perfect subsets of the
structure. The axioms thus are as follows.

(QO) The usual axioms for J^(g) in the expanded vocabulary (see Chapter IV).
(Ql) (VxXVyXVz)[F(x, y) = F(x, z) -> y = z].
(Q2) -i(ex)JV(x).
(Q3) (Qy)(p - (3xXVy)(Vz)(z = F(x, y) - (p(z)).
(Q4) ^(Qy)cp - (3xXV30l> - (3z)(N(z) A F(X, Z) = y)l
(Q5) (Qx)(x = x) -* (3x)(Qy)(Vz)(F(x, z) ± y).
(Q6) Qx(x = x) -> [(VyO . . . (VyJ 3z(N(z) A cp{yu ...,yH9 z))

A <p(F(xl9 yx)9..., F(xn, yn\ z))],
where xl9..., xn are not free in cp.

Axiom (Q5) asserts, in effect, that any perfect set contains two disjoint perfect sub-
sets (by composition of functions, using F), and (Q6) expresses the statement that
a partition of the product of perfect sets, n?=i ^> ^nt0 countably many pieces
admits a homogeneous subset of the form Yl"=x Ph where P\ c p. and P\ is
perfect, for each i = 1,..., n. We let Kv represent the proof system based on axioms
(A), (U0)-(U6) with the rules of inference as above.
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3.2.2 Theorem (Friedman [1979a]). A set of sentences T in J^(g) (in the original
vocabulary) has a totally Borel model iffT is consistent in Ku. D

We will not prove this theorem, but a sketch of why Ku is sound deserves
mention. Indeed, suppose that cp is a sentence in the original vocabulary that is
provable in Ku. We must show that cp is true in every totally Borel J^(Q)-structure
M. To do this, we might attempt to expand M to obtain a structure for the new
vocabulary in which the axioms of Ku are satisfied. However, for this to be possible,
it might be necessary that complicated uncountable projective sets contain
perfect subsets. Such a strong property cannot be guaranteed (see Jech [1978],
for example, in Section 41). To circumvent this difficulty, we move up to a generic
extension in which at least every uncountable projective set contains a perfect
subset. Assuming that there exists an inaccessible cardinal, it is well known that
this can be done (see Jech [1978], Section 42); and, by means of a more delicate
construction, it can be done without the additional assumption. Let a be the
Borel code for M. By absoluteness, the interpretation of a, Jt*, in the generic
extension remains a totally Borel model of ££(Q) (recall the proof of Theorem
2.1.1). Within the generic extension, M* can be expanded to a model of the axioms
of Ku, and so cp is true in J(*. Again by absoluteness—this time, however, only for
the elementary statement asserting that "[cp^ea"—it follows that Jl 1= cp, as
required.

Finally, we consider the logics $£(Q, Qm) and J^(Q, Qc). Consider

(MU)(Qmx)(3y)(cp(x, y) A N(y)) - (3y)(N(y) A (Qmx)cp(x, y)\

which has the obvious interpretation that the union of countably many sets of
measure 0 has measure 0. Let (CU) be the result of everywhere replacing "Qm"
by "Qc" in (MU). Let Xm?u be the system based on axioms (A), (M0)-(M4),
(Q0)-(Q6), and (MU), and let KCtU be the corresponding system for if(Q, Qc).

3.2.3 Theorem (Friedman [1979a]). A set of sentences T in the original vocabulary
for <£f(Q, Qm) respectively J?(<2, Qc)) has a totally Borel model iff T is consistent in
Km,u (respectively KCtU). D

We close with some pertinent remarks. Several refinements of the results
above are announced in Friedman [1979a]. Of particular interest are results
described there whose hypotheses are stronger than ZFC. As perhaps the soundness
argument for Theorem 3.2.2 has foreshadowed, such theorems will concern Borel
rather than totally Borel structures.

Finally, we state some problems. Pursuing a question raised in Section 2.2,
we can consider

3.2.4 Problem. If the set of valid sentences of J£(Q, Qc, Qm) is recursively enumer-
able, find a simple set of axioms for it.

3.2.5 Problem. Develop the model theory for these logics.
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Dependency Chart for Chapter 16

This chapter may be read independently of others in the book.

indicates essential dependence.
indicates non-essential, but useful background.

1.1

1.2

2i

3.2

4.2
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PartF

Advanced Topics in
Abstract Model Theory

Abstract model theory is the attempt to systematize the study of logics by studying
the relationships between them and between various of their properties. The
perspective taken in abstract model theory is discussed in Section 2 of Chapter I.
The basic definitions and results of the subject were presented in Part A. Other
results are scattered throughout the book. This final part of the book is devoted to
more advanced topics in abstract model theory.

Chapter XVII views part of our experience with concrete logics in an abstract
light. A concrete logic is presented by describing a class of structures, telling how
the formulas are built up, and how formulas are interpreted in structures. Since
formulas can be viewed as well-founded trees, they can be represented as set-
theoretical objects. Similarly, structures are usually thought of as certain kinds of
set-theoretical objects. Thus, we can think of a logic ££ as given by two predicates
of sets: "x is a sentence of ^f " and "the structure x satisfies the sentence y of if."
Chapter XVII deals with the following general problem: What can we say about
the model-theoretic properties of if if we have information about how these
predicates can be defined ? Two forms of definitions are considered, implicit (Section
1) and explicit (the rest). The usual style of the inductive definition of truth is of
the first kind, with its set-theoretical explanation being of the second kind.

When the inductive clauses for a logic if' can be written down in a logic if, in a
suitable precise sense, one says that ^ is adequate to truth in £?'. This gives a useful
"effective" relation between logics which, in certain cases, agrees with the relation
^£' < RPC if, though not in general. Of special interest are logics which are ade-
quate to truth in themselves.

On the explicit side, one may consider the complexity of the definition of a
logic in terms of the Levy hierarchy of set-theoretic predicates, and in terms of the
strength of the meta-theory T needed for the definitions. Particularly significant
are the cases where the satisfaction relation for if is A 2 relative to a set theory T,
which is the same as its being absolute relative to models of T. This insures that
the meaning of a sentence is not sensitive to which universe of set theory is being
considered. Absoluteness has a number of applications to the characterization of
the infinitary logics i ^ , S£ ̂ G, and i f '^ discussed in Chapters VIII and X. The
discussions of the implicit and explicit approaches in this chapter are largely
independent.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.024
https://www.cambridge.org/core


598 F. Advanced Topics in Abstract Model Theory

Chapter XVIII explores the relation between certain compactness, embedding,
and definability properties. Refinements and generalizations of compactness are
presented and treated at the outset. Analogues of various well-known properties
from first-order model theory, such as amalgamation Robinson consistency and
Beth definability are introduced and related to the various notions of compactness.
Striking results emerge, such as the equivalence under certain conditions of full
compactness and an abstract version of amalgamation. Also surprising is the
appearance of large cardinals in both hypotheses and conclusions of many of the
results in this chapter.

Chapter XIX studies the relationship between abstract equivalence relations on
structures and logics. Each logic !£ determines an equivalence relation = ^ on
if-structures, that of being if-equivalent. Isomorphic structures are always if-
equivalent. Many properties of !£ can be stated in terms of these equivalence
relations, but it often happens that two quite different logics can give rise to the
same equivalence relation.

The primary emphasis in Chapter XIX is on the relation between the equiva-
lence relations for logics and the Robinson consistency property for logics. In
Chapter I we discussed the relationship between the interpolation property and
the Robinson consistency property. In Chapter XIX quite general results are
obtained in an abstract setting on the relationship between compactness, inter-
polation and the Robinson property. There is also an extensive abstract treatment
of (projective) embedding relations and the amalgamation property. Certain
dualities are established between logics, equivalence relations, and embedding
relations. The chapter concludes with a general study of back-and-forth systems
for equivalence relations.
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Chapter XVII

Set-Theoretic Definability of Logics

by J. Vaananen

Simply put, an abstract logic is determined by two predicates of set theory, "x e if"
and "y \=# x." The general problem to be considered in this chapter is as follows:
What can we say of the model-theoretic properties of 5£ if we known how the
predicates "x e ££" and "y \=&x" behave as predicates of set theory?

Typical model-theoretic properties that are relevant here are Lowenheim-
Skolem-type properties, various interpolation properties, completeness and
compactness properties, and the conditions that are related to inductive de-
finability of truth. Typical set-theoretic conditions that can be imposed o n " x e i f "
and "y t=# x" are various forms of absoluteness. A simple example of the use of
set theory in abstract model theory is the following result (see Corollary 2.2.3):
If the predicates "ye<£" and "x \=& y" are Zx in set theory, then every cpeJ£ such
that cp G HC and cp has a model, has a countable model, where HC denotes the set of
hereditarily countable sets.

An important tool throughout this chapter will be the notion of adequacy
to truth, a concept that is due to S. Feferman. This notion provides an analysis of
implicit definability of the actual truth-definition of a logic and is, therefore,
naturally connected with the explicit set-theoretical definability of " x e i f " and
"y N^x ." A study of adequacy to truth is presented in Section 1.

As opposed to the model-theoretic approach taken in Section 1, Section 2 is
devoted to set-theoretic criteria. The simplest and best known example in this
direction is the notion of absoluteness of a logic, due to J. Barwise. Set theoretic
methods have shown themselves to be more fruitful in connection with absolute
logics than anywhere else. When we pass to non-absolute logics, the various
independence results of set theory blur the picture. The developments in Section 3
establish the exact relationships between model-theoretic and set-theoretic
definability of truth. This is, in effect, the main part of the chapter. We will obtain
set-theoretical characterizations of logics such as J£?ww and S£A and characterize
definability in the A-extensions of various logics.

The results of Section 4 apply the methods of the previous sections and present
some new examples of the interplay between model-theoretic and set-theoretic
definability. We will conclude the section by making some remarks on possible
further work in the area.
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600 XVII. Set-Theoretic Definability of Logics

1. Model-Theoretic Definability Criteria

The sole purpose of this section is to introduce the notion of adequacy to truth
together with its main properties and applications. This notion was first defined
by Feferman [1974a] and has its origins in generalized recursion theory. Essentially,
it is part of an entire program whose aim is to bring recursion-theoretic notions
to bear in abstract model theory.

1.1. Adequacy to Truth

The definitions of most logics, at least of those we would call "syntactic", are given
by a recursive definition: For non-atomic cp,

(*) SR \=# cp if and only if 9M and the subformulae cpt (i e /) of cp have
the property

where the property . . . is expressed in terms of the sequence of assertions 501 \=# cpt

(i G I). Although (*) is usually written in plain English, it may also be formalizable
in another logic, a logic which we would then call "adequate to truth" in if. Before
we examine the exact definition, we will give careful consideration to a special
case.

1.1.1 Preliminary Example. Consider the logic ifwca. Let us think of formulae of
J^a, as elements of HF, where HF denotes the collection of hereditarily finite sets.
A set a G HF is an j^-formula if it has one of the forms

(1) a t o m i c , -i<p, cp A I//, cp v I/J, 3vncp, Vvnq>,

where cp and \jj are J^^-formulae and vn is a variable symbol. We can write out an
J^-formula Form(x) such that

HF |= Form(a) if and only if a is an JS^-formula.

The truth-relation |= of ^wco is a relation between HF and the model under con-
sideration. Let 91 be the structure (M<co, P), where P maps SGM<1° and n e co onto
the nth element sn of s. By writing out the usual clauses of the inductive truth
definition, we obtain a formula rj in J2?wco containing a new binary predicate S(x, y)
such that

(2) If (9W, HF, S, 91) \= rj, then for each formula cp with free variables
among xl9..., xn we have S(cp, s) iff
SR \= cp(su . . . , sn).
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1. Model-Theoretic Definability Criteria 601

Thus we can formalize the truth of J ^ in Sg^ up to the definition of HF. But now
comes the crucial observation: In contrast to 9W, all of HF is not needed in (2)—
we can replace HF by any set-theoretical structure which is standard as far as
subformulas of <p(xl9..., xn) are concerned.

Let © be a set-theoretical structure, 95 = (B, E). Let n^ be a sentence in the
language of 33 which says that 95 contains cp(x1, . . . , xn). (cp with free variables
^ {xl 5 . . . , xn}.) That is, inside 33, regarded as a set-theoretical object, (p(xx, , xn)
has the same set-theoretical structure as it has in the real world. Then, of course,
HF 1= 71^. But, moreover, for any 33

(3) If(m, 93, S\ 91) \= rj A n^ then S'{<p9 s) if and only if
9R\=<p(su...,sn).

Let 6 be the JSfWC0-sentence

rj A Vx(Th(x) <-+ 3s S(x, s)),

where Th is a new unary predicate symbol. If we merge S into 91, we then have, for

(4) If (9K, 95, T, 91) \= 6 A n^ then cpeT if and only if SR *= ^

We thus have an implicit definition of truth of JSfww inside ifwco using extra symbols
and the infinitary sentences n^. This is what adequacy of J£?W£O to truth means in
itself.

Before proceeding to the definition of adequacy to truth in general, we need
some conventions concerning representation of syntax and the definition of the
formulas n^.

For any set a, let jua(z) be the following (possibly) infinitary formula in the
vocabulary rset = {e}:

/*«(*) = Vy(y e x <-* V /xb(y)).

This recursive definition has the intuitive content fia(x) <-+ x = a, which indeed
takes place in any transitive set containing TC({a}). For example, A*{fllf...,„„>(*:) is

X^fiai(y) v • • • v nan(y)).

Now, let

na{x) = fia(x) A / \ 3yfib(y).
fceTC(a)

If S = (B, E) is a model of the axiom of extensionality, 95O the well-founded part
of 95, and 31 the transitive collapse of 95O via i: 95O -• 91, then:

© \= na(x) if and only if xeB0,aeA and /(x) = a.
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602 XVII. Set-Theoretic Definability of Logics

1.1.2 Convention. We have made no requirements on the way the syntax of various
logics is defined. Henceforth, we will assume that associated with the logic !£ is
a transitive set A such that if (T) £ A, for all T considered. Moreover, it is assumed
that

Mod(7ifl) e EC^[Tset] for as A.

In other words, <£ is supposed to be strong enough to fix—or "pin down", as it
were—each element of A. Finally, A is assumed to be closed under primitive
recursive set functions. In this case, we say that the syntax of'JSf is represented on A.
As a standing piece of notation, ££ is represented on a set denoted by A, <£' on
A', $£" on A" etc. Clearly, the syntax of the logics

is represented on A, the syntax of JS^,ia)1 on HC, etc. In this chapter, "if(<2)"
means if(Qi). The logic A(if) is more problematic. However, we may identify
sentences of A(if) with triples <T, <p, <p'> where the reductions of Mod((p) and the
complement of Mod{cp') to the vocabulary T coincide. Understood in this way,
A(jSf) has a canonical representation of syntax on A. We use 91, 91', 91", etc. to
denote the set-theoretical structures (A, e\A), (A\ e\A>)9 etc.

1.1.3 Definition. We say that a logic if is adequate to truth in a logic <£' if for
every T there is T+ = [T, rset, Th, T'] and 6 e if [ T + ] such that for every 90? e Str[x],
the following conditions hold:

(ATI) (2R, 91', TMSW), 91) N^ 0 for some 91
(AT2) If (9R, 95, T, 91) |=^ 0 A ^(ft), then b e T if and only if SR 1= ,̂ 9, what-

ever cpeA1 and b e B.

Compare (AT2) with (4) above. The role of T' is to provide the auxiliary tools
(such as the pairing function and 5(x, y) in Example 1.1.1) that are mainly needed
for coding.

1.1.4 Example. The logic ifwco is adequate to truth in <£A. To prove this, we need
only make some additions to Example 1.1.1. There the sentence rj is supposed to
conjoin the different cases of the inductive truth-definition of ifwt0. To extend this
to JS^, we simply conjoin n with something like

V i e /

Note here that na will not be in &mm unless a e HF.
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1. Model-Theoretic Definability Criteria 603

1.1.5 Example. The logic JS^CQ) is adequate to truth in ̂ A{Q\ whatever Q. This
time, we extend Example 1.1.1 by a case for Q. Suppose, for the sake of simplicity,
that Q is of signature <2>. Then we add the following case to rj:

S(Qx1x2(p(xux2\s)

<-* Qx1x2 3s'(s'i = *i A s'2 = x2 A (s'n = sn for n > 2)

A S(q>(xl9 x2\ s')).

Then rj will contain Q and will no longer be a sentence of ifwco but rather of i ^ g ) .

1.1.6 Example. The logic JS?^ is adequate to truth in <£\. This case needs some-
what more changes to Example 1.1.1 than the previous ones. In Example 1.1.1
9t contained a new sort for sequences of elements of 5R. Now we add to 91 a new sort
No for subsets of the domains of 90? and a new sort N1 for finite sequences of such
subsets as well as the projection function for JVj. With these new sorts at hand, we
can easily extend the implicit truth-definition, coded in rj, to !£ \ . At the same time,
we must add the obvious axioms for No and Nt to rj as well. Similarly, we see that
JSf̂ a, is also adequate to truth in a variety of higher-order logics.

1.1.7 Example, (i) ifwco(aa) is adequate to truth in ifA(aa).
(ii) if u is adequate to truth in 5£KX for all K.

(iii) J%,lG and J ^ ^ are adequate to truth in themselves. The reader should see
Chapter X for the definition of these game logics.

1.1.8 Example. Let ££ = ^ w (2 n ) n < c o , where Qn is the quantifier "there exists at
least a v " This logic is not adequate to truth in itself, if represented in the canonical
way on HF. The proof of this is simple enough. The Lowenheim-Skolem theorem
of if shows that no 8 in ^JLQrdn < m Qn < co) can capture Qmx(x = x\ for example.

As we proceed, we will meet other examples of the failure of adequacy to truth.
The failure of Ĵ W(QW)W< w to be self-adequate follows intuitively from the fact that
the inductive truth-definition has an infinity of genuinely different cases (in fact,
one for each Qn) and there is no way of putting them all together. A similar situation
occurs in if ^w—here, there is one case for each arity of predicate-variables—but
the expressive power of ̂ ^ allows us to take the long conjunction.

1.1.9 Remark. Suppose that if is a logic and T: Str[r] -• 0>(A). Feferman [1975]
calls T #-uiidx in <£ if there is T+ = [T,Tset,Th,T'] and 6E^IT+^ such that if
SReStr[T],then:

( # 1) [9Jt, 91, T, 91] t= 6 for some 91;

and

(#2) If [9W, 93, T', 91] N 6 A na(a'\ then a e T if and only if d e T.
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604 XVII. Set-Theoretic Definability of Logics

This is a notion which arises naturally from analogous notions in generalized
recursion theory, such as the invariant implicit definability of Kunen [1968]. The
("uiid" is short for "uniformly invariantly implicitly definable," and the "x" is
used to indicate the possibility of extra sorts in <£'\ With this notion at hand, we
could define adequacy of if to truth in if' by simply saying that the mapping
T(Wj = Th^,(9K) is #-uiidx in if. The notion #-uiidx permits many variations,
such as #-usiidx ("s" for "semi") which replaces "if and only if" by "only if" in
( # 2). The corresponding weaker form of adequacy to truth could be called semi-
adequacy to truth.

The notion of adequacy to truth bears a special relation to the A-operation
defined in Chapter II. The rest of this section is devoted to a study of this. Also
recall from Chapter II the notion RPC^ of relational projective class in if

1.1.10 Lemma. Suppose that if is adequate to truth in if', cpeJg' and ^
definable. Then Mod(cp) is A(J?)-definable.

Proof. Suppose (p e i f ' [T] . Let 9 e if [ T + ] be as in Definition 1.1.3. The following
conditions are equivalent for any $R e Str[x]:

(a) S»*=^<p;
(b) [2R, 93, 91] |= 9 A n9(b) A Th(b) for some 93, 91, and b\
(c) [9R, 93, 91] l= 9 A n9Q>) -> Th(fe) for all 93, 91, and b.

By substituting the RPC^-definition of n^ into (b) and (c), we obtain a A(if )-
definition of cp. D

1.1.11 Remarks, (i) If 5£ is only semi-adequate to truth in S£' as given in Lemma
1.1.10, we can still obtain a co-RPC(if)-definition for cp from the proof.

(ii) Lemma 1.1.10 has interesting consequences for logics which have more
power than their syntax suggests. Take, for example, ^ia,. Many set-
theoretically definable cp e J?2^ satisfy the assumption that n^ is R P C ^ .
Whence, Mod((p) is A(if^J-definable. This shows clearly the infinitary
nature f L

1.1.12 Corrollary. If' 5£ is adequate to truth in <£' and A c A, then <£' <RPC ^£. D

1.1.13 Lemma. Ifg" <RPC S£ and <£" is adequate to truth in if', then $£ is adequate
to truth in &'.

Proof Let T be a vocabulary and let 9' e i f " [ i + ] witness the adequacy of Z£" to
truth in <£'. Let xl 3 T+ and 9 e if [ T J such that

TO N= 6X if and only if (9W, 91) I- 9 for some 91.

Clearly, 9 satisfies (ATI) for ^ and 5£'. For (AT2), suppose that

(SR, 93, T, 91', 91) \= 9 A n9(b).
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1. Model-Theoretic Definability Criteria 605

Then (SR, 93, T, W) N ^ A n9(b\ whence

beT if and only if W \= cp,

as required. D

1.1.14 Proposition. Suppose that ££' is adequate to truth in itself and A' c A. Then
the following are equivalent:

(a) if is adequate to truth in <£'.
(b) i ? ' < R p c ^ . D

Discussion. The proposition shows that for syntacticly natural logics, adequacy to
truth reduces to the familiar and much simpler concept of <RPC. However, this
does not take place in general. Rather, we may construe the relation of adequacy
to truth as an effective version of <RPC- This effectivity can be demonstrated by
examples. Thus, unlike <RPC, adequacy to truth preserves E2 -compactness and
Zx-definability of validity (see Section 4.3).

1.1.15 Proposition. Suppose that <£ and if' are logics such that A' c A. Then the
following are equivalent:

(a) A(JSP) < JS?'.
(b) Whenever $£ is adequate to truth in <£\ with A" c A, then <£" < <£'.

Proof The argument for (a) implies (b) follows from Corollary 1.1.12. To prove the
converse, suppose that Jf is a A(if)-definable model class. Let Q be the generalized
quantifier associated with jf. By Proposition 1.1.14, we have that <£ is adequate
to truth in &A{Q). Thus, by letting <£" = &A(Q) in (b), we get &A(Q) < &'.
Whence, Q is jSf-definable. D

1.1.16 Definition. A logic if is truth maximal if if' < if whenever 5£ is adequate
to truth in ^£' with A! £ A. If, in addition, 5£ is adequate to truth in itself, we say
that ^£ is truth complete.

1.1.17 Corollary. 5£ has the ^-interpolation property if and only if ^ is truth maxi-
mal D

1.1.18 Examples. If A Q HC is admissible, then 5£A is truth complete. If A is the
union of countable admissible sets, then <£A is truth maximal but not necessarily
truth complete, in the case where A is not admissible. The A-extension of any logic
is truth maximal.

The concepts of truth maximality and truth completeness were introduced by
Feferman [1974a] and Corollary 1.1.17 was also proven there. Feferman's paper
was among the first to discuss Souslin-Kleene interpolation in an abstract setting,
and it provided strong support for further work on the A-operation.
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606 XVII. Set-Theoretic Definability of Logics

1.2. Definability of Syntax Set

We have assumed that there is associated with every logic JSf a syntax set A on
which the syntax of if is represented. Part of this convention is that every element
of A is definable in if. For some if, it happens that A itself is in one form or another
definable in if. The results below suggest that such if have been defined without
proper concern to the balance between syntax and semantics. Recall that we use
91 for (A, s \A). Along these same lines, let us use J{A) for the isomorphism class of
91, £(A) for the class of structures isomorphic to an end-extension of 91. That is,

S(A) = {33 G Str[rset] \<€ c e 33, for some <€ e S(A)}.

We will now consider definability of J(A) and $(A).

1.2.1 Examples, (i) <f (HF) e EC^ .

(iii) £(A) e VC<?A \iA = B+, B admissible (see Barwise [1975, V. 3.9]).
(iv)

1.2.2 Proposition. Suppose if is adequate to truth in $£' and O c= ^£'. Then Mod(O)
is RPC_^ if either of the following conditions holds:

(a) S(A') is RPC^ and (5>isal,l subset of A.
(b) J{A') is RPC^ and 0) is a Tl\ subset of A. D

Remarks. The method of proving this proposition is similar to that used in the
proof of Lemma 1.1.10. In (b) we only need to know that O is definable by a
co-RPC^-formula over A. If A ^ A, then JL1 can be replaced by £x and II}
by n } . If f(A) is A(iO-definable in (b), and if O is A}, then Mod(O) is A(if)-
definable.

Applications. The Kleene-Craig-Vaught theorem says that recursively axio-
matizable theories in ^m(a can be finitely axiomatized using extra predicates (see
Craig-Vaught [1958]). This is exactly what Proposition 1.2.2(a) says if if =
£" = JS^ and A = A = HF. By letting ^ = $£' = seA{Q\ we get the same the-
orem for

An element of paradox is always near when we speak about definability of
truth. The following application of this paradoxical element has a long history:

1.2.3 Proposition. Suppose that <£ is adequate to truth in $£' and J(A') is A(if)-
definable. Then A(JS?) ^ JS?'.
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1. Model-Theoretic Definability Criteria 607

Proof. Let T be a vocabulary, and let 0e i?[T+] witness the adequacy of J£ to
truth in <£'. Also, let 9' be the conjunction of 9 and the RPC^-definition of
and let

X = {(TO, 95, ft)|39l(TO, 95, 91) |= 9' A Th(ft))}.

By its definition, Jf is RPC^-definable. On the other hand, we claim that

(*) (TO, 95,ft)<£X if and only if <B$J?(A') or
39i((TO, 95, 91) 1= 0' A ~iTh(ft)).

Suppose first that (TO, 95, ft) <£ JT but 95 e J ^ ' ) - By (ATI), (TO, 95, 91) N 0' holds,
for some 91. By the definition of Jf, (TO, 95, 91) t= -iTh(ft). Now, for the converse,
we suppose that (TO, 95, ft) e Jf. By the definition of jf, 95 6 f(A') and (TO, 95,91)
N 0' A Th(ft), for some 91. Now if (TO, 95, 91') \= 9' A -iTh(ft), for some 9t', then
by (AT2), TO \=#. ft and TO ##. ft, which is absurd. This ends the proof of (*). It
follows that X is A(j£>definable. To conclude the proof we show that Jf is not
definable in if'. To this end, suppose that Jf = Mod((p), for some

For any TOe Str[x] and \\t e ^'\x\ we thus have:

( # ) TON^IA if and only if (TO, 2T, ^) 1= ,̂ <p.

Now we choose T = iset u {c}, \j/ = ~\cp and TO = (91', i/̂ ). Then ( # ) gives

TON^,^ if and only if Wl\=<?.<p
if and only if TO ^ ^.

This contradiction completes the proof. D

1.2.4 Corollary. If J(A) is A(J?)-definable9 then A(J?) is not adequate to truth irt
itself D

Applications. A(if) is not selfadequate if J27 happens to be one of^a(O(Q0)9 i ? ^ ,
Ĵ ,1CO1 among many others.

Remark. We will later prove that A(j5fwco(e0)) = &A for A = (HF)+, the smallest
admissible set containing HF. Thus, A(ifcoco(go)) *s selfadequate if represented on
(HF)+ rather than on HF. This provides an example of the importance of the exact
manner in which the syntax is defined.
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608 XVII. Set-Theoretic Definability of Logics

Some Refinements. The notion of adequacy to truth is based very heavily on the
use of extra predicates. Our prime example (see Example 1.1.1) uses the extra
symbols

M<<o—finite sequences of elements of the model,

P(s, n)—the nth element of the sequence 5,

S(x, y)—the sequence y satisfies the formula x.

The use of the new sort M<co is actually unnecessary if the model 9W is infinite. Let
us say that $£ is simply adequate to truth in JSf' if Definition 1.1.3 can be satisfied (for
infinite models) with no new sorts of T' over those of i u xset. The following are
examples of simply selfadequate logics:

The above results connecting adequacy to truth and RPC carry over to simple
adequacy to truth if RPC is replaced by PC and all models are infinite. As PC^ =
EC^, for if = JSf^, we see from the analogue of Proposition 1.2.3 that JSf̂ w is not
simply adequate to truth in itself.

Another refinement arises in the following way. Looking again at Example 1.1.1,
we notice that the only really new symbol one needs is S. That is, we can allow 9K
in Example 1.1.1(4) to contain the symbols M<(O and P. On the other hand, S is
implicitly defined by 6 as soon as there are no non-standard formulae. This
observation motivates the following definition. We say that if is uniquely adequate
to truth in if' if there is a vocabulary rcode such that Lemma 1.1.13 can be satisfied
with 9W G Str[i u ic o d e]; and, moreover, the relations of T' — icode are implicitly
defined by 9. The following are examples of uniquely selfadequate logics:

Cf (f) \ gp2,w cpl cp cp
^cooAV^O/? °^ coco 5 °^ coca? °^ to\Gi °^ coicoi •

If if is uniquely adequate to truth in ^£' and J{Af) is WB(if)-definable, then it
can be proven as in Proposition 1.2.3 that WB(if) ^ £". Thus, WB(if) is not
uniquely adequate to truth in itself for 5£ as above.

Another uniform feature in the examples we have is the following: The new
type T+ is obtained from T effectively. This gives rise to the following refinement.
^£ is effectively adequate to truth in ££' if 1.1.3 can be satisfied in such a way that
T+ is obtained from T via a Z : operation on A.

Historical and Bibliographical Remarks. The notion of adequacy to truth was
introduced in Feferman [1974a] and has been further developed in Feferman
[1975]. Indeed, Corollary 1.1.17 is from Feferman [1974a]. Definability of syntax
set is discussed in Paulos [1976] where Proposition 1.2.3 is (essentially) proven.
The roots of Proposition 1.2.3 go back to Craig [1965] and Kreisel [1967]. While
Craig only considered higher-order logics, it was Mostowski [1968] who first
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2. Set-Theoretic Definability Criteria 609

explicitly proved the failure of interpolation and Beth-definability (see Section 4.1
for this) for logics which can define their own syntax set. On the other hand, we
may trace the roots of the application of self-reference and the Liar Paradox in
logic back to K. Godel and A. Tarski. The Kleene-Craig-Vaught theorem is proven
in Craig-Vaught [1958] and its generalization to i ^ / 2 ) was used in Lindstrom
[1969]. Its generalization (see Proposition 1.2.2(a)) to abstract model theory was
remarked in Feferman [1974a]. The reader is referred to Barwise [1975] for a
proof of Example 1.2.1(iii).

2. Set-Theoretic Definability Criteria

Suppose that we are given a logic $£. The predicates cpeJ? and 5R \=# cp of cp
and 9K are certain set-theoretic predicates, and we may raise the following question:
What is the set-theoretic complexity of these predicates? In this section we will
study logics with a fixed upper bound for these complexities. Moreover, we will be
particularly interested in those definitions of the predicates whose meaning does
not depend on the particular interpretation given to set-theoretical axioms.

2.7. Absolute Logics

The idea of absoluteness of a logic is that the truth or falsity of the predicate
yjl \=y, (p should not depend on the entire set-theoretical universe but rather should
depend on the sets that are required to exist (in addition to 9W and cp) by the axioms
of a fixed set theory T only. An important candidate for such a set theory T is the
Kripke-Platek axioms KP (with the axiom of infinity included). For details on
KP and the set-theoretic notion of absoluteness the reader is referred to Barwise
[1975], where the following crucial characterization (due to Feferman and Kreisel)
can also be found on page 35: For any T, a predicate is absolute in models of T
if and only if it is A: with respect to T (see Feferman [1974a] for a proof of this
result). Absolute logics were first studied systematically by Barwise [1972a].

2.1.1 Definition. Let if be a logic and T a set theory. We say that if is absolute
relative to T if there is a predicate 5(x, y), A1 with respect to T, such that for
cpeA and for any 9M

(A) 5(9W, <p)^Kpe& and Wl\=<?cp,

and the syntactic operations of if are Ax with respect to T. The logic S£ is (strictly)
absolute if it is absolute relative to some T (relative to KP) which is true in the real
world.
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610 XVII. Set-Theoretic Definability of Logics

Explanations. By " syntactic operations " we mean finitary conjunction, disjunction,
permutation, 7ca(x), etc., which are built into the definition of an abstract logic. By
" true in the real world " we mean that T is a consequence of the axioms of our meta-
set-theory. It would make little sense to allow T to be, for instance, inconsistent!
The most important consequence of T being a true set theory is that if (A9 ) is a
transitive model of T and <£ is absolute relative to T, and if cp e <£ and $R, cp e A,
then we have

04,e) 1= "SR \=<? cp" if and only if SR \=# cp.

2.1.2 Example. The infinitary logic <£A is strictly absolute. The fact that the
satisfaction relation of <£A is A x in KP-Inf-(= Axiom of Infinity) is proven in
Barwise [1975]. The crucial property of KP-Inf is that it allows the definition of
A-predicates by recursion. All the syntactic and semantic notions of <£A can be
defined in KP-Inf by set-recursion using A-predicates.

2.1.3 Example. The logics ^JiQo) and <£2
A'W are strictly absolute. This can be

seen by reducing these logics to !£A or by considering the proof of the selfadequacy
of these logics. The point to note here is that the predicate "x is finite" is Ax in
KP. However, the predicate "x is countable" is not A1 in any first-order set-
theory; and, indeed, the logic t£<xJ<Q\) turns out to be non-absolute.

2.1.4 Example. The game logics ^AG, &AV, and 5£AS are absolute relative to
KP + Zx-separation + DC (= Axiom of Dependent Choices) (see Chapter X).
Burgess [1977] introduced the Borel game logic <£ooB which extends ££'^v by
allowing the operation

f\ Vi?0 V
 3vi - - - {n\<Pio...in(

vo> • • • ? v2n+1) true} e B ,
ioel iiel

where B is any Borel set of sets of natural numbers and / is a set. It follows from
Martin's Borel Determinacy Theorem that J?AB is absolute relative to ZFC.

2.2. Some Properties of Absolute Logics

The two principal properties of absolute logics are the downward Lowenheim-
Skolem theorem (see Theorem 2.2.2) and the approximation theorem (see Theorem
2.2.8). Many useful implications can be drawn from these two results. Interestingly
enough, both have the form of an approximation result, although the two notions
of approximation are unrelated. The notion of countable approximation, to be
studied first, is due to Kueker [1972, 1977]. It leads to a very strong formulation of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.025
https://www.cambridge.org/core


2. Set-Theoretic Definability Criteria 611

the downward Lowenheim-Skolem theorem. The second notion of approximation
is the result of gradual development starting from Moschovakis.

The Lowenheim-Skolem Theorem. In order to obtain a particularly simple formu-
lation of the Lowenheim-Skolem theorem, we will assume for a moment that there
is a proper class of urelements and that the elements of all models are urelements.
This is not an essential restriction, because every model is isomorphic to one
consisting of urelements. Moreover, urelements could be avoided by using a more
cumbersome notation.

For any sets a and 5, let

as = a if a urelement, as = {xs\x e s n a} otherwise.

If s is countable, then as is called a countable approximation of a. Note that if a e On,
then as < co1? for all countable s. If 9JJ is a (relational) structure, then 901s is a count-
able substructure of 9M.
If P(x1 ? . . . , xn) is a predicate of set theory, then we say that

P(a\,..., as
n) holds almost everywhere (abbreviated by a.e.)

if P(a\, ...,as
n) holds for all s in a closed unbounded (cub) set of countable subsets

of TC({au . . . , an}). See Chapter II, and Chapter IV, Section 4 for more on "almost
all countable sets".

2.2.1 Lemma. If P(xu.. .,xn) is a Y*x-predicate and P(au.. .,an) holds, then
P{a\,..., as

n) holds almost everywhere. D

2.2.2 Downward Lowenheim-Skolem Theorem. Suppose that $£ is an absolute logic,
cp e 5£ and 9W is a model. Then cps e J£ almost everywhere and

yjlk=<?(p if and only if W \= & cps almost everywhere.

Proof. The predicate cp e <£ is I 1 ? and hence (ps e J^ a.e., by Lemma 2.2.1. Similarly,
the predicate $R \=<? cp is Zx and we get W \=$ cps a.e. from Lemma 2.2.1. D

If a G HC, then as = a a.e., since the set TC({a}) is countable. Hence, we have

2.2.3 Corollary. Suppose <£ is an absolute logic, cpeJ? and cp e HC. Ifcp has a model,
then cp has a countable model. D

Application. <£A(Qi) and S£\ are not absolute as they do not satisfy Corollary 2.2.3.
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612 XVII. Set-Theoretic Definability of Logics

For a sharper application of Theorem 2.2.2, we need a sharper cub set calcula-
tion. The proof of the following lemma is not hard.

2.2.4 Lemma. Suppose that X is a cub set of countable subsets of A. Suppose further
that I c A and K is an infinite cardinal such that \ I \ < K < \ A \. Then there is a
B a A such that I ^ B, \B\ = K and the set of countable subsets of B in X form a
cub set on B. D

2.2.5 Corollary. Suppose jSf is an absolute logic, (p e if, $R \=<? cp, No a M has
cardinality at most K and cpeHK+. Then there is an 9t ^ 501 of cardinality K such
that No a N and 91 \=<? (p. U

Proof Let A = TC({cp, $R, K+}) , and let X be a cub set of countable s <= A such
that W \=<?(ps. Furthermore, let / = TC({JV0, q>}). Finally, let B cz A be given
by Lemma 2.2.4 and define 91 to be the restriction of 501 to B n M. If s is in the cub
set of countable subsets of B that are in X, then 9Jis \=<? cp\ But W = 9i a.e. on B
and <ps = cp a.e. on B. Hence, 9i \=# cp. D

The Approximation Theorem

The countable approximations cps that we studied in the above discussions were
defined from a set-theoretical point of view. We will now associate with every
formula cp of an absolute logic approximations A(cp, a) (a e On) which are formulae
of ^oo^ and which are logically related to cp. It is instructive to first examine the
approximations of game formulae. This is the historical order of events: The
approximations were developed by Moschovakis and others for game formulae,
and it was only later that Burgess [1977] presented the general case (Theorem
2.2.8).

Let us consider a disjunctive game formula

(*) V x o A ^ o V ••' V<PhJo'"UJ'ixo,yO9...9xH9yJ.
ioel joe I n<co

In order to better understand the idea of approximation, it is useful to write (*) in
a new form. Recall that the truth of (*) is determined according to whether player
I or II has a winning strategy in the (determinate) infinite game in which each play
consists of running through (*) from left to right, with3 xn and \JineI moves of I
(pick an xn or an in) and Vyn and /\jnGl moves of II (pick a yn or a),,) and I wins if
one of <pio- - in(x0,..., yn) is true in the end. As the truth of (pio'-jn(x0, ...,yn) does
not depend on the moves number n + 1, n + 2, etc., we may as well construe the
sense of (*) as

(**) VxoA^oV
i0 e / jo e /

y0) v Vx, A 3^1 V (9io-h(x0, • • •, 3>i) v . . . ) ) .
>.£/ 716/ /
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2. Set-Theoretic Definability Criteria 613

Let us now define approximations A(a, cp) for formulae cp obtained from atomic
formulae using A , v , ~ I , 3 , V, v , A and(**):

A(0,q>) = l ( = false),

A(OL + 1, cp) = cp if cp is atomic,

1, cp A ^ ) =

A(cc + 1, <p v i/0 =

A(a +

\ iel I iel

Ala + 1, A <Pi) = A
\ iel I iel

A(v, cp) = \J A(OL, cp) for limit v.
a<v

In order to see what happens to A(a, cp) for various a and for cp as in (**) above,
we will assume that Vx0 f\ioeI 3y0 \/joeI cpiojo(x0,y0) is true and every cpiojo(x0,y0)
is atomic. Then A(6, cp) is true. If the formulae cpiojo(x0, y0) are not atomic but are
still in JSfoô , then A(co + 5, cp) is true. We can now prove that cp is true in a model
90? if and only if A(a, cp) is true in 90?, for some a e On. Observe that this would not
be true if the syntax (*) were used as no approximation would have reached to
the long disjunction at the end. If we start with a conjuctive game formula cp, we
can define A(a, cp) = iA(cc, <p~\\ where cp~i is the dual of cp obtained by every-
where interchanging A and v, 3 and V, \ / and f\, and an atomic formula and its
negation.

A trivial induction on a shows that if A(<x, cp) is true, then A(fi, cp) is true for all
j8 > a. On the other hand, one need not study very large a: the first a as above is
below |90?|+. The reader should see Chapter X for more on approximations.

2.2.6 Definition. An approximation function for a logic ^f is a mapping A: On x
<£ -> J ^ ^ such that for all cp e i f and STC:

90? \=& cp if and only if 90? |= A(oc, cp) for some a e On.
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614 XVII. Set-Theoretic Definability of Logics

2.2.7 Example. S£AV has a Ax approximation function. This function was defined
above. It is easily proven by induction on a that A(OL, cp) e ^ o w f°r a " a e ^ n *

2.2.8 Approximation Theorem, i&ery absolute logic has a Ax approximation
function.

Idea of Proof. It will be shown how to define a A1 approximation function on
countable 2R. The general case is based on forcing and is omitted here see Burgess
[1977] for the details). As S£ is absolute, there is a Sx predicate S(x, y) such that for
x, y a a> we have

S(x, y) if and only if x codes a model 9JJ, y codes a (pei f and

But ^-properties of reals are H\ over co. By using the standard tree representation
of II2 sets, we find a recursive F such that

SO, y) if and only if F(x9 y, z) wellorders co in some type < col9

for some z cz co.

Thus, we have a £} property i/̂ (x, y, w) of reals such that

S(x, y) <-+ 3a < co1 3w((co, M) ^ (a,e|a) A \j/(x, y, u)).

Recall that a E{ property of reals can be defined by a game formula. Let A'(oc, cp)
be a formula of & ^y which says that for some u a co, (co, u) = (a, e |a) and ^(x, y, n)
holds for the code y of cp and for the code x of the model we are considering. It
thus follows that

S(SR, cp) *-* 3a < ©^'(a, 9).

To get an approximation 4(a, <p)e JS?^, we use the fact that 5£ ̂ v permits
approximation (see Example 2.2.7). For more details, consult Burgess [1977]. D

Remark. A logic with a At approximation function is, in fact, absolute if its syn-
tactic operations are Ax. In particular, every logic with a Ax approximation
function has the downward Lowenheim-Skolem property of Theorem 2.2.2. D

2.2.9 Corollary. Every absolute logic has the Karp property.

Proof This is such a basic property of absolute logics that we indicate two proofs
here, one using countable approximations and the other approximations in J^oo^.
Let if be an absolute logic.

First Proof Suppose that 90? =p 91 but not 2R =#> 91. The previous sentence is a
Xj-property of 9W and 91. By Lemma 2.2.1 there are countable approximations
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2. Set-Theoretic Definability Criteria 615

W and 91s of 2R and 91 with the same property. But then 2RS ^ 91s, which implies
that W =<? 91s.

Second Proof. If 9)1 =^^91, then 9)1 and 91 satisfy the same approximations of
if-sentences. Hence, by the approximation theorem (see Theorem 2.2.8), 9)1 =# 91.

D

2.2.10 Corollary. If ^ is an absolute logic, then A(JSfa>20,) £ &.

Proof. Consider the structures 9)1 and 91 over the empty vocabulary such that
|9R| = Ko and |9l| = Kx. Now, 9)1 ^P9l, and the model classes {9l|9I ^ 9)1},
{91191 ̂  91} are A(i^2J-definab!e. If A(ifW2J < 5£, then 9)1 ^<?9l, which is
contrary to Karp property (see Theorem 2.2.8). D

The rather simple observation given in Corollary 2.2.10 has the following
immediate but important consequence: There is no way of extending i ^ to a logic
which obeys the Craig interpolation theorem and which would still be absolute.

2.2.11 Corollary, (i) Let <£ be an absolute logic and cpe^ such that cpeHK(K > co).
There are cpa e ^K(O (a < K) such that for any 9R of cardinality < K:

(ii) / / if is absolute and cpe if such that cp e HC, then the number of non-
isomorphic countable models of (p is either < Kx or 2Xo.

Proof The proof of (i) follows from Theorem 2.2.8 and Levy's reflection principle.
We take <pa = A(<x, cp). The proof of (ii) follows from (i) and the similar result for
sf n

Definability of Well-Order

2.2.12 Definition. A sentence (p(M, < , . . . ) pins down an ordinal a if (M, <) is
well-ordered in every model of (p(M, < , . . . ) and q>(M, < , . . . ) has at least one
model with (M, <) of order type > a. A logic if pins down a if some cpeJ? does.
A logic ^£ is strong if some cpe S£ pins down every countable ordinal. A logic 5£
is bounded if no <p G if is able to pin down every ordinal, otherwise it is unbounded.

2.2.13 Examples, (i) if(0£0(g0)
 a n d ^(HF>+ pin down every a

(ii) y^a) pins down every a < OJ1.
(iii) If cf(?c) > CD, then &K + (O pins down K+.
fiv^ (fi „ is strong

<

v.., —€Ol̂  is strong.
(v) J^ulG is unbounded.

Remarks on Proofs. Recall that co^K (the Church-Kleene coj is the smallest
ordinal which is not the order type of a recursive well-ordering of co. We have used
(HF)+ for the set L ^ K . If a < cofS then na (as defined in Section 1.1) is in <$f(HF) +
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616 XVII. Set-Theoretic Definability of Logics

and pins down a. It will be proven in Chapter VIII that J^HF)+ cannot pin down
co^K. Similarly, 7ra will pin down any a < col in J5?wica. To pin down an a < cô K in
^ooiQoX w e simply write down the standard definition of (N, + , - ,0 ,1 , <) in
ĉoco(Qo) a n d then use the recursive definition of a to define a. Since N is standard,

this will really define a. For a proof of (iii) see Barwise-Kunen [1971]. The example
(iv) is based on the observation that a linear ordering < of a; is a well-ordering if
and only if

y y - - - A > « + I < v
io i"i n<co

It is known that J£?WlS does not pin down co2 but pins down every a < co2 if MA +
2W > a)1 + (oy = cof. D

In Chapter III it was proven (Theorem III.3.6) that every bounded logic with
the downward Lowenheim-Skolem property as in Theorem 2.2.2, is a sublogic of
i f ^ . The result is interesting enough to be rephrased here as

2.2.14 Theorem. Suppose that Z£ is a regular, absolute, and bounded logic. Then

2.3. Relative Absoluteness and Generalized Quantifiers

We have observed that ^JiQi) is n o t absolute, the reason being that the predicate
"x is countable" is itself not absolute. However, even J^JjQf) is absolute if Kx is
preserved. More generally, by suitably relativizing the notion of absoluteness, we
will be able to examine non-absolute logics.

In the following definition, R is an arbitrary predicate of set theory. Recall the
characterization of absoluteness as stated earlier in Definition 2.1.1. This char-
acterization is valid in extended languages as well.

2.3.1 Definition. Let if be a logic, R a predicate of set theory, and T a set theory.
We say that $£ is absolute relative to R (and T) if it is absolute (relative to T) in
the extended language {e, R}.

2.3.2 Examples, (i) The logic ^A(Q) is absolute relative to Q and KP(Q) (= KP
in the language {e, Q}).

(ii) The logic S£\ is absolute relative to Pw and KP(Pw) + axiom of power
set, where Pw(x, y) <-• y = &(x).

There is a difficulty in proceeding with relative absoluteness in the same way
as with absoluteness. The basic method in the theory of absolute logics is to appeal
to transitive models of set theory. In the case of relative absoluteness, however, the
analogue of transitivity of a model of set theory is the property of being of the form
(M, e, R n M"), where n is the arity of the predicate R. Very little is known of
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2. Set-Theoretic Definability Criteria 617

models of this form; and, accordingly, there are very few general results about
relatively absolute logics.

In special cases, more specific results obtain. Let Cbl(x) be the predicate of set
theory expressing that x is countable (that is, mappable one to one into co). Clearly,
<^(O(o(Qi) is absolute relative to Cbl. But so is ^wco(2f), where Qf says that an
equivalence relation has Kx classes. Furthermore, combinations such as J^G(Qf)
are absolute relative to Cbl.

2.3.3 Proposition. Suppose that 5£ is absolute relative to Cbl and cps 3? such that
cp G /JW2. If cp has a model, then cp has a model of power at most Kx.

Idea of Proof Let S(x, y) be a predicate £j relative to Cbl, which defines the truth
of $£. Then there is a Zx-predicate S'(x, y, z) such that S(x, y) <-* Sf(x, y, Nx) holds
in ZFC" (= ZFC-power set axiom). If 3xS(x, cp), then by Levy's reflection principle
Hm2 \= 3xS'(x, cp, XJ. Whence,

5(9W, cp) for some 351 e HW2. D

We can improve Proposition 2.3.3 in the direction of Theorem 2.2.2 by studying
Kueker's uncountable approximations (see Kueker [1977]).

Hutchinson [1976] showed that the axiomatizability and countable com-
pactness of £?m(O(Qi) follow from properties of countable models of set theory.
Although we will not go into the details, these set-theoretical methods extend
naturally to logics that are absolute relative to Cbl.

2.3.4 Example. Let us define

Cd(x) <-> "x is a cardinal.

Then <£A(I) is absolute relative to Cd, where / is the equicardinality quantifier

IxyA(x)B(y)~\A(-)\ = \B(-)\.

To get a result analogous to Proposition 2.3.3 for £fA(I) we would have to
start with an HK having the following rather strong reflection property: IfaGHK,
cp(x) is Zx relative to Cd and cp(a) holds, then HK1= cp(a). Such K exist, but how large
are they? From a standpoint of consistency K could be 203 or K could be bigger
than a measurable cardinal (see Vaananen [1978]).

2.3.5 Proposition. IfV = L, then S£\ is absolute relative to Cd.

Proof lfV = L, then Pw is Zx relative to Cd:

Pw(x, y) <-> 3K 3a e K(X G La A Cd(*:) A LK N PW(X, y)). D

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.025
https://www.cambridge.org/core


618 XVII. Set-Theoretic Definability of Logics

2.4. Absoluteness and Boolean Extensions

In this discussion we will assume that the reader is familiar with Boolean-valued
models of set theory and forcing.

2.4.1 Definition. Let B be a complete Boolean algebra. A logic <£ is absolute for
B,ifforall9W:

9« Kz> (p if and only if [SR \=<? (pf = 1. D

Remarks. It may be that \Jp e &]B = 1 although cp <£ $£, for instance, if Ĵ 7 = &m(O

and B collapses cp to a countable set. It may also happen that [2R \=#> (p]B is
neither 0 nor 1. However, for homogenous B this never happens.

2.4.2 Example. If <£ is absolute relative to T and VE \= T, then S£ is absolute for
B. In particular, <£A, S£}

AG, 5£ AB are all absolute for any B.

2.4.3 Example. £fA(I) is absolute relative to all Boolean algebras with c.c.c.
This is because every c.c.c. algebra preserves the predicate Cd.

2.4.4 Example, gA(Qi) and J^1C0lare absolute for countably closed forcing, since
such extensions preserve the predicate Cbl and do not add new countable subsets.

2.4.5 Example, if^(aa) is absolute for proper forcing (a notion of forcing is proper
if it does not destroy stationary subset of co1; this condition is, of course, weaker
than both countable closure and c.c.c).

2.4.6 Proposition. There is no extension of ££nd<Q,\) which provably in ZFC satisfies
the Craig interpolation property and is provably absolute for c.c.c. forcing.

Idea of Proof. We shall consider tree-like partially ordered structures as defined
in Baumgartner et al. [1970]. Let jfx be the class of tree-like structures with an
uncountable branch and Jf2 the class of tree-like structures homomorphic to
the ordering of the rationals. Then J^ and JT2 are disjoint PC-classes of i ^ / Q i ) .
Suppose that 6 is a sentence in a logic absolute for c.c.c. forcing, such that C/fx ^
Mod(0) and Mod(0) n C/f2 = 0. Let T be a Souslin tree (if there is none, we can
obtain one by c.c.c. forcing). Suppose that T 1= 8. Let B be a c.c.c. algebra which
embeds T homomorphically into the rationals (see ibid.). Then [T 1= 0]B = 1—a
contradiction. If T tf= 0, let B be a c.c.c. algebra which produces a long branch
through T. Then [T e XJ1 8 = 1—a contradiction again. D

Considering the great interest in extensions of JS^CQi)—especially those
satisfying Craig—the above result is most useful. It shows that such an extension
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3. Characterizations of Abstract Logics 619

has to be based on something more complicated than cardinality, cofinality, or
stationary sets. In this sense, Proposition 2.4.6 is analogous to Corollary 2.2.9.

The following result shows another direction in the applications of forcing to
absolute logics. It is but one— and a simple one, at that—in the range of indepen-
dence results concerning strong abstract logics.

2.4.7 Proposition. / / CON(ZF), then it is consistent that every logic 3&JQ),
provably absolute for c.c.c. forcing, has Lowenheim number <2£0.

Proof. We shall construct a c.c.c. algebra B such that [if^CO has Lowenheim
number < 2£0]B = 1. The more general result will then follow by compactness.

Let J^7
C0C0(/)[T] = {(pn\n < co}, where T is a vocabulary general enough to give

the right Lowenheim number. Let Bo = {0, 1}. If En is defined, let Bw+1 2 Un

be a c.c.c. algebra such that if [# has a model]B > 0 for some c.c.c. B ^ Bn, then
[$„ has a model of power < 2w]Bw+1 = 1. This is possible in view of the unlimited
size of T° in c.c.c. extensions. If Bo c . . . c En • • • is defined for n < co, let B be the
direct limit of (Bn)n<(o. Then B has c.c.c. Suppose now that [$„ has a model]B > 0.
Then also \Jpn has a model of power < 2 W ] B M + 1 = 1, by construction. Hence,
\Jpn has a model of power <2(O]E = 1, by the absoluteness of ^JJ) for Bn + 1

and B. D

Historical and Bibliographical Remarks. The definition of an absolute logic goes
back to Barwise [1972a]. The Lowenheim-Skolem theorem for absolute logics was
first proven in the weaker form (see Corollary 2.2.3) in Barwise [1972a], and the full
result Theorem 2.2.2 appeared in Barwise [1974b] using ideas from Kueker [1972].
The results Lemma 2.2.4 and Corollary 2.2.5 are from Kueker [1977]. The notion
of approximation was developed for game and Vaught formulae by Vaught
[1973b] and has been since generalized for all absolute logics in Burgess [1977],
where Theorem 2.2.8 and its corollary is proved. Corollaries 2.2.9 and 2.2.10 were
already proven by Barwise [1972a]. The reader is referred to Ellentuck [1975] and
Burgess [1978] for results on Souslin logic !£AS. The characterization given in
Theorem 2.2.13 of i ? ^ is due to Barwise [1972a]. Proposition 2.4.6 is due to
S. Shelah, while Proposition 2.4.7 is from Vaananen [1980b], where other related
results are also proven.

3. Characterizations of Abstract Logics

In this section we shall relate the model-theoretic notion of adequacy to truth and
the set-theoretic notion of relative absoluteness. In rough terms, we show that if a
logic S£ is sufficiently strong and is sufficiently absolute, then if is adequate to
truth in if. As applications, we get rather strong results on A-extensions of various
logics—the main results of this chapter.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.025
https://www.cambridge.org/core


620 XVII. Set-Theoretic Definability of Logics

3.1. A General Framework

In order that a logic be adequate to truth in a given logic, it must have enough
expressive power to enable it to capture the truth definition of the logic. In our set-
theoretical approach, this leads to the following new notion:

3.1.1 Definition. Let if be a logic and R a predicate of set theory. We say that S£
captures R if there is an RPC^-class Jf of set-theoretical structures such that

(Cl) For any set a there is a transitive set M such that aeM, and (M, e |M) e jf.
(C2) If SR e JT and TO N nai(mt) (i = 1 . . . n\ then R(al9..., an) if and only if

Explanations. Intuitively, in the above Jf is a class of transitive models of set
theory. Condition (Cl) says only that jf* is non-trivial. (C2) is the critical condition
and asserts that models of X preserve R upwards and downwards.

3.1.2 Example. Let R(x) be a predicate which is Ax in KP-Inf. Then &„„ captures
R. To see this, let Jf be the EC^^-class of models of a large finite part of KP-Inf.
Condition (Cl) is then true, since HKeX for all K. In order to verify (C2), we let
SR e X and 9R |= na(m). We may assume that the well-founded part 91 of 9K is a
standard e-structure and thus that m = a also. By the truncation lemma (see
Barwise [1975], p. 73), 91 e X holds. And, by the absoluteness of Ax-predicates we
have

R(a) if and only if 9l\=R(a)
if and only if Wl\=R(a).

Before we examine more examples of capture, let us prove the main result of
this section. In this theorem, we will again assume that the elements of all models
considered are urelements. In fact, we do not need this convention before Theorem
3.4.15 except in the proof of

3.1.3 Theorem. Suppose that ££ and $£' are logics. Suppose also that $£ captures
the predicate S(x, y) such that

if and only if <peg' and SR \=#. <p,

for all cp and all 2R. Then if is adequate to truth in !£'.

Proof Suppose that JT witnesses the capture of S(x, y). Let Tf
set (disjoint form rset)

be the vocabulary of Jf". In order to demonstrate the adequacy of ££ to truth in S£\
we shall begin with an arbitrary type T. AS a means of simplifying notation, we
will assume that i contains only one binary predicate symbol R and one sort s. We
let T+ = [T, tset, T, T'], where x' contains Tf

set and three constant symbols m, n,
and r of the sort of Tget. Let S'(x, y) be the predicate 5(x, y) in vocabulary x^t, and
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3. Characterizations of Abstract Logics 621

let JT be the class of T+-structures W = [$R, 95, T, 31, m, w, r, / ] such that all the
following hold:

(a)
(b) 23c=end9t.
(c) 311= "m is a structure (n, r) of type <2> and n is a set of urelements."
(d) Vx(xeM<r+9l t= f(x)En) & "f is 1-1 onM."
(e) Vx, y 6 M(K(x, y)«SR N (/(x),/(y)) e r. *
(f) Vx e B(r(x) <-> S'(m, x)).

Intuitively, the following idea is behind X\ 93 is the syntax set of if', and 3i is a
larger set-theoretical universe within which S(x, y) is captured by Jf\ In view of
the choice of S(x, y), this essentially entails that \=^ be captured within 31. Inside
the universe 31 m is a structure (n, r) of the same type as the structure 90?, the true
sentences of which we try to define. Conditions (d) and (e) assert that m looks
exactly like $R. Finally, condition (f) defines the truth-predicate T in the obvious
way.

Clearly, jf' is an RPC^-class, so that it is RPC-defined by some 9 e 5£. Now, in
order to prove (ATI), we let SCR e Str[r] be given. By (Cl), there is a transitive set
N such that A'99JleN and 31 = (JV, e \N) e C/f. Let us examine the structure

W = PW, 21, Th^(3M), 31, n, m, r , / ] ,

where n, m, r, and/are defined so as to make conditions (a) through (e) true. Now,
also condition (f) holds, since by (C2) we have

31 \= S'(m, cp) if and only if S(9K, cp)

if and only if cp e Th^(SR).

Thus, W e Jf' and therefore expands to a model of 6. This ends the proof of
(ATI).

As to the proof of (AT2), we suppose that

[SR, 93, T, 31, m, », r , / , . . . ] N= 0 A n9(b),

where cpe Ar and 6eB. Furthermore, let 31' be the well-founded part of 31 and i
a transitive collapse of 31, i: 31 -> (N, e). As 93 N ^(fc), we have b e AT' and i(fe) = (/).
Since «is a set of urelements in 31, m e iV' and i(m) is a structure SR' isomorphic to
SR. Now we may reason as follows:

b E T if and only if 311= Sf(m, b),

if and only if S(W,(p),
if and only if <jo e JS?' and W t=#. cp,

if and only if cp e ££' and SR N=ĵ ' q>.

This ends the proof of (AT2). D
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622 XVII. Set-Theoretic Definability of Logics

3.1.4 Corollary. Suppose <£ captures the predicate xeJf, where Jf is a model class.
Then Jf is A(£>)-definable.

3.1.5 Corollary (Characterization of i ?^ ) . JS?^ is the only logic which is represented
on HF and is absolute relative to KP-Inf.

Proof. J^,^ certainly has the stated property by Example 2.1.2. On the other hand,
if <£ is represented on HF and absolute relative to KP-Inf, then by Example 3.1.2
and Theorem 3.1.3, we have that j£?W£0 is adequate to truth in <£. Whence, by
Corollary 1.1.12, it follows that <£ < A(ifwJ = ^C0(O. U

Observe that the proof of Corollary 3.1.5 actually gives the stronger conclusion
that if^ is adequate to truth in any logic that is absolute relative to KP-Inf.

3.1.6 Remarks, (i) The proof of Theorem 3.1.3 also gives a sufficient condition
for simple adequacy to truth. All we have to know in addition about
capture is that the transitive set M in (Cl) can be chosen to be of cardinality
at most | a | • Ko.

(ii) If S£ captures S in the weaker sense that "if" holds in (C2) rather than
"if and only if," then we still get if semi-adequate to the truth in if' in the
sense of Remark 1.1.9, and we still obtain RPC^-definability of Jf in
Corollary 3.1.4.

(iii) Some logics may be defined with respect to a parameter (for example a is
the parameter for J^aXQJ). There is no essential difficulty in having a
parameter p in Theorem 3.1.3 and Corollary 3.1.4, but in Definition
3.1.1(C2), we must assume, of course, that every TO e JT contains a set q
such that $R N np(q).

(iv) To prove Corollary 3.1.4 we do not need the full strength of "capture."
Thus, in (Cl), we can restrict to a = (9W, p\ where 90? is an arbitrary model
of the type of C/f and p is a parameter in the definition of Jf (if any).

(v) There is a certain uniformity in the way T+ is obtained from T above.
More precisely, the conclusion of Theorem 3.1.3 can be improved to:
if is effectively adequate to truth in 5£'.

3.2. Absolute Logics Revisited

The notion of capture is used to prove the following theorem concerning strict
absoluteness (Definition 2.1.1).

3.2.1 Theorem. ^J^Qo) is adequate to truth in any strictly absolute logic.

Proof. Suppose that if is strictly absolute. Thus, there is a predicate S(x,y) Ax in
KP, such that

S(m,cp) if and only if <peJS? and SRt=^(p,
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3. Characterizations of Abstract Logics 623

for all 501 and cp. An argument similar to the one used in Example 3.1.2 shows that
<^Lo(Go) captures S(x, y). By Theorem 3.1.3, &mJQ0) is adequate to truth in if. D

Observe that Theorem 3.2.1 does not allow us to conclude that <£ < A(ifwco(Q0))
if if is strictly absolute, since if may not be represented on the same syntax set.
However, we do have the following important result:

3.2.2 Theorem. A(ifW0/<20)) = if(HF)+.

Proof. It suffices to prove that J2<HF) + ^ ^( i^/Qo)) , as it is well known that
J2(HF)+ satisfies the Craig interpolation theorem. As <£(HF)+ is strictly absolute, there
is a predicate S(x, y\ A1 in KP, such that

S(2R, cp) if and only if cpeif and 9n\=<?cp.

Let cp G J£(HF)+ • As an element of i^,cK? the set cp is definable by a predicate which
is Ax in KP (see, for example, Barwise [1975], Section II.5.14). Thus, the model
class Mod(<p) is definable by a predicate, Ax in KP. By Example 3.1.2, i^,w(2o)
captures this predicate; and, by Corollary 3.1.4, Mod(cp) is ACif^goXJ-definable,
as desired. D

The above theorem can be relativized to a parameter in the following way.
Recall what was said about logics defined with respect to a parameter in Remark

If X ^ a>, let Qx be the generalized quantifier associated with

{Sl|9l£(a>, <9X)}

and HYP(X) the smallest admissible set containing X as an element.

3.2.3 Theorem. IfX c a>9 then &L&<JLQx)) = ^ H Y P W Hence,

Proof. As ^HYp(X) satisfies Craig, it is again enough to pick cp e ifHvp(X) a n d show
that SPaJiQid captures the predicate x e Mod(cp\ as we did in the proof of Theorem
3.2.2. Note that &HYP(X) is strictly absolute and Mod(cp) is therefore definable by a
predicate, Ax in KP, with cp as a parameter. As an element of HYP(X), cp is itself
definable by a predicate Ax in KP, with X as a parameter (see Barwise [1975],
Section IV. 1.6). Using ^dQxX it is now easy to capture the predicate x e Mod(cp):
We simply proceed as in Example 3.1.2 and use Qx to capture the parameter X. U

We shall apply Theorem 3.2.1 now to prove the main result of Barwise [1972a]:

3.2.4 Theorem. Let A be an admissible set containing co, and let if be a strictly
absolute logic the syntax of which is represented on A. Then <£ < <£A.
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624 XVII. Set-Theoretic Definability of Logics

Proof. Let if be a strictly absolute logic represented on A, and let cp e if. Suppose,
for a reductio ad absurdum, that Mod((p) is not definable in S£A. Then the following
holds:

3A03(p0eA0((A0,e\Ao)t=KP A ^ ^ A V^GJ^o-i(<po<->tf0)-

This can be written in E-form. Whence, by Levy's reflection lemma, it holds in HC.
Thus, we have a countable admissible set Ao such that some cp0 e if is in Ao but is
not definable in i ^ 0 . Let ^£' be the strictly absolute sublogic of if containing those
sentences of ^£ which are in Ao. By Theorem 3.2.1, ^^(QoX and hence also J£Ao,
is adequate to truth in S£'. By Corollary 1.1.12, & < A(ifAo). As Ao is a countable
admissible set, A(if^0) = i^ 0 , and hence, if' < 2£AQ also. But this contradicts the
assumption that Mod((p0) is not definable in <£AQ . D

Application. The logics ^£AG, ^AV, !£AB and other unbounded absolute logics are
not strictly absolute.

Theorem 3.2.4 is an important characterization of admissible languages S£A.
It uses essentially the Souslin-Kleene property of 5£A for countable A. The lack of
this property is the main obstacle to proofs of a similar result for other logics. The
following is a local version:

3.2.5 Corollary. Let A be an admissible set containing co. A model class is definable in
5£A if and only if it is definable by a predicate A1 in KP, with parameters in A. D

3.2.6 Corollary (Characterization of ^A). If COG A, then <£A is the strongest strictly
absolute logic represented on A. •

3.3. Unbounded Logics

Recall that a logic L is unbounded if L contains a sentence which pins down every
ordinal or, equivalently, if the notion of well-ordering is RPC in L.

3.3.1 Lemma. An unbounded logic captures every Ax predicate.

Proof. The capturing RPC-class X asserts that 9JI is a well-founded model of the
sentence expressing the A x-definability of the predicate in question. Condition (C2)
then follows from the absoluteness of A1 predicates in transitive domains. D

3.3.2 Theorem. Any unbounded logic is adequate to truth in any absolute logic.

Proof The claim follows from the definition of absolute logics (see Lemma 3.3.1
and Theorem 3.1.3). D

It would now be in order to search for the simplest possible unbounded logic.
Unfortunately, there is no natural choice. The simplest logic in which the notion of
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well-ordering is EC-definable (rather than RPC-definable) is the logic Jf^JW),
where

WxyA(x9 y)<-+A(-9 •) well -orders its field.

But, for example, the unbounded logic ^JJ) does not contain ^^{W) (see
Lindstrom [1966]).

3.3.3 Corollary, (i) If'& is absolute, then i f < A(&A(W)).
(ii) The logics S£A{yV\ £?AG, ^AV, ^AB and all unbounded absolute logics

represented on A are A-equivalent.
(iii) A model class is definable in A(J?A(W)) if and only if it is definable by a Ax

predicate with parameters in A. D

Remark. We can replace " unbounded " by " strong " in Theorem 3.3.2 and Corollary
3.3.3(ii) if the syntax set A is assumed to be contained in HC. Respectively, if
A c HC, £?AS can be added to the list of logics in Corollary 3.3.3(ii).

It is interesting to observe that there is no strongest absolute logic (this follows
from Theorem 3.4.7 below). The family of absolute logics divides into two cate-
gories: The first consists of sublogics of j£? ̂ ^ and the second of A-equivalent logics
(up to difference of syntax set).

There is an important relation between descriptive set theory and infinitary
logic. In order to see this, let us restrict ourselves to countable structures and logics
represented on HC for a moment. A class X of countable models can be viewed as
a set of reals, and it thus is meaningful to ask, for example, whether X is Borel or
not. If X is invariant (that is, closed under isomorphisms), then Diagram 1 shows
the equivalence oiX being definable on a level in topology and X being definable
in an infinitary logic. The reader is referred to Vaught [1973] for details on these
equivalences. Observe, however, that on the last row, we can replace i ^ l F by any
unbounded absolute logic (by Corollary 3.3.3(ii)). Thus, every X definable in an
absolute logic is \\. Burgess [1977] showed that the question (posed by Vaught)
of whether the converse holds, that is, of whether every A2 X is definable in an
absolute logic, is independent of ZFC.

Topology Infinitary Logic

Borel Semxia

Analytic PC in jSfmia)

C-set &mxV

Li PCinJZL-

Diagram 1
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626 XVII. Set-Theoretic Definability of Logics

3.4. Relatively Absolute Logics Revisited

As we remarked earlier, the role that transitive models of set theory play in the
theory of absolute logics is taken up by models of the form (M, e n M2, R n AT)
in the theory of relatively absolute logics (see Section 2.3). Getting a hold on
Rn Mn is no easier than making sure that e is the true e. While unboundedness is a
good means for E, we need the following relativized version of pinning down for
RnMn:

3.4.1 Definition. Let & be a logic and R(xu . . . , xn) a predicate. We say that if
pms down i?(x1?..., xn) if there is an RPC^-class JT such that

9t e Jf if and only if 9t ^ (iV, e n JV2, £ n AT"), for some transitive
set JV.

3.4.2 Examples, (i) ^ ( J ) pins down Cd.
(ii) X2a pins down Pw.

(iii) JZ^JH) pins down Pw.
(iv) If V = L, then i^w(7) pins down Pw.
(v) IZaJjQ) pins down Q, if unbounded.

3.4.3 Lemma. If a logic $£ pins down a predicate R, then if is unbounded and
captures R. Moreover, !£ captures every Ax predicate in the extended language

Proof. The claim concerning unboundedness and capture is trivial. For the second
claim, let S(x) be Ax in the language {e, R}. Let Jf witness the pinning down of R
and let Jf' be X intersected with a statement witnessing the Ax nature of S(x). By
reflection, jf' satisfies (Cl). Condition (C2) follows from the absoluteness of A1

predicates in end extensions. D

3.4.4 Theorem. 7/JSf pins down R and <£' is absolute relative to R, then <£ is adequate
to truth in <£'.

Proof Let S(x, y) be a predicate, At in the extended language {e, R}, such that

S(2R, cp) if and only if q>e&' and 3R\=#><p9

for all 2R and cp. Now, if captures S(x, y) by Lemma 3.4.3. Thus, Theorem 3.1.3
gives the desired result. D

3.4.5 Corollary, (i) If if pins down R, !£' is absolute relative to R and A' c A,
then if' < A(if).

(ii) 7/if is absolute relative to R and pins down R, then a model class is definable
in A(if) (RPQp) if and only if it is Ai (Ex) definable in the extended language
{e, R}, with parameters in A. D
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3.4.6 Examples, (i) The logic J^(/) is absolute relative to Cd and pins down Cd.
Therefore:
If <£ pins down Cd, then <£A(l) < A(if).
If $£ is absolute relative to Cd, then <£ < A(if^(I)).

(ii) The logic £fA is absolute relative to Pw and pins down Pw. Then, using the
fact that A2 = A^Pw), we get: A model class is definable in A(if ̂ ) if and
only if it is A2 with parameters in A.

The above results lead naturally to the following question: When is A(if)
absolute? We can answer this for many unbounded if, but the problem remains
unsettled for most bounded if.

3.4.7 Theorem, / / i f pins down R and <£' is absolute relative to R, then A(if) ^ if'.

Proof. Let 5(x, y) be a Ax predicate in the extended language {e, R} such that

cp) if and only if cpe<£' and 3R\=^<p9

for all 90? and (p. Let Jf be the class of models 93 such that

93 ^ (B, e n B2\ where B = TC({a}) for some a such that -|S(93, a).

X is clearly, Ax in the language {e, R}. By Corollary 3.4.5(ii), X is definable in
A(if). Suppose that Jf were definable by some <p e JSf' and let 91 = (AT, e n AT2),
where JV = TC({</)}). Then

) if and only if
if and only if -iS(9l, ̂ >).

This contradiction shows that X is not EC^ and the proof is thus completed. D

3.4.8 Examples, (i)
(ii)

(iii) M

(iv) A(ifww(Q)) £ ^JQX if if_(Q) is unbounded.

Theorem 3.4.7 shows that if $£ pins down R9 then A(if) cannot be extended to a
logic absolute relative to R; even less is A(if) itself absolute relative to R.

3.4.9 Examples. The logic A(ifcaw(P^)) is not absolute, and neither is A(ifWlG)
nor A(ifWlF). Moreover, the logic A(i^oct)(/)) is not absolute relative to Cd, nor is
the logic A(if2

 w) absolute relative to Pw.

We observed in Corollary 1.2.4 that A(ifCO£0(Q0)) is not selfadequate but is
equivalent to one on a larger syntax set. The results we have here are stronger.
For example A(ifWC0(P^)) is not absolute even if represented on a larger syntax
set.
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628 XVII. Set-Theoretic Definability of Logics

Application. If <£ is unbounded, then there are no generalized quantifiers Ql9..., Qn

and no p.r. closed set A such that

For otherwise £fA(Qi,..., Qn) would be a A-logic which pins down and is absolute
relative to Ql9..., Qn.

Iterated A-extensions

3.4.10 Definition. Let if be a logic and let I o ( ^ ) a n d n o ( ^ ) mean the same as
EC^. Moreover, ZB+1(JSP) means RPCnn(^) and nB+1(jS?) means
Finally,

A ĴS?) means 2B+ ̂  n nn

Explanation. Here we have a hierarchy of RPC-definability defined very much like
the hierarchy of Zn predicates of set theory or the hierarchy of £*-sets in recursion
theory. We treat SB(iP), nn(JSf), and A^i?) as if they were logics, which, in fact, they
actually are, as one can easily see. Of course, Sn(JS?) and nn(j£?) are not closed under
negation. However, AW(J§?) is closed, if if is. Moreover, it is easy to see that each
An(i?) is A-closed.

3.4.11 Theorem. Let n > 1. A model class is definable in An(£fA) if and only if it is
An-definable in set theory, with parameters in A. D

Remark. If J?A is replaced by S£AG, the result also holds for n = 1.

Proof of Theorem 3.4.11. We use induction on n. For n = 2, the claim is true since
&\ < 22(J%) implies that A(jSfj) < A2(£>A) holds, and Z^JSPJ < A ( ^ ) implies
that A2(J^) < A(JSPJ) holds. Assume, then, that the claim holds for n. Let X be a
Zn+ x -definable model class, and let R be a Tln predicate such that JT is Zx in the
extended language {e, K}. Moreover, let JSf be the logic &A{Q)9 where Q is the
quantifier associated with the model class

{9l\9l^(N,enN2,Rn Nm) for some transitive set N}.

Then 5£ is absolute relative to R and pins down #. By Corollary 3.4.5(ii), X is
RPC^-definable. As a IIn-definable model class, Q is Zw(JSf)-definable. The con-
verse is similar. D

3.4.12 Corollary. AM+1(J^) = An(Se2
A\for n > 0.

The logics An(<£A) are extremely powerful and gradually exhaust all logics
definable in set theory. In fact, A3(JSfi4) already contains most familiar logics.
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Second-Order Logic

We can construe second-order logic S£\ as the result of iteratively closing <£A

under the PC-operation. Therefore, let us examine the extent to which the above
results hold for PC in place of RPC. To this purpose, we now consider

3.4.13 Definition. Let cp(x0,..., xn) be a formula of set theory. The expressions

3xo(HC(xo) < UC(x1 u • • • u xn) A <p(x0,..., xn))

and

Vxo(HC(xo) < HC(X! u . . . u x J - > <p(x09..., *„)),

where HC(i) = max(K0, | TC(x) |), are called flat quantifiers. The class of flat
formulae of set theory is the smallest class of formulae which contains Z0-formulae
and which is closed under A , v , ~i and flat quantification.

The following characterization of second-order logic can be proven by slightly
modifying the proof of Theorems 3.3.2 and 3.4.11.

3.4.14 Theorem, (i) Second-order logic is simply adequate to truth in any logic
definable by aflat formula of set theory.

(ii) A model class is definable in second order logic J£A if and only if it is definable
by a flat formula of set theory with parameters in A. D

Likewise, we may characterize PC ̂ -definability for a variety of jSf by modifying
Corollary 3.4.5(ii).

The Logic Se^JSb

Let Q be any quantifier. For reasons which will become apparent in the sequel, no
characterization of ^JiQ) can be proven along the above lines. However, we can
say something about A(Ĵ ?

coca(Q)). In particular, we can assert

3.4.15 Theorem. ^JjQ) is adequate to truth in any logic that is absolute relative to
Q and KP(g)-Inf.

Proof Suppose that ££ is absolute relative to Q and KP(©-Inf. Then the predicate
"<pej£? A SR \=&<p" is Ax in Q and KP(g)-Inf. It is easy to show that ^JQ)
captures such predicates. Thus, the claim follows from Theorem 3.1.3. D

3.4.16 Corollary. IfK is a model class, then (a) -• (b) -• (c) as below holds:

(a) K is definable in &A{Q).
(b) K is Al in KP-Inf in the extended language {e, Q} with parameters in A.
(c) K is definable in A(i£(g)). U

The main obstacle to improving Corollary 3.4.16 to (b)^>(c) lies in the fact
that certain X are A(j5fwco(g))-definable in some models of set theory but not in
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630 XVII. Set-Theoretic Definability of Logics

others. For example, if X is the class of tree-like structures with an uncountable
branch, then MA + ~i CH implies that jf is AtJ^XQ ̂ -definable, but ZFC alone
is not enough for this, let alone ZFC-Inf. On the other hand, if the axiom of infinity
is added to the picture, much more than M^^J^Qi)) will be Al9 for instance,
^JW). These situations manifest the difficulties inherent in trying to prove general
set-theoretical characterizations for logics of the form JS^XQ).

Historical and Bibliographical Remarks. The first result proven in the direction
of this section is the characterization Theorem 3.2.4 of strictly absolute logics, due
to Barwise [1972a]. The observation that absolute logics and ^A{W) are related as
in Corollary 3.3.3(i) was made by Swett [1974]. Corollary 3.3.3 was rediscovered
independently by Oikkonen [1978]. The relativization to an arbitrary predicate
R (see Corollary 3.4.5) was carried out in Oikkonen [1978] and Vaananen [1978].
Finally, the iteration in Theorem 3.4.11 is due to Oikkonen [1978]. The computa-
tion of AOS^Qo)) in Theorem 3.2.2 and its generalization Theorem 3.2.3 are
due independently to Barwise [1974a] and Makowsky [1975b]. Burgess [1977] is a
good reference to absolute logics. Essentially, it contains Theorem 3.4.7, among
other things. Theorem 3.4.14 on second-order logic is from Vaananen [1979a].
The results on first-order logic are due to Manders [1980] and G. Wilmers. In
Vaananen [1979a], a logic 5£ was called symbiotic with a predicate R if A(J£f)-
definability coincides with A1 -definability in {e, R}. The present terminology,
centered around absoluteness, capture, and pinning down seems more useful and
emphasizes the relation to adequacy to truth. Theorem 3.1.3 is formally new but
in fact is really only the codification of the underlying ideas of the above character-
ization results. The general approach was chosen in an attempt to shed light on
these ideas.

4. Other Topics

4.1. The Weak Beth Property Revisited

Recall the definition of weak Beth property: if a formula cp(R) defines the predicate
R implicitly (that is, <p(R) A cp(Rf) \= Vxx • • • xH(R(xl9..., xn) <-+ R'(xl9..., xn))
and if every model can be expanded to a model of cp(R\ then some formula
r((xl9..., xn) defines R explicitly (that is, cp(R) \= Vxx • • • xn(R(xl9..., xn) <->
rj(x1,..., xn)). With every logic <£ can be associated the smallest extension of if
to a logic WB(if) with the weak Beth property.

We have already mentioned the following result in discussing some refinements
at the end of Section 1.

4.1.1 Theorem, / / i f is uniquely adequate to truth in <£', 5£ is closed under negation
and J(A') is definable in WB(JSP), then WB(if) £ JSP'. D
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4. Other Topics 631

Applications. The logics ^WCO(Q0X J^'w
w, i ? L , &*JH)9 and J S ^ do not have

the weak Beth property.

For unbounded logics (see Corollary 2.2.11) we have the following result of
Burgess. The proof uses methods from descriptive set theory, notably the II}-
uniformization property, combined with Theorem 3.4.7.

4.1.2 Theorem. Suppose that 5£ is a strong absolute logic closed under countable
disjunctions and negations, and A c HC. Then ^ fails to have the weak Beth
property.

Applications. If if is any ofSe^JW), &miG9 &myS9 £em{V, or &miB9 then $£ does
not have the weak Beth property and WB(j£?) is not absolute.

Particularly strong results on weak Beth closure come from the following
theorem of Gostanian-Hrbacek [1976].

4.1.3 Theorem. WB(J^W(^)) £ j g ^ .

Proof. Let Jf be the class of models (A, E, R) such that either (A, E) is non-well-
founded and R = 0 or (A, E) is well-founded and R is the set of pairs (<p,/) where
(A, E) satisfies \jp e JS?^ and / is a function such that the inductive clauses for
satisfaction of if^^-formulae hold]; an example of the inductive clauses here is:

(3(xa)a <Kcp,f)eR if and only if 3geA such that g(x) = f(x) for
variables x ^ xa (a < K) and (<p, g) e R.

II (A, E, R) and (A, E, Rf) are in Jf, then we can use induction to prove that R = R'.
Thus, jf defines R implicitly. Moreover, for all (A, E\ there is an R such that
(A, E, R) G JT. Suppose that there were a formula rj(x, y) in J ^ ^ which defines R
explicitly in models of X. Let K be a regular cardinal such that rj e $£KK. We shall
consider the model SOI = (HK, e n H2). The point to notice here is that if 3(xa)a < fi \\i
is in HK9 then /? < K and every sequence (xa\<p of elements of HK that one might
need to satisfy \j/ already exists as an element of HK. Thus, if R is chosen such that

R = {((p,f)\q>e ££KK and/satisfies cp in 9K}.

Combining this with the choice of rj(x, y) yields

9W 1= *l(<P>f) if a n d only if /satisfies <p in S[R.

The standard diagonal argument ends the proof. Hence, let f (= ^(x)) be the
formula ~i^(x,/), where/is a term denoting the function which maps the variable
x to x ( / = {(x, x)}). We now have ^ e HK and
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632 XVII. Set-Theoretic Definability of Logics

The contradiction shows that X does not define R explicitly in S£^«>\ a n ^ this
implies the claim, as X itself is j2?wco(W0-definable. Q

The above theorem permits several improvements. An immediate observation
is that X need not assert that all its models (with R ^ 0) are well-founded. In
fact, it is enough that X pins down the K such that rj e JS?KIC. Thus we have

4.1.4 Theorem. / / <£ pins down the regular K, then WB(if) ^ j£?KK. D

4.1.5 Corollary, (i) //cf(ic) >co, then WB(JS?K + J ^ J5?K + K +.
(ii) W B ( j ? f f l l J ^ B f l 0 . D

Our second improvement concerns generalized quantifiers. We can make the JR
in the above proof work for formulae of S^^J^Q), where Q is an arbitrary general-
ized quantifier. However, X is then definable in ^JiW, Q) and not in S£

4.1.6 Theorem. If^JQ) pins down the regular K, then W B ^ J Q ) ) £ &KK(Q). •

4.1.7 Corollary, (i)
(ii) WB(ifWlG) ^ JS^JG).
(iii) W B ( ^ ( / f ) ) ^ JSfcoJH)-
(iv) WB(ifK + w((2)) ^ ^K + K(G), ifcf(K) > co.

What about logics which pin down ordinals but no interesting regular cardinals ?
Here, we may notice that the only role of regularity of K in the proof of Theorem
4.1.3 (or of Theorem 4.1.4) is that it gives the correct interpretation for R as the
satisfaction relation of ifKK. However, if we replace <£KK by £fK(O, any admissible A
with o(A) = K can replace HK, and we have

4.1.8 Theorem. If A is an admissible set and 3" pins down o(A\ then WB(J^r) ^ <£A.
D

Again, we can add an arbitrary generalized quantifier Q to this result. In fact,
we have

4.1.9 Theorem. / / ^JiQ) pins down o(A\ where A is an admissible set, then
seA{Q). •

4.2. Z^Compactness

Recall that a logic J^ represented on A, is called H^compact if every T a Jjf, 2X over
A, which has no models, has an ,4-finite subset with no models. The following result
is thus straightforward.

4.2.1 Proposition. If ^ is effectively adequate to truth in <£'(as explained in the
refinement at the end of Section 1), and if A' = A are admissible sets and !£ is 2^-
compact, then ££' is Z ̂ compact. D
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This result, when combined with Theorem 3.3.2, this gives

4.2.2 Corollary. If <£A(W), where A admissible, is Z ̂ -compact, then so is every
absolute logic represented on A. D

Similarly, for stronger logics we have

4.2.3 Corollary. If £? is Z^-compact and pins down R, then every logic, absolute
relative to R and represented on A, is Z^compact. D

A third kind of consequence of Proposition 4.2.1 is given in

4.2.4 Corollary. If 5£ is adequate to truth in itself and H^compact and Q is A(i?)-
definable, then ^A{Q) is H^compact. D

It is well-known that S£A is Zx -compact if A is a countable admissible set. More
generally,

(*) 5£A is Zx-compact if and only if A satisfies s-llj-reflection.

The reader is referred to Chapter VIII for more on this and other results on <£A.
The result given in (*) above has been generalized to all absolute logics by Cutland-
Kaufmann [1980]. In this development, use is made of the notion of a s-II}-
Souslin formula. These formulae are (in their normal form) of the form

where ij/ is Zo and Qs is the Souslin quantifier

Qsx(p(x) <-• 3x0 3x1... f

4.2.5 Theorem. An admissible set A satisfies s-Il\-Souslin reflection if and only if
every absolute logic represented on A is Z ̂ compact. D

4.2.6 Corollary. If!£K(a is £ ^-compact and cf(fc) > co, then £?KJW) is Z ^compact.
D

Recall that an admissible set A is resolvable if A = ua<0(^4) F(a) for some A-
recursive function F.

4.2.7 Theorem. / / A is a countable resolvable admissible set, then A satisfies E2-
reflection if and only if every absolute logic represented on A is Z ̂ compact. U

4.2.8 Theorem. If A is a resolvable admissible set, then ^A(Q) is IL^-compact if and
only ifS(A) is not RFC-defined by a ^-theory of &A(Q).

Proof The argument is similar to Barwise [1975, VIII.4.8]. D
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Remark. Let A be a resolvable admissible set and assume that S{A) is RPC in
^A(Q)' By Proposition 1.2.2, the conjunction of a 2^ -theory of SeA{Q) is RPC in
^A(Q)' Thus, if &A{Q) is not 1 1 -compact, then J(A) is RPC in J^(g), which means
that SeA(A) pins down o(A). By Theorem 4.1.9, &A(Q) fails to satisfy the weak
Beth property. We have, in effect, a proof of

4.2.9 Theorem. Suppose A is a resolvable admissible set. If^A(Q) satisfies the weak
Beth property, then ^A(Q) is S ̂ compact. U

Zx -compactness is somewhat related to weak compactness. A logic £f is
weakly compact if it is 2^-compact with any R ^ A as a parameter. For A = HK,
this assumes the more familiar form: If a theory T cz S£ (and T a HK) has no
models, then some subtheory of power < K has no models. It is well-known that
!£ K(O is weakly compact if and only if J?KK is weakly compact if and only if K -> (K)\ .

4.2.10 Theorem. Let JS? be any logic and K a measurable cardinal. There is a station-
ary set of cardinals X < K such that <£ restricted to Hx is weakly compact.

Proof. Let U be a normal ultrafilter on K and i: V -> M the associated embedding
(see, for example, Jech [1978, p. 305]). The fundamental property of i is that if
cp(x, y) is any formula of set theory, then

(*) M f= cp(K, i(x)) if and only if {X < K \ cp(X, x)} e U.

We let <p(A, x) be the formula "UT a ^T^ Hknx and T has no models, then
some subset To eHA of T has no models". In view of (*) it suffices to prove that
M N= <p(ic, i(x)) holds, for x = {cpe^\cpeHK}. Suppose we have T = i{T\ for
some V. By (*) the set

A = {/I < K\ T CZ if, r c Hk n x and every subset To G H A of T
has a model}

is in U. Let A, \x e 1̂ such that A < /i. Then T' e H^ as A e ^ ; and, hence, T has a
model, as \i e A. Therefore, M \= T has a model, using (*) again. D

4.3. The Problem of Validity

Recall that if if is a logic represented on A, we say that validity in 5£ is!Lx if the set

is Ex over A.

4.3.1 Proposition, / / i f is effectively adequate to truth in <£\ A' = A is an admissible
set and validity in k is I 1 ? then the same holds for <£'. D
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4.3.2 Corollary. If validity in £fA(W), where A admissible, isl,l9 then the same holds
for every absolute logic represented on A. D

Similarly, for stronger logics, we have

4.3.3 Corollary. If the validity in if isL1 and if pins down R, then validity in any
logic absolute relative to R and represented on AisLl. D

A third kind of consequence of Proposition 4.3.1 is given in

4.3.4 Corollary. If <£ is effectively adequate to truth in itself and validity in <£ isT1

and Q is A(^)-definable, then validity in ^A(Q) i s l j .

Application. Sf^JQf) is axiomatizable, because Qf is A ^ ^ g ^ - d e f i n a b l e .

As it actually turns out, validity in an unbounded logic is hardly ever E^ In
order to see this let us first make two simple remarks. In the following, a subset
X of A is said to be n x if it has the form {x e A | <JO(X)}, where cp{x) is n ^ Observe
that FIj over A refers to sets of the form {xeA\A\= q>(x)}9 (p(x)eU1. A set
X ^ Ais complete for Il1on A if for every n x subset Y of A there is a Zx-function
/of A such that for a e A

aeY *-+f(a) e X.

4.3.5 Lemma, (i) J/JS? is absolute relative to R, then Val_̂  is I ^ in the extended
language {e, R}.

(ii) / / j£? pins down R, then Val^ is complete for II j on A in the extended
language {e, R}.

Proof In order to prove (i), we use absoluteness of if to write the definition

a e Val^ <-+ a e JS? A V9I(9I \=<? a)

in Ili-form. In order to prove (ii), we suppose that 7 is a subset of A defined by the
Ili-formula cp(x). For aeA, let g(a) be an if-sentence equivalent to

cp(x)).

If Jf is the class of models (M, e n M2, K n Af"), M transitive, then for all a e A

a e y ^ / c Mod(flf(fl)).

Using the fact that Jf is RPC^, we find a Zi-function/on A such that for all
ae i ,we have

. D
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In order to be able to apply Lemma 4.3.5 we would like to know that n x

coincides with II x over A for subsets of A. In general, this is not true. An equivalent
condition is that A^V and this is known to hold for A = HK9 K > a>, (Levy
reflection principle) and for A = La, where a < ai\ is stable, at least (Schoenfield
absoluteness lemma). In such a case, II x plus complete for II x coincide with the
ordinary notion of complete n l 9 which is never Zx over A (if A is admissible).
Thus, we have the proof of

4.3.6 Theorem. / / 5£ is an unbounded absolute logic represented on A -<x V, then
Val^ is complete Yl1 over A and validity in S£ is notH1. D

4.3.7 Corollary. Validity in an unbounded absolute logic represented on HK, K>OJ,

is not Zx. D

Cutland-Kaufman [1980] obtained the following improvement of Theorem
4.3.6 in the case of A = La.

4.3.8 Theorem. Validity is not Zt in any unbounded absolute logic represented on an
admissible set of the form La. D

Corollary. IfV = L, then validity in an unbounded absolute logic represented on an
admissible set is never S^ D

Considering these negative results, one might raise the question of whether some
more general completeness property would be more tractable. In this direction
Cutland and Kaufman proved

4.3.9 Theorem. If ££ is an absolute logic represented on an admissible set A, then
Val^ is s-Tl\-Souslin over A.

Feferman [1975] proves a more general completeness theorem. Recall the
notion of #-siidx from Remark 1.1.9. In the following theorem $£ has to satisfy a
property called "join property," a property which most logics do indeed satisfy
and which essentially says that !£ permits the construction of disjoint unions of
structures.

4.3.10 Theorem. Let <£ be adequate to truth in itself Then for each T, the set
{cp e <£[T] I \=# cp) is # -siidx in & Moreover, ifS a JS?[T] is siid^ in if, then the same
holds for {cp G jgf [T] \S\=^cp). D

This theorem shows that validity and even consequence is "r.e." in any self-
adequate logic once we use an appropriate notion of "r.e.". The notion #-siidx

does indeed have many of the characteristics of r.e. on co and I ^ n a n admissible
set (see Feferman [1975] and Kunen [1968]).
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4.4. Lowenheim Numbers and Spectra

The Lowenheim number of a logic is related to the more general problem of
spectra. The spectrum of a sentence cp of a logic if is the class of cardinals of models
of cp. That is, in symbols the spectrum of cp is

The problem of spectra of such strong logics as JS?£W or Sg^JJ) is a difficult subject
and remains mostly unsettled. However, even the spectra of J£M(a present open
problems. Well-known is the Finite Spectrum Problem'. Is the complement of a
spectrum of <£m<o also a spectrum of i?wca, if only finite models are considered! On
the other hand, the infinite part of a spectrum of j£?wco is trivial: It is either empty or
contains every infinite cardinal. The spectra of i^>lW are more complex: Every set
of natural numbers is one, as are also {K\K < 2COa}, for a < co1. Even more complex,
however, are spectra of i ^ w . The strength of J5f̂ w makes it possible to represent
every spectrum as the spectrum of an identity sentence. Thus, the spectra of JSf^
form a boolean algebra with respect to complementation, union and intersection.
In fact, the spectra of JS?^, permit the following general characterization, a con-
sequence of Theorem 3.4.14(ii).

4.4.1 Theorem. A class C of cardinals is a spectrum of S£\ if and only ifC is defined
by aflat formula of set theory with parameters in A. U

For logics such as i?WlC0, i^CSiX anc* ^woiW) the complexity of spectra is
limited by a strong downward Lowenheim-Skolem theorem. Another limiting
factor is the upward Lowenheim-Skolem theorem.

Recall that the Lowenheim number of f£ is the cardinal

i(L) = sup{min C\C is a spectrum of i f}.

Despite our occasional reference to logics such as i f ^ and i f ^ , every logic is
represented on a set and therefore has a Lowenheim number. The explicit computa-
tions ^(ifK+J = K and ^{^^(Q^) = &>« are immediate. Following are two easy
preservation results.

4.4.2 Proposition, (i) If Se <RPCif', then t(£?) <
(ii) If^ is absolute relative to R, A c A and g' pins down R, then t(&) <

In the following theorem we shall estimate Lowenheim numbers in purely set-
theoretical terms

4.4.3 Theorem. Let ^ be a logic, R a predicate and

S = SUP{K\K in Urdefinable in the extended language {e, R} with
parameters in A}.

(i) If S£ is absolute relative to JR, then *?(&) < S.
(ii) If^e pins down R, then S <
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Proof. For (i) we suppose that A = min C, where C = Sp(<p) is spectrum of !£. The
cardinal A has the following definition:

a e A <r+ Vj8()S < a - jff £ C).

Using absoluteness of «2J we can write this in n t-form with ^ as a parameter.
(ii) We suppose K that is F^-definable with parameters in A. Let Jf be the

class of well-ordered structures of type >K. Jf is clearly S t -definable with param-
eters in A. By Theorem 3.4.4 (letting if' = Se^JQ) such that Jf is E C ^ and if'
is absolute relative to #), X is RPC^. Let

A =

Now K < A < /(if). D

Remark. If /(if) is a limit cardinal, we can replace K by a in Theorem 4.4.3.

4.4.4 Corollary. Suppose that <£ is absolute relative to R and pins down R. Then

= sup{K|?c is Tit-definable in the extended language {e, R} with
parameters in A}. D

4.4.5 Examples, (i) tf(^A(I)) = sup{a | a is n^definable in {e, Cd} with parameters
in A).

(ii) ^(^A) = sup{a|a is n2-definable with parameters in A}.

An inductive argument based on Theorem 4.4.3 can be used to prove:

4.4.6 Theorem. £(An(£fA)) = sup{a|a is Hn-definable with parameters in A}
(n > 1). D

We can actually replace II by A in the above results. When this is done, we then
have

4.4.7 Theorem, (i) ^{^2
A) = sup{a|a is ^-definable with parameters in A}.

(ii) /(An(ifA)) = sup{a|a is ^-definable with parameters in A), (n > 1). D

Following is a third characterization of ^(An(^A)) in set-theoretical terms.

4.4.8 Theorem. Ifn > 1, then /(An(ifKJ) = K if and only ifRK <n V. D

Combined with the facts that RK <2 V for K supercompact and JRK -<3 V for K
extendible, this yields

4.4.9 Corollary, (i) I/K supercompact, then ^(^iJ = K.
(ii) I/K is extendible, then /(A3(ifKJ) = K. D
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Remark. Magidor [1971] proves a downward Lowenheim-Skolem theorem for
J ^ w on a supercompact cardinal, a result which is stronger than that given
by Corollary 4.4.9(i).

No upper bound to / ( i ^ J or even to /(i^w(/)) is known in terms of large
cardinals below supercompact cardinals. However, observe the following

4.4.10 Theorem, (i) If a spectrum C of '&„„ contains a measurable cardinal K, then
C nK is stationary on K.

(ii) / / a spectrum C of ££mJJ) contains a weakly inaccessible cardinal K, then
C n K is cub on K. •

4.5. Hanf Numbers

Recall that the Hanf number of a logic <£ is the cardinal

= sup{sup C\C is a bounded spectrum

There are a few explicit Hanf number computations, such as ^(^A) = 3 a for
countable admissible A of ordinal a and ^(if^^/fii))•= ^w But for many if, for
more than with /(if), /f(if) is simply unknown. The following estimates are the
best known ones.

4.5.1 Examples, (i) tii^JW)) exceeds the first K such that K -• (co)<<o.
(ii) If K -• (co!)<ft), then ^ (^ (WO) < *•

(iii)

Remark. As to (iii), Burgess [1978] shows that /f(ifWlS) = 3W2 under MA + -iCH

When we proceed to set-theoretical characterization or estimation of Hanf
numbers, the first point to notice is the failure of Hanf numbers to be preserved—in
general—under A-operation. Thus, our general results will mostly concern
/i(RPC^) rather than A{je\ (Note that /(RPC^) = /(if)). In particular examples,
on the other hand, ^f(RPC^) = /f(if) usually holds, as we shall see.

A typical RPC^-definition has the form

Problems with A(<£) arise because there is no upper bound on the size of 91. But
suppose that the following holds in addition to (*) above:

V9M 3K Wt([SR, 91] N * q> -+ |9l| < K).

In this case, we say that X is bounded RPC^. This notion clear, we have
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4.5.2 Lemma, ^(bounded RPC^) =

Proof. The argument for this result is easy. D

4.5.3 Examples. RPC^ = bounded RPC^ if if is one of &K+m9&aJQ*),&o>a>(Q*to)>
<£KG or if Bounded RPC^ contains if©©- I n the first four cases this follows from
the strong Lowenheim-Skolem theorems of these logics. In the fifth case, we may
use the strength of S£2

miSi to make sure that the set-theoretical rank of 9i in (*) is
minimal.

4.5.4 Theorem. //Con(ZF), then Con[ZFC +

Proof. Let ,4(a) be the statement "there is a sequence ((oy+p+i)p<(X of cardinals K
such that 2K > K+ + " and let B(a) be the statement A(<x) A VJS(A(JS) -> j8 < a).
It can be seen without too much trouble that B(a) implies that a < ^(RPC^^j)).
Thus, it remains to construct a boolean extension in which A{SP(OJJ)) < a A B(OL).

The idea here is the following. Construct notions of forcing (proper classes) Fap such
that Fa/? II- £(a), Fap is co^-closed, Fap 2 Fay if /? < y, and FaP preserves cardinals.
Call F^p a failure if it fails to force At^JJ)) ^ a- Construct a sequence (<pa)a<COl

of sentences of ^^JJ) and sequences (/la)a<£Ol and (?ca)a<COl of cardinals such that
for X = ^(J^JT)), Aa = sup(K^)i3<a, FAAa is a failure, because it forces cpa to have a
model of power >A but none >Ka (> Aa). Take a < /? < cox such that (pa = (pp.
Then FAAa forces cpa to have a model 5R of power >A such that |9B| < /ca. As
FAA^ c Fkkx,Fxkp forces the same thing. But since FUp is A -̂closed and Ka < Xp, we
may assume that 2R e F, whence <pa already has a model of power > Ka in F. This
is a contradiction of the definition of (pa. D

We can establish a similar relation between bounded RPC and "bounded 1 ^ '
as holds between RPC and Zt (Corollary 3.4.5(ii)). A Zi-formula 3xcp(x, y) is
called "bounded" if for all y, the class {x\q>(x, y)} is a set. Using such "bounded"
formulae, we could actually characterize /?(<£?) set-theoretically for a variety of if.
As ^(if) = /f(RPC^) in so many practical cases, we confine ourselves to char-
acterizing /f(RPC^). However, we will first make the simple observation given in

4.5.5 Proposition. If Sf is absolute relative to R, A c A' and $£' pins down R, then

Proof. See Corollary 3.4.5(i). D

4.5.6 CoroUary. If $£ is absolute, then A(&) < A(&A(W)\ D

4.5.7 Theorem. Let $£ be a logic, R a predicate and

S = sup{a|a is ^Indefinable in the extended language {e, R} with
parameters in A}.

(i) If*& is absolute relative to R, then i(RPC^) < S.
(ii) If<£ pins down R, then 8 <
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Proof As to (i) suppose that X == sup(C), for a bounded spectrum C of RPC^. The
cardinal X has the following definition:

a e X <-* 3jS(a < P A PEC).

Using absoluteness of if, we can write this in 5^-form with a parameter in A. As to
(ii), suppose that a is Indefinable with parameters in A. Let JT be the class of well-
ordered structures of type <a. X is clearly Zx-definable, with parameters in A.
By Theorem 3.4.4, Jf is RPC^-definable. Moreover, Sp(Jf) is bounded by
| a |+. Let X = sup Sp(JT). Well-known properties of all Hanf numbers imply
that a+ < A(&). Thus, we have that X < A(&\ D

4.5.8 Corollary. If !£ is absolute relative to R and pins down R, then

\ = sup{a|a is ̂ Li-definable in {a, R} with parameters in A}. U

4.5.9 Examples, (i) A{SPA(W)) = sup{a|a is ^-definable with parameters in A}.
(ii) A(^A) = sup{a|a is Indefinable with parameters in A}.

Theorem 4.5.7 permits an iteration similar to that of Theorem 4.4.3.

4.5.10 Theorem. 3(An(J?A)) — sup{a|a is Hn-definable with parameters in A}
(n > 1).

Up until now, we have characterized the suprema of £„-, IIM-, and An-definable
ordinals in terms of Hanf and Lowenheim numbers. The logics in question—
An(^A)—are so strong that there is little hope of deciding any questions concerning
them in ZFC alone. However, one rather curious relation between the different
Hanf and Lowenheim numbers is not hard to prove.

4.5.11 Theorem. /(Aw(^)) < /f(An(J^)) = t(AH+1(#A)) (n > 1).

4.5.12 Corollary. If the required large cardinals exist, then

1st measurable <
1st supercompact <
1st extendible < i(A

Remark. If we consider Theorem 4.5.10 for n = 1, we have to add the quantifier
W to !£A to make the situation non-trivial (for n > 1, this would make no dif-
ference). The inequality-part remains true then. The equality-part fails, for if K
is the last K such that K -> (co1)

<co, then Ai&nJW)) <K< ^ ( A ^ J ) . But, of
course, there need not exist such a large K. Indeed, the theorem does hold also for
n = 1 in L. And we have

4.5.13 Theorem, (i) 4(&A(W)) <
(ii) IfV = L, then At&A{W)) =
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Remarks. A number "about the size" of A(&mJiW)) and / (J^L) is A(&<o1(0l). If
V = U then t&ln) < A(&miai\ because the former equals ii^JW)) <
ti&mtoi)- Observe that cf(iS(JS îa>1)) > co, so that 4(JS ,̂ia>1) can never really equal
either ti^JW)) or / ( i f lJ . Kunen [1970] showed that if V = L\ then 4(&mim)
exceeds the 1st measurable cardinal. On the other hand, there is a model in which
^(^COKOI) is below the first weakly compact (Vaananen [1980c]) and, hence, also
below {(&lJ. Another curiosity in this field is that although /(if) < A(&) is
true of almost all logics, it is not a rule: The statement /(ifww(/)) < A(&o,JJ)) is
independent of ZFC. Also, all non-trivial claims of relation between / ( J ^ / / ) ) ,
^(i?WC0(J)) and large cardinals turn out to be independent (Vaananen [1982a]). The
numbers can be as small or as large as conceivably possible, if measured by large
cardinals. The interrelations of the Hanf and Lowenheim numbers discussed can
be visualized in the form of Diagram 2, where an arrow means "less or equal to".

Diagram 2

It is not known whether MJ£axm^ < &(3?mm{I)) holds absolutely or not, but no
arrows are otherwise missing. If V = L, the picture collapses (Diagram 3).

Diagram 3

Historical and Bibliographical Remarks. The main results on the failure of the
weak Beth property, Theorems 4.1.2 and 4.1.3 are respectively due to Burgess
[1977] and Gostanian-Hrbacek [1976]. They have many precedents in the
literature, Mostowski [1968] being perhaps the most notable. Also Theorem
4.1.4, 5, 7(ii) and 8 are from Gostanian-Hrbacek [1976].
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The results given in Sections 4.2.5-7 are from Cutland-Kaufman [1980].
Theorem 4.2.10 is from Stavi [1978] which also contains refinements of Theorem
4.2.10. The incompleteness results, Corollary 4.3.7 and Theorem 4.3.8, are re-
spectively due to Barwise [1972a] and Cutland-Kaufman [1980]. The latter is also
the best reference to Theorem 4.3.9 and many other results on Zx-compactness
and validity questions for unbounded absolute logics. The motivation behind
Theorem 4.3.10 as well as its proof are given in all details in Feferman [1975].

Theorems 4.4.3-9 are from Vaananen [1979a], while Example 4.4.5(ii) is in-
dependently due to Krawczyk-Marek [1977]. The relation between super-
compactness, extendibility and RK <n V are from Solovay et al. [1978]. Magidor
[1971] establishes important relations between supercompactness, extendibility,
and second-order logic. Theorem 4.4.10(i) is proven in a way similar to Theorem
4.2.10. Part (ii) of this result is due to Pinus [1978].

Examples 4.5.l(i) and (ii) are due to Silver [1971]; while (iii) is due to Burgess
[1978]. The results given in sections 4.5.2-4 are from Vaananen [1983] where
Theorem 4.5.4 is also proven in the stronger form, namely

Corollary 4.5.6 is due to Barwise [1972a], and the results in Sections 4.5.7-13 are
from Vaananen [1979a]. Example 4.5.9(ii) is independently due to Krawczyk and
Marek [1977]. Theorem 4.5.13 is proven in Vaananen [1979b].

Suggestions for Further Work in the Area. It seems likely that further progress can
be made in the following parts of this chapter:

1. The Program Presented in Feferman [1974b, 1975]. The analysis of ade-
quacy to truth presented here, as well as Theorem 4.3.10 are parts of the
program. However, the entire program is much more ambitious.

2. Relative Absoluteness. The set-theoretical method is at its best in the con-
text of absolute logics and there are but few results on relatively absolute
logics. In view of Hutchinson [1976], it seems possible to develop set-
theoretical proofs for compactness theorems. Although, in general we have
tended to ignore compact logics in this chapter, it would nevertheless be
interesting to extend the scope in their direction.

3. Canonical Failure of Interpolation. We have undefinability of truth style
proofs for the failure of different forms of interpolation in various logics.
These proofs do not apply directly to ^JQi) or to JSf^aa), for example.
Is there a canonical anti-interpolation theorem which applies to these
countably compact logics?

4. Can Validity in an Unbounded Absolute Logic be Zj? The validity problem
seems to provide a fruitful framework for further work in abstract model
theory.

5. Lowenheim-Skolem and Hanf Prospects. One may formulate downward or
upward Lowenheim-Skolem theorems which are stronger than those related
to Lowenheim and Hanf numbers. Magidor [1971] is an example. The
proofs of such theorems tend to depend on large cardinal or combinatorial
axioms of set theory.
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Chapter XVIII

Compactness, Embeddings and Definability

by J. A. MAKOWSKY

This chapter presents an overview of the author's joint work with S. Shelah in
abstract model theory, which had started as early as 1972. It is mainly based on our
papers (Makowsky-Shelah-Stavi [1976]; Makowsky-Shelah [1979, 1981,1983])
and on an unpublished manuscript of S. Shelah (Shelah [198?e]) which he wrote
while this chapter came into being. The present exposition, however, tries to give
a more coherent picture by putting all our results into a single perspective together
with results of M. Magidor, H. Mannila, D. Mundici, and J. Stavi.

The main theme of this chapter is abstract model theory proper, especially the
relationship between various compactness, embedding, and definability properties
which do not characterize first-order logic. More precisely, we look at various
classes of logics defined axiomatically, such as compact logics, logics satisfying
certain model existence or definability properties. The classes of logics are some-
times further specified by set-theoretic parameters, such as finitely generated,
absolute, set presentable, bounds on the size function, or by set-theoretic assump-
tions such as large cardinal axioms. Within such classes of logics we want to explore
which other properties of logics follow from the axiomatic description of the class.
In Chapter III first-order logic was characterized in this way. In Chapter XVII the
class of absolute logics was studied. Most of the other chapters (with the exception
of Chapters XIX and XX) study families of logics which bear some inherent simi-
larity which stems from the way they evolved, such as infinitary logics or logics
based on cardinality quantifiers, and establish particular model-theoretic results
for those logics. In this chapter we want to clarify the conceptual and metalogical
relationship between these model theoretic properties. Success in this program can
be achieved in three ways: by establishing non-trivial connections between these
properties; by applying the former to gain new insight about particular logics
previously studied; and by using this insight to construct new examples of logics,
and ultimately, by showing, that our list of examples is, in some reasonable sense,
exhaustive.

The chapter consists of four sections, in each of which one aspect of abstract
model theory is developed to a certain depth.

Section 1 is devoted to compactness properties and is almost self-contained.
Its main results are the abstract compactness theorem and the description of the
compactness spectrum. Here a thorough understanding of various compactness
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phenomena is obtained and the theory is provided with new examples. Especially,
the examples described in Section 1.6 play an important role in the successive
sections as well.

Section 2 is devoted to the study of the dependence number. Its main result is
the finite dependence theorem, the proof of which is given completely on the basis
of three lemmas, which are only stated. The complete proof may be found in
Makowsky-Shelah [1983]. The finite dependence theorem clarifies how little
compactness is needed to ensure that a logic is equivalent to a logic which has the
finite dependence property. In fact, assuming there are no uncountable measurable
cardinals, [co]-compactness suffices. Finally, the dependence structure is intro-
duced, a concept which appears here for the first time. It is the appropriate general-
ization of the dependence number, as the examples and the finite dependence
structure theorem show.

Section 3 is devoted to various aspects of embeddings, whose existence is
implied by the compactness theorem, such as proper extensions, amalgamation,
and joint embeddings. Joint embeddings are also discussed in Chapter XIX and
amalgamations in Chapter XX. The main result here is the connection between
[co]-compactness and proper extensions and the abstract amalgamation theorem.
Again, this section is rather self-contained. The abstract amalgamation theorem
also leads to the discovery that various logics with cardinality quantifiers do not
satisfy the amalgamation property. This solves a problem which had been stated
explicitly in Malitz-Reinhardt [1972b].

Section 4 is devoted to definability properties, as introduced already in Section
II.7, and to preservation properties. Preservation properties for sum-like opera-
tions already played an important role in Chapters XII and XIII. A common
generalization of these two properties, the uniform reduction property, was intro-
duced in Feferman [1974b]. The first two subsections are devoted to an exposi-
tion of those properties and their interrelations. The main results here are the
equivalence of the uniform reduction property UR^ with the interpolation property
and the equivalence, for compact logics, of the pair preservation property and the
uniform reduction property for pairs. The Robinson property and especially its
weaker versions, the finite Robinson property and the weak finite Robinson
property are the topic of the next three subsections. In Chapter XIX the Robinson
property is studied further.

Our main results here are: The finite Robinson property together with the
pair preservation property implies that a logic is ultimately compact, and therefore
has the finite dependence property, provided that there are no uncountable mea-
surable cardinals. The Beth property together with the tree preservation property
implies the weak finite Robinson property and the Robinson property together
with the pair preservation property implies the existence of models with arbitrarily
large automorphism groups. The last subsection discusses more examples, in
particular a compact logic which satisfies the Beth property, the pair preservation
property, but not the interpolation property.

Measurable cardinals play an important role in our presentation. They are in
some sense J^f-compact cardinals, which is to say, if such a cardinal /x exists then
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every finitely generated logic is, stationary often, weakly compact below fi. The first
cardinal for which a logic is [/c]-compact is always measurable (or co). But mea-
surable cardinals, of which the first could conceivably be as big as the first strongly
compact cardinal, also appear frequently in the hypotheses of various of our
theorems. They also appear in various examples and counterexamples and some-
times their existence turns out to be equivalent to certain assumptions in abstract
model theory.

In the same sense, it turns out, Vopenka's principle is a compactness axiom:
It is equivalent to the statement that every finitely generated logic is ultimately
compact or, alternatively, that every finitely generated logic has a global Hanf
number. We have not centered our presentation around this theme, but the reader
will easily discern it throughout the chapter.

Finally, a word on future research. Some of the possible directions of future
research in abstract model theory are outlined in Chapters XIX and XX. The
purpose there is to get away from the syntactic aspects of logic completely and to
study classes of structures more in the spirit of universal algebra. If we want to
stay in the framework of abstract model theory and logics I can see three directions
in which to pursue further research.

The first direction is to study, what we have rather neglected in this chapter,
the impact of various axiomatizability and dependence properties of logics on
their respective model theory. We know that axiomatizability implies recursive
compactness. But we do not know, for instance, if there are any model-theoretic
properties distinguishing axiomatizable logics from logics axiomatizable by a
finite set of axiom schemas. Only recently, in Shelah-Steinhorn [1982], it is
shown that the logic ^JQx) xs a n axiomatizable logic which cannot be
axiomatized by schemas. This was the first example of its kind. Similarly, we know
that [co]-compactness implies the finite dependence property (assuming there are
no uncountable measurable cardinals), but we have not investigated if other model-
theoretic properties, such as Lowenheim or Hanf numbers, have similar effects. The
same holds for the finite dependence structure and dependence filters, as discussed
in Section 2.4.

The second direction is the search for more model-theoretic properties which
fit into the abstract framework. In Section 4.5 an attempt in this direction is pre-
sented: the existence of models with large automorphism groups. Incidentally, this
also gives us a new proof for the case of first-order logic. In Shelah [198?e] a
host of new notions occur in his study of Beth closures of logics preserving com-
pactness and preservation properties. There is a danger here of proving theorems
which apply only to first-order logic, such as compactness and chain properties
imply the Robinson property. Since it is open whether there are logics satisfying
both the Robinson property and the pair preservation property, the results in
Section 4.5 should be taken with a grain of salt.

The third direction consists in incorporating the theory of second-order
quantifiers, as presented in Chapter XII, into the study of the model-theoretic
properties as presented in this chapter. What are the compact second-order
quantifiers, what are the second-order quantifiers satisfying preservation and
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definability properties, etc? I am convinced that abstract model theory will remain
a fruitful area of active research for many years to come.

We have not included detailed historical notes. Most of the results presented
in this chapter are taken from my joint papers with S. Shelah and from his un-
published manuscript mentioned above. Some of the theorems and corollaries
are stated here for the first time as a result of reflection upon the material presented.
Results which appear here for the first time in print are marked with an asterisk.
Whenever possible, we refer to the other chapters in the book rather than to
original papers.

Acknowledgment

I would like to express my gratitude to the editors and originators of the present
volume, J. Barwise, S. Feferman, G. Muller and D. Scott, for their patience,
encouragement, and shared enthusiasm; and also to all the other contributing
authors for their collaboration, criticism and suggestions. I am particularly in-
debted to J. Baldwin, H.-D. Ebbinghaus and J. Flum for their critical reading, and
to M. Magidor for his advice concerning large cardinals, and to A. Mekler for
his advice concerning stationary logic.

Finally, I should like to thank the Swiss National Science Foundation for its
support during the preparation of this chapter, and also the Computer Science
Department of the Technion in Haifa for providing me with its computer and
word-processing facilities, on which this chapter was written.

In particular, I am indebted to S. Shelah for ten years of gratifying, stimulating,
and challenging collaboration, for his permission to include unpublished material
in this chapter, for his critical reading, and for his almost infinite patience.

1. Compact Logics

1.1. [JC, X]-compactness

In this section we will study compactness properties of abstract logics. Tradi-
tionally, one looks at a set Z of sentences of cardinality K such that every subset
Eo c L of cardinality less than A has a model and concludes that E has a model.
This is called (*c, A)-compactness. By abuse of notation we write (oo, ^-compact-
ness instead of (<oo, K)-compactness. We call (<oo, co)-compactness just com-
pactness.

In contrast to this we look at two different situations:

(*) Given two sets of sentences A and I with card(S) = K, card(A) arbi-
trary and such that for every subset Zo cz Z of cardinality less than A
I o u A has model. Then I u A has a model.

(**) Given a family Fa (a < k) of sets of sentences such that for every set
X cz K of cardinality less than A the union \JaeX Fa has a model. Then
(Ja<K Fa has a model.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.026
https://www.cambridge.org/core
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1.1.1 Proposition. For a regular logic <£ properties (*) and (**) are equivalent.

Proof. (*) -• (**) Let Pa (a < fi) be unary predicates not in (Ja<K Fa and let ^a be
the formula 3x Pa(x). Now we put

and

2 = {i/v a < K}.

Clearly A u Eo has a model iff (J^ae2o Fa has a model.
(**) -• (*) Let {\//a: OL < K) be an enumeration of the formulas of S and put

r. = Au{W. •

1.1.2 Remark. (*) was first systematically studied in Makowsky-Shelah [1979b]
and in Makowsky-Shelah [1983]. (**) was introduced for topological spaces in
Alexandroff-Urysohn [1929], as was pointed out to us by H. Mannila. (*) was
called first relative (TC, X)-compact and then (K, A)*-compact. (**) is called in the
topological literature [K, X]-compact.

The motivation behind (*) stems from working with elementary extensions and
with diagrams. A usually plays the role of a diagram, and £ describes the properties
the extension should have. A similar situation occurs in Chang-Keisler [1973,
Exercise 4.3.22].

1.1.3 Definition. A regular logic <£ with property (*) or (**) is called [/c, X]-
compact. If K = X we simply write [K] -compact.

1.1.4 Examples, (i) ^{Q^ ^s (P* co)-compact but not [co]-compact.
(ii) (Bell-Slomson [1969, Theorem 2.2, p. 263]). If K is small for A, then

is [/c, co]-compact. In particular, co is small for (2W) + .

Recall that K is small for X if for every family fit (i < K) such that fit < X Y\t Vi < X.

1.1.5 Definition. We write [/c, X] -> [/i, v] whenever [K, A]-compactness implies
[/z, v]-compactness. Similarly for conjunctions of compactness properties implying
other such properties.

The following lemma collects some simple but useful facts:

1.1.6 Lemma, (i) [K, A] -• [p., X\for \I<K.
(ii) [fc, X] -• [/c, v]/or v > A.

(iii) \ji] A [K, /X + ] ^ [K,fi].
(iv) [/c + ] A [K,/i] -» [K: + ,JU].
(v) //[J8] anJ/or every a < 0, [ K J and [/ca, /z] ffcgn [Xa<jg Ka9 / / ] .

(vi) [cf(fc)] - , [ic].

Trivial for (i) and (ii).
(iii), (iv) and (v) follow from definition (*).
(vi) follows from definition (**). D
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1.1.7 Proposition, (i) A logic J? is [K, X\-compact iff <£ is [^-compact for every
/*, X < \i < K.

(ii) A logic <£ is [oo, K]-compact iff $£ is (oo, K)-comact.

Proof For (i) we use Lemma 1.1.6 and (ii) follows from the definition. D

Mannila [1982, 1983] has investigated what results from topology give us
refinements of Theorem 1.1.7. He showed that results from Alexandroff-Urysohn
[1929] and Vaughan [1975] can be translated into our framework and we obtain

1.1.8 Proposition, (i) A logic $£ is [K, co]-compact iff & is \ji\-compact for every
regular \x, co < \i < K.

(ii) Assume cf(*c) > X. A logic X is [K, X~\-compact iff if is \_fi, X\-compact for
every regular //, X < fi < K.

Proposition 1.1.8 was first stated in Makowsky-Shelah [1983], where it was
derived from Lemma 1.1.6.

Using the methods developed in Sections 1.3 and 1.4 this can be sharpened to:

1.1.9 Theorem. Let Xbe a cardinal and !£ a logic. The following are equivalent:

(i) 5£ is \_ix]-compact for every regular \i > X.
(ii) if is \_yi\-compact for every \i > X.
(iii) $£ is [oo, X~\-compact.
(iv) !£ is (oo, X)-compact.

Proof, (ii) implies (iii) by Proposition 1.1.7(i); (iii) is equivalent to (iv) by Proposi-
tion 1.1.7(ii) and (iii) implies (i) by Lemma 1.1.6(i) and (ii). So we have to prove
that (i) implies (ii). Assume (i) and that X is singular. So if is [A+]-compact. Now
we use the abstract compactness theorem (1.3.9(ii)) which gives us a uniform
ultrafilter F on X+. By Lemma 1.3.1 l(i) F is [X+, X~]-regular, so by Theorem
1.3.9(i) if is \_X+, A]-compact, and therefore [A]-compact. D

We have put this proof here, though it uses material from Section 1.3, to
illustrate the power of the abstract compactness theorem, which gives rise to
various transfer results. We shall see more transfer results in Section 1.5.

We shall call logics if satisfying any of equivalent properties above ultimately
compact.

1.2. Co final Extensions

One useful tool for the study of [jc]-compactness is its characterization via the
non-characterizability of certain ordered structures. In Chapter II, Proposition
5.2.4 we have seen the paradigm of this procedure: A logic if is (oo, co)-compact
iff its well-ordering number is co. Here the well-ordering is replaced by the co-
finality of some linear order.
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1.2.1 Definition, (i) Let 91 be an expansion (possibly with new sorts) of the structure
<K, < > and 23 and <£-extension of A. 23 extends 91 beyond K if there is an
element beB n dom( <B) such that for every a e A n dom( <A) B \= a < b.
If there is no such element, we call 93 a confinal extension ofSU.

(ii) Let if be a logic and K a regular cardinal. ££ confinally characterizes K or K
is cofinally characterizable in 3? if there exists an expansion 91 (possibly
many-sorted with additional sorts) of the structure <K, <> such that
every if-extension 93 of 91 is a cofinal extension of 91. In this case we also
say that if cofinally characterizes K via 91.

1.2.2 Theorem. Let K be a regular cardinal. A logic if is [K]-compact iff K is not
cofinally characterizable in if.

Proof. Like in Chapter II, Proposition 5.2.4. D

Theorem 1.2.2 gives a quick proof of Lemma 1.1.6(vi). It can be used, together
with a classical result due to Rabin and Keisler (Keisler [1964]) (cf. also Chang-
Keisler [1973, Theorem 6.4.5]), to study the existence of if-maximal structures.

Recall that a complete structure 91 is a one-sorted structure where every subset
X a An is the interpretation of some relation symbol Rx. In the case of many-
sorted structures we have to allow also relations with mixed arities.

1.2.3 Theorem (Rabin-Keisler). Let 91 be a complete structure of cardinality
X < first uncountable measurable cardinal, PA be a countable infinite predicate o/9l
and 93 be a proper if'^-extension o/9l. Then PA g PB.

One can now easily prove from Theorems 1.2.2 and 1.2.3 a generalization of a
result of Malitz-Reinhardt [1972b] and independently (Shelah [1967]):

1.2.4 Proposition. If a logic <£ is not [of\-compact then there are arbitrarily large
^-maximal structures of cardinality less than the first uncountable measurable
cardinal.

Recall that a structure is if-maximal if it has no proper if-extensions. <£-
extensions are further studied in Section 3.

The following observations will be useful later:

1.2.5 Lemma (Mundici). Let K, X be regular cardinals and Z£ a logic. Let 9IK, 9IA

be expansions of(K, < >, <A, < > to x-structures such that !£ cofinally characterizes
K, (X) via 9lK, 91A, respectively. Then there exists no <£-embedding o/9lK into 9IA.

The proof is left to the reader.

1.2.6 Proposition*. Let 5£bea logic which is not ultimately compact. Then there is a
proper class of x-structures £ such that for no two 91, 23 e £ there is an ^-embedding
from 91 into 23.
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Proof. If JSP is not ultimately compact, there is a proper class <£0 of regular cardinals
K for which j£? is not [/c]-compact (use Lemma 1.1.6(vi)). So by Theorem 1.2.2
each K e (£0 is cofinally characterizable in if via some 2lK. We can arrange it that
each 2IK is a t-structure for some countable T. For this we code many 77-ary relation
symbol by one (n + l)-ary relation symbol and the use of constants. Now put
£ = {9IK: K e £0}. By Lemma 1.2.5 (£ has the required property. D

13. Ultrafilter s, Ultrapowers and Compactness

In first-order logic compactness is intimately related to the ultrapower construction.
One can turn this observation easily into a characterization theorem for JSP^.

1.3.1 Definition. Let JSP be a logic, if is said to have the Los property if for every
i-structure 91 and every ultrafilter F and every formula q> e JSP[T] the ultrapower

\= cp iff {ie I: %\= cp} c F.

1.3.2 Theorem. Let <£bea regular logic which has the Los property. Then L = 5£roro.

Proof. By coding a family of structures in one structure and using the Keisler-
Shelah theorem, that elementarily equivalent structures have isomorphic ultra-
powers, the proof is straightforward. D

1.3.3 Remark. Theorem 1.3.2 was folklore already around 1972. A detailed version
may be found in Sgro [1977] and Monk [1976, Exercise 25.53]. Sgro [1977]
contains interesting additional material concerning maximal logics.

To study compactness for abstract logics we need a generalization of the Los
property.

1.3.4 Definitions, (i) Let JSP be a logic and F be an ultrafilter over /. We say that F
relates to Z£ if for every T and for every r-structure 91 there exists a i-
structure © extending Y[i 91/F s u c n t n a t f°r every formula cp e JSP[T],

cp — cp(xu x 2 , . . . , xf , . . .) , i < OL with a many free variables and every
fi e A1, i < cc we have:

iff

{j e I: 911= (p(MJ)J2(Jl... JM), ...)}e F.

(ii) We define UF(J^) to be the class of ultrafilters F which are related to JSP.

1.3.5 Remark. Note that © is always an elementary extension of f|7 21/F.
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1.3.6 Examples, (i) Every ultrafilter is in
(ii) Let J? be ^^(Q^ i.e., first-order logic with the additional quantifier

"there exist at least K many." Then every ultrafilter on co is related to J^,
provided co is small for K.

1.3.7 Proposition. 5£ is compact iff every ultrafilter is related to J£.

Proof. Let 9W be a i-structure and F an ultrafilter on a set /. For every / e M1 let
cf be a new constant symbol not in T. Put

T = { ^ ( C / I , C / 2 , . . . ) : ^ 6 J S ? [ T ] and {t el: SR \= cp{fx{t\ f2{t\ ...)} eF}.

If JSP(T) is a set, so is T and obviously every finite subset of T has a model: We
just expand SCR appropriately. So let 9t be a model of 7\ Clearly

and by the definition of T, 91 satisfies the requirements for F e UF(JSf). In the case
JS?(T) is a proper class, we have to take a subclass To a T which is a set and still
guarantees that

and that 91 satisfies the requirements for F e UF(if). For this we observe that over
the structure 50J7 there are only set many inequivalent formulas with less than
card(9M7)+-many free variables. t

The converse is trivial. D
The next theorem connects the compactness spectrum Comp(j?) with the

filters in UF(j£f). To be more explicit, we need some more definitions.

1.3.8 Definitions. Let F be an ultrafilter on /, and A, \i be cardinals with A > \i.

(i) F is said to be (A, //(-regular if there is a family {Xa: a < A } , I a e f such
that if {a,- < A: i < n) is any enumeration of \i ordinals less than A, then
f]i<^ Xa. = 0. The family {Xa, a < A} is called a (A, //(-regular family.

(ii) A (A, co)-regular ultrafilter on A is called regular.
(iii) F is A-descendingly incomplete if there exists a family {Xa: cc < A}, Xa e F

with Xp c Za for a < ft < A such that P|a<A Xa = 0 .
(iv) F is uniform on A if every X e F has cardinality A.

1.3.9 Theorem (Abstract Compactness Theorem). Let A, \i be cardinals, A > jn, and
let <£ be a logic.

(i) JS? is [A, fi]-compact iff there is a (A, ^-regular ultrafilter F on I = P<fl(X)
in UF(JSP).

(ii) / / A = // «̂rf /i regular, then <£ is \X\-compact iff there is a uniform ultra-
filter FonX in UF(JSP).
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The proof of this theorem is delayed to Section 1.4.
Theorem 1.3.9 allows us to use known results from the theory of ultrafilters to

understand [A, /i]-compactness. The following lemma collects some simple results
from (but not due to) Comfort-Negrepontis [1974].

1.3.10 Lemma, (i) If F is (A, ^-regular and \i < iix < Xx < X then F is (A1? Hx)-
regular.

(ii) / / A is a regular cardinal and F is X-descendingly incomplete, then F is
(A, X)-regular.

(iii) / / E is uniform on A then F is (A, X)-regular.
(iv) IfF is (cf(A), cf (X))-regular then F is (A, X)-regular.

The abstract compactness theorem and Lemma 1.3.10 give us immediately the
corresponding statements in Lemma 1.1.6.

The next lemma collects some more sophisticated theorems from the literature
on ultrafilters. For Lemma 1.3.1 l(ii) one may also consult Comfort-Negrepontis
[1974, Theorem 8.36].

1.3.11 Lemma, (i) (Kanamori [1976]). IfF is uniform on A+ and A is singular, then F
is (A+, X)-regular.

(ii) (Kunen-Prikry [1971]; Cudnovskii-Cudnovskii [1971]). IfF is uniform
on A+ and A is regular, then F is X-descendingly incomplete, and hence
(X, X)-regular.

This lemma, together with the abstract compactness theorem, is the key to
the study of the compactness spectrum in Sections 1.5 and 1.6. It is also used in
the proof of Theorem 1.1.9.

1.4. Proof of the Abstract Compactness Theorem

Before we prove the abstract compactness theorem we shall give a model-theoretic
characterization of (A, /i)-regular ultrafilters which will give us the link between
[A, fi]-compactness and the existence of (A, //)-regular ultrafilters. This is implicitly
in Keisler [1967b] (cf. also Comfort-Negrepontis [1974, Theorem 13.6]).

Let H(X) denote the set of sets hereditarily of cardinality < A and let §(A) be the
structure </f(A),e> where e is the natural membership relation on H(X).

1.4.1 Lemma (Keisler). For an ultrafilter F on a set I the following are equivalent:

(i) F is (A, fi)-regular.
(ii) In the structure 91 = Y\i $>(^+)/F there is an element b = b/F where

b: I -+ H(X + ) is a function, such that 91 \= b a XN and 91 \= card(b) < JUN

but for every a < X 91 N OLN e b.

Recall that for an ordinal a < A, aN denotes the image of a under the natural
embedding into 91.
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Proof, (i) -> (ii)Defined: / -+ #(A+)by b(t) = {a e X: teXJ for t e /and {Xa: a eA}
a (A, /i)-regular family. Now Xa = {t el: oceb(t)} so 911= aNeb, since for each
a e A, Xa e F. But clearly, b(t) has cardinality <fi for each £ e /, since {Xa: a 6 A} is a
(A, //)-regular family, so 911= card(fc) < \x. Trivially, we have also 91 \= b c XN.

(ii) -• (i) Let b = b/F be the required element in 9t. Define b' by b\t) = b(t) if
b(t) a A and card(b(t)) < \i and b'(0 = 0 otherwise.

Obviously b/F = b'/F since 91 \= b c AN. We want to construct a (A, //)-
regular family. Put Xa = { t e / : ueb'(t)} for each a6A. Now suppose that for
some {a,-: iefi} the intersection f]ietl Xat # 0 . So there is a t e / such that for
each i e /a, af e b'(t\ which contradicts the fact that card(b'(0 < \i. D

1.4.2 Definition. Let Ft be ultrafilters on /,. (i = 1, 2). F2 is a projection of Fl if
there is a map/ : /x -• I2 which is onto and such that Fx = {f~1(X): X e F2}.

Projections are closely related to the Rudin-Keisler order on ultrafilters
over a fixed set /, cf. Comfort-Negrepontis [1974]. We use now Lemma 1.4.1
together with complete expansions (i.e., complete structures over their original
universe, cf. Section 1.2), to get:

1.4.3 Lemma. If X is regular and FY is (A, X)-regular ultrafilter on I then there is a
uniform ultrafilter F2 on X which is a projection ofFx.

Proof Let 91# be the complete expansion of 91 = Y\i £(A+) and b: I -• H(X+) as
in Lemma 1.4.1 and without loss of generality b(t) a X for all t e / . Now put
c(t) = sup(ft(0) so c(t) e A since A is regular, and 9i |= b c c. Clearly c: / -> A. We
define now F2 by F2 = {S a A: 9l# = c e S} where S is the name of S in 9J#. It is
now easy to verify that F2 is a uniform ultrafilter on A which is a projection of F1. D

To prove the abstract compactness theorem we shall prove a slightly more
elaborate statement:

1.4.4 Theorem (Abstract Compactness Theorem). Let !£bea logic, A, \i be cardinals
and X > /x.

(i) The following are equivalent:

(a) There is (A, ̂ -regular ultrafilter F on I = P<ll(X) which is in UF(JSf).
(b) For euery (relativized) expansion 91 o/§(A+) t/zere is an ^-extension

95 flnd an element beB such that 93 |= card(b) < yP but for every a < X
we have 93 1= OLB e b.

(c) if is [A, \i\-compact.

(ii) Furthermore, if X is regular then the following are equivalent:

(d) There is a uniform ultrafilter F on X which is in UF(JSf).
(e) if is \X\-compact.

(iii) In particular, we have:

(f) If there is a (A, //)-regular ultrafilter F on any set / which is in UF(JSf),
then if is [A, /i]-compact.
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Proof, (a) -• (b) Let F be a (A, /^-regular ultrafilter in UF(JSf) and let SR be any
expansion of <#(A+), G>. Put 9l0 to be the ultrapower Y\i Wl/F and 9l1 the extension
of 9t0 as required for F G UF(if). First we observe that 3t0 < 9^ (if W J and, by
Lemma 1.4.1 there is an element ft in 9l0 with the required properties. But then
the same element b has the same properties also in 91 x since 9l0 < 91 ̂ J^^)- But
by the definition of 9tl9 9K < SRi(if), so we are done.

(b) -• (c) Let A, Z be sets of JS?[T]-sentences satisfying the hypothesis of
[A, ̂ -compactness. We define an expansion 9W(A, Z) of <//(A+), e> to apply (b).
For this purpose let {5a: a < A<A*} be an enumeration of all the subsets of Z of
cardinality less than //, 2Ia be a model of A u Sa and {ca: a < P<M(A)} an
enumeration of all the subsets of A of cardinality less than /*. Finally we put
v = (supa(card(2Ia))) + A+), and define Aa = card(2Ia). We now define 3W(A, Z)
to be <H(v), da, e, R, P>a<;i+,per

 s u ch that da is the name of a < A+, K is a binary
predicate not in T and the domain of R is A. We arrange it such that for each
a < A the set Ra = {xeH(v): (a, x)eR} has cardinality Aa and such that
<JRa,P>P6T £ 9Ia. In other words we put all the models 9la into 9R(A, I ) in
way, that when we now apply (b) we shall get a model for A u l More precisely,
we observe that for each formula cj> e A:

(1) SR(A, I ) N card(fc) < d̂  - p**

and for each j8 < A and for S = {(pt: i < A} an enumeration of S we have

(2) 9M(A, I j N ^ e c A card(c) < d^) -+ cpf\

Now let 93, b e B be as in the conclusion of (b) for 21 = f ] 9M(A, I)/F.

Claim. <Kft,P>P6tl= A u l .

This follows from the definition and from (1) and (2).
(c)-+(a): So assume if is [A, /^-compact but no (A, ^-regular ultrafilter

F on P </i(A) is related to JK So for every such i7 there is an ^-structure 2lF

exemplifying this.
We now proceed to construct an ultrafilter Fo on A which contradicts the

choice of the 2t/s. For this we construct first a rich enough structure 501 such that:

(1) for each 2IF there is a unary predicate PF in SCR with <PF, P}PeT = 2If;
(2) 9R is a model of enough set theory to carry out the argument; and
(3) 901 is an extension and expansion of (H(k \ e> (or equivalently (H(A+), e)

is a relativized reduct of 9R).

Let 2R# be the complete expansion of 9K and put A = Th^ (9W#), the first-order
theory of $R# where if * is the vocabulary of SR#. Furthermore, put

Z = {b a dk A card(b) < d^ A d e b: a < A}.

Clearly A and Z satisfy the hypothesis of [A, ji\ -compactness using the model
SO?#. So A u Z has a model 91. We want to use 91 to construct our filter Fo. First
we observe that SR# < ^ 91. Let ab be the interpretation of ft in 91. We define Fo on

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.026
https://www.cambridge.org/core
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P</A) by Fo = {ReP<^):9l\=abeR*}. This makes sense, since 9K# is a
complete expansion and hence every subset of A of cardinality <JX corresponds to a
predicate in 90}# (remember <if(A+), e> is present in 2R#).

To complete the proof we have to verify several claims:

Claim 1. Fo is ultrafilter.

Obvious.

Claim 2. Fo is (A, ^-regular.

Let Jfa = {t eP<fl(X): ae f} a < A . Now X a e F 0 , for say Xa corresponds to Ra

then 91 \= ab e Ra iff 91 \= da e ab, which is true for all a < A be definition of ab.
Now {Xat: i < pi} be a subfamily of the Xa's. Clearly, f)i<M Xa. = 0 , since each t
in some Xa has cardinality </x.

Now consider the ultraproduct f]9K#/F0 = 9l0. If gf is an element of 9l0

then r̂ is an ivequivalence class of functions g: P<fl(X) -• 9K# so # corresponds
to a function of01 in 501# with name g (since $R# is the complete expansion) and
ab e Dom(g^). So we define an embedding f:9l0 -+ 91 by f(g/F0) = g9(l(ab).

Claim 3. / is we// defined and 1-1.

Let g/F0 = g'/F0. We want to show that this is equivalent to 91 \= g(ac) =
g'(ac) iff Y = {teP<fx\ g(t) = g'(t)} e Fo. But the latter is true iff ab e Ym which is
equivalent to $(ab) = $f(ab).

So we have shown that/is an embedding of 9l0 into 91.
Now let g = {gJF0: i < a} be in 9l0.

Claim 4. For eyery ^-formula <p we have

Clear, since 7 e Fo iff 7^ contains ac iff 9} |= (/>(gi(ac), g2(ac),...).
Now look at 9lFo. By assumption there is no 9V extending ]~J 9IFo/Fo satisfying

Claim 4. But <PFo, P)pexF is s u c ^ a n ^ ' by construction. This completes the
proof of (i).

(d) -> (e) This follows from the above, since uniform ultrafilters on X are
(cf(A), cf (A))-regular and A is a regular cardinal by our hypothesis.

(e) -> (d) Here we use Lemma 1.4.3 and (a) -• (c). This completes the proof of
(ii).

To prove (f) we just observe that in the proof of (a) -• (c) we did not use that
/ = P<J^X). This completes the proof of Theorem 1.3.9. D

7.5. The Compactness Spectrum

In this section we study the structure of the compactness spectrum Comp(J^) and
the regular compactness spectrum RComp(i?) defined below.
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658 XVIII. Compactness, Embeddings and Definability

1.5.1 Definition. For a logic if we define Comp(if), (RComp(if)) to be the class
of all (regular) cardinals such that if is [K] -compact.

1.5.2 Theorem. The first cardinal Ao in Comp(if) is measurable (or co).

Proof. By Theorem 1.2.2(i) each regular A < Ao is cofinally characterizable in i f
via a structure 93(A) with KX the cardinality of 93(A). Let \i be defined by

fi = (sup{/cA: /I < Ao}) + ^o

and let 33 be the complete expansion of the structure </i, e>. Therefore (*) in
every if-extension of S all the ordinals smaller than Ao are standard. By [Ao]-
compactness 93 has an if-elementary extension d with some ceC — B and
such that (£ 1= c e A{j. Since Ao is minimal we have for no A < Ao that £ |= c e Ac.
We now define an ultrafilter F on Ao by

F= {Iclo:£^ceX},

where X is the name of the set X in 93. Clearly F is an ultrafilter. We propose to
show that F is A0-complete.

Let {Xa: a < \x < Ao} be any family in F. The function / with /(a) = Xa is
a function in © with name, say, f. Put now X = f]a<ll Xa. So 93 1= X = f]a<fl Xa

and therefore

93 1= Vx(Vi(i < oc -> xef(0) ^ x e (%*f(0)-

But by (*) the ordinals a < Ao in 93 are the same as in £. S o t t N c e X since
f is a function of (£ with fc [ B = fB. So X e F and therefore Ao is measurable. D

1.5.3 Example. If K is a strongly compact cardinal, the logic ££KK is (oo, jc)-compact
and therefore [/c]-compact. But the logic ^KK is not [A]-compact for any A < K.

Note that, as a corollary, we get that strongly compact cardinals are measur-
able. By Magidor [1976] it is consistent that the first measurable and the first
strongly compact cardinal coincide.

Our next aim is to study the structure of Comp(if). The main theorem here is

1.5.4 Theorem. For every cardinal A and every logic $£, A+ e Comp(if) implies
A e Comp(if).

Proof. Use the abstract compactness theorem 1.4.4 and Lemma 1.3.11. D
For A regular this was first proved in Makowsky-Shelah [1979] giving a

direct proof by relating [A]-compactness to descendingly incomplete ultrafilters.
The general result was proved in Makowsky-Shelah [1983]. There the connection
with ultrafilters was first recognized, on which the presentation here is based.
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The next result concerns the structure of Comp(if). The following was proven
in Makowsky-Shelah [1979, Lemma 6.4(ii)] by an extension of the argument for
Theorem 1.5.2.

1.5.5 Lemma. Let X> \i be two regular cardinals and & be a logic such that
X e Comp(if) but fi <£ Comp(^f). Then there is a uniform /u-descendingly complete
ultrafilter on X.

Consider the following assumption A{X\ where X is an uncountable cardinal.

A(X): "if g is a uniform ultrafilter on X, then g is /i-descendingly
incomplete for every \i < A."
We denote by A(oo) the statement "for every infinite cardinal X, A(X)
holds."

Donder-Jensen-Koppelberg [1981] and Magidor [198?] have studied this
assumption. The following theorem summarizes their results (with part (v) being
Theorem 8.36 in Comfort-Negrepontis [1974], see also Lemma 1.3.11).

1.5.6 Theorem, (i) (Jensen-Koppelberg). Assume ~\O*. Then for every regular
cardinal X we have A(X).

(ii) (Donder). Assume there is no inner model of ZFC with an uncountable
measurable cardinal. Then A(cc) holds.

(iii) IfA(cc) holds then there are no uncountable measurable cardinals.
(iv)* (Woodin). Assume there are uncountable measurable cardinals. Then it is

consistent with ZFC that A(co(O) fails.
However, in ZFC we already have:

(v) (Kunen-Prikry and Cudnovskii-Cudnovskii). For every neco, A(con)
holds.

Magidor has informed us of the yet unpublished result of Theorem 1.5.6(iv) of
Woodin. He had previously proved a similar result, where one has to replace the
existence of an uncountable measurable cardinal in the hypothesis by the existence
of a supercompact cardinal.

The assumption A(oo) is intimately connected with compactness properties:
It implies that Comp(J£?) has no gaps. On the other hand, the existence of strongly
compact cardinals allows us to construct logics where Comp(i?) does have gaps.
More precisely:

1.5.7 Theorem, (i) Assume A(oo) holds. Then Comp(if) is an initial segment of the
cardinals, i.e., X e Comp(J^) and \i < X implies that \i e Comp(j£?).

(ii)* (Shelah). Let fil < \x2 be two uncountable strongly compact cardinals.
Then there is a logic <£ which is \yi\-compact iffK < fil or K > \i2.

Proof, (i) Assume Comp(L) # 0 . Since ,4(oo) implies that there are no uncount-
able measurable cardinals, by Theorem 1.5.6(iii), the first cardinal in Comp(if) is
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co, by Theorem 1.5.2. Now, if co < A e Comp(if) and co < /i < A, /i <£ Comp(if), \x
regular, we apply Lemma 1.5.5 and get a contradiction to A(co). If ft is singular,
we apply Lemma 1.5.5 to cf(/i) and then use Lemma 1.1.6(v).

(ii) will follow from Proposition 1.6.7. D

The question which remains, is whether Comp(if) is empty or not. Now clearly
the logic if ooo, is not compact in any sense, so Comp(if ^J) is empty. But if we
assume that the logic if is bounded in some sense and have some very strong
assumption on the existence of large cardinals we can get more specific results.
For terminology and results on large cardinals we refer to Jech [1978].

1.5.8 Definition. A logic is set presentable if:
(i) there is a cardinal K such that whenever a vocabulary TEH(K) and

I a i?[r] has cardinality <K then I cz H(K)\ and
(ii) for every cp e J^[T] Mod(cp) is a set-theoretically definable class of T-

structures.

(Recall that H(K) is the family of sets hereditarily of cardinality < K.)

1.5.9 Example. Let <£ = <£\ be like nth-order logic except that we allow conjunc-
tions and disjunctions of less than K many formulas. Clearly if is set presentable
and so is every sublogic of it.

1.5.10 Definition. Let SComp(if) be the class of cardinals K such that if is (oo, K)-
compact and WComp(if) be the class of cardinals K such that & is (/c, 7c)-compact.
Clearly we have SComp(if) c Comp(if) c WComp(if).

1.5.11 Proposition (Magidor [1971]). / / K is an extendible cardinal then KE
SComp(J^).

1.5.12 Definition. The following statement is called Vopenka's principle:
Let C be a proper class of x-structures for some finite vocabulary T. Then there
are two structures 91, © e C such that 91 is (first-order) elementary embeddable
into 93.

Now Magidor [1971] also shows

1.5.13 Proposition. / / Vopenkds principle holds then the class of all extendible
cardinals is closed unbounded.

So Propositions 1.5.11 and 1.5.13 give us immediately:

1.5.14 Theorem (Magidor-Stavi). Assume Vopenkds principle holds and that <£ is
a set presentable logic. Then SComp(if) is a non-empty final segment of the cardinals
(in other words, <£ is ultimately compact).

For WComp(if) we do not need Vopenka's principle to prove an analogue
of Theorem 1.5.14.
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1.5.15 Theorem (Stavi [1978]). Let \i be a uncountable measurable cardinal and F
be a normal ultrafilter on fi and <£ be a sublogic of^. Then WComp(if) n

Theorem 1.5.15 holds under much weaker assumptions (cf. Stavi [1978,
Section 5]) and is also discussed and proved in Chapter XVII, Section 4.2.

The structure of Comp(if) definitely deserves further investigation. We
combine the content of Lemma 1.1.6(v), and Theorems 1.5.2, 1.5.4, and 1.5.14 into
the statement:

1.5.16 Theorem. For a logic J? we have:

(i) cf(K) e Comp(jS?) -+KE Comp(if).
(ii) K+ eComp(j^) ->KGComp(if).

(iii) The first cardinal in Comp(if) is measurable (or co).
(iv) / / if is set presentable and Vopenka's principle holds, then Comp(i^)

contains a final segment of the class of all cardinals.

Our last theorem illustrates that Vopenka's principle is the right large cardinal
assumption in this context.

1.5.17 Theorem* (Makowsky). The following are equivalent:

(i) Vopenka's principle.
(ii) For every logic & SComp(if) # 0.

(iii) For every finitely generated logic if SComp(if) # 0.
(iv) For every finitely generated logic $£ Comp(j£?) ^ 0.

Proof (i) -> (ii) follows from Proposition 1.2.6. So we only have to prove (iv) -• (i).
Let C be a proper class of x-structures and let Qc be the Lindstrom quantifier
defined by C and ^£ = ^^JQc)- Clearly C contains a proper subclass Co of the
form Co = Mod(T) where T is a complete if [r]-theory. Assume that /ceComp(if)
and let 9IeC0 be of cardinality >K. Using [/c]-compactness we now find 93 t= T
which is an (first-order) elementary extension of 91 and clearly S e C . D

7.6. Gaps in the Compactness Spectrum

In this section we want to study a family of examples of logics with gaps in the
compactness spectrum. These examples will also be used in the subsequent sections
to illustrate various phenomena concerning dependence numbers and amalga-
mation properties (see Example 2.2.5 and Section 3.5).

1.6.1 Example. Let K be a cardinal and F be an ultrafilter on K. We define a logic
if = <gF(a by adding to first-order logic ^W(0 the following formation rule: If
{(pt: i < K] is an indexed family of i^-sentences, then f]F {cp{: i < K} is an &-
sentence. We additionally assume that if-formulas have < co many free variables.
Satisfaction for ^ is defined by the additional clause: If 91 is a r-structure then
SH\=f)F {p.: i < K} iff{i < K: 911= <pt}eF.
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1.6.2 Proposition. Let in be a measurable cardinal and F be a fi-complete non-
principal ultrafilter on \i.

(ii) ifFco is not [/Li]-compact.
(iii) J5fFco is \X\-compact for every X < fi.

Proof (i) and (ii) are left to the reader. To prove (iii) we make use of the abstract
compactness theorem (1.3.9) and we show that every ultrafilter D on X is in UF(if).
Let us spell this out precisely:

1.6.3 Lemma. Let <£ = ifFco and D be any ultrafilter on X < fi. Furthermore let
{21;: i < X) be a family of T-structures, cp e JS?[T] and {fy.j < v < /x} be a family of

functions in Yltei ^i- Then the following are equivalent:

(o niei^N^,..,^...)^

(ii) X^ = {i eX: % |= <p(fi(O, f2(0, • - -, f/0, • • 0^v} e D.

Proof Like Los' theorem for first-order logic. •

Example 1.6.1 can be still further extended:

1.6.4 Example*. Let /^ < \i2 with \ix measurable and JJL2 strongly compact. Let
3 be a fil -complete non-principal ultrafilter on [i^ We define the logic eSfF>M2 as
above, but we allow existential quantification over sequences of variables
{xy.j < a < /i2}.

1.6.5 Proposition* (Shelah). (i) <£¥^ < J^M2,M2.
(ii) The logic &Ftll2 is [KJ-compactfor every K < fix and K > \i2.

Proof (i) Clearly, the operation f]F can be expressed by conjunctions and dis-
junctions in JSfM2t/l2, since \i2 is a strong limit cardinal and \ix < /x2-

(ii) For K < fil this is similar to Lemma 1.6.3 and for K > \i2 this follows from
(i) and the fact that \i2 is strongly compact. D

Clearly, in Proposition 1.6.5, [/ij-compactness fails. But it is not clear,
whether for any K with /^ < K < \i2, we have [^-compactness. However, we
can construct a more refined example:

1.6.6 Example* (Shelah). Let D(jix, n2) be the set of fit-complete ultrafilter F on
some set / c \i2 such that \ix < card(J) < \i2. Instead of allowing f]F for one
ultrafilter we can now form"a logic cSfD(/11>|12)t|12 as follows: We close first-order
logic ifWlC0 under all the operations (°|F for F e D(/xu JJL2) as in the previous example.
Additionally we close under existential quantification over strictly less than \i2

many individual variables.

The next proposition is proved exactly as Proposition 1.6.2.
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1.6.7 Proposition* (Shelah). Let jn1 be measurable and \i2 be a strongly compact
cardinal bigger than jut. Then:

(ii) ^D(m^2),^2 is [K]-compact for every K < ial and K > fx2l and
(iii) &D(nun2),ii2 *5 not [^-compactfor any K with fix < K < \i2.

This also establishes Theorem 1.5.7(ii). Using the same type of examples we can
actually find logics with a compactness spectrum containing various gaps. How
far we can go with this, is described in the following theorem:

1.6.8 Theorem*, (i) Assume there are arbitrarily large measurable cardinals. Then
there is a [co]-compact logic ££ such that both Comp(if) and its complement
are confinal in the class of all cardinals.

(ii) Assume there are arbitrarily large strongly compact cardinals. Then there
is a \_co]-compact logic $£ such that both Comp(if) and its complement are
cofinal in the class of all cardinals and consist of intervals whose length is a
strongly compact cardinal.

Proof. Combine Examples 1.6.1 and 1.6.4, respectively. D

Note however, that for set-presentable logics if, Vopenka's principle (Theorem
1.5.14) implies that Comp(if) is a final segment of all cardinals.

2. The Dependence Number

2.1. Introduction

In this section we develop further an idea mentioned briefly in Chapter II, Section
5.1, namely the meaning of the assertion that a formula cp e J§?[T] depends only on a
subset o c: T. We present the material of this section for one-sorted logics only.
We leave it to the reader to adopt the definitions and results to the many-sorted
case. Let us recall a definition:

2.1.1 Proposition. Let if be a logic and cp e if [T].

(i) <p depends (only) on (the symbols in) a, a a r if for all i-structures 21, ©
such that 21 \ o ^ 93 {a we have 21 N (p iff 93 1= cp.

(ii) A logic if is weakly regular, if <£ satisfies the basic closure properties (1.2.1)
and the relativization property (1.2.2) of Chapter II.

The difference between weakly regular and regular is the absence of the sub-
stitution property (1.2.3) of Chapter II.

If cp e if [T] does only depend on o a T, one would generally expect, that
there is a \jj e i? |>] which is equivalent to cp. If this is the case, we say that the logic
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if is occurrence normal. However, our definition of a weakly regular logic does not
imply this. Nevertheless we have:

2.1.2 Proposition*. For every weakly regular logic if there is a logic 5£\ such that:

(i) if = Second
(ii) ifcp e if ! [T] , G a T and (p depends only on a, then there is axj/ e <£^[cr] such

that for every o-structure 21, 211= ij/ iff every expansion o/2I to a z-structure
211,2I1^(?.

Proof. We just add new atomic formulas and consider them as being of the required
vocabulary. D

Regular logics are closed under substitutions of formulas for atomic predicate
letters. For one-sorted logics there is no problem in stating this directly, for many-
sorted logics we have to be a bit careful about the sorts. Gaifman pointed out that
the definition of a regular logic ensures that if\ actually is ̂ £.

2.1.3 Proposition*. Every regular logic is occurrence normal.

Proof One-sorted case: Assume cp, o, and x as in the definition of occurrence
normal above. To construct \j/ we first make use of the eliminability of function
symbols (which follows from the substitution property, Definition II. 1.2.3) and
assume that T — a contains only relation symbols. Next we construct for every
predicate symbol R e x - a a formula of first-order logic SR with equality only and
with free variables according to the specifications of the one-sorted arity of R.
We now obtain ij/ by substituting $R for every occurrence of R in cp, using the sub-
stitution property again. Note that we do not need the relativization property
here.

In the case of many-sorted logics, the definition of the substitution property
(1.2.3) from Chapter II has to be modified. There is no difficulty in doing this so
that it implies occurrence normality. We leave this as an exercise to the reader. D

In the light of Propositions 2.1.2 and 2.1.3 we can restrict ourselves for the rest
of this chapter to occurrence normal or regular logics. For such logics we can define
the concept of a dependence number in a semantical way. In Chapter II (after
Definition 1.2.3) a syntactic concept of occurrence property was introduced.

2.1.4 Definition, (i) Given a regular logic if, we define a cardinal o(if) = K to be
the smallest cardinal such that every formula cp e if [T] depends only on
some subset T0 C T with card(r0) < K. If no such K exists we write o(if)
= oo. If o(if) = co we also say that ^£ has finite dependence or has the

finite dependence property.
(ii) Given a regular logic 5£, we define a cardinal OC(if) = K to be the smallest

cardinal such that for every formula cp e if [T] there is o c T with card(a)
< OC(J^) and <p e L{o).
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In Chapter II (Definition 6.1.3) the finite occurrence property was introduced,
which is the syntactic counterpart of our finite dependence property. In our
terminology the finite occurrence property is equivalent to OC(J2?) = co. Using
Proposition 2.1.3 one easily sees that every logic !£ which has the finite dependence
property, contains a sublogic j£?0 equivalent to it which has the occurrence
property in the syntactic sense. In fact, more generally we have:

2.1.5 Proposition*. Let ^ be a regular logic with dependence number o(j£f). Then
there is a regular logic Sf1 with OC(if) = o(if) which is equivalent to J£f.

Proof. Similar to Proposition 2.1.2. D

The above proposition shows that up to equivalence of logics, the occurrence
number and the dependence number coincide. In Makowsky-Shelah [1983] the
dependence number is, indeed, called occurrence number. The change in termi-
nology was motivated by the requirements of Chapter II and by the notion of the
dependence structure, introduced in Section 2.4.

2.1.6 Examples, (i) In Chapter II, Proposition 5.1.3 shows that for a (K, A)-compact
logic with o(J2?) < K we actually have o(j£?) < X. This fact was first pointed
out in H. Friedman [1970].

(ii) Let us look at the logic 5£F(a defined in Example 1.6.1. Obviously o(j£f)
< K+. But if cp e JS?[T], card(r) = K then there is no smallest T O C T such
that (p depends exactly on the symbols in T0 .

2.1.7 Substitutes for the Dependence Number. The dependence number is a
concept which keeps the size of a logic limited. Other assumptions in this direction
are:

(i) For every vocabulary T with T a set ^ [ T ] is also a set. We call such logics
small. In Section 4.3 this concept will be used.

(ii) For every vocabulary T, if T is a set, card(J*f [T]) = card(r) + K for some
fixed cardinal K. This gives us a special case of a size function, as defined in
Section 4.3. There we also look at tiny logics, i.e., logics if such that
whenever card(i) is smaller than the first uncountable measurable cardinal
juo, then card(J2?[i]) is also smaller than ju0.

(iii) The presence of a Lowenheim number lK(S£\ as introduced in Section
II.6.2.

For various theorems in abstract model theory such limiting assumptions are
needed, as we shall see in the further course of this and the next chapter. Note that
from the above properties (ii) -> (i) and in the presence of an dependence number
(iii) -> (ii), up to equivalence of logics. In fact, we have the following:

2.1.8 Proposition. Let 5£bea logic witho(j5f) = \iand l ^ ) = Kandxbea vocabu-
lary with card(r) = A and \i < X < K. Then there are, up to logical equivalence, only
<22 many T-sentences.
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The proof consists of a crude counting argument. Note that we do not get the
stronger conclusion card(if [T]) < 22*, since there may be many equivalent
formulas.

One would actually expect that if /i(if) = K then o(if) < K+ and one might
add this to the definition of the Lowenheim number, but it is an open field to deter-
mine which model-theoretic properties have what impact on the size of the
dependence numbers. The only exception is compactness and the rest of Section 2
is devoted to this.

2.2. Compactness and Dependence Numbers

This section is devoted to the statement of the finite dependence theorem and
the discussion of several examples. The proof of the finite dependence theorem is
discussed in the following section but for a technically complete exposition of the
proof we refer the reader to Makowsky-Shelah [1983].

To simplify the statements of the following theorem and its corollaries, we
denote by jl the first uncountable measurable cardinal, if there is one, and oo
otherwise. We stipulate further that if /Z = oo, then jl+ = oo.

2.2.1 Theorem (Finite Dependence Theorem), (i) (Global version). Let $£ be a
regular, [ai\-compact logic with dependence number o(if) < /L Then !£ has
the finite dependence property, i.e., o(if) = co.

(ii) (Local version). Let 5£ be a regular, \_ai\-compact logic, T a vocabulary and
(peJ£[x] a formula which depends only on some T0 C T with card(r0) less
than the first uncountable measurable cardinal. Then there is a finite x1 ci T0

such that <p depends only on xx.

Clearly, (ii) implies (i). The proof of (ii) is presented in Section 2.3.

2.2.2 Corollary. Let S£ be a regular, \K~\-compact logic, K < fl and o(if) < jl+.
Then $£ has the finite dependence property.

Proof of Corollary. By Theorem 1.5.2 5£ is [co]-compact, so we can apply the
finite dependence theorem. D

As a second corollary we get a representation theorem of some compact logics
via Lindstrom quantifiers (cf. Section II.4). Let us recall a definition:

2.2.3 Definition. A logic $£ is a Lindstrom logic if if = ^^(Qdiei f°r s o m e in-
dexed set of Lindstrom quantifiers Qt (i e I). <£ is finitely generated if if is a Lind-
strom logic and card(/) < co.

Note that by Theorem 4.1.3 of Chapter II every regular logic if which has
the (syntactic) finite occurrence property is a Lindstrom logic.
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2. The Dependence Number 667

2.2.4 Proposition*, (i) Let ^ be a regular logic with o(if) = co. Then if is equiva-
lent to a Lindstrom logic.

(ii) If a regular logic if is small, \_K~]-compact and o(if) < K < ju+ then if
is equivalent to a Lindstrom logic.

Proof. Using Corollary 2.2.2 we can reduce (ii) to (i). So assume that S£ has finite
dependence. Let T be a finite vocabulary. We want to replace every cp e i f [T] ,
which is not equivalent to a first-order formula, by a formula consisting of a new
quantifier Q^ applied to a sequence of atomic formulas. The problem is to keep the
number of quantifiers so introduced small. But the type of the quantifier does not
really depend on the vocabulary T, but only on the similarity type, i.e., on the
number and arities of the symbols x. NOW there is a countable universal vocabulary
T^ such that for every finite x there is x' a x^ which is of the same similarity type
as x. Therefore, every cpe<£\x\ can be obtained from some i/se^lx^ by an
application of substitution. By our assumption, S£\_x^\ is a set. So writing every
formula in if [ T ^ ] as a Lindstrom quantifier, we complete the proof. •

Both the theorem and the corollaries have assumptions involving measurable
cardinals. In the sequel we shall discuss examples which show, that these assump-
tions are necessary.

2.2.5 Examples, (i) Let \i be a strongly compact cardinal. So <£ = £f?
fift is [/i]-

compact and o(if) = \i. As noted before, it is consistent that the first
strongly compact and the first measurable cardinal coincide, by Magidor
[1976]. This shows that the assumption on measurable cardinals cannot be
dropped in the corollaries.

(ii) Let \i be a measurable cardinal and F be a /^-complete non-principal
ultrafilter on \i. We look again at the logic if = J£F(O from Example 1.6.1.
By Proposition 1.6.2 this logic is [co]-compact, but clearly its dependence
number is /i+. This shows that the assumption on the measurable cardinal
cannot be dropped in the finite dependence theorem.

23. Proof of the Finite Dependence Theorem

The proof of the finite dependence theorem uses three lemmas (Lemmas A, B, C).
We do not prove these lemmas here and refer the reader to [Makowsky-Shelah
[1983]. Instead, we present the three lemmas without proofs and show how the
finite dependence theorem is proved from them. The reader will gain a rather
transparent picture of the structure of the proof.

Let us fix a [A]-compact logic 5£, a vocabulary x and a sentence cp e if [T]. We
want to study subsets of x on which cp does not depend. Each lemma introduces a
new aspect of the notions involved: Lemma A uses compactness to construct a
dummy subset of x. Lemma B builds a function on the power set of x which is used
to apply Lemma C, which makes us conclude that card(i) was measurable.

Lemma A' is an improvement of Theorem 5.1.2 in Chapter II, and its proof is
very similar.
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2.3.1 Lemma A', (i) For every ^ c i with c a r d ^ ) < X there is a T 0 c i 1 with
card(io) < X such that cp does not depend on xx — T0.

(ii) There is a ja < X such that for every tj C T with c a rd^ ) < X there is a
T0 c i j with card(i0) < fi such that cp does not depend on T1 — T0.

Now Lemma A' can be used to prove Lemma A.

2.3.2 Lemma A. There is a TX C T with cardCrJ < X such that for every T0 CZ
T — Tt wit/z card(i0) < /I does nor depend on T0.

The second lemma used in the proof of the finite dependence theorem gives us
the connection to ultrafilters. Here we use some material from Section 1.3, in
particular, the definition of UF(if).

2.3.3 Lemma B. Let fibe a cardinal, ^ be a logic and cp a <£\r\-sentence. lfz2 <= T
but for each T1 CZ T2 with card^J < X, cp does not depend on i l9 then there is a
function/: P(T2) -• {0, 1} such that:

(i) fis non-constant.
(ii) For every au o2 <= Ti with c a r d ^ A o2) < Xwe havef{ax) — f(o2).

(iii) For every ultrafilter F e UF(if) (on fi) f is F-continuous.

Recall that if F is an ultrafilter on in, {o^. i < fi}, a are subsets of T2 then
limF o{ = cr iff for every P e T2 the set IP = {i e \i: P e ot <-• P e a) e F and
/ i s F-continuous iffo- = limF ot implies that/(cr) = limF /(crt).

The third lemma, used in the proof of the finite dependence theorem, gives us
the connection to measurable cardinals:

2.3.4 Lemma C. IfF is a uniform ultrafilter on co and f: P(k) -* {0, 1} satisfies
(i)-(iii) of the previous lemma, then there is a measurable cardinal /i0

 sucn tnat

co < fx0 < K.

We are now in a position to prove the finite dependence theorem.

Proof of the Finite Dependence Theorem. Assume J? is [co]-compact and o(J^) > &>.
Then there is an J^[i]-sentence cp which does not depend only on a finite subset of T.
So card(i) > co, and if card(i) = co we are done by Theorem 5.1.2 of Chapter II.
So card(r) > co. By Lemma A (for X = co) we can assume that cp does not depend
on any countable subset of T. Now we apply Lemma B to construct the function/
and by the abstract compactness theorem (1.3.9) and Lemma A we know tha t /
is F-continuous for some uniform ultrafilter on co. So by Lemma C we know that
card(r) > //0, the first uncountable measurable cardinal. But this shows that
o(if) > n0, a contradiction. D

2.4. Dependence Filters

So far we have studied the concept of a formula depending on some subset of a
vocabulary T, and our main result was the finite dependence theorem. However, as
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the examples in Section 1.6 and their discussion in Examples 2.1.6 show, this need
not be the appropriate notion. We are facing here a similar problem as in the
analysis of compactness properties. There it turned out that the more appropriate
tool to study compactness is the class of ultrafilters UF(if). Similarly here, we
have to look at dependence filters.

2.4.1 Definition. Let x be an infinite vocabulary and assume, for notational
simplicity, that x = {R^. i < A}, where Rt are relation symbols. Let cp e JS?[T] be a
formula of some logic if. If X c X we write xx for {Rt: i e X}.

(i) Let F be an ultrafilter on 1 We say that cp depends on F only, if, given two
r-structures 91 = (A,Rf>i<x and 93 = (B,Rf}i<A, and a set XeF such
that 91 Is xx ^ 93 Is xx then 91 \= cp iff 93 h= cp. We call F an dependence
filter for cp.

(ii) Let Yo u Yx u • • • u Yn be a finite partition of /I and Fk (fc = 0, 1 , . . . , n) be
ultrafilters on 1 ,̂ respectively. We say that cp depends on Fo, Fl9..., Fn

only, if, given two i-structures 91 = (A, R?}i<x and 93 = <£, Rf}i<x,
and sets XkeFk such that 91 ft* £ 93 fr^, where JT = (j£ Z,., then
911= cp iff 33 1= cp. W e call F09Fu...,Fn a finite dependence structure for cp.

(iii) We can modify (ii) to allow infinite partitions. In this case we speak of
dependence structures for cp.

2.4.2 Examples, (i) If a logic J5f has finite dependence, cp e JS?[T], then cp has a
principal dependence filter generated by the finite set T 0 C T O I I which cp
only depends.

(ii) Let us return to the logic JS?FCO from Example 2.1.6(ii), introduced in
Example 1.6.1 Recall that F is an ultrafilter on some set /. Let R(, i e / be
relation symbols. The formula f]F {Rt: i e 1} has among its dependence
filters also the ultrafilter F. However, if x = {Rt: iel} u {S^. iel} then
the dependences of the formula f]F {Rt: iel} A f]F {R(: ie 1} has to be
described by a finite partition of x and a filter on each of the components,
which in this case is F.

(iii) If we look at Example 1.6.5 it is easy to construct examples of sentences
whose dependence is described by more complicated partitions and more
complicated ultrafilters.

That those examples are more than accidental is shown by the following
theorem from the treasure box (Shelah [198?e]).

2.4.3 Theorem* (Shelah's Finite Dependence Structure Theorem). Let if be a
[co~\-compact logic, x = {Rt: i < A} a vocabulary and cpe^[x]. Then there is a
finite partition Yo u Yx u • • • u Yn of X and countably complete ultrafilters Fk

(k = 0, 1 , . . . , n) on Yk, respectively, such that cp only depends on F o , F \ , . . . ,Fn.
In other words, every cp e J£?[T] has finite dependence structure.

The proof of the finite dependence structure theorem consists of elaborations
of the Lemmas A, B, and C in Section 2.3. The finite dependence structure theorem
opens new perspectives in the study of dependence phenomena for compact logics
for the case that there are uncountable measurable cardinals.
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3. ^-Extensions and Amalgamation

3.1. Basics

Given a logic JSP, it is clear how to define the analogue of elementary equivalence
of two structures of the same language i: They have to satisfy the same T-sentences.
It is more problematic to generalize the notion of elementary embeddings, because
already in the first-order case either free variables or new constant symbols are
used in the definition and various definitions are equivalent only because of the
finite occurrence (finite dependence) or even because of compactness. In the
general case it is convenient to introduce a cardinal parameter.

Let us recall that the if-diagram of an x-structure 91 is the set of ££ sentences
true in the structure <9I, A}, i.e., the structure 9t augmented with names for all its
elements. We denote the if-diagram of 91 by

3.1.1 Definitions, (i) A r-structure 33 is an if-extension of a i-structure 91, if 91 is a
substructure of 93 and the two structures <9I, A) and <93, A} satisfy the
same if-sentences. In this case we write 91 <^ 93.

(ii) A r-structure © is a (K, if )-extension of a i-structure 91, if 91 is a substructure
of 95 and for every subset Ao \= A with card(v40) < K the two structures
<9l, Ao) and <93, Ao} are if-equivalent. In this case we write 91 <\ 93.

3.1.2 Examples, (i) For if = S£^ without occurrence restrictions we have
clearly 91 <<? 93 iff 91 = 33. Using indiscernibles, it is easy to construct
91, 93 such that 91 <^ootu 93 for a given K.

(ii) If o(if) = K then clearly every (K, J?)-extension is an if-extension,
(iii) If if is a compact logic, then we have, by the finite dependence theorem of

the previous section, that if-extensions and (K, if)-extensions coincide
for every K.

In model-theory extensions are studied extensively and the following three
situations are characteristic:

(i) Do models have (K, if )-extensions ?
(ii) Given a chain of extensions, is the union an extension of each member

of the chain?
(iii) Given three r-structures 9Ii? i = 0, 1, 2 such that 9I0 is an if-substructure

of both 911 and 9I2, does there exists an amalgamating extension 9I3?

In fact, in Chapter XX we shall describe an approach to abstract model theory,
which is entirely based on those aspects and not on the notion of formulas and
logics. Here, however, we shall study logics which allow these constructions.

In this chapter we shall deal with logics which allow one of the above construc-
tions (i)-(iii) universally.

3.1.3 Definition, (i) A logic ^£ satisfies EXT(if) or has the extension property, if
every infinite t-structure 91 has an if-extension 93.
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3. if-Extensions and Amalgamation 671

(ii) A logic S£ satisfies REXT(if) or has the relativized extension property, if
for every infinite definable set X in some T-structure 91 there is a i-structure
95 which is a if-extension of 91 which extends X properly.

Clearly, REXT(if) implies EXT(J&?) for every logic S£.

3.1.4 Example. Every compact logic if satisfies REXT(if).

In fact, the following proposition is easily proved by the reader:

3.1.5 Proposition. If a logic !£ is \pS\-compact then <£ satisfies REXT(if).

We shall return to the study of EXT and REXT in Section 3.2.

3.1.6 Definitions, (i) A family of r-structures 91,, i < K is an i^-chain if 91; is an
if-extension of <Hj for every j < i < K.

(ii) A logic if satisfies CHAINS, if) or respects chains of length K, if given
a if-chain 91,., i < K then {Ji<K 91; is an if-extension of each of the 9l,'s.

(iii) A logic ^£ satisfies CHAIN(if) or has the chain property, if it satisfies
CHAIN(K, ^) for every K.

3.1.7 Remark. CHAIN(co, ^£) was called in Chapter III the Tarski-union-
property.

3.1.8 Examples, (i) 5£K(a has the chain property.
(ii) If K is regular than <£KK respects chains of length A, cf (X) > K.
In Chapter III (Theorem 2.2.2) the following result of Lindstrom [1973] was

proved:

3.1.9 Theorem (Lindstrom). If a logic 5£ is compact and respects chains of length co
thenS? =<£„„.

There are no logics known which are [co]-compact and satisfy CHAIN(if).
It is open whether this is due to a theorem or simple ignorance of more examples. It
would be interesting to explore more consequences of CHAIN-properties. In
Tharp [1974] and Makowsky [1975] "continuous" or "securable" quantifiers are
studied, which, if added to first-order logic, give us logics which do satisfy
CHAIN(if). In Lindstrom [1973a, 1983] a variation of Theorem 3.1.9 is studied in-
volving only (A, CL>)-compactness and a modification of the Tarski-union-property.

3.1.10 Definitions, (i) A logic S£ satisfies Am(/c, 5£) or has the K-amalgamation
property if, given three r-structures 91;, i = 0, 1, 2 such that 9l0 < ^ 9I7-,
j = 1, 2 there is a i-structure 95 such that 9I£ < ^ 93, i = 0, 1, 2 and the
diagram commutes.

(ii) A logic ^£ satisfies Am(i^) or has the amalgamation property, if Am(/c, ^£)
holds for every K.
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672 XVIII. Compactness, Embeddings and Definability

(iii) A logic if satisfies JEP(if) or has the joint embedding property if any two
if-equivalent i-structures 91,., i = 1, 2 have a common if-extension 93.

One can also introduce cardinal parameters for if-equivalence and the joint
embedding property, but we shall not need this in our exposition.

3.1.11 Theorem, (i) Every compact logic <£ has the joint embedding property.
(ii) If a logic & satisfies JEP(if) then it has the amalgamation property.

Proof, (i) Since J^ is compact, $£ has finite dependence, by the finite dependence
theorem. So we can use compactness again to show that DL{^i^) u £L(9l2) has a
model 33 which is a (/c, if )-extension of both the 9lj, i = 1, 2.

(ii) Let 91;, i = 0, 1, 2 be as in the hypothesis of the amalgamation property.
Clearly the two structures <9ll5 Ao}, <9l2, ^o> a r e if-equivalent, so let 93 be an
if-extension of both of them. Clearly this 93 satisfies the requirements of the
amalgamation property. D

3.1.12 Examples, (i) If K is a strongly compact cardinal, then <£KK satisfies the joint
embedding property.

(ii) Let 5£ = £f ^a, but with finite occurrence. It is easy to see that 5£ does
not satisfy the amalgamation property.

3.1.13 Definition. A logic ^£ has the Robinson property if whenever Zf c i f [ i j ,
i = 0, 1, 2 are such that T0 = TX n i2 and Zo *

s complete and Eo u JLj9j = 1, 2 has
a model, then [jlZo 2f has a model. Recall that a set of sentences I is complete if any
two models of Z are if-equivalent.

D. Mundici has studied various aspects of the Robinson property, cf. Mundici
[1981d, 1981c]. The Robinson property is extensively discussed in Chapter XIX.
Here we only note the following theorem:

3.1.14 Theorem. Every logic ££, which has the Robinson property also has the
amalgamation property.

Proof Let Zt = 2)̂ (91 )̂ where the 9lf are as in the hypothesis of the amalgamation
property. D

The amalgamation property is further studied in Sections 3.3 and 3.4.
Let us summarize here some rather unexpected consequences of the amalga-

mation property, as they follow from Theorem 3.2.1 and the abstract amalgama-
tion theorem (3.3.1).

3.1.15 Theorem. Let !£bea regular logic with occurrence (dependence) number less
than the first uncountable measurable cardinal.

(i) If ^ has the amalgamation property, then REXT(if) holds.
(ii) / / CHAIN(co, ^£) holds and <£ has the amalgamation property then

g? — q?
°^ — °^ coco •
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This theorem stresses the connections between the more "algebraic" properties
of logics, as they are at the core of Chapter XX. In our context the theorem is
trivial. But then, the reader may try to prove (i) directly. The same challenge
applies to Corollary 3.3.4.

3.2. ££-Extensions

In this section we prove a converse of Proposition 3.1.5 and explore further
variations of extension properties.

3.2.1 Theorem. A regular logic <£ satisfies REXT(if) iff S£ is Ico^-compact.

Proof. Assume REXT(if) and that S£ is not [co]-compact. So by Theorem 1.2.2
(or Chapter II, Proposition 5.2.4) co is cofinally characterizable in ££ by some
expansion 91 of </c, < >. But clearly coA is a maximal definable subset of 91, a con-
tradiction. The other direction was Proposition 3.1.5. D

We next introduce a cardinal parameter into our extension properties:

3.2.2 Definition. A logic ££ satisfies EXT(/c, if) if, whenever a r-structure 91 has
no proper if-extension then card(9I) < K.

3.2.3 Proposition. If a logic & is [X]-compact then <£ satisfies EXT(A, JSf).

The proof is left to the reader.
The next theorem is one of the least constructive theorems in logic: Its proof

uses the replacement axiom very heavily. To test our assertion the reader should
try to prove Theorem 3.2.4 below in ZC rather than in ZFC. (This problem was
suggested by A. Dodd.)

3.2.4 Theorem. Let Xo be an infinite cardinal and 5£ satisfies EXT(A0, if) then there
is a cardinal K such that if is [K]-compact.

Proof We prove the contraposition: If if is not [/c]-compact for any cardinal K
then for every cardinal Xo there is a maximal structure 23 with card(95) > XQ.
(Recall that a structure is maximal for ^ if it has no proper if-extensions.)

By Theorem 1.2.2 every regular cardinal X is cofinally characterizable via
some expansion 95A which we assume without loss of generality of minimal
cardinality g(X).

Now let ii be the first cardinal such that:

(i) If v < \x then g(y) < JX.
(ii) Ao < \x.

(iii) cf(ft) = co.

Clearly such a cardinal exist, e.g., the co-limit of the first fixed points of the function
g(v). (This is where the replacement axiom is used without control over the com-
plexity of the set-theoretic formula involved.)
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Let 95 be the complete expansion of the structure </z, e>. We claim that 95 is
maximal. For otherwise, let (£ be an if-extension of 95. If (£ is proper there is a
ceC - B. Remember cf(^) = co and let {bn: neco} be a cofinal sequence in 95.
Since co is cofinally characterizable in S£ via 95, g(coi) < \x and 95 is a complete
structure, {bn: neco} is also cofinal in (L So clearly, d \= cebk for some keco.
Now let d e B be the smallest (with respect to e) element in 93 such that (£ 1= c e d.
We note that d is an ordinal. Let 3 = d(d) and {d(: i < 3} be a sequence cofinal
to d in 95. Again, since g(8) < /i and 5 is cofinally characterizable in !£ via 95
{dt: i < 3} is cofinal to d in (L So there is a; < 5 with 6 N c e dj9 which contradicts
the minimality of d. This establishes that 95 is maximal. Clearly, card(95) > Xo

by our construction, which completes the proof. D

If there are no uncontable measurable cardinals, we get the following situation:

3.2.5 Theorem. Assume there are no uncountable measurable cardinals and if is a
regular logic. Then the following are equivalent:

(i) if is [oj]-compact.
(ii) 5£ satisfies EXT(if).

(iii) 5£ satisfies REXT(if).

Proof, (i) -» (iii) was Proposition 3.1.5 and (iii) -• (ii) follows from the definitions.
To prove (ii) -• (i) we apply Theorem 3.2.4 and then Theorem 1.5.2. D

Also the existence of uncountable measurable cardinals is closely related to
our extension properties. Let us look at the following example:

3.2.6 Example. A logic ^£ for which EXT(if) and REXT(if) do not coincide.
Let QkK be a quantifier of type <1, 1> with satisfaction defined by

211= QxKxy((p(x)9 ij/(y)) iff card((/) < A and card(^) > K

3.2.7 Lemma. Let <£ = !£m<o(Qm2^ where //0 is the first uncountable measurable
cardinal.

(i) ^£ is l^-compact.
(ii) 5£ satisfies EXT(if).

(iii) 5£ does not satisfy REXT(if) and therefore is not \_co]-compact.

Proof. We prove (iii) first. For this we look at the structure <& = <(2M0)+, e>. It is
straightforward to find an expansion 9XX of 91 in which <co, e> is cofinally char-
acterized in 5£, so we apply Theorem 3.2.1 together with Theorem 1.2.2.

To prove (ii) we distinguish two cases: On structures 91 with card(9l) < 2"° S£
is equivalent to first-order logic, since the quantifier Q acts trivially, being always
false, so first-order extensions will do. On structures 91 with card(9I) > 2̂ ° we
apply (i).
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To prove (i) we use the abstract compactness theorem (1.3.9) and show that
every /^-complete ultrafilter F on /i0 is in UF(j£f). We need ^-completeness to see
that finiteness is preserved under ultrapowers over F and we need that fi0 is small
for (2/x°)+ to see that the other cardinality restriction is preserved under such
ultrapowers. D

This example together with Theorem 3.2.5 gives us immediately the following
characterization of the existence of uncountable measurable cardinals.

3.2.8 Theorem. The following are equivalent:

(i) For every logic S£ EXT(jSf) holds iffREXT(&) holds.
(ii) There are no uncountable measurable cardinals.

Finally, let us have a look at Hanf numbers. We shall draw some corollaries
from results in the previous sections, giving links between existence of some new
type of Hanf numbers and various forms of compactness. The existence of this
new Hanf number for every finitely generated logic is, as it turns out, equivalent to
Vopenka's principle. Let us first recall some definitions from Section II.6:

3.2.9 Definitions. Let & be a logic.

(i) Let O c JSf [T] be a set of sentences and X be a cardinal. O pins down the
cardinal X, iff O has a model of cardinality X, but <D has no models of arbi-
trary large cardinalities.

(ii) We define a function fcK(JS?) to be the supremum of all cardinals that can
be pinned down by a set of if-sentences of power < K. h^SP) = h{<£)
from Section II.6.

(iii) We define hj^<£) to be the supremum of all hK(£f) if it exists, and otherwise
we write hj^<£) = oo. We say that <£ has a global Hanf number, if hj^5£)
< oo.

Global Hanf numbers do not necessarily exist, even for finitely generated logics.
Clearly compact logics do have global Hanf number a>. The following clarifies
the relationship between compactness and global Hanf numbers:

3.2.10 Proposition* (Makowsky). Let <£ be a logic.

(i) If 2 is (oo, X)-compact then h^) < X.
(ii) ifSe is [co]-compact and CHAIN(J^) holds, then !%„(&) = co.

(iii) IfSe has a global Hanf number, then Comp(if) # 0.

Proof, (i) This is a standard application of the method of diagrams.
(ii) Using Proposition 3.1.5 we construct an jS^-chain of proper ^-extensions.

Now CHAIN(j£?) allows us to go as far as we want.
(iii) Let Xo be the global Hanf number of JSP. Clearly, every structure of cardi-

nality > Ao has a proper ^-extension, i.e., EXT(A0, if) holds, so the result follows
from Theorem 3.2.4. D
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3.2.11 Corollary* (Makowsky). Assume there are no uncountable measurable
cardinals. If <£ is a logic which has a global Hanf number then <£ has finite depen-
dence.

Proof. By Proposition 3.2.10, Comp(if) # 0 , so by Theorem 1.5.2 and the assump-
tion on measurable cardinals, S£ is [co]-compact. Now we apply the finite depen-
dence theorem (2.2.1). D

The following is an improvement of Theorem 1.5.17.

3.2.12 Theorem* (Makowsky). The following statements are equivalent:

(i) For every finitely generated logic if SComp(if) ^ 0 .
(ii) Every finitely generated logic J£? has a global Hanf number.

(iii) For every finitely generated logic j£? Comp(if) ^ 0 .
(iv) Vopenkds principle.

Proof (i) -• (ii) This follows from Proposition 3.2.10(i) above,
(ii) -> (iii) This follows from Proposition 3.2.10(iii) above,

(iii) -> (iv) and (iv) -> (i) both follow from Theorem 1.5.17. D

Theorem 3.2.12 tells us that there are logics which have no global Hanf number
provided Vopenka's principle is false. Let us end this section with some examples:

3.2.13 Examples, (i) Let if be &mx<o. Let 21 be a complete expansion of a structure
of cardinality A. If there are no uncountable measurable cardinals, 51 has no
proper if-extensions (see Theorem 1.2.3), so the complete if-theory of 91
pins down A. Hence, assuming there are no uncountable measurable
cardinals, !£ has no global Hanf number,

(ii) Let &0 be the logic ^(Qo) and i ^ be Se^Q^. In Malitz-Reinhardt
[1972b] it is shown that hj^^ (i = 0,1) is bigger than the first uncountable
measurable cardinal,

(iii) Let £ be S^l^ i.e., second-order logic. By Magidor [1971] h^(<£) is
smaller than the first extendible cardinal,

(iv) In Corollary XVII.4.5.12 it is shown that /i1(A3(if^)) is bigger than the
first extendible cardinal.

3.3. The Amalgamation Property

In this section we present our main theorem in the analysis of the amalgamation
properties:

3.3.1 Theorem (Abstract Amalgamation Theorem). Let <£ be a logic with depen-
dence number o(if) = X and with the amalgamation property. Then $£ is ultimately
compact. In fact it is [oo, X]-compact.

The proof of this theorem will be outlined in Section 3.5. Here we mainly
illustrate various consequences of this theorem and discuss examples and limita-
tions.

For logics with finite dependence we immediately get:
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3.3.2 Theorem. For a logic ££ with finite dependence the following are equivalent:

(i) if is compact.
(ii) <£ has the amalgamation property.

(iii) ££ has the joint embedding property.

Proof. We have seen in Theorem 3.1.11 that (i) implies (ii) and (iii), and that (iii)
implies (ii). So let us assume (ii). From Theorem 3.3.1 we get immediately that j£? is
[A]-compact for every regular k and therefore compact by Theorem 1.1.8 D

D. Mundici has studied the joint embedding property extensively, cf. Mundici
[1982b, 1983a]. In general the joint embedding property is not known to be
equivalent to the amalgamation property. In Chapter XIX some consequences of
the joint embedding property are studied. Using more of the set-theoretic
machinery we get

3.3.3 Theorem. If <£ is a logic with o(if) < ju0, where fi0 is the first uncountable
measurable cardinal, then the following are equivalent:

(i) ££ is compact.
(ii) $£ has the amalgamation property.

(iii) 5£ has the joint embedding property.

Proof. We only have to prove (ii) -• (i): Using Theorem 3.3.1 we get [/^-com-
pactness for some K < /x0, so by Theorem 1.5.2 we get [a>]-compactness and
therefore by Theorem 2.2.1, finite dependence. So now the results follows by another
application of Theorem 3.3.1. D

3.3.4 Corollary. Let ££bea logic with o(if) < ja0, where fi0 is the first uncountable
measurable cardinal.

(i) / / if has the amalgamation property (joint embedding property) then every
sublogic if 0 < ^£ has the amalgamation property (joint embedding property).

(ii) / / ^£ has the amalgamation property (joint embedding property) then A(if)
also has the amalgamation property (joint embedding property).

Proof, (i) This is clearly true for compactness, so by Theorem 3.3.3 also for the
amalgamation property.

(ii) It is easy to see, that the A-closure of logics preserves compactness and
finite dependence. D

The reader may try to prove this without using Theorem 3.3.3.

3.3.5 Corollary. Let <£bea logic with o(if) < fi0, where fi0 is the first uncountable
measurable cardinal. If ££ has the Robinson property, then J£ is compact.

Proof. Use Theorem 3.1.14 and Theorem 3.3.3. D

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.026
https://www.cambridge.org/core


678 XVIII. Compactness, Embeddings and Definability

For logics with finite dependence we shall see in Chapter XIX another proof of
Corollary 3.3.5 without using Theorem 3.3.1.

The rest of this section is devoted to examples and applications of the above
theorems. The first example gives a real application of Theorem 3.3.2 for the
following result was originally derived from it:

3.3.6 Example. Let =^WC0(QK) be the first-order logic with the additional quantifier
"there exist at least K many." Theorem 3.3.2 gives us immediately that this logic
does not satisfy the amalgamation property for any cardinal K. For K = <x> or cox

this was shown by Malitz-Reinhardt [1972b], the other cases were open till
Theorem 3.3.2 was proven.

The next examples all show that the assumption on large cardinals cannot be
dropped in any of the above statements.

3.3.7 Examples, (i) The logic S£^^ has no occurrence number. Since this logic can
describe any structure up to isomorphism, one easily verifies that the
Robinson property and the amalgamation property hold trivially, but
J ^ ^ has no compactness whatsoever.

(ii) In Makowsky-Shelah [1983] it is shown that if K is an extendible cardinal,
then $£2

KK, i.e., second-order logic with conjunctions, first-order and
second-order quantification over < K many formulas or variables, satisfies
the Robinson property, and hence the Amalgamation property and is
[oc, K]-compact. Clearly, o(if lK) = K and <£\K is not [A]-compact for any
A < K.

(iii) Now let us look at «£?k(O with additionally the finite dependence property.
It is easy to see, that for A > <x> the amalgamation property fails. But
&k(O < S£\K f°r A < JC, so Corollary 3.3.4 cannot be improved,

(iv) The logic JSf'̂  satisfies the amalgamation property trivially, but does not
satisfy the Robinson property, as pointed out in Makowsky-Shelah
[1979].

(v) In Section 3.5 we present a [co]-compact logic ££ which has the amal-
gamation property, but for which Comp(if) has a large gap. This example
presupposes the existence of strongly compact cardinals.

3 A. Proof of the Abstract Amalgamation Theorem

3.4.1 Synopsis. We first observe that by Theorem 1.1.9 it suffices to prove the
following weaker theorem:

3.4.2 Theorem. Let A be a regular cardinal and <£ be a logic with dependence
number o(JS?) < A and with the amalgamation property. Then <£ is \X\-compact.

We give first an outline of the proof, to help the reader. We assume for con-
tradiction that A is regular and S£ is not [A]-compact. Using Theorem 1.2.2 we
construct a class K of linear orderings with additional predicates in which points of
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3. ^-Extensions and Amalgamation 679

confinality k are absolute. Inside K we show the existence of some sufficiently
homogeneous structure 31. In 91 we shall find 9W, (i = 0, 1, 2) being a counter-
example to the amalgamation property for <£. The dependence number and the
isomorphism axiom will be needed to show that 9W0 <L9JJj (i = 1, 2) and the
absoluteness of "cofinality A" to show that there is no amalgamating structure.

The counterexample to amalgamation is patterned after the following example:
Let K be the class of dense linear orderings with an additional unary predicate
Red such that both Red and its complement are dense. Let 91 < x 23 hold if 91 is an
elementary substructure of © and the universe of 91 is a dense subset of the universe
of S. We shall show that K with this notion of substructure <K does not allow
amalgamation: For this let 9I0 be the rationals properly coloured, and let 9lt

(i = 1, 2) the rationals augmented by one element (say n) coloured Red in 911 and
not coloured in 9l2. Clearly, 9I0 <K 91; (i = 1, 2), but no amalgamating structure
exists, since otherwise n is simultaneously coloured and not coloured.

3.4.3 The Structure STC. Now, let k > OC(J£?) be regular and j£? not [A]-compact.
By Theorem 1.2.2, k is cofinally characterizable in S£ in a structure 9JJ. We need
some more information on 9W:

Let A, yL1 = {(pa: a < k} be the counterexample to [A]-compactness. Put Zai =
{(pp\ P < a) and 9Ka | = A u Zai. Without loss of generality the 9Wa's are structures
of some countable vocabulary T (coding more predicates with parameters), and
have the same power \i> k, 9Ma = <Ma, Qn (n e co)>.

We want to code all the 9Ma's into one structure. So we let 9W be such that:

(1) m=(M,<,Qn,Cj(neojJek)y.
(2) <M, < ) is a linear order of cofinality k such that every initial segment has

power fi (of order type //* + k, for example).
(3) {Cj'.j < k} cz M is increasing and unbounded.
(4) If x < Cj but x > c( for every / < j then

<{yeM:y<xlQn(x, - , - , . . . , - ) > ^ 9Wa.

Let T = Th#(W) for some fixed 9JJ as described above.

Claim. Then T cofinally characterizes k.

This is proved like Theorem 1.2.2.

3.4.4 The Class K(W}. For the rest of this section 9M is fixed. We now define a
class of structures K(W):

. The vocabulary of K{W) is that of 9W without the constant symbols for c3 but with
two additional unary predicate symbols P and R and one additional binary
predicate symbol /. Actually our main focus is on the order together with P, R,
and / is used to code copies of 9M, which we need to guarantee the absoluteness of
cofinality k.
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A model in K(W) is of the form 21 = <4, <, Qi9 P, R, 1} with the requirements:

(Kl) If x G P then the cofinality of x in {A, < > is A with a witnessing sequence
{c/x): j<A}.

(K2) (a, x) G / implies that a < x.
(K3) (a, x) e / implies that xeP and a £ P.
(K4) P(x) implies that I(cfic), x) for every j e A.

Put JJ = {a e A: (a, x) G/} and 35 be the substructure of <4, <, Qt) induced by

J*A.

(K5) The structure <35, c/x)> is isomorphic to Sft.
(K6) K c P.

We call a structure in K(5ft) pwre if additionally

(K7) Qi is false where not defined by the previous requirements.

3.4.5 Comments. Note that if 21 e K(9Jl) is pure and P in 21 is empty, then 21 is just
a linear ordering, i.e., all the other relations are empty, too, by (K7). If we add to
Sft one point at the end, say x and let P = {x}, we get a structure in K(W). We
denote this structure by 2R+ *.

In general the structures in X(9K) are linearly ordered structures where every
point in P has a copy of SR attached to it in such a way that different points have
almost disjoint copies of 9M, and SCR cofinally reaches its point in P. The choice of R
can be any subset of P. More precisely:

Fact 1. For every 21 e K(Wl) and every a, a' eA,Ja
An Ja

A is bounded below both
a, a'.

This is proved using the fact that 2ft is of order type //* + A. Note that this is
first-order expressible and could have been stated also as an axiom among
(K1-K7).

Fact 2. If 21 G K(W) and aePA and we form 21' by changing the truth value of
a G RA, but leaving everything else fixed, then 21' e K(W).

Next we define the notion of X-substructure, 21 czK 95 for, 21, 95 G K(W) by:

(K8) 21 cz 95.
(K9) If xePA then JX

B c A.
(K10) If x GPB - PA then {a e A: a < x} is bounded below x in 95, i.e., there

is bx G B such that bx < x and for each a e A with a < x we have a < bx.

The idea behind this is that in © new points in PB are added to PA in a way that
they are not limits of points from 21, and that points in 21 which are of cofinality A,
are also of cofinality A in 23 with the same copy of 2ft ensuring this as in 21.

This ends the definition of A:(2ft) and of X-substructures.

3.4.6 Some More Facts About K(W). Before we proceed with the proof of the
theorem we collect some more facts:
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Definition. If 9^. 9I2 e X(9M) we define 91 x + 9I2 to be the disjoint union of 9l1? 9l2

with the linear ordering of 911 and 9l2 for their elements and ax < a2 for every
aleAl,a2eA2. For the other relations we just take their unions.

Fact 3. If 9Tl5 9T2 e K(9K) so 8^ + « 2 e K(W) and 21, c:^ 91! + 9I2 (i = 1, 2).

This is clear from the definitions.

Definition. Denote by LA = {a e A:a < x} and by QA the structure 91 [LX
A. If

95 G K(W) and i c B w e define a substructure <£(A) of 93 by

d(A) = 93 r U JlvA.
aeA

This makes sense by Fact 1 and ensures that :

Fact 4. For every 93 e K(W), A a B, £(A) czK 93, but in general £(4) is not pure.
Furthermore, if A is bounded in 23 by b, i.e., there is b a B with A a Lb

B, so
<£(A) cz ££ and C(Lj) = fij-

Facr 5. If 91 e X(9M) and d e P^4 then 91 [ Ld
A aK 91.

Fact 6. If {21,.: / < a} is a sequence of structures in K(W) such that 91, czK%+1 then
a n d ^ <=* ^ f o r e a c h ' < a-

Definition. If 9I1? 9l2 e K(9«), 93, c=x9I, (i = 1, 2) and / : 93j ^ 932 is an isomor-
phism, we define 91 x +f 9I2 in the following way: Form the disjoint union of 911

and 9I2 modulo/(i.e., identify elements only via/). This makes it into a partially
ordered structure where at e Ai (i = 1, 2) are comparable only if one of them is in
the range or domain of/ or there is b between au a2 which has been identified. For
incomparable al9 a2 we extend the order on 91 x +f 9l2 setting a1 < a2.

Fact 7. If 9l1? 9l2 e X(9W) and / : 93, s » 2 , S, cz^ 91, (/ = 1, 2) then 9IX + 7 9l2 e
X(9M)and9l, 01^91! +/SI2.

The proofs of the facts are left to the reader.

3.4.7 Two Lemmas. The next lemma is crucial for our construction:

Lemma 1. / / 91 e K(W) and 23 is an <£-extension of 91 and {df. j < X} is confinal in
Ja

Afor a G PA, then {dy.j < X] cofinal in Ja
B.

Proof. Let a e PA, so yA ^ 9K by (K5) and by our assumption on <£ and 2R, <£
cofinally characterizes X in 9K. Using relativization of <£ the structure 3£ is an
^-extension of 9Jt so 9JJ is confinal in %, hence {dy.j < X) is cofinal in 3£ which
proves the lemma. D

The next lemma is proved in a similar way as one usually proves the existence
of homogeneous structures for Jonsson classes (cf. Chapter XX). We omit the
proof here and show how one can now complete the proof of the theorem. A
detailed proof of the lemma may be found in Makowsky-Shelah [1983].
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Lemma 2. There is a structure 91 in K(9Jl) and dx < d2 < d3 in 91 with dtePN

(i = 1, 2, 3), dx e R\ d2 £ RN such that:

(i) 91 [Ld
N

l s 9* [Ld
N

2 s 91 [Lit; and
(ii) / / 91 c= K 9fl p JL̂  (i = 1, 2) is bounded in 91 [ L# then 91 [ Ld

N* s 91 fLfc
91 (/ = 1, 2).

3.4.8 Proof of the Abstract Amalgamation Theorem. Put 9Jit = 91 [Ld
N

l (i = 1, 2, 3).
We have to verify some claims:

Claim l.SR,. <^aR3( l = 1,2).

Proof. Let cp be an L[T(9JJI)]-sentence. Since the dependence number o(JS?) < A,
cp depends on < A many constants, hence there is a e Mt and all the constants of cp
are in La

Mi. So by Fact 4, 9R{ \ L
a

M. is a bounded K-substructure of both 9Rt and
9K3. So, by Lemma 2(ii) above, <SK£, L

a
M.} is isomorphic to <9W3, L

a
Mj) hence by

the basic isomorphism axiom,

<Wli9L
a
Mt}^q> iff <aW3,LSf3>|=9.

Now let/: 9W! ^ 9K2 be the isomorphism from Lemma 2(i) above, and gi:9Ri^9R3

(i = 1, 2) the if-embeddings from Claim 1.
Since if has AP, let 91 be the amalgamation for gx: 9 ^ -• 9M3, #2/: SMi -* 9M3.

Claim 2. 911= dt = d2.

Proof. dt e PM3 (i = 1, 2) are both of cofinality A and 04(Mx) is cofinal in 9Jl3 \ L^}3,
and g2f(Mi) is cofinal in 9M3 pL^|3, so by Lemma 1 above also in 21 \LdJ and
91 \Ld

A\ hence 91 N dx = rf2-
But Claim 2 contradicts our assumption of Lemma 2 above that ^ e R 9 1 and

d2 £ R91- This completes the proof of the abstract amalgamation theorem. D

In fact the same proof gives also the following versions of the abstract amalga-
mation theorem:

3.4.9 Theorem*. Let K be a regular cardinal and if be a logic such that:

(i) The Lowenheim number /K(if) of if is K.
(ii) Am(K, ^) holds.

Then !£ is (K, K)-compact.

3.4.10 Theorem*. Let if' bea logic with dependence number o(if) < A. //Am (K, J^)
holds for every K > A then $£ is [oo, X]-compact.

It is open whether the converse of Theorem 3.4.10 also holds. Note however
that for A smaller than the first uncountable measurable cardinal the converse
does hold.
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5.5. An Intriguing Example

Let us now look at logics which do have the amalgamation property, but have a
large occurrence number. One naturally wonders if such a logic has to be an
extension of S£KK for some uncountable /c, possibly bigger than the occurrence
number. This is clearly not the case, provided the logic if is [co]-compact. The
purpose of this section is to present an example of a logic <£ with occurrence
number OC(if) bigger than the first uncountable measurable cardinal /i0, which
is still [A]-compact for every X < fi0, satisfies the amalgamation property, but is
not compact. If, however, a logic i? satisfies the amalgamation property but is not
[co]-compact, then we know that its occurrence number is bigger than /i0, and
therefore, by Proposition 1.2.4, every T-structure 91 with card(2I) < ju0 has an
if-maximal expansion. This can be used to show that for every cp e if^o JY| there
is T', T C T ' and a set Z cz if [Y] such that Mod^ooj((p) = Mod^(E) { T. In the
presence of the Robinson property T' can be assumed to be T. We develop this idea
further in Chapter XIX, Theorem 1.12.

3.5.1 Definitions. Let \i be a cardinal and E c P(JJ) a family of subsets of//.

(i) We say that E is (< /enclosed, K a cardinal, if for every A < K and every
ultrafilter F on A the following holds: Given {At c fi: i < A}, <then
{i G fi\ Ai G E} E F implies that limf A{ = {<x e \i\ {i e A: a e At} G F} G E.
We say that E is (< fc)-bi-closed if both E and P(n) — E are (</enclosed.

(ii) If {̂ j-: i G fi} is a family of if-formulas, we define a connective /\f6M $i by
VAeEiAieA $i V /\i^-A 1 ^il

3.5.2 Remarks, (i) If £ is a /c-complete ultrafilter on [i then both E and P(//) — £
are (< jc)-closed.

(ii) The connective /\fefi tyt is a generalization of the connective f]F where
F is some ultrafilter.

3.5.3 Definitions, (i) Let KX < K2 be two strongly compact cardinals. We denote
by E(KU K2) the set of (<fc1)-bi-closed families E a P(fx) with \i < K2.

(ii) Let &E(KUK2),K2 ^e t n e c l ° s u r e of first-order logic under all the infinitary
operations J\ fefi for E G E ^ , K:2).

(iii) Recall that S£ = ^?D(K1,K2),K2
 w a s defined in Example 1.6.6 in a similar

way as (ii) above, but instead of (</c1)-bi-closed sets we only used KX-
complete ultrafilters.

3.5.4 Proposition* (Shelah). Let KX < K2 be two strongly compact cardinals and

-£ = ~ZE(KUK2),K2-

( l ) <^D(KuK2),K2
 < ^ •

\\\) J; <^ J; K2 > I C 2.

(iii) 5£ is [oo, K2~\-compact.
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(iv) Every ultrafilter F on \i <KX is in UF(JSf), i.e., is related to ££.
(v) For every cardinal \i < Klis the logic <£ \ji\-compact.

(vi) For no cardinal fi,Kl< \i < K2is ££ \ji\-compact.

Proof. Essentially the same as in Section 1.6. D

3.5.5 Theorem* (Shelah). Let K1 < K2 be two strongly compact cardinals and
& = ^E(KUK2),K2' Then 5£ satisfies the joint embedding property, and therefore the
amalgamation property.

Outline of Proof Let 9W1? SR2 be two disjoint r-structures such that (SRl =# 9W2

and let D^(3Rt) (i = 1, 2) be their J^f-diagrams. We want to show that D* =
D^Bli) u D<?($R2) has a model. Since 5£ < i?K2,K2 and K2 is strongly compact, it
suffices to show that for every subset I \ c DJ^SI^) and T2 c D^(9W2) with
card(r^) < K2, rt u T2 has a model.

Let Fl5 F2 be given and assume T2 = {(pi(a): i < \i < K2}. Put

Eo = {A a ix\ Tx u {cp^. i e A} has a model}.

If fieEo we are done. So assume, for contradiction that fi$Eo. Clearly, 0 G £ O ,

since 9Jll can be expanded to a model of Tv

Claim 1. Eo is (<K^-closed.

This can be established using Proposition 3.5.4(iv).

Claim 2. IfE cz P(ju), ^ < K2 is {KK^-closed and[i$ £, then there is
Ex c P(jj) — E with fieEx such that Ex is {<Kxybi-closed.

This is proved using a reduction to infinitary propositional calculus with
conjunctions of length less than KX and the fact that KX is strongly compact.

Clearly, SR2 1= f\ieil cp^a), and therefore, 9Jl2 1= /\fe^ (Pi(a). Since J^ is closed
under existential quantification of length less than K2 , 3x /\fe% <Pi{x) is an if-
sentence and 9K2 N 3x /yf^ ^^x). So also SJij N 33c /\f^fl (p^x). Therefore there
is b from Wl^ and i e f j such that <SRl \= /\ieA <Pi(b) which shows that
Tx u {(Pi(a): ieA} has a model. From this we conclude that A e Eo, contradicting

Using the finite dependence structure theorem and the fact that ^E{K1,K2),K2

is [&>]-compact, we get now

3.5.6 Proposition* (Shelah). Let KX < K2 be two strongly compact cardinals. Then
the two logics &E{KuK2)tK2 and &D{KltK2)tK2 are equivalent.

3.5.7 Corollary* (Shelah). LetKx < K2 be two strongly compact cardinals. Then the
logic <&D(KI,K2),K2

 nas the joint embedding property, and therefore the amalgamation
property.
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3.5.8 Remark. In Chapter XIX, Theorem 1.1 states that, if j£f is a small logic with
s(co) = X (s the size function of if) which satisfies the joint embedding property,
then there are atmost 2A many regular cardinals \i such that JS? not |»compact .
Theorem 3.5.4 shows that this is best possible.

4. Definability

4.1. Preservation Theorems for Sum-like Operations

In model theory one frequently builds new models from a set of given models
and it is often very useful to know that the theory of the so-constructed model
only depends on the theories of the models it was built from. Examples are the
ultraproduct construction and various other product-like constructions, which
mostly go back to the seminal papers (Mostowski [1952], Los-Suszko [1957],
Feferman-Vaught [1959], and Frayne-Morel-Scott [1962]). The possibilities of
generalizations of the Los lemma to logics in general are rather limited, as we have
shown in Section 1. For simpler constructions, such as disjoint unions or ordered
sums, the preservation properties are usually proved with the use of back-and-
forth arguments, as they are generalized in Chapter XIX. The first to consider such
properties in the context of abstract model theory was S. Feferman in his papers
(Feferman [1972, 1974a, b, 1975]. The theme was then pursued in Shelah [1975],
Makowsky [1978], and Makowsky-Shelah [1979].

In the context of abstract model theory, in contrast to specific examples of
logics, only sum-like operations have played an independent role. They are also
used heavily in Chapters XII and XIII. For this reason we restrict our exposition
here to the description of sum-like operations as they are used in the following sub-
sections, and as we think they are of interest for future research. Recent trends in
theoretical computer science have shown that abstract model theory offers the
appropriate framework to state problems and theorems dealing with specification
of abstract data types (Goguen-Burstall [1983] and Mahr-Makowsky [1983a, b,
1984]), correctness of programs (Harel [1979, 1983], Makowsky [1980], and
Manders-Daley [1982]) and data base theory (Makowsky [1984]). Especially
sum-like operations on abstract data types have been recently investigated by
Bergstra-Tucker [1984] to show that some of the concepts in program correctness
are probably not stable enough to be transferred from one formalization to another.

4.1.1 Definitions, (i) (Pair of Two Structures). Let T1? T2 be two disjoint one-
sorted vocabularies and 511? 512 be rrstructures, respectively. We define the
pair [911? 9l2] to be the two-sorted xx u restructure with universes Al9 A2

and their respective relations, functions, and constants. If the vocabularies
T19 T2 are not disjoint, we make them disjoint by a name changer and write
nevertheless [T1? T2] .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.026
https://www.cambridge.org/core


686 XVIII. Compactness, Embeddings and Definability

(ii) (Pair Preservation Property). If if is a logic, we say that 5£ satisfies the
pair preservation property and write PPP(if), if whenever 9 l n , 2I12, 2I21,
9X22 are structures such that 2Xa =^ %2 then [9 l n , 2l21] =J? [s#i2, ̂ 22]-

To verify that a given logic satisfies PPP(i?) it is often useful to use back-and-
forth type arguments, as described in Chapter II and more generally in Chapter
XIX. It should be possible to state a general theorem to the effect of when a back-
and-forth property implies the pair preservation property, but this does not seem
to be a very rewarding line of thought. For the traditional back-and-forth argu-
ments for infinitary logics this analysis has been carried out in Feferman [1972].

4.1.2 Examples, (i) Both &m<o and S£^m satisfy the pair preservation property,
(ii) i?Wia) does not satisfy the pair preservation property (Malitz [1971]).

jSfKA does satisfy the pair preservation property iff K is strongly inac-
cessible (Malitz [1971]).

(iii) J^OXGK) satisfies the pair preservation property by Wojciechowska
[1969].

(iv) For logics with second-order quantification, such as stationary logic
^coco(aa) w e have to distinguish between the possibility that subsets
range over the union of the universes, or that we have also two sorts of
set variables. In the former case i f ^ a a ) does not satisfy the pair preserva-
tion property (cf. Example IV.6.1.2), in the latter case it does (Makowsky-
Shelah [1981]).

4.1.3 Definitions, (i) (Algebraic Operations). Let new and T1? T2, . . . , xn, o be
vocabularies. Let F: S t r ^ ) x • • • x Str(in) -• Str(<r) be a function. We
say that F is an n-ary algebraic operation of type x = [rl5 T2, . . . , zn9 o\ if
2lf, 33,- are rrstructures and 21, ^ 93; (i = 1 , . . . , n) then

(ii) (if-Projective Operations). Let if be a logic. An algebraic operation F of
type T as above is an 3?-projective operation if the graph of F is an if-
projective class.

(iii) (Preservation Property for Projective Operations). We say, a logic if has
the preservation property for projective operations and write PPPO(if), if
for every if-projective operation F of type x, if 2lf, 93£ are xrstructures and
% =<e 33, (i = 1, . . . , n) then F(Ml f . . . , 2IJ = * F(331?..., 93J.

4.1.4 Examples, (i) First-order logic satisfies the PPPO by Feferman [1974].
(ii) The PPPO follows from the uniform reduction property UR2 defined

in Section 4.2.
(iii) The pair construction in Definition 4.1.1 is a first-order projective opera-

tion. Therefore PPP follows from PPPO for any regular logic,
(iv) Various other algebraic operations are studied in Gaifman [1967, 1974],

Isbell [1973], Hodges [1974, 1975, 1980], and H. Friedman [1979c].
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The preservation property for projective operations seems to be very rare. In
fact, it is only known to hold for first-order logic, or for logics with uniform
reduction (see Section 4.2). For many applications, however, we need much less. A
construction somewhere between disjoint unions and general projective opera-
tions is enough to obtain interesting theorems in abstract model theory. In the
spirit of this section, dealing with definability properties in logics, we give both an
implicit and an explicit definition.

4.1.5 Definitions, (i) (Tree-like Structure). Let rtree be one-sorted and consist of one
unary function symbol f and one constant symbol c. A rtree-structure
2 = <T, / c> is a tree-like structure, if the following hold.

(a) For every x e T,f(x) = x iff x = c, i.e.,/is cycle-free but for its only
fixed point c, the root of/

(b) / i s onto.
(c) For every xeT there is an nGco with/"(x) = c.

For x e T w e denote by 7̂ . the set/"x(x) — {x}.
(ii) (Augmented Tree-like Structure). Let iaug be itree u {P}, where P is a

unary predicate symbol. A Taug-structure % = <T,/, c, P) is an augmented
tree-like structure, if % \ rtree is a tree-like structure.

(iii) (Tree-like Sum, Implicit Version). Let x be a vocabulary with a distin-
guished predicate symbol P and let 91, 95 two i-structures. We now define
two structures over the vocabulary T udisjoint rtree, 911 = Treej>(9t, 95),
i = 0, 1, the tree-like sum over P, in the following way:

(a) 9T I (itree u {P}) is an augmented tree-like structure. We write now
Nix for Tx above.

(b) For every x e Nl there is bijection sx: (£ -• Nix where (£ is either 91 or
93. This bijection makes Nx naturally into a r-structure which we
denote by 9VX.

(c) For each symbol R e T let Rx be its interpretation in 9ll
x. We require

now that R = RN = [jxeN Rx.
(d) We require further that P = Pm be defined by: If x e P then 9VX ^ 91

and x i P then 9lx^ 95.
(e) If / = 1 then c e P and if i = 0 then c i P.

(iv) (Tree-like Sum, Explicit Version). To make the definition of the tree-like
sum 9T = Treej,(9I, 93) explicit we proceed as follows: We let the universe
of yV consist of the set of finite sequences (ak: k < n} such that:

(a) akeA u B;
(b) if i = 0 then a0 e A, but if i = 1 then aoeB;
(c) akePAuPB iff ak+1e A;

Next we define/, the interpretation off:

(d) For the empty sequence < > we p u t / « » = < >;
(e) f«ak:k<n)) = (ak: k < n>.
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Finally, for every relation symbol R e i we define its interpretation R by

(f) ((ak: k < n>, (bk\ k < n}) e R iff ak = bk for every k < n and

(aH,bH)eRAuRB.

(v) (Tree Preservation Property). Let if be a logic. We say that if has the
tree preservation property and write TPP(if), if whenever 21, 23 are as
above, T = T0 U {P} and additionally 91 f T0 = # 95 f T0 then

Tree°(2l, 23) p T0 u rtree =* Treej,(2l, » ) f T0 U itree.

4.1.6 Remarks, (i) The tree-like sum is not, in general, a projective operation, since
Definition 4.1.5(c) is not first-order definable. However, if the logic if is
such, that the structure {at, < > is PC^-characterizable, then the tree-like
sum is an if-projective operation.

(ii) For regular logics if the tree preservation property implies the pair
preservation property, since the pair can be constructed as a relativized
reduct of the tree sum.

(iii) If the distinguished predicate P in the tree-like sum is not unary, we can
still define a tree-like sum over P. We just replace/by a function 5: T -• Tn

and define sx to be s followed by a projection to the first coordinate. Then
we express Definition 4.1.5(i)(a) and (b) with 5 and (c) with sv

The construction of the tree-like sum over a predicate P can sometimes be
used to define the predicate P implicitly. The precise situation where this is possible
is given in the following lemma from Makowsky-Shelah [1979b]. The idea goes
back to S. Shelah.

4.1.7 Lemma. Let Jg be a logic, x{ = T0 udisjoint { P J (i = 1, 2) vocabularies, and
<Pi e i f [ T J be sentences having a model, but such that (px A cp2 has no model. Then
there is a sentence \j/ e i f [T 0

 udisjoint Taug]
 sucn that:

(i) Every T0 ud i s jo i n t TtTee-structure 9X has at most one expansion 91* N ij/.
(ii) / / %(i = 1, 2) are ^-structures and % \= cpt then T r e e j , ^ , 2I2) \= \\i

provided we substitute P for P1? P2 , respectively.

Proof. Let \j/ = ^ 0 A i//l A \j/2 with:

^0 expresses Definition 4.1.5(i)(a) and (b);
ij/i is the if-formalization of "If x e P then $lx N <Pi"\
\\f2 is the first-order formalization of "If x $ P then 9lx \= cp2."

The latter two involve the appropriate substitutions and relativizations. Clearly
(ii) too, holds, by our construction of Treej,(9I1? 9l2). And (i) holds because q>t A cp2

has no model. D

We shall use Lemma 4.1.7 in Section 4.4 to prove some abstract theorems.
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4. Definability 689

4.2. Definability, Interpolation and Uniform Reduction

We first recall some definitions from Chapter II, Section 7.

4.2.1 Definitions, (i) A logic <£ has the interpolation property, and we write INT(if),
if any two disjoint classes of r-structures, which are RPC in i£, can be
separated by some EC-class of j£?.

(ii) A logic <£ has the ^-interpolation property, and we write A-INT(if), if
any class K of r-structures, such that K and its complement are RPC in
if, then K is an EC-class of if

(iii) A logic 5£ has the weak Beth property, and we write WBETH(if), if every
strong implicit definition can be replaced by some explicit definition in ££.

(iv) A logic if has the Beth property, and we write BETH(if), if every implicit
definition can be replaced by some explicit definition in S£.

(v) A logic if has the projective weak Beth property, and we write
PWBETH(if), if every implicit definition which is RPC in if, can be
replaced by some explicit definition in I£.

The following summarizes the relationship between these properties.

4.2.2 Theorem, (i) A logic <£ has the weak projective Beth property iff it has the
^-interpolation property.

(ii) For a logic $£ the interpolation property implies, but is strictly stronger than,
the ^-interpolation property (and therefore the projective weak Beth prop-
erty). This is true even for compact logics.

(iii) For a logic <£ the interpolation property implies, but is strictly stronger than,
the Beth property. This is true even for compact logics.

(iv) For a logic <£ the ^-interpolation property implies, but is strictly stronger
than, the weak Beth property. In fact, the ^-interpolation property does not
imply the Beth property. This is true even for compact logics.

(v) For a logic ££ the Beth property implies, but is strictly stronger than, the
weak Beth property, in fact the Beth property does not imply the /^-inter-
polation property. This is even true for compact logics.

Proof The implications are all straightforward, (i) is Proposition 7.3.3 and (ii) is
7.2.7 in Chapter II. (iii) follows from (v). (iv) is Theorem 2.5 in Makowsky-Shelah
[1979b] and (v) is proven in Makowsky-Shelah [1976] and will appear in
Makowsky-Shelah [198?]. For compact logics (ii)-(v) follow from Theorems
4.6.12 and 4.6.13. •

4.2.3 Remark. For sublogics of 3?^^ of the form if'A with A primitive recursive
closed, the A-interpolation property implies the interpolation property and there-
fore the Beth property. This is due to H. Friedman and proved in Makowsky-
Shelah-Stavi [1976]. See also Chapter VIII, Theorem 6.3.1.
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Next we investigate the relationship between the weak Beth property and re-
cursive compactness. Of special interest here is that we need an additional assump-
tion, namely either that the logic is finitely generated or the pair preservation
property.

4.2.4 Definitions, (i) A logic if is finitely generated, if it is a Lindstrom logic over a
finite set of new quantifier symbols,

(ii) A logic $£ is recursively generated, if it is a Lindstrom logic over a recursive
set of new quantifier symbols.

(iii) A logic if is recursively compact, if if is recursively generated and if
I is any recursive set of if-sentences such that every finite subset of S has a
model, so X has a model.

4.2.5 Remarks, (i) By Theorem 5.2.5 in Chapter II every logic, for which validity is
recursively enumerable, is recursively compact.

(ii) A logic 5£ is recursively compact iff no single sentence (peiffi] , with T
containing a binary relation symbol denoted by <, characterizes the
structure <co, < > up to isomorphism among (relativized) reducts of models
of cp. Cf. also Chapter II, Section 5.2.

4.2.6 Theorem, (i) (Lindstrom). Assume a logic <£ is finitely generated and has the
weak Beth property, then <£ is recursively compact.

(ii) Assume a logic 5£ is recursively generated and satisfies the weak Beth
property and the pair preservation property. Then ^ is recursively compact.

Proof. The proof of (i) is similar to the proof of Theorem 5.2.5 in Chapter II, cf.
also Chapter III, Remark 2.1.5 or Chapter XVII, Section 4.

To prove (ii) we assume for contradiction that there is a cp e if [T] as in the
remark (ii) above. Since 5£ is recursively generated we have at most 2W many
theories over a countable vocabulary. Now consider the u-structure

91 = (A, P", Q, G>

where A = [jne(a Pn(co), Pn is the nth iteration of the power set operation, Pn

are unary predicates with Pn = Pn(co), e is the natural membership relation, and
Q cz Pk where k is fixed and such that 1(k) is bigger than the number K of in-
equivalent theories in if [T]. NOW consider the structure [91, 91] with universe of
the first sort Ax and universe of the second sort A2 and let ^ be the formula in 5£
which expresses:

(i) P° is standard co. (Here we use cp.)
(ii) F is a partial map from Ax to A2, where F is a new function symbol,

(iii) F and F~* preserve e.
(iv) F is hereditary, i.e., if F is defined for x and y e x so F is defined for y.
(v) The domain of F is maximal with respect to (i)-(iv).

Clearly, \j/ defines F strongly implicitly. Since there are at most K = T° many
theories over T, we can find two structures 21 x = <X, Pn, Qu e>, 9I2 =
(A, Pn, Q2,e}, such that 91 j =^9I2 but Qx / Q2.
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4. Definability 691

= [9ll92l2]and952 = [911? 9IJ . Now we use PPP(J^) to conclude that
®i = * ®2- Using the weak Beth property, let 3 e 5£\z\ define F explicitly. So 9
defines on SBf a partial map Ft with domain Dt. Clearly gx c D1? and since
®i E y ® 2 ?

 a l s o 6i <= T>2. But then we can show by induction on / < k that
2i = Qi > contrary to our assumption. Note that, in this proof, we have only used a
finite subset of the vocabulary z. D

The same proof actually only requires that the number of theories for a count-
ably vocabulary is smaller than 2(co^K). This can be achieved by assuming either
that the Lowenheim number is smaller than 3(a^K) or directly, by assuming that
there are not too many different formulas for a given countable vocabulary. One
can vary the prove further for logics <£ such that card(if[T]) < 3(a) for countable
vocabulary z. We state the corresponding results without proof:

4.2.7 Theorem, (i) Assume a logic J£? satisfies the weak Beth property and the pair
preservation property, and has a Lowenheim number /(if) < 3(co^K). Then
no single sentence cp e i f [T] , with z containing a binary relation symbol
denoted by <, characterizes the structure <co, < > up to isomorphism among
reducts of models of cp. In other words, the well-ordering number wx{^)for
single sentences of ££ is co.

(ii) Assume a logic $£ satisfies the weak Beth property and the pair preservation
property, and card(if [T]) < 3(a) for countable vocabulary z. Then no
single sentence cp e S£\x\ with z containing a binary relation symbol denoted
by <, characterizes the structure <co + a, < > up to isomorphism among
reducts of models of cp. In other words, the well-ordering number w^^for
single sentences of' S£ is co + a.

4.2.8 Corollary. Let Abe a countable admissible set with coe A, or A = OJV Then
<£A does not satisfy the pair preservation property.

Proof. Clearly <co, < > is characterizable in 5£A and the interpolation property
holds. D

We now want to look at a property introduced in Feferman [1974b] and
further studied in Makowsky [1978], which is a generalization of both the inter-
polation property and some of the preservation properties.

4.2.9 Definition.Let if be a logic and % be ^-structures (/ = 1, 2) with z the vo-
cabulary for [9115 9I2]. We say that <£ allows uniform reduction for pairs, or has the
uniform reduction property for pairs, anc write URP(J*f), if for every cp e if [T]
there exists a pair of finite sequences of formulas i//{,..., i//^ and \\i\,..., \\i\2 with
\jj[e^[z[\ and a boolean function Be2ni+ni such that for every rrstructures
91, (i = 1, 2) [9I1? 9I2] |= cp iff B(a\,..., < a\,..., a2

n2) = 1, where a[ is the
truth value of %\= ^[.
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4.2.10 Examples, (i) URP(J^) holds for
<£ = se^ by Feferman-Vaught [1959].
& = &OO(QK) by Wojciechowska [1969].
& = &„„ by Malitz [1971].

(ii) URP(if) does hold for & = <£Kk iff K is strongly inaccessible, by Malitz
[1971].

We want to generalize URP to constructions different from the simple pair.

4.2.11 Definitions, (i) Let T0, rl9..., xn be disjoint vocabularies and let

R c Str(i0) x StrCrO x • • • x Str(tn)

be an n-ary relation on structures. A sentence cp e !£ [ T J is said to be
invariant on the range of R, if for all 9l0, 911?...i9 9ln_ u 9In, 91̂  such that

« ! , . . . , « , _ ! , « „ ) and ^(9l o ,9 l 1 , . . . ,9I n _ 1 ,9 t ; ) 9 1 ^ q> iff

(ii) An n-tuple of sequences of sentences \j/0, ij/u ..., i/̂ n_ x with

and \\f\ e ^ [ T J together with a boolean function

B 6 2mi+ +mM~x

is called an UR n-tuple for cp on the domain of R if for all 9I0, 9 l l 5 . . . ,
9In_1? 9lM we have that R(9I0, 9 l 1 ? . . . , 9In_1? 91J implies that 9IW N= 9
iff 2?(a|,..., fl^1? flj,..., 0m~_i) = 1 where <2j is defined as in Definition
4.2.9.

(iii) We say a logic J2? satisfies the uniform reduction property for (n + l)-ary
relations, and we write URM(if), if for every relation R a Str(i0) x
Str(r1) x • • • x Str(in) which is PC in if and for every cp e i?[Tn] which
is invariant in the range of R, there is an UR tuple for cp on the domain of R.

4.2.12 Remarks, (i) Clearly UR2(«Sf) implies URP(if), since the construction of
the pair [9119 9l2] is a PC^-operation, i.e., its graph is a PC^ relation,

(ii) Instead of the pair construct we could consider the cartesian product of
a fixed finite number n of structures 9lf and define similarly uniform reduc-
tion/or n-fold cartesian products (URProdn(j^)). Again URn(if) implies

The following clarifies the relationship between PPP and various uniform
reduction properties.

4.2.13 Theorem. Let & be a logic. Then

(i) URP(if) implies PPP(J*f),
(ii) UR2(J2O implies PPPO(if).
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If additionally <£ has an dependence number o(j£?) = K and is (fi, co)-compact, with
\i = sup{card(j^[r]):card(T) < K}9 then:

(iii) (Shelah [198?e]). PPP(J^) implies URP(if); and
(iv) (Shelah [198 ?e]). PPPO(if) implies URn(&) for every neco.

Proof (i) and (ii) are straightforward. To prove (iii) assume cp is a counterexample
to URP. So for every pair of sequences of formulas ^ = OAl,.. •, *A>u) anc*
^2 = OAi • • •, ^n7) with <Afc G <^M and every boolean function 5 6 2"1+"2 there are
^-structures 21/ such that [21J, 2IJ] N <p, [2If, 2l|] 1= -i<p, but

where a(/)£ is the truth value of 21/ \= i/4.

Claim 1. For every such pair of sequences of formulas i//l9 \j/2 there is a function
h: \jf1 u \jj2 - • 2

models.

If not, for every h as above either L/J or E£ is has no model. We then could
construct a boolean function B as follows: Put

Bh = A (3: fc(S) = 1} A A {"^: A(S) = 0}.

Now we put

B = \/{Bh: 1/1 has a model}.

Subclaim. [2119 2l2] h= <p # 5 = B(a{,. . . , fln\, a? , . . . , a2
n2) = 1, w/zm? aj is tte

truth value of % f= {//[.

To see this, assume [2119 2l2] t= (p. Now put /io(i/4) = 4 . .Clearly, B = 1.
Conversely, if B = 1, there is /z such that I/J has a model. So, by our assumption,
Sg has no model. So [2Il9 2l2] \= <p.

Using Claim 1, we define H to be the set of functions h: \j/l u i//2 -* 2 such that
Sj[ and Z^ have both models.

We define a filter Fo on // with filter basis U& = {heH:Se dom(/z)} where
9 e if [ T J U if [T 2 ] . Let F be an ultrafilter extending F o . Now we define a function
g: i f [ T J U i f [T 2 ] -> 2 by g(S) = 0 iff {h e H: h(9) = 0}eF. Clearly, we have:
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C l a i m 2 . For every pair of sequences \\JU \j/2 there is a function h e H such that
g [ dom(h) = h.

Now we define H}g (i = 0, 1) like the £j,'s. Using (ji, ̂ -compactness and Claim
2 we get:

Claim 3. There are 91} (i = 0, 1, j = 1, 2) swc/z tfcat [2t\, 2T2] 1= 2 j .

But the latter contradicts PPP(JSf), since, by the definition of I*, 2l\ =^\~l

(i = 0, 1).
The proof of (iv) is essentially the same. D

Uniform reduction is closely related to the interpolation property. Feferman
[1974] derived \JR1 from it and in Makowsky [1978] the converse was observed.

4.2.14 Theorem (Feferman, Makowsky). Let <£ be a logic with finite dependence.
Then UR^JS?) iff $£ has the interpolation property.

Proof, (i) Assume UR^JS?) and let K1? K2 <z Str(i0) be two disjoint classes of T0-
structures which are PC in jSf. So there are vocabularies xt and sentences \l/t e«Sf [rf]
such that Kj = ModC^j) f T0 . Since JS? has finite dependence all the vocabularies
can be assumed finite. We now define R a Str(r0) x Str^! u T2) by K(9I, 95) iff
21 ^ 93 P T0 and 95 [ TX G KX or 95 [ T2 e K2. Clearly fl is PC^ using an additional
predicate for the isomorphism and the fact that T0 is finite.

Claim. Both xj/^ y\i2 are invariant in the range of R.

This follows from the fact that Kt n K2 = 0.
Now let $t be UR sentences for ^ , respectively. It is easy to check that 9 x A ~I S2

is the desired interpolating sentence.
(ii) Now assume that 5£ has the interpolation property, R is a PC_^-relation

on Str(i0) x Str^i) and cp e ^ [ T J is invariant on the range of R. Assume R is
defined by \jj e if [T]. NOW put

(p)\x0 a n d K 2 = M o d ( ^ A icp) [x0.

Claim. Ki n K2 = 0 .

This follows from the fact that cp is invariant on the range of R. So let S e j£?[T0]
be an interpolating sentence. Therefore, whenever K(21,95) we have that
91 N # iff 93 N= (/?, in other words, # is an UR sentence for (p. D

Note that in Feferman [1974b] uniform reduction is defined for P Q , and
Theorem 4.2.14(ii) is stated assuming some compactness properties.

4.2.15 Theorem, (i) For a logic =S? the following are equivalent:

(a) UR2(JSf).
(b) UR^JS?) (or equivalently the interpolation property) together with

URP(J£?).
(c) URB(JS?) for n>2.
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4. Definability 695

(ii) For a compact logic ££ the following are equivalent'.

(a) UR2(JSf).
(b) UR^JS?) (or equivalently the interpolation property) together with

PPP(J^).
(c) URn(J?)forn>2.
(d) PPPO(JSf).

(iii) URP(J^) does not imply UR^if), not even for compact logics.
(iv) UR^JSf) does not imply URP(^f). (For compact logics this is open.)

Proof, (i) (a) implies (b) by Theorem 4.2.14 and Remarks 4.2.12. (b) implies (c),
since URP allows us to reduce n-ary relations to binary relations, and (c) implies
(a) is trivial. To prove (ii) we combine (i) with Theorem 4.2.13.

To prove (iii) we observe that by Example 4.2.10(ii) &mJQK) satisfies URP,
but, as shown in Counterexamples II.7.1.3, it does not have the interpolation
property. So the result follows from Theorem 4.2.14. For a compact counter-
example see Remark 4.2.17 below.

To prove (iv) we note that JS^G, satisfies the interpolation property, and there-
fore, by Theorem 4.2.14. UR^JSf^J holds. As noted in Example 4.2.10(ii)

J does not hold. D

The last proposition in this section gives us a connection between the tree
preservation property and uniform reduction, but it is only interesting for logics
which are not recursively generated, because the latter hypothesis together with
UR2 implies recursive compactness, by Theorem 4.2.6(ii).

4.2.16 Proposition. Assume !£ is a logic in which <co, e> is not characterizable by a
single sentence with additional predicates and sorts (in particular J£? is not recursively
compact). Then UR2(J^) implies TPP(j£f).

Proof Clearly, we can use the PC-definition of <co, e> to get a PC-definition of the
tree construction involved in the tree preservation property. See also Remark
4.1.6(iii). D

4.2.17 Remark. In Section 4.6 we shall present an example of a logic 5£ which
satisfies the Beth property, the pair preservation property, is compact, but does
not satisfy the interpolation property.

43. The Finite Robinson Property

In Section 3.3 we have seen that the amalgamation property implies compactness
therefore (Corollary 3.3.5) that the Robinson property implies compactness. These
results depend on some assumptions on the dependence number of the logic. In
Chapter XIX the Robinson property is further investigated and instead of the
dependence number we have different smallness assumptions on the logic. Here
we want to study two weakened version of the Robinson property. They were
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696 XVIII. Compactness, Embeddings and Definability

studied first in Makowsky-Shelah [1979b], and the assumptions on the logics
also did not involve the dependence number.

4.3.1 Definition. Let if be a logic.

(i) <£ satisfies the finite Robinson property (FROB), if given a complete set
Z of if[r]-sentences and two sentences q>l

T1nT2 = i such that Z u {<pj has a irmodel then Z u {cpu cp2} has a
TX u T2-model.

(ii) if satisfies the weak finite Robinson property (WFROB), if given a complete
set Z of if [T]-sentences and two sentences cp1 (<p2) e J?[TJ (if [T 2 ] ) with
T 1 n i 2 = i such that Z u {<pj has a rrmodel then {cpx, cp2} has a TX u T2-
model.

4.3.2 Proposition, (i) Both FROB and WFROB are consequences of the Robinson
property.

(ii) Clearly FROB implies WFROB.
(iii) The interpolation property implies WFROB.
(iv) / / $£ is compact then the Robinson property is equivalent to both FROB,

WFROB and the interpolation property.
(v) WFROB does not imply FROB.

The proof of (i)-(iii) is left to the reader. For (iv) cf. Chapter II, Theorem 7.1.5.
For (v) we note that JŜ ?

€OlC0 has the interpolation property and therefore, by (iii)
above the WFROB. That i^lCO does not satisfy FROB is shown in Keisler
[1971a, p. 22].

Our next aim is to study when the pair preservation property suffices to make
FROB equivalent to the Robinson property. The answer is given in Theorem
4.3.8.

4.3.3 Definition, (i) We call a logic ££ tiny, if for every vocabulary T with card(r)
smaller than the first uncountable measurable cardinal fi0

card(if[i]) < / v

(ii) We call a logic ££ small, if for every vocabulary T, which is a set, if [T] is a
set. (Smallness was already introduced in Chapter II, Theorem 6.1.4).
Clearly, if a logic if is tiny, it is also small, provided measurable cardinals
exist. If no uncountable measurable cardinals exist, then tiny and small
coincide. There are logics with dependence number o(if) = co which
are not small, and it is not dfficult to construct logics which are small
but have no dependence number. We leave this as an exercise to the
reader. The logic defined in Example 2.2.5(ii) is tiny, but has an dependence
number which is bigger than the first uncountable measurable cardinal.

(iii) If a logic if is small then there is function s on the cardinals such that for
every vocabulary T of cardinality A, X < card(j£f [T]) < s(X). We call this
function the size function ofL. If if is tiny then A < /i0 implies s(A) < JLL0.
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4. Definability 697

(iv) Recall that a logic j£? is said to be ultimately compact, if J§? is (oo, /i)-
compact for some cardinal A.

4.3.4 Theorem, If !£ /ias r/ze Robinson property and is tiny then:

(i) <£ is [coi]-compact; and
(ii) <£ has the finite dependence property.

This differs from Corollary 3.3.5 inasmuch as here we do not require that J£
has an dependence number, whereas in Corollary 3.3.5 we require that o(if)
exists and is smaller than the first uncountable measurable cardinal.

4.3.5 Theorem, If ^£ has the pair preservation property, the finite Robinson property
and is tiny then:

(i) if is [co]-compact; and
(ii) if has the finite dependence property.

Proof. Clearly in both theorems (ii) follows from (i) by Theorem 2.2.1. To prove (i)
we proceed in parallel and point out the difference in the appropriate places.

Let Bu B2 be two infinite sets of different cardinality pl9 f}2 smaller than the
first uncountable measurable cardinal jn0. Now we fix K > max{j81? )32} but
K < fi0 and put 2lK = <§(K:+), Pl9 P2> where £>(K+) is the complete expansion of
<K+, e> and Pl9 P2 are unary predicates of cardinality /?l5 j82, respectively. Let xK

be the vocabulary of 9lK and Z the complete if [TK]-theory of 9lK. Assuming that !£
is not [co]-compact, we conclude, using the Rabin-Keisler theorem (1.2.3), that Z
is categorical. Let JBf = [2tk, BJ for i = 1, 2 be ^-structures with TX n T2 = TK.

Assumption: S i and 93 2
 flr^ J?-equivalent (after appropriate name changing, so that

both are x ^structures).

We first finish the proof from the assumption. Let cpt be the first-order formula
which says that "/• is a bijection from Pt onto the universe of the second sort."
Clearly 33f N Z u {<pj, but Z u {cpu cp2} has no model.

To satisfy the assumption the two proofs differ. In the case of Theorem 4.3.5 we
use tinyness and an argument as in the proof of the existence of Hanf numbers
(Section II.6.1) to find f}l9 /?2 such that for t = { = } B1 and B2 are if-equivalent.
Since T is finite we may assume that j8l5 j82 < Mo. Now we can use the pair preserva-
tion property to conclude that 93 x and 952 are if-equivalent (after appropriate
name changing).

In the case of Theorem 4.3.4 we fix a countable universal vocabulary T^ which
has countably many relation symbols for every arity. Using enough constants TC,
we can think of Z as being written over the vocabulary T^ U T C . Let Z^ be Z { T^ .
Using tinyness we find, as in the case of Theorem 4.3.4, K, jS1j52 such that 95! and
332 are if[r^j-equivalent.

Let TX and T2 be two disjoint copies of TC and put Zf = Z u {(Pi) written over
T^ u Tf. Clearly Z^ u Zf has each a model, but Z^ u Zx u Z2 has not. D

The following is an improvement of Theorem 4.3.4.
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4.3.6 Theorem*, (i) The Robinson property implies the joint embedding property.
(ii) / / a logic <£ is small and has the joint embedding property then J5? is ulti-

mately compact.
(iii) If a logic J£? is tiny and has the joint embedding property then J? is [co]-

compact.

Proof, (i) is proved in a similar way to Theorem 3.1.14. (ii) is Theorem 1.1 from
Chapter XIX and (iii) follows from (ii) and the fact that J£? was assumed to be
tiny. D

4.3.7 Examples, (i) If a logic <£ has a Lowenheim number (̂JS?) then S£ is small,
(ii) In Chapter XIX, Theorem 1.1.1 it is shown that if <£ is small and satisfies

the joint embedding property then ££ is ultimately compact,
(iii) If if has an dependence number and satisfies the amalgamation property

then <£ is ultimately compact. This holds in particular, if 5£ satisfies the
Robinson property (Theorem 3.3.1).

Our next theorem shows that already the finite Robinson property implies
ultimate compactness.

4.3.8 Theorem (Shelah). Lei $£ be a tiny logic which satisfies both the preservation
property for pairs and the finite Robinson property. Then

(i) !£ is ultimately compact. In fact, ifs is the size function of !£ and 2S{(O) < 2COa+n

then <£ is [oo, a>^-compact.
(ii) If additionally £f is countably generated or s(co>) < confor some neco, then

3? is compact and satisfies the uniform reduction properties URn(if).

For the proof we need a lemma. Parts (ii) and (iii) the author has learned from
S. Shelah, though others probably have observed them, too.

4.3.9 Lemma, (i) (Ulam). Let K be an infinite cardinal. If S c K+ is stationary, S
may be decomposed into K+ disjoint stationary subsets.

(ii) There is a family Sof2K+ many stationary subsets of K such that for any
Su S2 e S the symmetric difference S1 A S2 is stationary as well.

(iii) There are 2K+ many stationary subsets of K+ such that any finite boolean
combination of them is stationary as well.

Proof (i) is standard, e.g., Theorem 3.2 in Chapter B.3 of the Handbook of Mathe-
matical Logic [Barwise, 1977].

To prove (ii) let {Sa: a < K+} be the disjoint family of stationary sets from (i).
Let X czK

+, X ^ 0. Define Tx = [jaeX S2a u [j^x S2a+1. Clearly each Tx is
stationary and X # Y implies that Tx A TY is stationary.

The proof of (iii) is similar, but uses a combinatorial result from Engelking-
Karlowicz [1965]. D
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Proof of Theorem 4.3.8. Let K be as required. We can assume it is regular, by
Theorem 1.5.16. Assume if is not [fc]-compact, so by Theorem 1.5.16 again, if
is not [K + ]-compact, and, by induction, we can assume that K is such that 2%co) < 2*.
Let CK = {/?: f$EK+ and cf(/?) = K}. For every S c CK we define a structure
90*s = </c+, e, S>. By Lemma 4.3.9(ii) there are 2K+ many stationary sets in CK

with their symmetric difference stationary, too. So, by our assumption on the size
function of if, and by Proposition 2.1.3, there are Sl9 S2 e CK9 with 9WSl = <? 9MS2.
We put now 91 = </c+, e9 Sl9 S2, S3i cf> with S3 = Sx A S2 and e, cf membership
and cofinality on K+. Let 93 be the complete expansion of 91. We note that in 33
every ordinal of cofinality K or K+ is cofinally characterized by the complete
if-theory of©. Using that ^ has the pair preservation property, we conclude that
[93, 9WSl] = ^ [93, 9K5J. Let I be the complete theory of [93, 9WSl]. We want to
build a counterexample to FROB. For this purpose let Ft (i = 1, 2) be new unary
function symbols and cpt be the sentence which says that "Ff is an isomorphism
between <K+, e, Sf> and SD?S.. Clearly S u {q>t} is each satisfiable but it is not
difficult to show that Z u {q>l9 cp2} has no model. D

A complete proof may be found in Makowsky-Shelah [1979b].
A combination of the proofs of Theorem 4.3.8 and Proposition 4.3.2 gives us

the following theorem:

4.3.10 Theorem. Let <£ be a logic which is small and satisfies either the Robinson
property or the finite Robinson property together with the pair preservation property.
Then S£ is ultimately compact.

Combining Theorem 4.3.10 with the hypothesis A(co) from Section 1.5 we get:

4.3.11 Corollary (Makowsky-Shelah, Mundici). For a logic as in Theorem 4.3.10
we have:

(i) IfA(oo) holds then <£ is compact.
(ii) / / 5£ is tiny and there are no uncountable measurable cardinals, then <£ is

compact.

Proof. Assume A(co)9 so there are no uncountable measurable cardinals, by
Theorem 1.5.4(iii). Therefore, if a logic ^ is small, then it is tiny and by Theorems
4.3.4 or 4.3.5 [w]-compact. So Theorem 4.3.8 together with Theorem 1.5.7 give us
that J^ is compact. This proves both (i) and (ii). D

Let us end this section with an open problem.

4.3.12 Problem. Is there a countable logic, different from first-order logic, which
satisfies both the Robinson property and the uniform reduction property (as in
Theorem 4.3.8)?
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4.4. Constructing Counter Examples to the Beth Property

This last section is devoted to an abstract theorem (4.4.5) whose main use it is to
direct us in the construction of possible counterexamples to the Beth property.
For compact logics, it gives a sufficient condition, the tree preservation property,
for the Beth and the interpolation property to be equivalent. As the example in
Theorem 4.6.12 shows, the pair preservation property does not suffice. Experience
shows that in many cases where we do not have the interpolation property, we
actually can find a counterexample to the weak finite Robinson property. The
following theorem gives some indication on how to transform such a counter-
example into a counterexample of the Beth property.

4.4.1 Theorem, (i) Let ^ be a logic which satisfies the Beth property and the tree
preservation property. Then ££ also satisfies the weak finite Robinson
property.

(ii) If additionally to the tree preservation property <£ is compact, then if has the
Beth property iff it has the interpolation property.

Stated in this form the theorem does not have many applications. But its proof
still gives directions on how to construct counterexamples to the Beth property,
provided the interpolation property fails. In Makowsky-Shelah [198 ?b] this
approach lead to a proof that A(JS?^a) does not have the Beth property. Another
way of making Theorem 4.4.1 more useful, is to define all the properties involved
for pairs of logics.

4.4.2 Definitions, (i) Let &l9 S£2 be two logics such that JSfx < if2. We define
the various Robinson properties ROB, FROB, WFROB for the pair
JSfi, JS?2 and write ROB(J^, jSf2), FROB(J^, JS?2), WFROB(J^, 5£2\
respectively. For ROB this looks explicitly as follows: If L is a complete
set of formulas in JS?2(T0), ^i> ^2 a r e in < î(Ti)> ^i(T2)> respectively,
Ti n T2 = T a n d ^ u ?,((i = 1,2) have models each, then Z u Zx u Z2 has
a model. We leave it to the reader to state the corresponding properties
FROB, WFROB.

(ii) Similarly we define the various Beth and interpolation properties BETH,
WBETH, INT, A-INT for the pair JS?19 <e2 and write BETH(^, &2\
WBETH(J2\, Se2\ INT(J2\, if2), A-INT(J^, i?2), respectively, if the
implicit definition or the formulas to be interpolated are in 5£x and the
explicit definition or the interplant is in j£?2.

(iii) Similarly we define the various preservation properties PPP, TPP for the
pair JSfi, jgf2 and write P P P ( J 2 \ , jgf2), TPP(jSfl9 JS?2), if the given structures
are if2-equivalent and the resulting structures are J^-equivalent.

4.4.3 Examples, (i) While ^JQQ) does not have the interpolation property by
Counterexamples II.7.1.3, I N T ^ ^ g o ) , Jgfoll J does hold.
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4. Definability 701

(ii) The logics &aJQQl(to)) and ifwca(aa) both do not satisfy the interpolation
property (Makowsky-Shelah [1981, Proposition 6.6] and Counter-
examples II.7.1.3) but, as we shall see in Propsotion 4.6.7,

does hold,
(iii) mH&nJQi), ifW£0(aa)) does not hold, by Counterexamples II.7.1.3.

4.4.4 Proposition. Let PROPERTY be any of the above defined definability prop-
erties, and let &10 < &xl < ^20 < i?21 be logics. Then P R O P E R T Y ^ , J2f2O)
implies PROPERTY(if10, i?21).

Proof. Obvious.

With these definitions we can state a slightly stronger theorem.

4.4.5 Theorem, (i) Let JSfx < Jg?2 < Jgf3 be three logics such that BETH(i^, if>) and

TPP(if>, JS?3) hold. Then WFROB(^, if,) holds.
(ii) If in addition JS?3 is compact, then INT(if1? i?3) fco/ds.

Proof. Let <pl5 <p2 be two formulas of J§?i(Tf), respectively, with rf = T0 udisjoint {PJ,
which form a counterexample to WFROB(ifl5 i?3). Let 9lj be rrstructures such
that <H1 [T0 =#3SH2 \ T0. Without loss of generality we assume that both P,'s are
of the same arity. In case they are unary, we apply Lemma 4.1.7 directly, otherwise
we combine it with Remark 4.1.6. So we obtain a formula \\f e JS^CTQ U itree u {P})
which defines P implicitly. So let S e ̂ 2(

To u Ttree) be an explicit definition of P.
So we get TreeX9I1? 9l2) 1= ^(c) h^ Tree?(9l!, 9I2) 1= -i3(c) which contradicts

9T2) [ r0 u rtree ^ 2 Tree?(9l1? 9I2) p T0 U rtree.

as were required by TPP(^2, JSf3). D

Stating definability and preservation properties for pairs of logics allows us to
sharpen results which were previously proven for absolute logics (and therefore
for Karp logics). The reader should also consult Chapter XVII.

4.4.6 Proposition (Barwise). If ^ is a logic which satisfies WFROB(J^, J ^ J , then
it has Lowenheim number co.

Proof. Since if c j ^ , if is a Karp logic. Therefore, if if properly extends first-
order logic, there is a sentence cp e i f [ T J such that the relativized reducts of its
models are all countably infinite, by Lemma 2.1.2 of Chapter 3. Assume, for
contradiction that there is a sentence \j/ e if[x2] with TX n T2 = { = }, which has
only uncountable models. Let Z be the ̂ o theory of infinite sets. So E, cp, ̂  form
a counterexample to WFROB(if, jSf^J. •
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4.4.7 Corollary. Let & be a logic which satisfies BETH(if, 2^ J . Then it satisfies

(i)
(ii) The Lowenheim number lx{^) of<£ is co.

Proof, (i) follows from Theorem 4.4.5 and Proposition 4.2.16, and (ii) follows from
(i) together with Proposition 4.4.6. D

We end this section with some more concrete examples:

4.4.8 Examples, (i) The logic J&£,o,(Qi) f r o m Chapters II or VII satisfies the tree
preservation property, as one proves easily with a back-and-forth argu-
ment. By Counterexample II.7.1.3 it does not satisfy the interpolation
property and therefore, since it is countably compact, not the weak finite
Robinson property. So Theorem 4.4.5 gives us that it does not satisfy the
Beth property.

(ii) The logic ^m(O(QcHta)) is compact and does not satisfy the interpolation
property by Counterexample II.7.1.3. It is not too difficult to check that
TPP holds for this logic. So again by Theorem 4.4.5, the Beth property
fails.

(iii) The logic J^wco(aa) from Chapter IV does not satisfy the Beth property by
Makowsky-Shelah [1981]. This is shown using the ideas in the proof of
Theorem 4.4.5, though by Example 4.1.2(iv) ^wco(aa) does not satisfy even
the pair preservation property. To carry through the proof one has only to
verify that it holds for specific structures.

(iv) We cannot replace TPP by PPP in Theorem 4.4.5, as the example in
Section 4.6 shows.

4.5. Definability and Existence of Models with
Automorphisms

The aim of this section is to explore further the consequences of the assumption
that a logic <£ satisfies both PPP(J^) and ROB(^f). As stated in Problem 4.3.12,
it is an open problem whether such logics exist which properly extend first-order
logic. The results below may give us directions in solving that problem. Our main
theorem is

4.5.1 Theorem (Shelah). Let & be a small logic which has the pair preservation
property and the Robinson property. Then every infinite x-structure 91 has ££-
extensions with arbitrarily large T-automorphism groups.

For first-order logic this is a corollary to the celebrated theorem by Ehrenfeucht
and Mostowski concerning indiscernibles. The reader may consult Chang-Keisler
[1973, Chapter 3.3] for a detailed exposition. In the proof of Theorem 4.5.1 we
discern various possibilities of defining abstract model theoretic properties
centering around the existence of various automorphisms. Let us explore these
first:
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4. Definability 703

4.5.2 Definition. Let J2\ c if, be logics.

(i) We say that the pair of logics jS?l9 JS?2 has the homogeneity property (homo-
geneity property for finite vocabularies), if for every i-structure (T finite)
9W and c ^ c ^ e M such that <9K, cx> = ^ 2 <9K, c2> there is model
<91, c?, c*> of Th<^1«SD?, cl9 c 2 » and a r-automorphism ^ of 91 such
that g(cN

x) = c2 . If ^ = JS?2 we just say that i ^ has the homogeneity
property (homogeneity property for finite vocabularies).

(ii) We say that the pair of logics &l9 5£2 has the local homogeneity property,
if for every r-structure 9ft and cuc2eM such that <9ft, cx> =^2 <$R, c2>
and every cpeTh^^SR, cl9 c 2 » there is model <9l, c*, c2> N= <p and a
T-automorphsim g of 91 such that g(cN

x) = c2. If JS?X = i^2 we just say that
££x has the local homogeneity property.

(iii) We say that $£ has the (local) automorphism property, if for every r-
structure 9JJ and infinite subset P c M, the theory (every sentence c/> of
the theory) Th^« , F » has a model <5R, P> which has an automorphism
g of 91 such that # [ P # Id.

4.5.3 Remarks, (i) If if is compact, then the local homogeneity property and the
homogeneity property coincide. The same holds for the automorphism
property. We shall be mainly interested in the compact case. The local case
may be of independent interest for further developments,

(ii) If a logic does not satisfy the Beth property, one may construct its Beth
closure in the natural way. Unlike the A-closure, studied in Chapter II
and Chapter XVII, the Beth closure cannot easily be proven to preserve
compactness. In Shelah [1983, Manuscript] the properties of the Beth
closure were studied extensively. It turns out that stronger forms of the
homogeneity property yield a sufficient condition for the Beth closure
to preserve compactness. In Theorem 4.6.12 an example of a compact logic
satisfying PPP and the Beth property is presented, whose proof relies on
this idea.

4.5.4 Proposition* (Makowsky). (i) Let if be a logic which has the automorphism
property. Then if satisfies REXT(if) and therefore is [w^-compact.

(ii) Let ££be a logic which has the local automorphism property. Then if has
well-ordering number wY(5£) = co. In particular, if !£ is recursively gen-
erated then <£ is also recursively compact.

Proof, (i) We show that REXT(if), which is equivalent to [co]-compactness by
Theorem 3.2.1. Let <9W, PM> be a r-structure with P e r and PM infinite. Let zx be a
vocabulary, extending T, giving every element in PM a different name and let 93^ be
the corresponding expansion. Clearly <9K1? P

M> still satisfies the hypothesis of the
automorphism property. So let <9l, PN} be a ^[TJ-extension of <9Wl9 P

M> with
the required automorphism. Clearly, PM g PN.

(ii) Here we just use that the standard model of arithmetic is rigid. For the
latter remark we apply Remarks 4.2.5. D

In general the homogeneity property does not imply compactness.
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4.5.5 Example. Let K be a compact cardinal. The pair of logics JS?K(0, JS?KK has the
homogeneity property. To see this one uses an ultralimit construction as in
Hodges-Shelah [1981]. Clearly, for X < K, these logics are not [A]-compact.

However, for compact logics we have:

4.5.6 Proposition. / / <£ is a small and compact logic, which has the homogeneity
property, then 5£ has the automorphism property.

Proof. Let <$Jl, P> be a structure with P infinite. Using compactness there are
if-extensions <9t, P) with P of arbitrary large cardinality. Using smallness we can
find such an extension with cl9 c2e P, cx / c2 satisfying the same if-type. Now
we apply the homogeneity property. D

Now we are in a position to prove the existence of models with many auto-
morphisms.

4.5.7 Proposition. Let ^ be a compact logic with the automorphism property. Then
every ^-theory with infinite models has models with arbitrarily large automorphism
groups.

Proof. Let E be an if theory and 91 be an infinite model of E. We want to define by
induction vocabularies ra and theories Ea which are sets such that, if 91 \= Ea,
then 91 [ x \= E and that 91 [ T has at least card(a) many different automorphisms.

For a = 0 we proceed as follows. Since if is small the complete if-theory
Eo of 91 is a set. Again using smallness together with compactness we can find a
model 33 and b,b' e B satisfying the same type. So there is a model 9Jl0 with a non-
trivial automorphism Fo. Now we put I x to be the complete if-theory of <2R0, Fo>.
Clearly, this also works for a successor. For a limit we put Za = (Jjg<a E^. To
show that Ea has a model we use compactness in the form of Proposition 1.1.1. D

4.5.8 Example (Shelah). We define a quantifier binding four variables and acting
on two formulas (i.e., of type <2, 2 » in the following way: Let 91 be a i-structure.

91 \= QlhooXuvwx((p(u, v, z), \jj{w, x, z))[_a]

if <i4£, R%,y and <^J, #J> are partially ordered structures, where the order satisfies
the axioms of a boolean algebra and

By A\ we denote the set {b e A: 911= cp[b, b, a]} and by R^ the relation

and similarly for if/.

4.5.9 Theorem (Shelah [1983d]). Assume GCH. Then the logic if£0W(2ibo°1) is
compact.
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4.5.10 Proposition. There is a sentence *Frigid e ^,co(6ib°o1) such that:
(i) Every model ofmri%{d is rigid, i.e., has no non-trivial automorphisms.

(ii) ^rigid has models of every infinite cardinality.

Proof. Let P be a ternary predicate symbol. Define *Frigid to be the conjunction of
the following formulas:

, y, z\ P(x\ y\ z))

and

\jj2 = Szz\z ¥^z'^ -\Q}hoolxyxry\P(x, y, z), P(x', y\ z'))

To prove (i) let 21 be a model of V^d , a e A and let h be an automorphism of 91.
Clearly, (A%9 R

a
P} is a boolean algebra by i//^ Since h is an automorphism, so is

(A%a\ Rp{a)y and they are isomorphic. So, by \p2, h(a) = a.
To prove (ii), let I an infinite cardinal and {23,- = (Bh <,->: i < A} a family of

X many pairwise non-isomorphic boolean algebras of cardinality X each. Without
loss of generality Bt = X. We define a model 91 = (A, PA} of *Frigid as follows:
We put A = X and P^4 = {(i, fl,t)eA3:a <fft}. Clearly, 91 N ^Prigid. Note that
(ii) does not follow from the compactness of J2L,(6ib°o1). On the other hand (ii)
does not require GCH, as the proof of compactness. D

4.5.11 Corollary (GCH). The logic JS£,fi>(g
ibo°1) is compact but does not satisfy the

homogeneity property.

Proof. By Theorem 4.5.9 the logic is compact. Assume, for contradiction, the
homogeneity property. So by Propositions 4.5.6 and 4.5.7 we get models with
arbitrarily large automorphism groups, contradicting Proposition 4.5.10. D

4.5.12 Proposition (GCH). There is a compact logic <£ which does not have the
automorphism property.

Proof. This follows from Proposition 4.5.10 and Corollary 4.5.11. D

4.5.13 Theorem (Shelah). Let <£ be a logic.

(i) If5e satisfies PPP(i?) and ROB(if), then <£ has the homogeneity property.
(ii) / / i f satisfies PPP(i?) and FROB(if), then if has the homogeneity property

for finite vocabularies.
(iii) / / if satisfies PPP(JS?) and INT(if), then ^ has the local homogeneity

property.

Proof. We prove only (i), the others being similar. Let 9W and cl9 c2 e M be as in the
hypothesis of the homogeneity property.

Let W, c'l9 c'2 be disjoint copies. Put 91 - [9K, W\ Put

T = Th^«9l, ci9 c2, c i» = TM<9i, cl9 c2,
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The equality holds because of PPP(J2?). Let cl9 c2 be constant symbols with inter-
pretations cl9 c2 and c be a constant symbol with interpretation c\ or c'2, respec-
tively. Let F be a new function symbol. Let i/̂ (z = 1, 2) be the sentence which says
that F is a i-isomorphism (modulo name changing) mapping the first sort into the
second sort which maps cf into c. If t is infinite, we need a set of sentences xVi

defined similarly.
Clearly, T u {fa} has a model. So by ROB(i?) or, if x is finite, by WROB(^),

T u {\j/l9 \j/2} has a model {3Jll9 9Jl'J which gives as the required automorphism

4.5.14 Remarks, (i) In Proposition 4.5.13 above the three cases coincide for
compact logics.

(ii) If we assume that the logics are tiny, the hypotheses in the cases 4.5.13(i)
and (ii) imply that the logics are [co]-compact and ultimately compact.
Assuming that <£ has an dependence number o(j£?) which is smaller than
the first uncountable measurable cardinal, the hypothesis in Theorem
4.5.13(i) actually implies compactness. In Theorem 4.5.13(ii) we need for
this, that the logic if has size function s(co) < con for some neco (cf.
Theorem 4.3.8 and Corollary 3.3.5).

4.5.15 Corollary. Let <£ be a logic with dependence number o(J£) smaller than the
first uncountable measurable cardinal (or, alternatively, with size function s(co) < con

for some n e co). If ' £g satisfies PPP(j£?) and ROB(if), then ££ has the automorphism
property.

Proof We use Remark 4.5.14(ii) above and Proposition 4.5.13. D

This corollary, together with Theorem 4.5.7 gives us a proof of Theorem 4.5.1.

4.6. Some More Examples: Stationary Logic and
Its Friends

In this last section we want to discuss, mostly without proofs, some more examples
and consistency results, which all come from Shelah [198 ?e] and Mekler-Shelah
[1983, 198?]. They are all concerned with preservation and definability properties
of compact or (co, co)-compact logics. Our first example concerns extensions of
^axo(Qi)- Let us recall some facts:

4.6.1 Proposition. The logic ̂ wJiQx) has the following properties:

(i) ^SQ i) is (co, co)-compact, but not (co^ co)-compact.
(ii) ^aoiQi) does satisfy the pair preservation property.

(iii) J^ooiQi) does not satisfy the /^-interpolation property, and therefore neither
the interpolation property.
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4. Definability 707

It remains open whether JS£,W(Q 1) satisfies the weak Beth property. However,
there is the following consistency result proved in Mekler-Shelah [198?].

4.6.2 Theorem (Shelah). Every model TO of ZFC has a generic extension TO[G] in
which &aJQ{) satisfies the weak Beth property.

For the stronger definability properties there is a consistency result in the other
direction. We want to state, that it is consistent with ZFC, that no "reasonable"
extension of tfuJQi) satisfies both PPP and the interpolation property (or
equivalently the uniform reduction property UR2). For this we need a definition:

4.6.3 Definition (Definable Logics), (i) A logic jSf is definable, if the relations
"<pe&\rY ( > is a S£[T]-formula") and "TO \= q>" ("TO is a model of
<p") are definable by a formula of set theory without parameters.

(ii) A logic J? is X-definable, for X a cardinal, if the relations "<peJS?|Y]"
("<p is a JS?[T]-formula") and "TO |= <p" ("TO is a model of <p") are definable
by a formula of set theory with a parameter A a L

4.6.4 Remark. In Chapter XVII absolute logics were introduced. This notion is not
quite comparable with the above definition. For a logic to be absolute definability
with parameters is allowed, but definability is restricted to A l -definability.

4.6.5 Examples, (i) Logics of the form ^SQ^isn a r e definable, provided the
quantifiers are set presentable in the sense of Definition 1.5.8.

(ii) The logics 5£Kk are definable,
(iii) Not all logics are definable without parameters. Especially some of the

fragments <£A c JS£,lt0 are not definable, but they are co1 -definable with
parameter A a a>v If A is a countable admissible fragment which has a
code in co then S£A is even co-definable,

(iv) The logic <£F(O from Section 1.6 is definable, provided the ultrafilter F is
definable. The definability of this filter may very well depend on the
set-theoretic assumptions under consideration.

4.6.6 Theorem (Shelah). For every model TO of ZFC that there is generic extension
TO[G] such that no definable logic & extending tfuJQi) satisfies both PPP(J^)
and the interpolation property {or, equivalently, the uniform reduction property
UR2) in TO[G].

It was widely believed that the A-closure of &<JiQ,i) i s a r a t h e r untackable
logic. That this need not be the case is shown by the next consistency result from
Mekler-Shelah [198?]. Let us first recall some facts about the logic JS^Jaa)
from Section IV.4 and Counterexample II.7.1.3.
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4.6.7 Proposition, (i) The logic JSf^aa) is (co, co)-compact, r.e.for validity, but does
not satisfy the interpolation property.

(ii) ^cocoiQi) is a sublogic o / i f ^aa ) .
(iii) lm&vJQi), ^«*>(aa)) does not hold.

Inspired by Theorem 4.6.2 we can state the following problem:

4.6.8 Problem. (Shelah). Does every model 501 of ZFC have a generic extension
SW[G] in which A - I N T C ^ G O , JS^aa)) holds?

In Mekler-Shelah [1983] a positive answer is given for A-Interpolation on
finitely determinate structures. In contrast to this it is shown in Counterexample
II.7.1.3 that I N T C J ^ e O , JZ^aa)) does not hold.

The next example involves the logic i?̂ xo(Qcf(CD))-

4.6.9 Proposition, (i) The logic «^Ofi,(Q
cf(a>)) *s compact, r.e.for validity, but does not

satisfy the interpolation property.

(ii) &*J&*imy) is a sublogic o/

Proof. From Section II.2.4, and Makowsky-Shelah [1981] we know (i). To see (ii)
we axiomatize the class of orderings of cofinality co by the ^fww(aa)-sentence which
says that the ordering has no last element, but that almost every countable set P
is unbounded. D

The next theorem shows that J ^ Jaa ) behaves more like second-order logic,
than originally suspected, since it provides interpolating formulas for the logic
^(O(o(QcHto))' Note that for Hanf number calculations J2?wca(aa) is as strong as the
logic which allows unrestricted quantification over countable sets, as shown in
Kaufmann-Shelah [198?].

4.6.10 Theorem (Shelah). INT(i?ww(Qcf(w)), J^(aa)) .

The proof may be found in Mekler-Shelah [198?].

4.6.11 A Generalization. The pair of logics in Theorem 4.6.10 can be generalized
to higher cardinals. For S^mJQGf{<o)) this gives us the logics ^JQ^x) which re-
quires the ordering to be of infinite cofinality less or equal to X. As shown in
Makowsky-Shelah [1981] this logic is still compact, but does not satisfy the
interpolation property. For JS^^aa) we have to define a logic JS^^aa^) for an
appropriate filter Dk. A detailed exposition may be found in Mekler-Shelah
[198?]. What is important here, is a theorem of Shelah which states that the pair
&todQ,Q< A) a n d ^oo)(aaA) satisfies a strong form of the homogeneity property, as
defined in Section 4.5. As mentioned in Section 4.5, such homogeneity properties
can be used to prove that the Beth closure preserves PPP and compactness.

Using this line of thought Shelah proved the following theorem:
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4.6.12 Theorem (Shelah). The Beth closure 5£ of the logic ^S&li™) is a compact
logic which satisfies:

(i) PPP(if) (and therefore, by compactness, URP);
(ii) has the Beth property; but

(iii) does not satisfy the interpolation property (and therefore, by compactness,
none of the Robinson properties).

This shows, that in Theorem 4.4.5 the tree preservation property cannot be
weakened to the pair preservation property. For otherwise, since the logic is
compact, the Beth property would imply the interpolation property. It also shows
that the uniform reduction property for pairs does not imply even the uniform
reduction property UR1? which, by Theorem 4.2.12 is equivalent to the inter-
polation property.

This example is also the first example so far, which exhibits a compact logic
satisfying the Beth property. Note that it is easy to construct compact logics, which
satisfy the weak Beth property or the A-interpolation property by the construction
of the A-closure or weak Beth closure, as described in Proposition II.7.2.5 and, in
more detail, Makowsky-Shelah-Stavi [1976].

Also the A-closure of ^SQt^i^) n a s remarkable properties:

4.6.13 Theorem* (Shelah). The A-closure of &<JSF<>2^) does not have the Beth
property.

A proof will appear in Makowsky-Shelah [198 ?b].
The following is open:

4.6.14 Problem. Is there a logic JS? which satisfies both the Beth property and A-
interpolation, is compact but does not satisfy the interpolation property? In
particular, is the iterated Beth and A-closure of ^(O(O(QC<2^) compact, and if yes,
does it satisfy the interpolation property?

4.7. Which Definability Property ?

The first definability property proven for ifww was the Beth property (Beth [1953]).
The interpolation property was introduced in Craig [1957b], and is sometimes also
called Craig's interpolation property. Its main application was to give a simplified
proof of the Beth property. Another proof of the Beth property for Ĵ wco was given
in Robinson [1956a] where the Robinson property, or rather the finite Robinson
property, was introduced. The choice of these properties was not really questioned
in this period. The weak Beth property was first discussed in Friedman [1973].
Friedman suggested also first that it was the weak Beth property which really
mattered in the context of logics different from first-order logic. The first thorough
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discussion of definability properties for logics in general is in Feferman [1974a, b,
1975].

Feferman focuses the attention on the A-interpolation, pointing out its equiva-
lence to the weak projective Beth property. His paper had great impact and the
A-closure was studied extensively in Barwise [1974], Makowsky-Shelah-Stavi
[1976], Hutchinson [1976], Vaananen [1977a, 1979a, 1983], Paulos [1976]
and Makowsky-Shelah [198?]. From this it emerged that the A-closure may well
be a "better" definability property than all the others studied so far. This is
especially so, since the A-closure of a logic 5£ preserves compactness and the re-
cursive enumerability of the validities of its finitely generated sublogics.

It was also in Feferman [1974a, b] and in Feferman [1972] that preservation
properties were first discussed in the general setting. URn(j£?) was introduced to
unify known preservation theorems and interpolation theorems. In Makowsky
[1978] the equivalence of UR^if) and the interpolation property was established.
From this one was led to think that the next "reasonable" strengthening of the A-
interpolation property would be uniform reduction UR2(=^). Note that the equiva-
lence of non-uniform and uniform reduction for pairs PPP and URP for compact
logics, due to Shelah, appears here for the first time.

The finite Robinson property was first discussed in the general setting in
Makowsky-Shelah [1976] and the Robinson property in Mundici [1979a].
Mundici suggested that the Robinson property is a "natural" property of logics,
since it is equivalent, for finitely generated logics, to compactness and the interpola-
tion property. But, as it emerges in this chapter, it seems to us that it is the Robinson
property together with PPP which has more merits: In the case of compact logics
they are together again equivalent to UR2(i?) or to the preservation property for
projective operations PPPO.

It should be pointed out here that this comparison of definability properties
has still a severe drawback: The lack of an abundance of examples. There are,
by now, many compact, and therefore many compact and A-closed logics, mostly
constructed by Shelah. But there are no interesting examples satisfying any
strengthening of the interpolation property, such as uniform reduction or the
Robinson property.
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TABLES

Table 1. Transfer of Compactness Properties

From

cf(/c)

+
K

K

To

K

K

CD

Condition

K singular

K regular

K < fi0

fi0 first uncountable
measurable cardinal

Reference

1.1.6

1.3.11(1)
1.5.4
1.3.11(ii)
1.5.4

1.5.2

Table 2. The Compactness Spectrum

Form

Comp(if) is initial
segment

Comp(J2?) contains final
segment

First element
measurable

Gaps in spectrum

Condition

A(co)

Vopenka's principle

Reference

1.5.7(i)

1.5.16(iv)

1.5.2

1.6

Table 3. Transfer of Dependence Properties

From

K

K

K

To

CO

CO

Finite dependence
structure

Condition

compactness

[co]-compactness
K < /i0

fi0 first uncountable
measurable cardinal

[ca] -compactness

Reference

5.1.3 in Chapter II

2.2.1

2.4.3
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Table 4. Compactness and Extensions

REXT(J^)

3.2.1

[co]-compactness

Compactness

3.1.11

Joint embedding property

trivial

no uncountable
measurable cardinals

3.2.5

trivial

no uncountable
measurable cardinals

1.5.2

EXT(J^)

3.2.4

[A]-compactness
for some X
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Table 5. Amalgamation, Joint Embeddings, and Compactness

713

Compactness

3.1.11

Joint embedding property

tiny, 4.3.6

\open

Amalgamation

Am(/c, &)
for every K > X

o(L) < X
3.4.10

[oo, X] -compact

X < fiOt 1.5.2,

[co]-compactness

Am(A,

3.4.9

2, A)-compact
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Table 6. Compactness, Definability, and Automorphisms
(for logics with finite dependence)

4.3.8

countably

generated logics s^

4.5.13(0/

ROB and URP

Homogeniety
property

4.5.6 \
compactness . 2

\

4.5.6
and
3.3.5

Automorphism
property

\

4.5.A

\

Compactness and
interpolation and URP

^ " t r i v i a l

does not hold
«---

4.5.12 (GC)

REXT

[co]-compactness

\ ^ trivial

FROB and compactness

ROB

Interpolation and compactness

3.3.5

Amalgamation

Compactness

Joint embeddings

yf trivial
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Table 7. Definability Properties

715

with
o(JSf) < Ho

and
PPP

4.3.10

ROB and PPP

open

^v count

compactness^^
4.2.13 \

ROB

r
open

FROB

! no

4.3.2(v)

«• - - -

ably

ated

\

no
4.2.15(iv)

UR,
' open '

WFROB

withT
4.4.5

/

4.2.14

Interpolation

\

\

no 4.2.2

Beth property

no

4.2.2

weak Beth property

4.2.15(1)

«•

no

4.2.15(iv)

\

no 4.2.2

4- - - -

no 4.2.2

URP
Interp(

and
elation

URP

PPP

\

\

A-Interpolation
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Table 8. Definability for Compact Logics

4.3.2

4.2.15 •

ROB and PPP

PPPO

Interpolation and PPP

4.3.2

4.2.14-

ROB

FROB

WFROB

Interpolation

URt

TPP/ /
/no

Beth
4.6.12

4.6.13

weak Beth

o p e n , ' ' '

^'"4.6.12

A-Interpolation
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Chapter XIX

Abstract Equivalence Relations

by J. A. MAKOWSKY and D. MUNDICI

For a regular logic if, let ~ = = ^ be the equivalence relation obtained by saying
that two structures are ~ -equivalent iff they satisfy the same sentences of if. The
isomorphism relation £ is automatically a refinement of ~ —that is, isomorphic
structures are ~-equivalent— ~ itself is a refinement of elementary equivalence
=, and ~ is preserved under both renaming and reduct. This last property simply
means that upon renaming, or taking reducts of ~ -equivalent structures, we obtain
~-equivalent structures. Furthermore, if if [T] is a set for every vocabulary T, then
the collection of equivalence classes given by ~ on Str(i) has a cardinality. (Briefly,
we say that ~ is bounded). This paper is mainly concerned with abstract equiva-
lence relations ~ on (JT Str(r), having the above-mentioned properties as well as
the Robinson property so that for every 9JI, 91, and T with 1 = 1^0%,

if 9JI [ T - 91 Is T then for some 91,
3K~8l [rm and 9 1 - 9 1 ft*.

If ~ = =#, then — has the Robinson property iff if satisfies the Robinson
consistency theorem. If, in addition, if [T] is a set for all T, and if all sentences in ^£
have a finite vocabulary, then the Robinson consistency theorem holds in if iff if
is compact and has the interpolation property (see Corollary 1.4). Every bounded
equivalence relation ~ with the Robinson property satisfies the equation — = = #
for at most one logic S£ (see Corollary 3.4). This result can be extended to equiva-
lence relations corresponding to compact logics (see Theorem 3.11). Moreover,
we have that ~ = = ^ for exactly one logic if iff — is separable by quantifiers, in
the sense that whenever 901 and 91 are not —-equivalent, there is a quantifier Q
such that — is a refinement of =^(Q) and 9)1 #^ ( Q) 91 (see (ii) of Theorem 3.10).
Even if - is not separable by quantifiers, there is still a strongest logic if such that
— refines =#. This 5£ is compact and can be written as if = ££{Q | — is a refine-
ment of =^(Q)} (see Corollary 3.3 and (i) of Theorem 3.10).

The Robinson property of 5£ can also be coupled with such properties as [co]-
incompactness. Then =# will coincide with ^ below the first uncountable measur-
able cardinal fi0 (see Theorem 1.7), and the infinitary logic ^^0(a can be interpreted
in J^ in some natural sense (refer to Theorem 1.12).

Some of the results in Section 1 can be extended to logics for enriched struc-
tures, such as topological, uniform, and proximity structures, as discussed in
Section 2.
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718 XIX. Abstract Equivalence Relations

With any logic if we can associate an embedding relation ->#, where 21 -»^ 91
means that T^ 3 T ,̂ and S&A =# 9t+ for some expansion 9i+ of 91 \ T<H, with 91^
denoting, as usual, the diagram expansion of 91. In Definition 4.1 we define em-
bedding relations by abstracting these properties of the -+# relation. Any such
relation -> generates an equivalence relation ~ = ->* by writing 91 ~ 91 iff 91
and 9i are connected by a finite path of arrows. Conversely, every equivalence
relation ~ generates an embedding relation -> = ~ * by writing 91 -> 91 iff
TH 3 T̂ J and S&A ~ 91+, for some expansion 91+ of 9t [ T^. The mapping * sends
equivalence relations with the Robinson property into embedding relations with the
expanded amalgamation property (AP + ) in a one-one way, the latter being a natural
strengthening of the usual amalgamation property (AP). The mapping * becomes
a bijection with ** = identity, provided we restrict ourselves to embedding
relations with AP+ and such that -•** = -> (see Theorem 4.8). In particular,
first-order logic ifwco is uniquely determined by the familiar elementary embed-
dability relation < (see Theorem 4.9).

Every countably generated logic if = &(Ql)i<(0 determines, for each finite
vocabulary T, a sequence {^"}n<(O of finite partitions over Str(i), by writing
9M ~"9t iff 2R and 91 satisfy the same if [T]-sentences of quantifier rank < n.
We study an abstract notion of back-and forth systems (see Definition 5.1);
the latter generalize the celebrated Fraisse-Ehrenfeucht games for = (see Examples
5.2 and Theorem 5.3) and are in one-one correspondence with their associated
logics, under the Robinson assumption (see Theorem 5.4). By use of Theorems
3.11 and 5.7 and the argument in Theorem 5.4 this correspondence can be extended
to the realm of compact logics.

Any back-and-forth game G for if-elementary equivalence determines not
only a back-and-forth system in the above sense, but also a game G(9I, 95) for
pairs of structures, or—equivalently—a decreasing sequence of sets of partial
isomorphisms from 91 to 95. We regard the former as a global version of G (since
each partition acts on the whole of Str(r)), and the latter as a local version of G.
Global and local versions have the same extreme generality (see Theorems 5.7
and 5.10) and are closely related, as is discussed in Section 5.

As this chapter will show, the Robinson property is very strong. Indeed, one
of the main open problems of abstract model theory—a problem originally posed
by Feferman—asks whether compactness and interpolation together are strong
enough to characterize first-order logic. A negative answer would exhibit a proper
extension of ^W(a still having many important features in common with ^W(a (by
the very results of this chapter) while a positive answer would characterize ^^ in
terms of properties which are generally reputed to be desirable for a logic ^£. As a
matter of fact, compactness is related to the finiteness of sentences and proofs in 5£
and makes available a number of methods for constructing models; interpolation
(together with its most notable consequence, A-closure—or equivalently—truth-
maximality) is related to the equilibrium between syntax and semantics in if.

Whatever the ultimate answer to this problem, the techniques and results of
this chapter can be applied to logics for enriched structures (see Section 2). Further-
more, even for ordinary structures, several theorems originally stated under the
Robinson assumption, can now be proved under the (weaker) compactness, or
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1. Logics with the Robinson Property 719

JEP assumption (see Theorems 1.1, 2.4, 3.11, Lemma 3.11.1, Corollary 3.12,
Remark 4.10, and Theorem 5.7) by simply refining the methods developed for the
study of the Robinson property. Sometimes there are even applications to first-
order logic itself (see Corollary 3.5, Theorem 4.9, and Corollary 5.5).

Throughout this chapter logics are assumed to satisfy the occurrence axiom,
stating that for each sentence cp in S£ there is a smallest x = x^ such that
cp e i f [T] . We will write S£(Ql)ieI instead of ^?

(O(O(Qi)ieI and will always assume that
Ql is a quantifier with built in relativization, as in Proposition II.4.1.5. Given
equivalence relations ~ and ~', instead of saying that ~ is a refinement of ~ ' we
will usually say that ~ is finer than ~ ' (or, that ~ ' is coarser than ~ ) . We will
constantly work with many-sorted structures and logics, so that our expansions
may very well involve new sorts. Vocabularies and universes of structures are
always assumed to be sets, while if [i] may be a proper class. However, when we
want to exclude this possibility for S£ we will simply say that if [T] is a set for each x.

The first author would like to thank the Swiss National Science Foundation
for their support. The second author wishes to express his gratitude to the
Heidelberger Akademie der Wissenschaften for their financial support; and, in
particular, he extends thanks to Professor Gert Miiller for his constant support
and stimulating suggestions.

1. Logics with the Robinson Property

In Chapter XVIII we saw that logics satisfying the amalgamation property are
compact, provided they have the finite dependence property, or even if the depen-
dence number is smaller than the first uncountable measurable cardinal. The
amalgamation property is both a consequence of the Robinson property, and of the
joint embedding property. In this section we will review the relationship between
the latter two properties and compactness, since under these stronger hypotheses
many of the proofs are simpler and generalize to the case of logics whose underlying
structures need not be first-order structures. Recall that a logic if has the joint
embedding property (abbreviated JEP) iff whenever 91, 23 e Str(r) and 91 =# 23,
then 91 and 25 are jointly embeddable in some structure 2R. That is, 9JJ \=# Th^(9I^)
u Th^(23B), where 91^ (resp., 25B) is the diagram expansion of 91 (resp., of 23) in
vocabulary xA = x u {ca}aeA (resp., xB = x u {cb}heB\ and xA n xB = x.

1.1 Theorem. Let i f be a regular logic such that i f [ T ] is a set for every x. Assume
that for every countable T 0 , | i f [ T O ] | < X for some fixed X. If !£ satisfies the JEP,
then there are at most 2k many regular cardinals K such that <£ is not \K\-compact.

Proof Let S be a set of regular cardinals such that 5£ is not |>]-compact for each
KES. By Definition XVIII.1.2.1, K is cofinally characterizable in 5£\ hence, there
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720 XIX. Abstract Equivalence Relations

is a structure 2tK = </c, < , . . . > whose diagram expansion

21,4 = </C, <,{Ca}a<K,.">

has the following property:

(*) whenever 23 =# 21^ the set {c®}a<K is unbounded in the order < 8 .

Adding, if necessary, more sorts and elements, and using the regularity properties
of J27, we can safely assume that the vocabulary xK of 2lK is countable (we can code
n-ary relations into a single "universal" (n + l)-ary relation). Indeed, we can
safely assume that for some fixed countable vocabulary T ^ {<}, the xK are all
equal to T, for any KGS. Let TKbe the complete i?-theory of 2IK in vocabulary x. By
hypothesis, there are at most 2A such theories. Therefore, if | S \ > 2A, then for two
regular cardinals /i < v in S, we must have that 21^ =<? 2IV. Let 9R = 21^, 91 = 2IV.
Suppose 9JI and 91 are joint embeddable in a structure T) (absurdum hypothesis), say
D |= Th(2RM) u Th(9lN), and let xM = x u {cm}m6M and xN = x u {^}MeN be the
vocabularies of 5RM and 91^, respectively, with xM nxN = x. Since

the set {cm}meM contains a subset {ca}a<M whose interpretation in 5RM are the
ordinals a < /i. Similarly, {gfn}n6iV contains a subset {̂ }̂j3<v whose interpretation
in 9lN are the ordinals j? < v. Now consider the linear order <I). Since D (= Th 9JlM
then </x, <> ^ <{c«}a</i, <*>, and the set {c^}a<M is unbounded in <c , by (*).
Similarly, from D N Th 9lN, we obtain that <v, <> ^ ({g*}p<v9 <t)> and the
set {g^}p<v is unbounded in <I). Therefore, we get that \i is cofinal in v > fi, thus
contradicting the assumed regularity of v. Therefore, the JEP fails in if if | S \ > 2A.

D

To be able to prove that no incompactness exists, we will need some set-
theoretic hypotheses, as discussed in Section XVIII. 1.3. However, if we assume the
Robinson property, we can get even more. Recall that a logic $£ satisfies the
Robinson consistency theorem (for short, if has the Robinson property) iff for
arbitrary vocabularies T, T', T" and classes of sentences T, T, T", if T is complete
in T and T' and T" are consistent extensions of T in x' and T", respectively, with
x = x' n T", then T" u T" is consistent; (that is, 7" u T" has some model). Equiva-
lently, we might assume also that T" and T" in the above definition are complete.
In fact, the Robinson property only depends on the complete theories of <£ and
may thus be regarded as a property of the equivalence relation =#. This notion
will be pursued further in later sections, for in this section we will only be concerned
with the effect of the Robinson property on logics.

1.2 Theorem. Let if be a regular logic with dependence number o(if) < the first
uncountable measurable cardinal fio—if it exists—or o(if) < oo otherwise. If if
has the Robinson property, then i? has the finite dependence property.
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1. Logics with the Robinson Property 721

Proof. The proof follows immediately from Chapter XVIII, Corollary 3.3.5,
Theorem 2.2.1, and Proposition 2.1.2. D

For logics of the form <Sf(Ql)ieI there is an easy, self-contained proof that the
Robinson property implies compactness. This is given in the following result.

1.3 Theorem. Let <£ be a regular logic. Assume that each sentence of $£ is of finite
vocabulary—or even assume that o(J?) satisfies the hypotheses of Theorem 1.2. / /
j£? has the Robinson property, then <£ is compact.

Proof In the light of Theorem 1.2, it suffices to prove the theorem under the
assumption that sentences in j£? are of finite vocabulary. Now assume that <£ has
the Robinson property and is not compact (absurdum hypothesis). Let K be the
smallest cardinal such that J*f is not (/c, co)-compact. There is a vocabulary x and a
set of sentences T = {cpja < K} ^ J£?[T] such that T has no model, while for
each P < K, the subtheory Tfi = {<pa\oc < /?} does have a model 91^. In ££ we can
replace function by relation symbols (by regularity); constant symbols are elimin-
able by using instead unary relations which represent singletons. This can be done
in the usual manner for JS^ without using the substitution property. Thus,
replace, for example, \jj(c, d) by 3! cRc A 3! dSd A VC, d(Rc A Sd -• i/̂ (c, d)). For
arbitrary \j/f

9 we proceed similarly, recalling that | x^ \ < co9 where T^ is the smallest
vocabulary of \j/\ as given by the occurrence axiom. For the sake of notational
simplicity we will also assume that T is single-sorted (the proof for the many-
sorted case only requires some additional notation). Without loss of generality the
91 '̂s have pairwise disjoint universes. Recalling that T may be assumed to contain
only relation symbols, define the disjoint union 91 = <^4,.. .> of the 9l/s by

A = [J Afi9 R*= \J R*p for each R e x.
P<K 0<K

Define the function / : A -• K by f(a) = /? iff a e Afi9 for each aeA, j? < K, and let
SO? be the two-sorted structure given by

where, as usual, symbols are identified with their natural interpretation; and, in
particular, c^ = /? for every /? < K.

Claim. Whenever 91 = ^ SOI, the set {cf}fi<K is unbounded in <*.

Proof of Claim. Otherwise (absurdum hypothesis) let 91 be a counterexample so
that, for some fixed element n in the second sort of 91, we have

<9i, n) \=# Cp < n for each jS < K.

For every /? < /c, let i//p be the sentence of <£ given by
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722 XIX. Abstract Equivalence Relations

This is the only place in this proof where we use the assumption that <£ is closed
under relativization. Indeed, we only need that <£ be closed under relativization
to atomic sentences. Observe that for each /? < K, we have 501 N ^ ^ - Hence,
$1 \=y, ij/p. Then for each /? < K,

which implies that 9i|{xe N\(9l, x> \=&f(x) = n} \=# T. This contradicts the
assumed inconsistency of T and our claim is thus established. Now expand 9K to
W e Str(i'), x' = T^ u T0 with T0 = {P^ < I C a set of new unary relations, to be
interpreted in W as initial segments,

pf = {a|a < /}} for each fi < K.

Let T = Th^(9K) u {Vx(Pfix <->x < c^ljS < ic}, and observe that W \=<? T. On
the other hand, let x" = T0 U {C}, with c a new constant, and let

Consider the structure 9M" of vocabulary T" given by

that is, 5R" is obtained by adding one element at the end of K and by interpreting
each Pp exactly as in W. Then we have that W \=# T". For every finite T* C T0,
we have that 9Ji' p T* ^ 9JI" p T* (it is easy to get an isomorphism). Hence,

by the isomorphism property of logics. Whence W [ T0 =#> W [ T0 , recalling
that each sentence of 5£ is of finite vocabulary. Now T^, n T^, = x' n x" = T0 .
Hence, by the assumed Robinson property of S£, there is T) of vocabulary x' u x"
such that T) Is T' =_̂  9Kr and D \ x" = ^ 9Kr/. In particular, B ^ T ' u Tr/, and cc

is a strict upper bound for the {cf}p < K. But T) [xm=^<SJl then stands as a counter-
example to our claim. Therefore, if is compact. D

1.4 Corollary. Let <£ be a logic satisfying the hypotheses of Theorem 1.3. Assume
further that J£?[T] is a set for every T. Then <£ has the Robinson property iff & is
compact and satisfies Craig's interpolation theorem.

Proof This proof requires use of Theorem 1.3 and Proposition II.7.1.5. The
assumption that $£[T] is a set for every x is needed in the proof that compactness
plus Robinson property imply interpolation. In order to apply compactness, we
must guarantee that complete theories are sets of sentences. D

1.5 Remark. Although it is stated only for regular if, Theorem 1.3 still holds if
the relativization axiom is replaced by the weaker requirement that if allow
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1. Logics with the Robinson Property 723

relativizations to atomic sentences. Also, the substitution axiom can be relaxed
for the requirement that in S£ we are allowed to replace a function/by a relation R
representing the graph of/ This will be important in the sequel (see Section
3.11.2, and Theorem 5.4).

1.6 Corollary. Assume that <£ is a logic with the Robinson property, and that if [T]
is a set for every x, and \rv\ < co for every sentence cp. Assume further that 5£ is
closed under the atom, Boole, and particularization property of Definition II. 1.2.1.
Then the following are equivalent:

(i) ££ is closed under relativization to atomic sentences and allows elimination of
function symbols;

(ii) if is regular.

Proof. That (ii) implies (i) is evident in the light of Definition II.1.2.3. To prove that
(i) implies (ii), we first note that, by Remark 1.5, Theorem 1.3 can be applied to if.
Since <£[T] is always a set, then if satisfies Craig's interpolation theorem, by
Corollary 1.4; and, in particular, if is A-closed (Definition II.7.2.1), whence
regularity follows immediately. D

We now look at logics if which satisfy the Robinson property but are not
[co]-compact. In contrast to the above results, no restriction is here imposed on the
size of if [T] or on that of o(J£). On the other hand, we require that relativization
in S£ incorporate r-closure; that is, 95 \=# cp{x^(x)} implies that the set B' =
{be£|<95, b} \=2>(x(x)} contains all the constants of T^; and, for each/er^ , if
bl9 . . . , bn e B', then f(bl9 ..., bn) e B' (see Barwise [1974a, p. 235], and Flum
[1975b, p. 294]). All the infinitary logics mentioned in the literature have this
property; for logics in which all sentences have a finite vocabulary, the present
form of relativization is exactly the same as the usual relativization as defined
in Definition II. 1.2.2, since r-closure is expressible by a first-order sentence when-
ever T is finite.

1.7 Theorem. If if is a regular logic with the Robinson property and <£ is not [co]-
compact, then for every 91, 95 with | 9t1 of cardinality < fi0, we have that 91 =^ 95
implies 91 ̂  95. If no uncountable measurable cardinal exists, then =# = ^ .

Proof To prove this theorem, we establish three formal claims.

Claim 1. {co, <,cn}n<(O is characterized up to isomorphism by its own complete
theory in if'.

Proof of Claim 1. The proof is reminiscent of the proof of the first part of Theorem
1.3. Let the pair T = {(pt\i < co}, A be a counterexample to [co]-compactness in
5£. For every m < co, let Tm = {cpt \ i < m} u A, and let 9lm N= Tm. For the moment,
assume the vocabulary T of T u A is single-sorted and has only relations. Assume
further that the universes of the 9tw's are pairwise disjoint. Define the disjoint
union 91 = (A,.. .> of the 9lm's by

A= [jAm, R*= [JR*™ for each RGT.
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724 XIX. Abstract Equivalence Relations

Let/: A -• co be defined byf(a) = m iff a e Am. Let finally the two-sorted structure
TO be given by 9K = [91, (co, <, cIfI>m<a),/]. By arguing as in the proof of Claim 1
in Theorem 1.3, we see that whenever 91 =^SR, the {c™}m<0) are unbounded in
<* We can now prove that whenever X) = ^ <co, <,£„>„<«,, we also have X) ^
<co, <, cn>w<£0. As a matter of fact, if this were not the case and X were a counter-
example, then we expand X) to X + = <X, c,#>, where # maps the set VF of pre-
decessors of c one-one onto W u {c}. We expand <co, <, cB>B<fl, to the structure
W defined above. Using the Robinson property of if, we exhibit 23 such that
93 f T^ = ^ 9K and 93 Is T^+ = ^ D + . Then the {<:*}„<„, are unbounded in <®, by the
discussion above. But they are also bounded by c®, because 23 N^ c > cn for all
n < co—a contradiction which establishes our claim in case x is single-sorted
and only contains relation symbols. The many-sorted case (for T only containing
relations) can be established, with the help of additional notation. We now con-
sider in detail the case in which some sentence \jj of T is such that the set z^ of
symbols occurring in \jj, as given by the occurrence axiom, also contains constants
(but no functions). If there are only finitely many such constants, then we can get
rid of them by using unary relations and renamings, without using the substitution
property of if (see the proof of Theorem 1.3). Otherwise, if T^ has infinitely many
constants, display them as {ba}a < K, for some K > co. Recalling that we assumed
that relativization incorporates r^-closure, whenever U is a new relation, we have

(1) ty v -i il/){xlUx} is equivalent to Ub0 A Ubx A • • •.

Similarly, letting 9 be the sentence in if given by

(2) 0d=fVy-KW v -i^x*y\

we must have

(3) 6 is equivalent to \/y(y = b0 v y = bx v • • •)•

Add a new relation V and let theory T be given by

(4) r = f {Vbfi\P < OJ} u {^Vby\y > ao}.

By (2) and (3), for every structure S, we have

(5) S N r u { 0 } implies F S = {b*}p<0).

Let T" be defined by T" =f Th_^<co, <, cn>n<w u F u { S , f/}, where ^ says that/ is
a one-one mapping from the new sort of the {cn}n<03 onto V = {bp}p<(O. Then, by
(5), each model of T will be an expansion of <co, <, cn>„ < w, the latter being defined
on a new sort. We now complete the proof of Claim 1. Assume Th_^<co, <, cn}n<(O

has a non-standard model X) (absurdum hypothesis). Expand X) to X' = <£>, c, #>,
where c is a strict upper bound for the {cn}n<(O, and g maps the set K of pre-
decessors of c one-one onto K u {c}. Then Th^ X)' u T" has no models, thus
contradicting the Robinson property of 5£. This completes the proof of Claim 1
(the case in which T^ has function symbols can be reduced to the cases considered
above).
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1. Logics with the Robinson Property 725

Claim 2. Let K > co be an arbitrary cardinal. Assume </c, < , ca>a<K is character-
ized (up to isomorphism by its own complete theory in 5£\ and also each 9T with
\A'\ < K is characterized. Then every 91 with \A\ = K is characterized.

Proof of Claim 2. To establish this claim, we consider two cases, the first being the

Special Case. Here 91 = </c, <,ca,R
ffl, ...>a<K is a single-sorted expansion of

<ic, < ,Oa<*- Then let x = % and assume 23 =^9t , but 95 qk 91 (absurdum
hypothesis). By assumption (and by the reduct and isomorphism axioms given in
Definition II. 1.1.1) we can safely write 95 = </c, <, ca9 R*9.. .>a<K. Since 95 ^ 91,
then without loss of generality we must have RKU ^ K93. For the sake of definiteness
assume that R is a unary relation (the other cases being treated similarly). We then
have that for some /? < /c, R^fi holds and R®P does not (or vice versa). Now by the
assumed characterizability of </?, <, ca>a</? we have that cjj = cf = /?, so that
91 \=# Rcp and 95 \=^ ~^Rcp, thus contradicting 91 =<? 95. Consider now the

General Case. Here we assume that 91 = & 95, | A \ = K. For the moment, let 91 be
single-sorted; let \B\ = X. Then we must have that X < K; for, otherwise, by ex-
panding 91 to 9t+ = <9I, K, <,ca\<K and 95 to 95' = <95, bfi}fi<x, using the
Robinson property, we exhibit 9W with 901 { T^+ =# 91+ and 9W [ T9, =# 95'. Hence,
by hypothesis 9W \ {<} ^ <K;, <> and \M\ > X > K, since bf ^ bf for j8 ^ a.
This is a contradiction. Having seen that \B\ = X < K, we now expand © to 95 + =
<95, X, <', dp}p<^ where < ' is a new binary relation symbol having the natural
interpretation in 95+ . By the Robinson property, we let 91 be such that 91 [ z%+

=^9I + and 91 |ST<B+ =^95 + . Now 91+ is taken care of by the special case just
considered, and so is 95+ —unless X < fc, in which case 95 + is characterized up to
isomorphism by hypothesis. In definitive, we have that 9l[Tm+^<H+ and
91 [x9+ £ 95+ . By taking reducts, we finally obtain 91 ^ 91 ft* = 9i [T9 £ 95.
If 91 and 95 are many-sorted, one proceeds similarly, by first excluding the pos-
sibility of 95 having sorts of cardinality > K, and by adding one copy of < | S |, < ' , . . .>
over each sort S in 23. This completes the proof of Claim 2.

Claim 3. All structures of cardinality <JJL0 are characterized.

Proof of Claim 3. Let K be the least cardinal such that there are two j£?-equivalent
non-isomorphic structures 91' and 91", with K = \A'\ < \A"\. Clearly K > co, and
by Claim 2 it follows that 91 = <JC, <, O a < K is n o t characterized. By Claim 1, we
see that K is uncountable. We will now prove that K is measurable. Let © =
<B, <, ca>a<K with © =^91 and 95 ^ 91. Using standard arguments of model
theory, along with the characterizability of each ordinal /? < K, we conclude that
there must be some beB such that 95+ \=&b > ca for all a < /c, where 95+ =
<95, b}. Expand 91 to 9l+, adding symbols for all unary functions and relations on
K, as follows:

9l+ = <ic, <9ca, Us,fj\<KtSeP{K)tjGKK

with

Uf+ =s and / f =j,
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726 XIX. Abstract Equivalence Relations

where P(K) is the power set of K. Using the Robinson property, let 2TC be such that
2TC t T»+ = * ® + a n d 9JI T T ,̂. = ^ 9 T . Define D c p(*) by

5 e D iff s c K and 2R l=^ C/5(ft);

that is, s e D iff the unary relation Us whose interpretation is s in 91+ has bm among
its elements when interpreted in 2TC. Clearly D is a nonprincipal ultrafilter on K. We
now show that D is K-complete. If not (absurdum hypothesis), D is /z-descendingly
incomplete for some /i < K; that is, there is a descending chain D' = {s^}a</i with
si e D and f)a<M 5 ^ Z>. Hence, without loss of generality, C]a<tl s'a = 0. Without
loss of generality, we may also assume that for every limit ordinal e < fi, f]a<E s'a
= s'e. Define h: K -• \i by h(P) = a iff )8 e s'0L\s'a+19 for fi < K, a < /z, so that intui-
tively h tells us how long an element jS e K stays in the descending, and eventually
vanishing, chain Df. h is well defined, by our assumption that for every j8 the first r\
such that j? £ ŝ  is a successor ordinal. Let C/a = Us>a (a < /x). Then, for every a < /z,
we have

2 T , SR
9K |=^ fc(fe) > ca since 5R N ^ Ua+I(b)9

9JJ j=^ Vx(x < cM -• h(b) > x) since JU < K is characterizable,
9R, 9I+ N ^ 3y(Vx(x < c, - /z(y) > x)),

so that n<*<^ s« ^ 0—a contradiction. Therefore, D is K-complete, and K is mea-
surable, indeed uncountable and measurable. This completes the proof of Claim 3
and of the theorem as well. •

1.8 Corollary. If 'JS? is a regular logic with the Robinson property, and there are <fi0

many sentences in the pure identity language of£f, then X is [ca]-compact. D

1.9 Examples, (a) The logic J ^ ^ = !£ has the Robinson property and is not
[co]-compact. Here S£\x\ is a proper class and =# = =.

(b) If K is an extendible cardinal, then JSf JJK, infinitary logic with conjunctions
and quantifications of elements and relations of length </c, has the
Robinson property and is not [co]-compact. Here j£?"K -equivalence
coincides with isomorphism below K, and K > fi0. Indeed K > the first
supercompact cardinal (see Magidor [1971], and Examples XVIII.3.3.7).

The above examples, together with Theorem 1.7, simply tell us that if j£? fares
well with the interpolation or definability properties, but does not do so with
compactness, then its expressive power is extremely strong below some measurable
cardinal. The prototype of this sort of result is Scott's theorem which yields for each
countable structure 91 a sentence cpm of JS^^ whose countable models are exactly
those which are isomorphic to 91 (see Theorem VIII.4.1.1). A partial converse is
given by the following result.

1.10 Theorem. Let ££ be a logic such that for every countable structure 91 there is a
sentence cpm of vocabulary zm having the property that for any countable
33 N ^ cpsn implies © ^ 91. Then AJ£ is an extension of 5£(ax(a.
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Proof. See Section XVII.3.2. D

Since «S£,10) is A-closed, Theorem 1.10 implies that J^lW can be characterized
as the smallest A-closed logic satisfying Scott's theorem. Using Theorem 1.7, we
can now prove an analogue of Theorem 1.10.

1.11 Definition. Let jSf, &' be logics. We say that $£' is weakly interpretable in &
iff for every sentence cp e <£'[T] there is a vocabulary o ^ T and a set of sentences
Z c j?[(7] such that Mod(cp) = (Mod(Z)) f T.

1.12 Theorem. If ££ is a regular logic with the Robinson property which is not [&>]-
compact, then:

(i) J£?Mo£O is weakly interpretable in <£\ and,
(ii) =2 is finer than =# ; that is, 91 = ^ 93 implies 21 = ^ 93.

Proof. For (i). If (/> e J^OCO[T], then we can assume that cp e H(K:), for some K < fi0.
We now follow Feferman [1974a, b, 1975] and find an expansion 3Ŵ  of (H(K\ e>
and a set Z^ c <£\a\ for some a ^ i, such that for all 31 e Str(r) we have that

SI N(p iff the pair <21,50^) N ^ .

The existence of 901̂  and Z^ with the required properties is guaranteed by Theorem
1.7.

Deny (ii). Then there is 91 e Str(r) and cp e ^ M O W [T] such that if we let T =
Th^(2l), then both T u {<jo} and 7 u { ~i <p} have a model. Let a, a' 2 T 5 Z ^ g j5f [<j]
and In</, c if [a'] be as in the proof of (i), and o n o' = T. By (i) each of T u Z9

and T u H n ? has a model, and by the Robinson property of if we can write 93 1=^
T u ^ u £-,<?> for some 93. Hence, 93 N T u {<p, —î }—a contradiction. D

To some extent, Theorem 1.12 clarifies how a non-[co]-compact logic with
the Robinson property resembles an infinitary logic built on a measurable cardinal.
Indeed, the only known examples of such logics involve an extendible cardinal
(see Example 1.9(b)). Shelah has constructed a logic if with the amalgamation
property, (a property which is weaker than the Robinson property) and which still
does not contain ifwlCOl. This result was given in a private communication, and it
seems an interesting problem to explore it with the view of making possible im-
provements of Theorem 1.12.

1.13 Notes and Remarks. A more detailed proof of Theorem 1.1 can be extracted
from Mundici [1982b, pp. 64-66], where it is shown that compactness = JEP
(for logics where if [T] is a set) under such set-theoretical hypotheses as V = L or
—10#. Theorem 1.2 was originally proved by Makowsky-Shelah [1983]. Theorem
1.3 and Corollary 1.4 are independently due to Mundici [1982b], and Makowsky-
Shelah [1983]. The proof presented here is given by Lindstrom in a private com-
munication. Theorem 1.7 is due to Mundici [1982f] (see also [1982a] for results
on the many-sorted case). The proof given here uses a number of ingredients from
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728 XIX. Abstract Equivalence Relations

Rabin [1959], Keisler [1963b], Lindstrom [1968] and Makowsky-Shelah [1979b].
In this latter reference, a variant of Corollary 1.8 was proven using a weaker notion
of Robinson property together with the Feferman-Vaught property and different
assumptions about |JS?[T]|. For Example 1.9(b) see Magidor [1971] and
Makowsky-Shelah [1983]. Theorem 1.10 is due to Makowsky [1973] and
Barwise [1974a]. Actually, the theorem still holds under the weaker hypothesis that
we can characterize by a sentence of if every structure of the form <<x>, <, P> with
P an arbitrary subset of co (see Makowsky-Shelah-Stavi [1976]). Theorem 1.12 is
an unpublished result of Makowsky.

2. Abstract Model Theory for
Enriched Structures

This short section is devoted to extending the results of Section 1 to logics for
enriched structures, such as topological, uniform, proximity structures (see
Chapter XV). The reader who is only interested in the usual (first-order) structures
may safely proceed to Section 3 at first reading.

For an arbitrary nonempty set B, the superstructure V^ of B is given by
V* = B, V*+1 = Vl u PF*, Vl = \Jn V

B
n, where P is the power-set operation.

An enriched structure of vocabulary x is a pair W = <2R, /i> where TO e Str(i) is
an ordinary structure (as defined in Chapter II), and \x e Fjf. The many-sorted case
is an immediate generalization of this notion. Examples of enriched structures
are topological, weak, uniform, monotone, proximity, ordinary structures, as well
as the structures studied in Chang [1973] in the framework of modal model
theory. Vat forgetful functor || • || transforms W into 9K; the operations of reduct,
renaming, diagram expansion, disjoint union (for structures of disjoint vocabu-
laries) are the same as in the ordinary case. A strict expansion of W = <$R, /x> is
any structure W = <9W+, /x>, where SR+ is an expansion of 9M. The ordinary
semantic domain is the function (9 assigning to every vocabulary T the category
(9(T) = <Str(r), Emb(t)> whose arrows are the isomorphic embeddings equipped
with composition. More generally we consider

2.1 Definition. A semantic domain is a function ^ assigning to every vocabulary x
a category ^ (T) = <Ob(i), Ar(i)> whose objects are enriched structures of vo-
cabulary r and whose arrows, called the isomorphic embeddings of <#, are functions
equipped with composition, satisfying the following seven conditions:

(a) || • || preserves identities and commutative diagrams;
(b) uT Ob(r) is closed under reduct, renaming, strict expansion, formation of

disjoint pairs, and disjoint union; that is, for every set {95a}a<K £ Ob(r), x
without constants, there are 95eOb(t) and arrows #a:93a --• 95 (a < K)
having pairwise disjoint ranges whose union is B (here we essentially
require that all the operations on structures used in the proof of Theorem
1.3 are also available for our enriched structures);
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2. Abstract Model Theory for Enriched Structures 729

(c) for each ordinary structure 91 there is a structure 95 in # with the same
vocabulary and such that ||93|| = 91 (this amounts to requiring that #
extends the ordinary semantic domain);

(d) g: SR -• 9t iff g: SRP -> 9tp for any renaming p;
(e) #: 2R -• 9t iff #: SK f T -> 9t f T for all finite T ̂  xm = xm;
(f) / : m -> 91, p: 91 -> 95 and T^ n T^ = 0 imply/u #: [SR, 91] -> [91, 95];
(g) g: 901 -+ 91 implies #: SRM -> 9l^(M), 9Q1M = diagram expansion of 3W.

We also say that # /zas substructures iff # satisfies the following two additional
conditions:

(h) whenever B'^ Bis the range of an isomorphic embedding into ||93|| (with
respect to (9\ then B' is also the range of some isomorphic embedding into
the whole of 95 (with respect to «*);

(i) whenever 50} -f 95 <̂  91 and range(/) c range(#), then there exists
A: $R -> 91 such that / = g<>h.

2.2 Examples. The following are semantic domains with substructures: the
category of topological structures with homeomorphic embeddings (see Chapter
XV); the monotone structures with monotone embeddings (see Makowsky-
Tulipani [1977]); the uniform structures with uniformly continuous embeddings
(see Flum-Ziegler [1980]), the proximity structures with proximity-preserving
embeddings.

The notion of a logic ££ over a semantic domain # is exactly the same as for
the ordinary case (see Chapter II), except for the definition of relativization, which
requires a little more care:

2.3 Definition. A logic J£? over <€ has relativization iff <£ has substructures and for
every boolean combination a of atomic sentences with ra ^ {x}, and every sen-
tence cp G JSf [T9] there is ^ e JS?[T'] (with T' = T^ U (ra\{x})), denoted \jj = cp{xW\
such that for all 95 e Str(r'), 95 \=# \j/ iff {b e B11| <95, b) \\ \= a} is the range of an
isomorphic embedding g: 91 -• © f T^, for some 91 e Str(T^) with 91 \=# cp.

The assumption that <g has substructures ensures that 91 in the above definition
is unique up to the isomorphism relation in c€. Furthermore we have incorporated
i-closure in relativization. In other words, 9? \=# cp{xloc} implies that the substructure
951 a93 contains all the constants of T^ and is closed under all the functions of T^.
We can recover the ordinary definition given in Definition II. 1.2.2 simply by noting
that for ordinary structures the following holds, for any isomorphic embedding g:

ff:9t->»r^ ^ W = (® rV>lrangefo).

In Chapter XV the reader encountered a logic <£x which stands to topological
structures as S£mia stands to ordinary structures. In Chapter III it is shown that
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730 XIX. Abstract Equivalence Relations

large portions of ordinary abstract model theory can be extended to the realm of
enriched structures. As for extensions of the results of Section 1, we have:

2.4 Theorem. For % an arbitrary semantic domain with substructures, and J£f a logic
over <& obeying the hypotheses of Theorem 1.1, the conclusion of the theorem still
holds.

Proof. See Mundici [1982c, II and 198?b]. D

It remains an open problem whether or not the main results of Chapter XVIII—
notably, the implication AP => compactness—or even Theorem 1.3 above can
be extended to logics over arbitrary #. With the help of such axioms as V = L or
-i O * we can strengthen Theorem 1.1 to the effect that if <£ is not compact, then
there is a proper class of regular cardinals K such that if is not [/c]-compact. By
using Theorem 2.4, the proof of this fact for 0 can be extended to arbitrary (€.
Hence, we have

2.5 Theorem (V = L, or even —iO#). For %> an arbitrary semantic domain with
substructures and i f a regular logic over <&, assume that ^£\j~\ is a set for every %
and that | T J < cofor every sentence cp. Then if <£ has the Robinson property, 5£ is
compact.

Proof. The reader is referred to Mundici [1982c, II and 198?b]. Actually, the
theorem is proven there under the weaker assumption (denoted Iq) that for every
infinite regular cardinal K and for every uniform ultrafilter D over K, D is X-
descendingly incomplete for all infinite X < K. For a proof that t\ is weaker than
~iO#, the reader should consult D. Donder, R. B. Jensen, and B. J. Koppelberg;
Lecture Notes in Mathematics, 872 (1981), p. 91. D

3. Duality Between Logics and
Equivalence Relations

We now return to ordinary (first-order) structures. As we remarked in Section 1,
the Robinson property of a logic if only depends on =#. In general, for ~ an
arbitrary equivalence relation on the class of all structures, we say that ~ has the
Robinson property iff for every 91' e Str(i'), 21" e Str(i"), if 2T {% - 91" \ % and T =
T' n T" then there is 9« e Str(r' u T") such that SR [ x' - 91' and SR \ %" - 91".
It is immediately seen that whenever ~ = = ^ for some logic J^, the relation ~
has the Robinson property iff <£ satisfies the Robinson consistency theorem.
Among the equivalence relations with the Robinson property, we mention ele-
mentary equivalence =, isomorphism ^ , equality = and = ^ for if = ^K (see
Example 1.9(b)). All the equivalence relations considered in this paper will satisfy
a few natural prerequisites which the attentive reader may find reminiscent of
the simplest axiomatic properties of logics.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.027
https://www.cambridge.org/core


3. Duality Between Logics and Equivalence Relations 731

3.1 Definition. Let ~ be an equivalence relation on the class of all structures. Then
~ is said to be regular iff ~ satisfies the following conditions (for every two
structures 9M and 9t):

vocabulary: $Ji ~ 9i implies T^ = %;
renaming: 90? ~ 9t implies $KP ~ 9ip for any p: x^ -• T';
m/ucr: 9W - 91 implies 2R [ x ~ 91 f x for any T £ Tm;
isomorphism: 9K ^ 91 implies 90? ~ 9i;
expressiveness: 901 ~ 9t implies SOJ = 91.

Moreover, we say that ~ is bounded iff for every vocabulary T there is a set 5T c
Str(i) such that for every 91 e Str(r) there is 95 e ST with 93 - 21. Thus, all equiva-
lence classes have a representative in 5T. Observe that this has nothing to do with
"bounded" logics. When ~ is a regular equivalence relation on the class of all
structures and has the Robinson property, then we simply say that ~ is a Robinson
equivalence relation. Of the four equivalence relations given above, = and =&£
are bounded Robinson equivalence relations. If if [T] is a set for every T, then =#
is (regular and) bounded. Conversely, if ~ = =# then !£ is (equivalent to) a
logic where if [T] is a set for all T, provided ~ is bounded. Finally, we say that ~
has the finite vocabulary property iff for every x and 21, 33 e Str(i), we have that
21 - 93 iff 21 Is T0 - 93 Is T0 for each finite vocabulary x0 c T.

As remarked in the introduction, an open problem of abstract model theory is
whether = is the only bounded Robinson equivalence relation — having the
finite vocabulary property and satisfying ~ = =#> for some logic if. In the follow-
ing pages we will see that if any such relation ~ =£ = exists, then that relation ~
has many properties in common with =.

3.2 Theorem (Relative Compactness Theorem). Let ~ be a Robinson equivalence
relation having the finite vocabulary property. Let <£' = J?(Ql)ieI and 5£" =
y(QJ)jej be logics, with =#< and =#„ both coarser than ~ . Let \\fe<£"\x\ and
F ^ i f ' [T] be an arbitrary set. IfT f= i//, then To |= \j/Jor some finite To £ p, where
T \= \j/ means Mod^> T c Mod^^ \jj.

Proof. Assume that r N= ty holds but for no finite r 0 c r do we have r 0 1= \j/
(absurdum hypothesis). Since T is a set, we can write T = {cpja < K}. We can
safely assume K is minimal, so that each Tp = {~iij/} u {< â|a < /?} has a model
21^, for each jS < K. NOW, construct the disjoint union 21 of the 21^ and let 9Ji =
[21, </c, <,.^>/3<K?/] exactly as in the proof of Theorem 1.3 (here we use the
hypothesis that all sentences in if' and 3?" have a finite vocabulary). The claim in
the proof of Theorem 1.3 now reads as follows:

Whenever 91 ~ SR, the {cf}p<K are unbounded in the order <*.

To prove the present claim, for each /? < /c, let i/^ and ^ be defined by

^ = Vz(C/! < z - ^«>=*>), V, d=f V^(c, < 2 - (-, ^)«'l/w=«>).
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732 XIX. Abstract Equivalence Relations

Observe that since 9JI \=#, \jj'p and 9K \=<?,, \\J"P, then so does 91 ~ 9R, since =_^ and
=_̂ » are assumed to be coarser than ~. Therefore, if 91 were a counterexample to
the claim, i.e., for some neN, (91, n}\=cp<n (for all ft < K), then

would provide a model o f T u j n i ^ } . But this is impossible and our claim is thus
established.

At this point, we consider W and 9W", of vocabulary T' and T", respectively,
exactly as in the final part of the proof of Theorem 1.3, where T' = T^ U T0 and
T0 = {Pp}p<K, and x" = T0 u {c}. Using the assumed finite vocabulary property
of ~ , we must have that W \ T0 ~ 9M" \ T0 . By the Robinson property of ~ , there
is D with £ |V - $R' and D \x" ~ 5R". In particular, W, £ 1= -iP^c, for
every /? < K, SO that c2 is a strict upper bound for the set {c*}p<K. In definitive,
X) r Tgjj ̂  9K is counterexample to our claim. Having thus obtained a contra-
diction, we conclude the proof of the theorem. D

3.3 Corollary. Let ~ be a Robinson equivalence relation with the finite vocabulary
property. For a set /, let <£ = JSf(Q£)i6j be a logic with =# coarser than ~ . Then
$£ is compact.

Proof. The proof follows immediately from Theorem 3.2. D

The following corollary is a "unique representability" result:

3.4 Corollary. Let ~ be a bounded Robinson equivalence relation. Then there is at
most one (up to equivalence) logic !£ = ^£{ff)iei such that =# = ~ . Furthermore,
if any such <£ exists, then ££ is compact and has the interpolation property.

Proof. Let <£' = ^(Qj)jeJ be such that =^ = = ^ = ~. Observe that - neces-
sarily has the finite vocabulary property. Also, / and J may be assumed to be sets,
for ~ is bounded. For arbitrary q> in ^ [ T J , cp has the same models as

u
Using Theorem 3.2 and noting that Th^(2l) is a set, we see that for every 91 N^ q>
there is \//m e Th^,(9I) such that M o d ^ ^ ^ ) c Mod^ (p. Applying Theorem 3.2 to
—i q>, there exist 91^ . . . , 9ln such that cp has the same models as ifr % 1 v • • • v i/^n.
Therefore, cp is equivalent to some sentence in if'. Finally, the fact that !£ is com-
pact and has the interpolation property now follows from Theorem 1.3 and
Corollary 1.4 (recall that / and J are sets). D

3.5 Corollary. Up to equivalence, first-order logic is the only logic $£ — ^(Ql)tei
such that =# = =. •

For an alternative proof of Corollary 3.5, see Theorem III.2.1.4. Observe also
that the (generalized downward) Lowenheim-Skolem theorem coupled with
Lindstrom's theorem (see Theorem III. 1.1.4) implies that Sf^ is the only countably
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3. Duality Between Logics and Equivalence Relations 733

compact logic 5£ with =<? = = . The point of Corollary 3.5 is that = uniquely
characterizes Ĵ W(O among all logics if = ^{Qi)ieI.

Corollary 3.4 shows that at most one logic if exists with = ^ = ~, whenever ~
is a bounded Robinson equivalence relation. The problem of whether at least one
such if exists will be settled in the remainder of this section.

3.6 Notational Convention. If cp is a sentence in S£ of vocabulary T U {cl9..., cn}
with cl9..., cn $ T, then for 91 e Str(r) we define the set <p* by

q>" = {(al9 . . . , an)eAn\(% a l 9 . . . 9 a n } ^ (/>}.

3 . 7 Lemma. Let <£ = ^(Ql)i€i be a logic such that =# is coarser than a Robinson
equivalence relation ~. Given 91, © e Str(r) with 91 ~ S, and

(peS£{x\j {cl9..., cn}\

let R be a new n-ary relation symbol and let structures 9l+, 95+ e Str(r u {R}) be
defined by 9I+ = < 9 l , ^ + >anrf95+ = <95, R*+>, where R*+ = <p*andR*+ = cp*.
ThenM+ - 95 + .

Proof. Let Ru R2 be new n-ary relation symbols, and let px be the renaming on
T u {#} which maps R into i^x and is equal to the identity on T. Let p2 similarly,
map R into R2. Let px(9I+) and p2(®+) be the correspondingly renamed structures
(see Definition II.l.l.l). By the assumed Robinson property of ~ , there exists
91 e Str(i v{Rl9R2}) such that

(1) 91 h u l R i } - p x ( 9 l + ) and 91 [T U {i^2} - p2(®+).

Therefore, we have

(2) 3d, P l (9l+) ^ Vcl 9 . . . , cn(cp 4- / J l C l , . . . , c j , and
N^ Vc1?.. . , cn((p

whence R® = Kf. Now using (1) and the renaming property of ~ we get

(3) 8 l + - p r 1 ( 9 i r T u { R 1 } ) = p 2 - 1 ( 9 i r T u { R 2 } ) - » + . D

3.8 CoroUary. Let ££' = ^{Q!)ieI and 5£" = ^(Qj)jEj, where I n J = 0 , be
logics such that =#, and =^> are both coarser than a Robinson equivalence relation
~. Let & = ^(Qk)k€iuJ- Then =# is coarser than ~ .

Proof. Let 91, 93 e Str(t) with 91 - <B. We must prove that 911=^ (p iff
for every cp in !£. To this purpose, it suffices to show that for every ^ in if of vo-
cabulary T u {cl9..., cn) we have <9l, i/^> - <93, ^®>, as structures of vocabulary
T u {^} (recall the notational convention (3.6) and the notation of Lemma 3.7). We
proceed by induction on the complexity (quantifier rank) of \jj. The only nontrivial
step is when, say,

iA d=f e'*o^i> -->xm (po(xo), (PiixJ,..., (?m(xm) for some t e I.
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734 XIX. Abstract Equivalence Relations

By the induction hypothesis, we have

<9l, q>*9 q>*f..., cp»> ~ < « , <pl <p*9..., rfj>,

as structures of vocabulary {Ro, Rl9..., Rm} u T. By Lemma 3.7, after noting that
Qlxoxu . . . , xmRo*oKi*i> • • • > #m*m is a sentence in if', we have

as structures of vocabulary i u {R0,Rl9... ,RW,JR}. Finally, by the reduct property
of ~ , we have the desired conclusion. D

3.9 Definition. We say that a regular equivalence relation ~ is separable by quanti-
fiers iff whenever t a = T& and not-9t ~ 95, then there is a quantifier Q such that
=^(Q) is coarser than ~ , and 91 #^((2) 93.

Notice that if ~ is representable as ~ = = ^ for if = if(2')iej, then ~ is
separable by quantifiers. The next theorem shows that separability is not only
necessary, but also sufficient for the representability of ~ , provided ~ has the
Robinson property and is bounded.

3.10 Theorem. Let ~ be an arbitrary bounded Robinson equivalence relation. Let
if* = if{Q| =^(Q) is coarser than ~ } . Then we have:

(i) ^* is the strongest logic & of the form if = if(<2')ie/ such that =<? is
coarser than ~.

(ii) The identity ~ = =#* holds iff ~ is separable by quantifiers. If this is the
case, then J£* is uniquely determined by ~ (up to equivalence) and is a
compact logic with the interpolation property.

Proof. The assertion in (i) is immediate from Corollary 3.8. As for (ii) clearly, if ~
is separable by quantifiers, then ~ is coarser than =^*. Hence, ~ = =^,*. Con-
versely, if ~ = =#*, not-9l - 93, and t a = TC, then 91 #^*93 so that 91 \=#* \jj
and S N=̂ *-i \j/ for some \jj in J^*. Let Q^ be the quantifier given by the class
Mod^*(ijj). Then ^(Q^) < if* by the regularity properties of logics generated by
quantifiers (see Section II.4.1), hence =^((2i//) is coarser tjhan ~ and 91 # ^ ( Q ^ S .

Therefore, ~ is separable by quantifiers. To conclude the proof, the uniqueness of
^* follows from Corollary 3.4, while the compactness and interpolation properties
of ^ follow from Theorem 1.3 and Corollary 1.4 upon noting that since ~ is
bounded, then if *[T] is a set for all T. •

Can the duality given by (Corollary 3.4 and) Theorem 3.10 be extended
beyond the realm of logics and equivalence relations with the Robinson property?
The answer is partially affirmative. As a matter of fact, using the equivalence
between JEP and compactness (see Chapter XVIII), we have that the bijection given
by Theorem 3.10 can be extended to an injection from compact logics into equiv-
alence relations via the following generalization of Corollary 3.4:

3.11 Theorem. Let ~ be an arbitrary regular equivalence relation such that
~ = =j?*for some logic <£* = &(Qf)ieI> where I is a set. If <£* is compact (or,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.027
https://www.cambridge.org/core


3. Duality Between Logics and Equivalence Relations 735

equivalently, if'if* has the JEP) then <£* is uniquely determined by ~ up to equiva-
lence.

Proof. First observe that the JEP is indeed equivalent to compactness (see Examples
4.2 below and Theorem XVIII.3.3.3). We now prove the following lemma, which
is of independent interest:

3.11.1 Lemma. Let £" = i f (g J ) / e J , <£" = ^(Qk)keK9 J, K disjoint sets; let <£ be
the weakest logic closed under existential quantification and boolean operations with
<£><£' and S£ > <£". If =#. is finer than =#.., then =<? = =#..

Proof of Lemma. Assume =<? # =^,, so that for some 9W, 91 with W =<?, % we
have 9R \=# \jj and 91 \=^ ~i ij/ for some ij/ in $£. It is easy to see that \j/ can be
written in the form

<A = 2 i . F i , • • •, Qryr B(<P'I, >",<p'P, (p'i • • • > <p'q)>

where Qn G {3, V} for each n = 1, . . . , r, B is a boolean function, that is, a finite
composition of A , v , ~i, each q>\ is a sentence in if' and each cp'- is in if". Let
Ru . . . , Rp be new r-ary relation symbols, and let 3Dt+ = <9W, Ru ..., Rp),
9l+ = (% Ru ..., Rp) be given by

(1) yi\m+ \=r A V ^ i ^ ^ y ) , with y = (yl9...,yr).
i= 1

Let sentence 5 in if" be defined by 5 = Qxyu . . . , Qryr B(RU ...,Rp, <p"u . . . , q>'^\
and observe that these substitutions are legitimate and 9W+ \=^d, 9l+ t=#.. -\8.
Since =#, is finer than =#„ and 9W+ ^^- 91+, then, for some sentence # in ifr, we
have W+ \=#. i and 91+ \=#. -i%. Define sentence 9 in if' by

that is, 0 is obtained from % by replacing each occurrence of R( in % by <p|. Again,
these substitutions are allowed in ^£'. In conclusion, recalling (1), we have
SR+ \=<?,6 and 9t+ \=#. ~i6. Whence 9JI \F=^ 6 and 911=#. ~i0, which contradicts

3.11.2 End of Proof of Theorem 3.11. Assume that both ^ and if" = ^(Qk)keK

have =^* = =^« = ^ . Let if be as in Lemma 3.11.1 (with regard to ^ and
!£"\ Using this lemma twice, we get =#= ~. Now, !£\r\ is a set for every T, as
can be seen by examining the form of any sentence i// in 5£, according to the proof
of Lemma 3.11.1. Moreover, 5£ is closed under relativizations to boolean combina-
tions of atomic sentences, and functions can be replaced by relations in 5£. Now the
fact that ^£ has the joint embedding property is enough to prove that 5£ is compact
(our assertions in Remarks 1.5 can be extended to the present case, to the effect
that the results in Theorem XVIII.3.3.3 can be applied to S£\ By a familiar finite
cover argument such as the one given in Theorem III. 1.1.5 we finally conclude that
^£, <£\ and ^ are equivalent. D

3.12 Corollary. Let <£ be an arbitrary logic with X < Aif(Qc{"). Then =#. = = ^
f' is equivalent to <£.
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Proof. The A-closure of any compact logic is still compact (see Proposition II.7.2.5),
and sublogics of compact logics are compact; if(Qcfar) is compact (see Theorem
II.3.2.3). D

3.13 Notes and Remarks. Regular equivalence relations in abstract model theory
were introduced in Nadel [1980a]. In Theorem 7 of his paper, we proves that
whenever ~ = =^0, for some logic if 0 (i) if ~ is bounded, then there is a strongest
logic S£ with ~ = =# and which is closed under negation, conjunction and dis-
junction. By constrast, he also shows (ii) that no such strongest 5£ exists if the
transitive closures <x, e> and <y, e> of any two sets x # y are never ~-equivalent.
Nadel's logics are systems of sentences obeying only the basic axioms given in
Definition II. 1.1.1. He also has a number of results about logics closed under
Scott sentences, that is, logics if in which each = ^-equivalence class of structures
is EC^.

Corollaries 3.4 and 3.5, and the duality theorem (Theorem 3.10) of this section
were orginally proved in Mundici [1982a]. The assumption used there that there
are no uncountable measurable cardinals is unnecessary and was subsequently
dropped (see Mundici [1982e, Section 1.1]). In Mundici [1982c, II and 198?b],
Theorem 3.10 is extended to logics and equivalence relations for enriched struc-
tures (see Section 2). For instance, it is proved that topological, monotone, uniform
logics are uniquely determined by their own elementary equivalence relations.
The proof of Theorem 3.10 given here depends on Theorem 3.2, Corollary 3.3,
Lemma 3.7 and Corollary 3.8, which were given by Flum in a private communica-
tion. Theorem 3.11 is due to Lipparini [1982].

4. Duality Between Embedding and
Equivalence Relations

The notion of if-(elementary) equivalence is generalized in Definition 3.1; the
notion of if-(elementary) embedding is generalized in the following:

4.1 Definition. An arbitrary binary relation -• on the class of all structures is called
an (abstract) embedding relation iff -• satisfies the following axioms (for every two
structures 9W, 91):

vocabulary. 9R -* 91 implies T^ C T^;
9R^9l [zm iff S R - 91;

renaming: 9R -> 91 implies 9Jlp -• 9lp for any renaming p of xn ;
reduct: 9JI -> 91 implies 9)1 [ x -• 91 [x for all T C TOT;
isomorphism: 301 ^ 91 implies 9JI -> 9t;
expressiveness: 9)1 -> 91 implies 9RM = 9l+ for some expansion 91+ of 91 f T^;
transitivity: 9)1 -• 91 and 91 -• 95 implies 9)1 -• 93.
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4. Duality Between Embedding and Equivalence Relations 737

Recall that 2RM denotes the diagram expansion of 9M. An embedding relation -•
has the expanded amalgamation property, denoted by AP+ (resp., the amalgamation
property, denoted by AP) iff whenever 21 <- 91 -• 93 and T̂ , n T^ = % (resp.,
T9i = T® = %),then 21 ^ 2R ~̂ 93 for some structure SR. Given an embedding -•
and an equivalence relation ~, we say that the pair (~, -+) has the joint embedding
property, denoted as before by JEP, iff whenever 91 ~ 93 then 91 -> $R <- 33 for
some 9K. When ~ = = ^ this agrees with Section 1. If ~ is a regular equivalence
relation (on the class of all structures), then ~ generates an embedding relation ->
by stipulating that 91 -> 23 iff TS 2 % and 91^ ~ 23 + for some expansion 93+ of
93 Is T ,̂. We denote by ~ * the embedding relation generated by ~ . Conversely, any
embedding relation -• generates a regular equivalence relation ~ by stipulating
that 91 ~ 23 iff Tg, = T«g and there is a finite path:

with T91O = - - - = %K and — being either -> or <-, depending on / (/ = 1 , . . . , fc).
We denote by ->* the regular equivalence relation generated by ->.

4.2 Examples, (a) If if is a logic, define ->^ by stipulating that 91 - ^ 93 iff T^ 3 %
and 9^ = ^ S + for some expansion © + of 93 [ T^ . Then -• & is an embedding
relation, called S£'-embedding. Observe that -•^ = (=^)*. For the particu-
lar case if = JS?^, we have that 91 - ^ 93 iff 91 < 93 \ z%\ that is, 91 is
elementarily embedded into 93 Is T^. Returning now to the general case,
assume that -• = ->^, for 5£ = i?(g*)fe/,where/isaset. Let ^ = =^(so
that -• = ^* ) . Then if is compact iff -• has the AP, iff the pair (~, -^)
has the JEP. For a proof of this fact see Theorem XVIII.3.3.3. The above
equivalences—originally proved in Mundici [1982b] (compactness =
JEP) and, independently, in Makowsky-Shelah [1983] (compactness =
AP = JEP)—enable us to regard the notion of compactness as an algebraic
property of embedding or equivalence relations in much the same way
as compactness + interpolation is algebraized via the Robinson property.
The latter, in turn, has an equivalent counterpart for embeddings in terms of
the AP+, as will be shown in Theorem 4.8.

(b) If if is a logic, define -+% by stipulating that 91 ->% 93 iff T® 2 % and
91 * =^93" for some expansion 93" of 23 \ rffl, where 91 * denotes the
complete expansion of 91 (see Section XVIII. 1.2). Then -+% is an embedding
relation, called the ^-complete embedding relation. In case !£ = ^^ it is
well known that -*% has AP+. Indeed, ( = , -+%) has the JEP; also,

We now begin consideration of the (preservation) properties of the map *.

4.3 Proposition. Let ~ be a regular equivalence relation. Let -> = ~*, and
« = -•*. Then « is finer than ~ .
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738 XIX. Abstract Equivalence Relations

Proof. First observe that if T̂ , = % and 91 ~ * 23 then 91 ~ 23. As a matter of fact,
91 ~* 95 means that 91^ ~ 95+, for some expansion 95+ of 95 [x^ ( = 95, in the
present case). Therefore, by the reduct axiom, 91 = 91^ [xm ~ 95+ [xm = 25.
Now, to conclude the proof of our proposition, if 30? « 9t, then by definition there
is a path

with T<H0 = • • • = T<HK and -r = -* or y = <-; by the above initial remark we have
that 9l0 ~ • • • ~ 9lk, as required. D

4.4 Proposition. Let -• fee an embedding relation with AP+. Let ~ = -•*; £/ien we

(i) t/ze pa/r (->*, -•) /z«5 f/ze JEP;
(ii) ~ is a regular Robinson equivalence relation.

Proof. For (i), we assume SR ^ 91, and let T = T^ = %. By definition there is a
path:

with %. = T, for each i = 0 , . . . , n, and — being either -• or <-. If n = 1, then let
T) = 91 or T) = 5R, according to whether — = -• or — = <- is the case; then
5R -• D ^- 91, and we are done. Proceeding now by induction on n, we obtain from

Now, if — = <-, then by transitivity we see that 9M -• 93 <- 9t. If — = ->, then by
the AP+ (actually only the AP is needed here) we have

(+ + +) SW-> » ^ « „ _ ^ 9 1 ;

hence 9W -• D <- 91, as required.
As for (ii), we see that the regularity of -•* is an immediate consequence of

Definition 4.1. Let TO [x ~ 91 [x, where x = xmnxn. From (i) above and the
regularity properties of ~ , we must have, for some T) e Str(r), that

By repeated application of the AP+, we obtain, for some 91 e Str(ran), 95
andSe Str(TOT u xm):

an
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4. Duality Between Embedding and Equivalence Relations 739

We thus conclude that 9K -• ® [ zm and 9t -• ® p TW. By definition of ~ , we finally
obtain that 3D? ~ S p T^ and 91 ~ ® p TW, thus showing that ~ has the Robinson
property. D

4.5 Proposition. Let ^ be a regular Robinson equivalence relation. Let -• = ~*.
Then we have:

(i) the pair (~, ~*)has the JEP;
(ii) -> is an embedding relation with the AP+.

/ If 9W ~ 9t, let 90?M and 9tN be obtained by using different constants so that
T = Tsn = % = %tM n %N and 9WM p T ~ 91^ p T. Using the Robinson property of
~, we let 21 be such that 91 p x^M ~ SRM and 91 [ -cmN ~ 91*. By definition of -•,
9Jt -• 91 <- 9t. Turning now to (ii) Assume 5R <- 95 -> 91 with % n T 9 , = TiB. By the
initial remark in the proof of Proposition 4.3 we automatically have that
S J I P T J B ^ S ^ I R P T J B . If different constants are used in the diagram expansions
of 9K and % we also have that 9KM p % ~ © - 9lN p TB, and, by the Robinson
property of ~ , there is some X) such that X) p TWW ^ 9lN and I) p T ^ ^ 9WM.
From the definition of -•, we obtain 9W -• D <- 91, which establishes the desired
AP+ property for ->. D

4.6 Proposition, (i) / / ~ is a regular Robinson equivalence relation then ( ~*)* = ~ ;

(ii) / / ^ i and ~ 2
 are different regular Robinson equivalence relations, then

~f is different from ~f.

Proo/. For (i), we observe that in view of Proposition*4.3, it suffices to show that ~
is finer than -**. Now, if 9R - 91, then for some D we have 9K -• D <- 91, by
Proposition 4.5(i), where -• = ~*. From the definition of -•*, we thus have
9K -** 91, as required.

Turning now to (ii), we assume 3D? ~x 91 and not-9R ^ 2 91- Let -^x = ^? and
-•2 = ^*. We also that assume ~>1 = ->2 (absurdum hypothesis). By Proposition
4.5(i), for some D, we have 9M -^11) x<- 91. Hence, 9K -+2 T) 2<- 91, whence it
follows that 91 ^ 2 9K (by the first remark in Proposition 4.3). This contradicts our
assumption. D

4.7 Remark. The counterpart of Proposition 4.6(i) and (ii) does not hold for
embeddings with the AP+ in place of Robinson equivalence relations. For ex-
ample, the complete embedding relation -*% arising from <£ = J§?Wft) (see Example
4.2(b)) generates =, and = in turn generates ->#, which is different from -*%. To
obtain the analogue of Proposition 4.6, we must restrict attention to involutive
embedding relations -• with AP+ (where -> is involutive iff -^ = ->**). An
example of involutive embedding relation with AP+ is -+&„„. Indeed, we have
the following quite general fact:

4.8 Theorem. Let 01 be the family of all regular Robinson equivalence relations; let
stf be the family of all involutive embedding relations with AP+. Then * maps s/ one-
one onto ^2, and vice versa. Furthermore, ** is the identity function on d KJ 01.
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740 XIX. Abstract Equivalence Relations

Proof. Map * sends elements of 01 into elements of si by Proposition 4.5(ii), and
by noting that (~*)** = (~**)* = ~*, see Proposition 4.6(i). Also, * is injective
from 01 into si by Proposition 4.6(ii). Map * sends elements of si into elements of
01 by Proposition 4.4(ii) and is injective from si into 0t. As a matter of fact, if
->! and ->2 are in si and ->f = ->f, then also ->J* = ->J*. Whence it follows that
->! = ->2> by definition of J / . Map ** is the identity on si by definition, and is
the identity on 01 by Proposition 4.6(i). Finally, * maps si onto M, and ^ onto si,
because every element in si u 01 is the *-image of its own *-image. D

From Example 4.2(a) we now recall the definition of J^^-embedding, ->#„„
in terms of < :

4.9 Theorem. First-order logic is the only (up to equivalence) logic <£ = ^(Ql)ieI

such that -+cp = ->> .

Proof. Assume if is a logic with -»^ = -><?tou. By definition of -+#, we have that
=*, = =*. Hence =%* = =** = = (the fact that =** = = is a consequence of
Proposition 4.6(i), since = has the Robinson property). By Proposition 4.3, =# is
coarser than =%* = = . Conversely, = ^ is finer than =, as <£ > JSf7 .̂ Therefore,
we have ==# = =. We now apply Corollary 3.5 to conclude that <£ is equivalent
to first-order logic. D

4.10 Remarks. Abstract embedding relations were introduced in Mundici
[1982d, 1983a and 198?a]. The results of the present section are extracted from the
last paper. Notice that if we delete the expressiveness axiom from both definitions
of ~ and -•, the duality between (the resulting, weaker) embedding and equiva-
lence relations can still be shown to hold exactly as in Theorem 4.8. In Mundici
[198?a], Theorem 4.8 is partially extended, replacing the Robinson (or the AP+)
assumption by the weaker requirement that (~, ~*) has the JEP.

5. Sequences of Finite Partitions,
Global and Local Back-and-Forth
Games

The separability assumption in Theorem 3.10(ii) can be neglected in the important
case of equivalence relations associated with countably generated compact logics
with interpolation. In general, countably generated logics are given by sequences of
finite partitions on structures; and these are, in turn, related to the back-and-forth
games for <£-elementary equivalence. Throughout this section, the vocabularies
will only contain relation and constant symbols, for the sake of simplicity.

5.1 Definition. A back-and-forth system is a function ^ assigning to every finite
vocabulary T a sequence {^?}n<co, with ~n

x a finite partition on Str(r), that is, an

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.027
https://www.cambridge.org/core


5. Sequences of Finite Partitions 741

equivalence relation with finitely many classes, coarser than isomorphism and
satisfying the following conditions, for every 91, 23 e Str(r):

renaming: 91 ~J 95 implies 9lp ~" 95P for any p: T -• T';
redact: 91 ~n

x 95 implies 91 T T' ~" 95 f T' for any T' ^ r;
atomic: 91 ~° 95 iff 9t and © satisfy the same atomic sentences of vo-

cabulary T;
diagram: 91 ~?+ * 95 implies Va e A 3b G £ with <9I, a> ~£ <95, 6>, where

T' is obtained from T by adding one constant symbol;
substructure: 91 ~" 23 implies

whenever a(x) is a boolean combination of atomic sentences of
vocabulary ra ^ T u {x}, x$x. 211 A' is the substructure of 91
generated by A' ^ A.

Note that the diagram condition together with the reduct axiom imply that
~n

T
 + 1 is finer than -? .

5.2 Examples. In Theorem 5.3 we will see that every count ably generated logic
<£ = S£{ff)i<(O determines a back-and-forth system ~ , if we let 91 ~" © mean that

Tsa = Tjg = T finite, and 91 and 2? satisfy the same sentences of j£? of vocabulary T
and quantifier rank < n. In the particular case if = J5fww, we get the Fraisse-
Ehrenfeucht back-and-forth system, which can be equivalently obtained by
writing "iff" instead of "implies" in the diagram axiom above; and, if this is done,
the substructure axiom becomes superfluous. Back-and-forth systems are a natural
generalization of the familiar games for if-equivalence. For the case i£ = ^^^
see Section II.4.2 and Section IX.4. For many other if's the reader should consult
Weese [1980], Caicedo [1979], Makowsky-Shelah [1981], Flum-Ziegler [1980].
In a final subsection we shall relate the back-and-forth games existing in the lit-
erature to our present back-and-forth systems. Given a logic ^£, the question of the
existence and uniqueness of a back and forth system characterizing =^ arises.
In Theorem 5.4 we will use the Robinsion assumption to establish a one-one
correspondence between back-and-forth systems and countably generated logics.
Before defining the proper uniqueness notion for back-and-forth systems, however,
let us remark that any such system ^ generates a bounded regular equivalence
relation ~ on the class of all structures by letting 91 ~ 95 mean that T^ = T^ and
91 T T ~" 95 T T for every finite T £ T® and all n < co. Now, given two back-and-
forth systems ~! and ~", we say that ~" is finer than ~' iff for every finite T and
n < co, there is m < co such that ~"f is finer than ~'?. In case ~! is finer than ~"
and vice versa, we say that ^ ' and ~" are equivalent.

The great generality of the notion of a back-and-forth system is shown by the
following result.

5.3 Theorem. Let <£bea countably generated logic. Then =# is generated by some
back-and-forth system.
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742 XIX. Abstract Equivalence Relations

Proof. Write if as <&(Ql)i<(a and assign a rank rt = 2 + i to each Q\ the rank 1
being assigned to 3 and to V. Then the sentences of if inherit a quantifier rank as
in Definition II.4.2.5. Notice that for any finite x and n < co, there are in if [T]
only a finite number of pairwise inequivalent sentences with quantifier rank < n.
Define ~" by

91 ~" 93 iff" T^ = % = T, t finite, and 91 and 95 satisfy the same
sentences of if [T] with quantifier rank < n.

Then the equivalence relation ~" on Str(r) has finitely many equivalence classes
and is coarser than isomorphism. Moreover, the reduct, renaming and atomic
properties follow immediately from the basic closure properties of S£. As to the
diagram axiom, let 91 ~"+ * 93 and a e A; let T = {ij/l9..., \j/t} display, without
repetitions of equivalent sentences, the finitely many sentences of if [T] having
quantifier rank < n, and which are satisfied by <9I, a>. Since <9I, a) \=^\jj1 A
A \jjt, then 91 \=<? 3a(il/l A • • • A ij/t); since the quantifier rank of this latter sen-
tence is < n + 1, then by assumption, 93 is among its models. Hence <23, b} \=#>
\j/1 A • • • A \j/t, for some beB, whence <93, b} ~" <9l, a}, thus establishing the
diagram property of ~ (Y is given by T plus one constant). Concerning the sub-
structure axiom, let 91 ~" 93. Assume further that cp e if [T] is an arbitrary sen-
tence with quantifier rank < n, such that 9I0 = 911 {a e A | <9l, a} \F= oc(a)} \=<z>(p.
It then follows that 91 \=# cp{x^x)}. But the latter sentence has the same quantifier
rank as q>: to see this, we first note that x-closure amounts to saying that all the
constants of T satisfy a, and this can be expressed by an atomic sentence in light of
the finiteness of T and of our assumption that T has no function symbols. Moreover,
as ^£ is generated by quantifiers, we see that writing down cp{xl<xix)) involves the
conjunction of a with the sentences in the scope of Ql (if (p is of the form Qlx).
Thus, the quantifier rank is not increased; in case cp is of the form —1#, or x v \j/,
or x A ^, the quantifier rank of the relativization to a is still not increased. In
definitive, cp{x^(x)} has quantifier rank < n. Hence, by assumption, 93 1= ̂  (p{x^(x)} so
that 93O = 93|{be£|<93, b} \= a(b)} ]=# cp. Since cp is arbitrary, we have proven
that 9l0 ^" 93O, which yields the substructure property of ~. Finally, it is clear that
^ generates =^ , for two structures 501 and 91 are if-equivalent iff they satisfy the
same sentences of quantifier rank < n and vocabulary i for all n < co and all
finite 1 ^ 1 ^ = 1^. D

When ~ has the Robinson property we have a strong converse of the above
theorem, as follows.

5.4 Theorem. For ~ an arbitrary Robinson equivalence relation the following are
equivalent:

(i) ~ = =#for some countably generated logic S£\
(ii) ~ = =y for a unique (up to equivalence) countably generated logic 5£\

further, !£ is compact and has the interpolation property;
(iii) ~ is generated by some back-and-forth system;
(iv) ~ is generated by precisely one (up to equivalence) back-and-forth system.
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5. Sequences of Finite Partitions 743

Proof. The implications (ii) => (i), and (iv) => (iii) are trivial. The implication
(i) => (iii) has been shown in Theorem 5.3. In order to prove that (iii) implies (ii)
we proceed as follows: In the light of Theorem 1.3 and Corollary 3.4, it suffices to
prove that (iii) implies (i). To this purpose, let ~ be a back-and-forth system gen-
erating ~ .

Define [if, N^] by

(*) cp G if [T] iff cp is a union of equivalence classes of ~" for some
n < oj and some (necessarily unique and finite)
vocabulary T9 ^ T; and,

(*) & 1=* <P iff <P e if [T«] and 9t [ T^ G <p.

Then clearly if satisfies the isomorphism, (finite) occurrence, renaming, reduct
axioms for logics (the reader is referred to Definition II. 1.1.1), and if contains
the classes of models of atomic sentences and is closed under the boolean opera-
tions. To prove that if is closed under 3, we assume that cp is a union of equivalence
classes of ~" . It now suffices to prove that Iccp is also a union of equivalence
classes of ~" + \ where T = T^\{C}. Here we pose a denial (absurdum hypothesis) so
that for some 91 and 93, with 91 ~"+1 93 we have that 91 e 3ccp and 93 $ 3ccp. Now
<9l, a)ecp for some a eA. The assumed diagram property of ~ assures us that
<93, b} ~" <9l, a} for some beB. Hence <93, b} G cp, whence we have that
93 G 3ccp—a contradiction. To prove that if is closed under relativization, we
first show that S£ is closed under relativization to any boolean combination a of
atomic sentences. Assume then that cp is a union of equivalence classes of ~n then
it suffices to show that (p {x'a(x)} is also a union of equivalence classes of ~", with
T = T^ u (Ta\{x}). Again, we pose a denial (absurdum hypothesis) so that for
some 91 and 93, with 91 ~? 93, we have 91 e (p{xl*{x)) and 93 £ (?{x|a(x)}. By definition of
relativization, 9I0G(p and 930^cp, where 9l0 = 9I|{aG,4|<9I, a> N a(a)} fi^,
and 93O = 93|{bG£|<93, b} \= oc(fc)} ["T .̂ In contrast, however, the substructure
together with the reduct axiom for ~ are to the effect that 9l0 ^" 93O; hence,
9l0 G cp iff 93O G (/?. But this is a contradiction, which proves that 5£ is closed under
relativization to a, as required. By conditions (*) and (*), =# is coarser than ~ .
On the other hand, if T ,̂ = TS and not-9l ~ 93, then, since ~ is generated by ~,
there is a finite i g ^ and n < co such that not-9l [ T ^" 93 ^ T. Thus, there is a
<p G if [T] such that 91 \=^ cp and 93 1=^ ~i cp, whence it follows that 91 ^ 93 and
= ^ = ~. We now prove that 1£ is countably generated. Hence, let \\i be an
if [r]-sentence, with T = {Rl9... 9 Rn} (without constants for the sake of notational
simplicity). Also, let Q^ be the quantifier given by Mod^t/O, and let 6 be the sen-
tence of if+ = Se(Q^) u Se given by

6 dTf Q*XoXl> ">Xn <Po(xO), ViiXx), • • • , <Pn(xn),dTf

where the cp,. are arbitrary sentences in ^. By definition of Q^, we have 3D? h=^+ 0
iff 9K has an expansion 91 = [501, <s, Rl9..., #„>,/] w i t h the following properties:
s is a new sort, <s, / ? ! , . . . , Kw> f=^ ^ , /maps sort 5 one-one onto qyg (recalling

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.027
https://www.cambridge.org/core


744 XIX. Abstract Equivalence Relations

Notational Convention 3.6), and 91 \=<? rj A d, where

t))> and

n = f\ Vx̂ cp̂ Xj) -> the coordinates of xt satisfy cp0).
i=l

To conform to our stipulation that function symbols are absent in this section,
we regard / as a binary relation symbol. The above shows that Mod^+(0) is
RPC^ (see Definition IL3.1.1). Similarly, we prove that Mod^ + (~i 6) is also RPC^.
Now Corollary 1.6 and Theorem 1.3 can be applied to if, since if is closed under
relativization to atomic sentences (and there are no function symbols whatsoever).
Therefore, if is compact; whence the Robinson property also implies that if obeys
Craig's interpolation theorem (see Corollary 1.4), and so, a fortiori, <£ is A-closed
(see Section II.3.1). In particular, 6 must be a sentence of !£, which shows that
application of Q^ in ^£ does not lead beyond if; in short, ^(Q^) < <&. Observe
also that as a A-closed logic !£ is closed under full relativization and substitution.
Now let xj/ range over all sentences of JSP[T]. Because of the finiteness of each parti-
tion ~", there exists a countable set ZT of quantifiers such that every sentence of
i f [ r ] can be written down using only the quantifiers in ZT. By the renaming
and reduct properties of ~, we are now able to exhibit a countable set Z of quanti-
fiers such that every sentence of !£ (no matter the T involved) can be expressed
using only the quantifiers in Z. In other words, ^£ has been shown to be countably
generated, as was required to complete the proof that (iii) implies (ii).

Finally, we must prove that (iii) implies (iv). Assume that both ~ ' and ~" are
back-and-forth systems generating ~ . Observe first of all that ~ is a bounded
Robinson equivalence relation. Now, as in the above proof of (iii) => (ii), let !£' and
<£" arise from ~! and ~", respectively, via definitions (*) and (*). By Corollary 3.4
if' and <£" are equivalent, since =#. = = #» = ~. Now let 8 be an equivalence
class of ~'J. By clause (*), s is also a sentence of if' |>] and is (equivalent to) a
sentence of JS?"[T]. Whence it follows that £ is a union of equivalence classes of
^ ' 7 e , for some m£ < co. Letting s range over all the equivalence classes of ~'?>
there will be a fixed m < co providing an upper bound for the totality of the m£'s.
Indeed, ^ '" has only finitely many equivalence classes. Therefore, ~"™ is finer
than ^'". Reversing the roles of ~' and ^", we finally establish that ^ ' and ~"
are equivalent. This completes the proof of our theorem. D

5.5 Corollary. Elementary equivalence is generated by a unique (up to equivalence)
back-and-forth system, namely the Fra'isse-Ehrenfeucht system of Example 5.2. D

5.6 Remarks. Abstract back-and-forth systems were introduced in Mundici
[1982e], where Theorem 5.4 is also proven. We might wonder whether the above
duality between countably generated logics and systems of sequences of finite
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5. Sequences of Finite Partitions 745

partitions can be extended in the absence of the Robinson property. Lipparini
[1982] considers special back-and-forth systems satisfying the following addi-
tional condition:

Expansion Axiom: For any finite T, C = (cl9..., cr\ i^^x an r-ary relation
symbol, cp a union of components of the partition ^u{*>, if
91 ~ ? + " 23, then <9I, R*) ~ £ , w <23, R*\ where, e.g., R* =

We then have the following converse of Theorem 5.3, namely

5.7 Theorem. For every equivalence relation ~ we have that ~ = =# for some
countably generated logic J? iff ~ is generated by some back-and-forth system with
the expansion property.

Proof. See Lipparini [1982]. D

Using Theorems 3.11 and 5.7, Theorem 5.4 can be extended to yield a bijection
between countably generated compact logics and back-and-forth systems with
the expansion property such that (~, ~*) has the JEP (where ~ is the equivalence
relation generated by ~ , and ~ * is the embedding relation generated by ~ , see
Definition 4.1). Thus the expansion property seems to be the right counterpart of
the substitution axiom for logics in all general contexts where the latter property
is not taken care of by the Robinson property.

5.8 Global Versus Local Versions of Back-and-Forth Games. The celebrated
Fraisse-Ehrenfeucht game G for elementary equivalence determines a sequence of
finite partitions on Str(r), for each finite T, as was remarked in Example 5.2. For
more details the reader should consult Lemma II.4.2.6, where each partition is
related to (the models of) the so-called Scott-Vaught-Hintikka sentences of the
corresponding quantifier rank. We may regard this system of partitions as a
global version of G, since each partition is defined over the whole of Str(r). On the
other hand, given structures 91 and 23, G also determines a game G(9l, 95) or,
equivalently, a decreasing sequence of sets of partial isomorphisms from 91 into 23
(see also Section IX.4 for further information on this matter), and this may be
regarded as a local version of G. Passing now to an arbitrary logic JS?(Q*)i<a»
we may fruitfully use the notion of back-and-forth system (see Definition 5.1)
to study the global aspects of back-and-forth games in the general case. For
example, Theorem 5.4 or Theorem 5.7 might be the starting point for investigating
the abstract model-theoretical counterparts of the notion of subformula.

Is there a corresponding local version of back-and-forth game having the same
degree of generality? To give an affirmative answer to this question we must first
make the latter precise. We will restrict attention to J?(Q) with Q an s-ary quanti-
fier. Q determines a function which assigns to each structure 91 a set Q91 c P(̂ 4S) of
s-ary relations on A; and (recalling Notational Convention 3.6) we have the fami-
liar clause:

M\=Qx<p(x) iff <p*eQM.
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746 XIX. Abstract Equivalence Relations

Now let SI, 93 e Str(r) with T finite. We let A* be the set of finite words over A,
namely A* = {0} u A u A2 u • • •. Arbitrary words over A will be denoted by
a, x, t, and | a | is the length of an arbitrary word a. Similarly, b, y, u will be arbitrary
words over B, and w, w' arbitrary elements of A* u B*. Following Caicedo [1979],
we give the following

5.9 Definition. With the above notation, a back-and-forth game from <SI, QSl> to
<93, Q23> is a sequence {~p}p<a), where each ~p is a partition (i.e. an equivalence
relation) on A* u B* and, for all p < co, we have

(i) w ~p W implies |vv| = \w'\;
(ii) 0 ~ P 0 ;

(iii) a ~pb implies that the assignment a{ h-» ftf is a partial isomorphism from 91
into 93 (as structures of vocabulary T);

(iv) whenever a ~p+s b, there is a map/ : As -> Bs obeying conditions (iv') and
(iv") below:
(iv') ax ~p bf(x) for all x e As, where ax denotes the juxtaposition of a

and x;
(iv") for any X c A\ if {r G/ls|at ~p ax for some xeX}eQ9l , then

{ueBs\bu~p by, for some y ef(X)} e Q93;
(v) same as (iv) with the roles of A and B interchanged.

5.10 Theorem. For arbitrary & = Jgf(g), SI, 93eStr(r), x finite, the following are

equivalent:

(i) 21=^93;
(ii) there is a back-and-forth game from <Sl, Q9I> ro <95, Q93>.

Proof See Caicedo [1979, Section 3.5]. D

Actually, Caicedo [1979] proves Theorem 5.10 for the general case if =
^(Q^iei- Indeed, he also gives a back-and-forth characterization of £^aD(O(Ql)iel9

using the notion of a back-and-forth game from <Sl, 2i$I>i6j to <93, Q£95>ie/.
The latter is still a sequence { ~p}p< w of equivalence relations o n i * u B * satisfying,
roughly, the cartesian product of Definition 5.9 and / (see Caicedo [1979, Section
2.1]). Caicedo's (local) equivalence relations on A* u B* generalize back-and-
forth technology for specific quantifiers as developed by Frai'sse, Ehrenfeucht,
Lipner, Brown, Vinner, Slomson, Krawczyk, Krynicki, Badger, Makowsky,
Shelah, Tulipani, Kaufmann, and others. Weese [1980] proves an analogue of
Theorem 5.10 for sets of monotone quantifiers (see Section II.4.2). Summing up
the results of this section: Theorem 5.10 yields a map from logics onto (local) back-
and-forth games for sets of quantifiers; with the help of Theorem 5.7 we now have a
map from global onto local versions of back-and-forth games for countably gen-
erated logics.
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Chapter XX

Abstract Embedding Relations

by J. A. MAKOWSKY

Abstract model theory deals with the generalization of the concept of a logic. A
logic consists of a family of objects called formulas, a family of objects called
structures and a binary relation between them, called satisfaction. Various prop-
erties of logics, however, can be phrased without direct reference to the formulas,
but rather, by considering as the basic concept the class of structures which are the
models of some (complete) theory. The previous two chapters have given plenty of
evidence for this. In Section XVIII.3 we studied amalgamation properties and in
Chapter XIX, the Robinson property, both of which fit this approach. In Chapter
XIX we even went a step further: we looked into the possibility of axiomatizing
abstract equivalence relations between structures, such as they arise naturally
from logics in the form of ^-equivalence. There we studied the question under
which circumstances such an equivalence relation does indeed come from a
logic £.

Algebra, on the other hand, deals with classification of algebraic structures and
their extensions. The paradigm of algebraic classification theory, and, for that
matter, the paradigm of model-theoretic classification theory, is Steinitz' theory of
fields and their algebraic and transcendental extensions. But many of the examples
studied in algebra, such as locally finite groups or Banach spaces, are not fit for
first-order axiomatizations. Though classes of algebras can be axiomatized, if
necessary, with the help of generalized quantifiers, this approach does not neces-
sarily help us to axiomatize the corresponding notion of extensions.

In this chapter we axiomatize the notion of ^-extensions, but, contrary to the
approach in Chapter XIX, we are not that much interested in the case where it is
derived from a logic $£. We are rather interested in the question: Under which
conditions can certain constructions and proofs from model theory be carried
out in a framework which resembles more that of universal algebra or algebra in
general?

Very often, axiomatizations grow out of a better understanding of proofs.
First, they serve only to structure and clarify the flow of reasoning, but sometimes
they gain their own significance and reach maturity. If this happens, new branches
of mathematical activity emerge.

Examples from history are the emergence of Hilbert and Banach spaces;
universal algebra and model theory of first-order logic, abstract model theory, and
here especially, the framework of abstract classes. The abstract classes have their
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748 XX. Abstract Embedding Relations

origin in the attempt to better understand certain constructions of models, as they
occur in the classification theory of models of first-order theory, and in trying to
generalize those constructions so as to fit classes which are not first-order definable.
The constructions we have in mind divide sharply into two cases: In the case in
which amalgamation fails in an abstract class K, they allow us to construct maxi-
mally many non-isomorphic structures of a given cardinality and to show that no
universal structures of a given cardinality exist, or, as a combination of both, that
there are maximally many structures such that no two of them are mutually
embeddable. On the other hand, if some form of amalgamation holds, they allow
us to obtain a structure in a higher cardinality. It turns out that the presence or ab-
sence of various forms of the amalgamation property acts like a watershed. This is
similar to the effect of stability or superstability in first-order classification theory.
The transfer of all the technical knowledge of the classification theory of models of
first-order theories to models of abstract classes, however, poses challenging dif-
ficulties. This chapter presents some of the initial steps towards this aim. The
completion of such a program remains the task of future research.

But the axiomatic framework has yet another advantage: It allows us to discern
more clearly the set-theoretic and combinatorial structure of the proofs and to
separate their combinatorial from their structural contents. Such proofs are usually
based on a property P of our abstract class K which is inherently connected to the
very definition of K, and a set-theoretic part, whose application does not require
more than an axiomatic description of some of the basic aspect of ft together with
the property P. We have encountered such situations in the case of locally finite
groups, such as in Giorgetta-Shelah [1983] or in the model theory of col-categori-
cal sentences of extensions of i^wco(6i). It would be interesting to see, if the same
applies to recent results in Banach space theory, cf. Bourgain-Rosenthal-
Schechtman [1981], for instance, where ft is the class of all separable Banach
spaces with the Radon-Nikodym property.

However, the present chapter is not concerned with such deep results of a very
specialized character. Our subject here is the axiomatization of the framework
which allows the use of the set-theoretic machinery. What we present are the first
steps of a theory still to be developed. The chapter is an exposition of and introduc-
tion to three papers by S. Shelah (Shelah [1983b, c, 198 ?c]), and improvements or
elaborations in its exposition due to S. Fuchino, R. Grossberg, and the author.
An early version of this chapter consisted of lectures the author and D. Giorgetta
have given on the subject in Oberwolfach in January 1980. It contains, for com-
pleteness and historical accuracy, also early results of Mal'cev and Jonsson, and
some additional material which we include to stress some analogies or give more
examples.

In detail the chapter is organized as follows. In Section 1 we present the axio-
matic framework and variations thereof. In Section 1.1 we define our program in
detail and in Section 1.2 we state and motivate the axioms. The main results of this
section, presented in Section 1.3, are various forms of axiomatizability theorems
which assert the existence of certain standard logics, in which such classes can be
described. One of them, Shelah's presentability theorem, provides us with some
cardinal parameters, on which the development of the theory depends. It also
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gives rather surprising results on the Hanf numbers of abstract classes, depending
on those parameters, presented in Section 1.4.

In Section 2 we study the effect of the presence or absence of amalgamation
properties in an abstract class ft. In the case when an abstract class has the amalga-
mation property and the joint embedding property they are called Jonsson classes
and were introduced already in 1962 by M. Morley and R. Vaught. It should be
mentioned here, that R. Fraisse was seemingly the first to study amalgamation
properties of classes of structures, cf. Fraisse [1954]. We give a brief survey on
what we know about Jonsson classes in Section 2.1 for the sake of completeness
and proper perspective. The main advantage of Jonsson classes consists in the
existence of universal, homogeneous models, though not necessarily in every
cardinality. A substitute of saturated models in many of our constructions, is the
limit model, which is introduced in Section 2.2, and some basic properties of limit
and superlimit models are proved. Our fmain interest here, however, is in the
absence of amalgamation properties. The thesis, put forward in Shelah's work and
in this chapter, states that amalgamation properties should not be part of the
axioms, and that, basically, Jonsson's axioms, without amalgamation and joint
embedding, provide us with the correct framework for a structure/non-structure
theory. The main result, presented in Section 2.3, is Shelah's non-structure theorem
for abstract classes and some conjectures for further developments. The non-
structure theorem presupposes some weak instance of the GCH, connected to the
combinatorial principle weak diamond. In Section 2.4 we present an example
which shows that this is necessary. In Section 2.5 we collect the set-theoretic
background about the weak diamond, necessary to prove the non-structure
theorem. The easier parts of its proof are presented in Section 2.6 and the more
complex parts in Section 2.7. The reader interested in the missing proofs will have
to get involved with the technical details and conceptual intricacies of Shelah
[1984a, b].
In Section 3 we study co-presentable classes, which, by the presentability theorem,

are closely connected to the model theory of j?ffllfl). In Section 3.1 we present the
present state of art in classification theory for co-presentable classes and classes
defined by a S£Wl£0-sentence, and we state some conjectures on how the latter should
be true also for co-presentable classes in general. The main results proved in the
sequel are Shelah's reduction theorem and Shelah's abstract co ̂ categoricity
theorem. For the proofs of the other theorems the reader will have to consult
Shelah [198?c]. In Section 3.2 we present the "soft" aspects of the proof of the
abstract co^categoricity theorem, and in Section 3.3 the parts which are more
related to the model theory of $£mifO. In Section 3.4 we prove the reduction theorem.
In Section 3.5, finally, we give a narrative account of some aspects of the proof of
the existence of superlimits in cov
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1. The Axiomatic Framework

1.1. Prolegomena

In Chapter XVIII we have seen that various if-extension properties play a fruitful
role in abstract model theory. In Chapter XIX we have seen how one can replace,
under certain circumstances, a logic if by an abstract equivalence relation or an
abstract embedding relation. However, in both cases we still retained the idea of
dealing with a logic with various regularity properties concerning the passage from
one vocabulary to another. The type of results obtained there also requires such
assumptions. If we deal with properties of a fixed class of t-structures, we are more
in the framework of universal algebra. In fact, some of the classical theorems of
universal algebra can be viewed as precursors of abstract model theory. Let us
elaborate on this a bit.

The first theorem along these lines is Birkhoff's theorem characterizing
varieties.

1.1.1 Definitions, (i) A class V of r-structures closed under isomorphic images,
cartesian products, substructures, and homomorphic images is called a
T-variety.

(ii) A class of T-structures K is automatically definable if K = Mod(Z) for some
set of atomic i-formulas Z.

1.1.2 Theorem (Birkhoff). The x-varieties are exactly the atomically definable
classes of T-structures.

1.1.3 Definitions, (i) A class V of i-structures closed under isomorphic images,
cartesian products, and substructures is called a quasi-variety.

(ii) An infinitary Horn formula is a formula of the form /\ieI (pt -• ^, where /
is any set and <ph \j/ are atomic formulas.
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(iii) A class of T-structures K is Horn definable, if K = Mod(E) for a (possibly
proper) class of infinitary Horn formulas,

(iv) An infinitary clause is a formula of the form \fieI (pt, where / is any set
and the <j9£*s are atomic or negated atomic (i.e., basic) formulas,

(v) A class of i-structures K is clause definable if K = Mod(E) for a (possibly
proper) class of infinitary clauses over T.

(vi) A class of r-structures is basic compact, if for every set Z of basic formulas
over some vocabulary T15 T C T1? such that every finite subset Zo c Z,
Zo has a model 91 with 91 [ % e K, the I has too.

1.1.4 Theorem, (i) (Cudnovskii). A class K of x-structures closed under isomor-
phisms and substructures ijfK is clause definable.

(ii) (Cudnovskii [1968]). The quasi-varieties are exactly the Horn definable
classes.

(iii) (McKinsey [1943]). / / additionally K is basic compact then the class
defining K is a set of finitary clauses or finitary Horn formulas.

(iv) (E. Fisher [1977]). The assumption that in (i) or (ii) K is always definable
by a set (Horn) clauses is equivalent to Vopenkds principle.

For a definition of Vopenka's principle see Section XVIII.1.3. Similar theorems
hold for classes closed under unions of chains and other closure properties.

Quasi-varieties are particularly interesting because they allow the construction
of free objects (initial objects) and Mal'cev [1954] has given the following char-
acterization of quasi-varieties.

1.1.5 Definition (Free Structures), (i) Let K be a class of structures for a vocabu-
lary T, 91 e K and X c A such that 91 is generated (as a substructure) by X.
We say that 91 is free in K, if for every S e K and any relation preserving
mapping / : X -> B there is a homomorphism g: 91 -• 23 extending / .

(ii) Let a class K of r-structures be called free, if for every variety V of T'-
structures such that K n V ^ 0, K n V has a r u T'-structure which is
free in K n V.

1.1.6 Theorem (Mal'cev [1954]). A class K is free iff it is a quasi-variety.

For a discussion of Mal'cev's theorem cf. also Mahr-Makowsky [1983].

1.1.7 Stating the Problem. The aim of this chapter is to give an introduction in
to a sequence of papers by S. Shelah entitled "Classification theory for non-
elementary classes la, Ib, and II." (Shelah [1983b, c, 198 ?c]). The idea here is very
simple. Instead of having a logic if we are given a class K of r-structures satisfying
certain properties. We would like to ask questions concerning the existence of
various models in such a class K. In the following we list the paradigms of our
questions together with a typical instance of a theorem answering such a question
in some special case.
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752 XX. Abstract Embedding Relations

1.1.8 Categoricity. Under what conditions is K categorical in some cardinal?

The paradigm of such questions concerns categoricity in co for first-order model
theory. There the characterization theorem due independently to Engeler, Ryll-
Nardzewski, and Svenonious, connects categoricity of a theory with its
Lindenbaum algebras being atomic. In the case of ^ ^ Scott's theorem states
that every complete sentence is categorical in to. For other cardinalities charac-
terization of categoricity is more connected to transfer properties, such as Morley's
theorem, stating that a countable first-order theory is categorical in one un-
countable cardinal iff it is categorical in every uncountable cardinal. Attempts to
generalize this to j£?WlC0 have only partially succeeded, cf. Keisler [1971]. Much of
Section 3 is devoted to related questions.

1.1.9 The Spectrum. More generally, denote by I(K, K) the number of isomorphism
types of models in K of cardinality K. If K = Mod(T) for some first-order theory, we
write /(T, K) instead of I(K, K). What can we say about /(X, K)1

In the case of countable first-order theory, twenty years of research have led to
the following theorem of Shelah, proving therewith a conjecture due to Morley.

1.1.10 Theorem (Shelah). Let T be a countable first-order theory. Then /(T, K) is
not-decreasing on uncountable cardinals and, in fact, either:

(i) I(T,K) = 2K;ov
(ii) /(T, coa) < n

The proof of this theorem was complete with Shelah [1982f], based on Shelah
[1978a].

Much of Section 2 is devoted to prove similar theorems for abstract classes.

1.1.11 Rigid Models. A model is rigid, if it has no non-trivial automorphisms. Let
R(K, K) be the number of isomorphism types of rigid structures in K of cardinality
K. Interest in rigid models arose, after it was shown by Ehrenfeucht and Mostowski,
that every first-order theory has models with many automorphisms. Generaliza-
tions of this to abstract model theory are discussed in Section XVIII.4.5. The
following theorem shows, unfortunately, that very little can be said about the
function R(T, K) in the case of first-order logic.

1.1.12 Theorem (Shelah [1976b]). Assume Aw < A + for every A. For every Y<\-class
C of cardinals there is a sentence cp e j£?W£0 such that C = {K e Card: R(cp, K) ^ 0}.

This refutes a conjecture of Ehrenfeucht, which tried to describe R(T, K). It
seems that one should ask for rigid models which are also card(T)+-saturated. In
Shelah [1983d] there are partial results indicating that at least the existence of
rigid models in some class K can be settled in an abstract framework. In this
chapter we shall not deal with rigid models, but we would like to draw attention
to this promising direction of research. A sample theorem is the following result
due to Shelah, refuting a conjecture (unpublished) of H. Salzmann, suggesting
that every rigid real closed field is archimedian:
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1.1.13 Theorem (Shelah). Assume GCH. There are arbitrarily large rigid co ̂ satur-
ated real closed fields.

1.1.14 Problem. Characterize the abstract classes (defined below) which have
arbitrarily large rigid models.

1.1.15 Homogeneous and Saturated Models. Similar problems can be stated for
homogeneous models. In Section 2 we shall study this question. Theorem 2.1.11
gives some information about the spectrum of homogeneous models H(K, K).
In first-order model theory saturated models are suitable described as universal
and homogeneous. Already in the early days of classification theory, axiomatic
frameworks have been studied. Jonsson [1956,1960] and Fraisse [1954] proposed
axioms for the existence of universal and homogeneous structures in a class K and
Morley-Vaught [1962] used this framework to construct saturated structures.
We shall return to a detailed discussion of these axioms in Section 1.2 and for
Jonsson's work in Section 2.1. What we want to note here, is that the construction
of the saturated model heavily depends on the amalgamation property of K. We
shall see that there are good reasons for this. The question arises if there is a suitable
substitute for saturated models? One of the key notions introduced in this chapter
is the limit model. The similarity consists less in the definition, than in its use in
various proofs. Section 2.2 gives the definitions and its presence is felt through the
rest of the chapter.

7.2. The Axioms

Here K is a class of i-structures and <K is a two-place relation between members
91, 95 of K. If the context is clear we omit the K in < K and assume that all structures
91, 93 e K.

The axioms presented below are modeled after various examples of model
theory. It is good to have some of these at disposal when reading the axioms, so we
present them before stating the axioms.

1.2.1 Examples, (i) Let Tbe a complete first-order theory over some vocabulary T
and put KT = Mod(T) and < be first-order elementary extension,

(ii) Let Kwo be the class of well-orderings and 91 < wo 93 hold if 93 is an end
extension of 91, i.e., every b e B - A is bigger than every aeA.

(iii) Let if = Sf^iQ^) be the logic with the quantifier "there exist uncount-
ably many." Let a weak r-model (91, q) consist of a r-structure together
with a family q of subsets of A. Let the formulas of J2?weak be as for <£ but
define 911= weak Qxcp(x) if {a e A: 91 Nweak (p(a)} e q. Let K be the class
of all weak t-models for some fixed vocabulary i. We define <** as in
Keisler [1970, 1971a] by 91 < ** 93 iff 91 <^weak ® and for every aeAm

and for every formula cp = cp(x, y) e <£{i) we have that if 91 f= ~i Qxcp(x, a)
then{b e A: 91 ^ <p(b, a)} = {b e B: 93 \= cp{b, a)}.
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We shall return to this example in more detail in Section 4.

(iv) The category of universal locally finite groups, with KULF the class of those
groups and <ULF the ordinary subgroup relation, cf. Kegel-Wehrfritz
[1973]. The model theory of uncountable universal locally finite groups
was studied in Macintyre-Shelah [1976] and Grossberg-Shelah [1983].

(v) (Elementary Classes with Omitting Types). Let % be a fixed vocabulary,
T be a first-order theory over T, i.e., T a J5?WCO(T), and F be a set of types
over T. Let K = {9leStr(T): 91 (= T and 91 omits every peT} and
91 <K 93 if 91 is an elementary substructure of 93. It is easy to see (cf.
Keisler [1970]) that example (iii) is a special case of this.

We shall return to this example in Section 1.3.
Having these examples in mind, we now state the axioms. They come in several

groups of various degree of strength. First some (almost) trivial axioms concerning
transitivity of our embedding relation:

Axiom 1 (Substructure Axiom). If 91 < 93 then 91 c= 93, i.e., 91 is a substructure
of®.

1.2.2 Definitions, (i) If 91 cz 23 are r-structures, and/is an embedding of 91 into 93,
say that / is an K-embedding, if /(9I) <K 93.

(ii) If 91, 93 are r-structures and/AB is an embedding of 91 into 23, we denote by
[91; 93, fAB] the two-sorted structure consisting of the two structures
91, 93 expanded by a function symbol F interpreted by the embedding
fAB and a new unary predicate symbol U, both not in T, such that
S T U ^/4B(9I). If 91 c 93 and fAB is the identity on 91 we just write
[91; 93]. Note the difference between our notation [91; 93] and [91, 93]
for the disjoint pair construction in Chapter XVIII.

Axiom 2 (Isomorphism Axiom), (i) If 91 e K and 91 x ^ 9 1 then 91 x e K.
(ii) If 91 < 93 and [91; 93] ^ [9lx; 93J then 91 x < 93X.

Axiom 3 (Transitivity Axiom), (i) If 911 < 9l2 < 9I3 then 9^ < 9l3.
(ii) If 9Ii c: 9I2 < 9T3 and 9lx < 9l3 then 9IX < 9I2.

Clearly examples (i)-(v) satisfy these axioms.

1.2.3 Definition. Let 9Ia (a < y) be a family of structures in ft.

(i) 9la is K-increasing if a > jS < y implies that 9la < 91^.
(ii) 9la is continuous if for every limit ordinal d < y we have 9l5 = (Ja< 9la.

(iii) 9Ia (a < y) is a K-chain if it is both K-increasing and continuous.

Axiom 4 (Chain Axiom), (i) If 9Ia (a < y) is a K-chain then 9l0 < lja<y 9Ia.
(ii) If 9Ia (a < y) is a K-chain, 91 e K and for each a < y 9la < 91 then
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Again all our examples from above satisfy this axiom.
We denote by Kk (K<k, K<A) the class of structures of X of cardinality exactly

(less than, less than or equal to) A.
Our next axiom is an analogue of the Lowenheim-Skolem-Tarski theorem for

first-order logic and introduces a cardinal parameter, which we shall call the
Lowenheim number l(K) of <X, < >.

Axiom 5 (Existence of Lowenheim Number). There is first a cardinal l(K) >
such that:

0) KHK) =£ 0 ; a n d
(ii) whenever 21 e K and X is a subset of the universe A of 91 then there is

a 93 e K such that I c B , card(95) < l(K) + card(X) and 95 < 91.

1.2.4 Examples, (i) In the example of well-orderings with end-extensions (Example
1.2.1(ii)) has no Lowenheim number. To see this, take any well ordering 91
of cofinality co of cardinality K. If X is a countable cofinal set then for every
95 <wo 91 with I c B w e have 93 = 91.

(ii) The Lowenheim numbers of Examples 1.2.l(i), (iii), (iv), and (v) are co.
(iii) If we modify Example 1.2.1(iii) such that the interpretation of the quanti-

fier Qxcp(x) ensures that the set defined by cp is uncountable, then the
Lowenheim number is co1.

(iv) In Gurevic [1982] Lowenheim properties of general categories are studied.
The situation described there consists of a logic <£ and an abstract class K
together with a family H of homomorphisms. Supposing that K has
Lowenheim number X and JS? has Lowenheim number \i, we are interested
in the existence of a cardinal g(k, fi) such that for every 91 e K there is
93 < 91 with card(£) < g{X, fi) such that for every H e H w e have H(^B) <
H(9I) is also an if-embedding.

1.2.5 Remark. We could state Axiom 5 only for X cz A with card(Z) < l(K) and
use Axiom 4 to prove Axiom 5 from this weaker assumption.

1.2.6 Definitions, (i) A class K together with a relation <K satisfying the Axioms
1-4 is called a abstract class.

(ii) A class K together with a relation < K satisfying the Axioms 1-5 is called a
abstract class of Lowenheim number l(K).

(iii) Let Kt be abstract classes over vocabularies xt, i e /. We define the inter-
section K = f]ieI Kt to be the class of [jieI irstructures such that for
91, 95eK, 91 < ©iff 91 [T( < 95 [Tt holds in Kh i = 1,2.

1.2.7 Proposition, (i) The intersection of any family of abstract classes is again an
abstract class.

(ii) If Ki9 iel is a family of abstract classes of Lowenheim number K( then the
intersection f]iei Ki is an abstract class of Lowenheim number Yjiei Ki-
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1.2.8 Remark. Unions of abstract classes need not be abstract classes. It is easy to
construct examples violating Axiom 3(i) and also Axiom 3(ii). But then Axiom 4(i)
and 4(ii) become meaningless. For disjoint unions only Axiom 3(ii) may be violated,
but unions of disjoint abstract classes are admittedly uninteresting.

13. Present ability of Abstract Classes

Our next theorem establishes a connection between abstract classes of a given
Lowenheim number and some infinitary logics and will give as a more precise
cardinal parameter than the Lowenheim number.

1.3.1 Definitions. Let x be a fixed vocabulary, T be a first-order theory over T, i.e.,
T a JS^CT), and F be a set of types over T.

(i) A class K = MOT(T, F) if K = {91 e Str(t): 91 |= T and 91 omits every
peT}.
MOT(T, F) stands for Models of T Omitting the Types from F.

We say that K is an elementary class omitting some types and write K e ECOT if
there are T, F such that K = MOT(T, F).

(ii) If T0 c T and K is a class of restructures we write K = MOTTo(T, F) if
K = {91 e Str(i0): 91 has an expansion 91' e MOT(T, F)}.

We say that K is a projective class omitting some types and write K e PCOT if there
are T, F, T0 such that K = MOTT0(T, F).

(iii) We say that K e ECOT(A, /x) or K e PCOT(A, /x) if for T, F as above we
have that card(T) < A, card(F) < /x.

(iv) If <K, <x> is an abstract class, we say that K is (A, ji)-presentable if
KePCOT(A,/x)andK< = {[91, 93]: 91 <K »} ePCOT(A, fi).

If A = fi we omit fi and just speak of X-presentable classes.

1.3.2 Examples. From the examples in 1.2.1 in the previous section, (i) and (iii)
are co-presentable and (ii) is not presentable for any cardinals A, fi. This follows
from the non-characterizability of the class of well-orderings in 3?^ (cf. Theorem
3.3.1) and the theorem below. However, they are axiomatizable in ^Wl(yi.

Clearly (A, /x)-presentable classes are projective classes in the logic ifvco with
v = (sup(A, /x)+), but from the infinitary operations we only use once universal
quantification over infinitary formulas. Example (v) is just an instance of an
PCOT-class.

Clearly, a A-presentable class has Lowenheim number A.

1.3.3 Theorem (Shelah's Presentability Theorem). Let <K, < > be an abstract class
over a vocabulary T, card(i) = A, and with Lowenheim number \i > A. Then <K, > >
is (/x, 2^)-presentable.

Proof. The proof uses two lemmas.
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1.3.4 Lemma (Direct Limit Lemma). Let I be a directed set (i.e., partially ordered
by <, such that any two elements have a common upper bound). Let (K, < > be an
abstract class and 2R, (i e /) be a family of structures in K with i, j el,i < j implies
that mt < Wlj. Then

(i) for every i e I the structure 2R, < \JJeI 2R7- and
(ii) if Vie K and for every j e I, SR, < 9i then \jjeI 2R, < 91.

Proof. We prove (i) and (ii) simultaneously by induction on card(/). If / is finite
there is nothing to prove, since / has a maximal element.

Suppose card(7) = \i and we have proved the lemma for card(7) < //. We
can find a family Ia (a < (i) such that:

(a) card(/a) < card(7);
(b) a < P < fi implies that 7a c Ip cz / ;

(C) U«<M^« = ^
(d) for every limit ordinal S > \i (Ja<(5 /a = Id\ and
(e) for each a < \i Ia is directed and non-empty.

Let 9Wa = IJje/a9Wj- So by indication hypothesis from (i), j e Ia implies
Wlj < 9Wa and by induction hypothesis from (ii) 9Wa < 91. If a > /? then j e 7a implies
Wdj < Wflp. Hence, by the induction hypothesis from (ii) 9Ka - \JjeUWlj < W.
So by the chain axiom $Ra < (J/?</x 9Jl̂  = ljje/5R7-, and as j e 7 a implies
9Wy < 9Jla, we can conclude by the transitivity axiom that 5Ry < {JieIWlD. To
conclude that \JieI 50t£ = (Ja<iU 9Ma < JR we use the second part of the chain
axiom. D

1.3.5 Lemma (Skolemization Lemma). Let (K, >> be an abstract class over a
vocabulary T with Lowenheim number l(K) and let zl = z u {Fn

t: i < l(K), neco}
a new vocabulary where all the T7" are n-place function symbols not in T.IfWl is a T-
structure and 301* is an expansions ofW to an restructure and a e M" we denote by
SD?| the minimal substructure o/5[R* containing a and put 9Ji5 = SR* {x. Then every
SR G K has an expansion 5R* such that for every neco and ae Mn:

(i) S«fi < 2R;
(ii) card(9«,) < /(ft);

(iii) ifb is a subsequence of a then 2R5 < SR ;̂ and
(iv) /or ^y^rj; T ̂ substructure 91* o/5R* we /wwe t/zâ  5R* P T < SR.

Proo/ We define by induction on neco for every aeMn the values off^a), the
interpretation of F"(5), where / < l(K). By our assumption on the Lowenheim
number of K there is for every subsequence b of a an $R5 of cardinality less or equal
than l(K) such that StR̂  < 2R. So we can find SR̂  of cardinality less or equal than

such that:

(a) SRfl- < 2R;
(b) for every subsequence b of a, 9tRs < SR̂  < $R; and
(c) the choice of 90^ does not depend on the order of a.
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758 XX. Abstract Embedding Relations

To secure (b) we need Axiom 3(ii).
Now let {q: i < j < l(K)} be an enumeration of the universe of 9K5 and put

/"(a) = Ci for i < j and /J(5) = c0 for 7 < i < l(K).
Clearly, (i)-(iii) hold for 2R*. To verify (iv) we use Lemma 1.3.4. D

1.3.6 Proof of Theorem 1.3.3. Let 9R* be as in Lemma 1.3.5 and let Fn be the set of
complete n-typesp = p(x0, . . . , xn_1) in SP^d^i) such that:

(a) if a e Mn realizes p in 9W* and h is a subsequence of a then 9JI5 <K 9R5.

Clearly, (a) can be expressed by a first-order type over xv

Now let F the set of complete n-types in J ^ J T I ) which are not in (Jmew Tm

and put K' = MOT(0, T).

Claim 1. //91 eK' then <H{TEK.

If 91 is finitely generated, this is true since the only types realized in 91 take care of
this. Otherwise we write 91 as the union of its finitely generated substructures and
apply Lemma 1.3.4.

Claim 2. / / 91 e K then it has an expansion 91* e K'.

This clearly follows from Lemma 1.3.5.
This proves that KePCOT. To prove that {[91; 93]: 91 <K93} is also in

PCOT we repeat the same proof for pairs of structures. D

Shelah's presentability theorem uses additional function symbols, even in the
case where <* is just the substructure relation. On the other hand it guarantees
axiomatizability in 5£K(a for some K depending on the Lowenheim number of K.
One should compare this with the following easy generalization of the classical
Chang-Los-Suszko theorem:

1.3.7 Proposition*. Let K be a strongly inaccessible cardinal, x a vocabulary with
card(i) < K and Kan abstract class of T-structures with Lowenheim number l(K) < K
and <K the ordinary substructure relation. Then there is a prenex ^-sentence
cp e ^KK(T) such that K = Mod(q>).

1.4. Hanf Numbers

Hanf numbers were defined in Chapter II for arbitrary logics. In Section IX.3.2
Hanf numbers for infinitary logics are studied. We want to apply these results
together with the presentability theorem and characterizability theorem to ab-
stract classes. We first define Hanf numbers for abstract classes and recall some
material from Chapter IX.

1.4.1 Definitions (Hanf Numbers), (i) Let K be any class of structures closed under
isomorphisms. We define the Hanf number h(K) to be

h(K) = \J {card(9I)+ : 91 e K}.

If h(K) > K for every cardinal K we write h(K) = 00.
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2. Amalgamation 759

(ii) If C is a family of classes of structures closed under isomorphisms, we define
the Hanf number h(C) to be

h(C) = (J {h(K): K e C and h(K) < oo}.

h(C) is the smallest cardinal K such that if some some KeC has a model of
cardinality K then it has arbitrary large models.

The concept of a Hanf number is only interesting for families of classes K, such
as Jonsson classes, abstract classes with Lowenheim number l(K) = X, ECOT(>1, fi\
PCOT(A, fi\ etc.

1.4.2 Examples, (i) If all models 91 e K are of cardinality strictly less than K then
h(K) < K.

(ii) If K is P C ^ i c o then h(K) < 3Wl, by Theorem VIII.6.4.4.
(iii) If K is PCOT(X fi) and X < \i then h(K) < 3r2M)+, by corollary IX.3.2.14.

1.4.3 Theorem*. Let K be an abstract class over a vocabulary x with card(i) = X
and with Lowenheim number l(K) = \i. Put K0 = 2A + M and K = H(2K0)+- Then
h(K) < K.

Proof. Use the presentability theorem (1.3.3) and Example 1.4.1(iv) above. D

2. Amalgamation

2.1. Jonsson Classes and Universal and
Homogeneous Models

We did not require in our definition of abstract classes any form of amalgamation.
In fact, the point of our approach is, that amalgamation is not needed to get a nice
structure/non-structure theory. It turns out that the presence or absence of
amalgamation is like a watershed: The resulting model theories differ considerably.
In this section we look at the case where amalgamation is true for any triple of
models, a case which had been studied in the literature already in Jonsson [1956].
In Morley-Vaught [1962] they are called Jonsson classes. Jonsson classes are
special cases of our abstract classes in the sense that the axioms of abstract classes
are part of the axioms of Jonsson classes which we shall discuss now. Note that
our terminology will differ slightly from the terminology scattered in the literature.

Let K be an abstract class. We shall introduce some more axioms:

Axiom 6 (Amalgamation). If % eK,i = 0, 1, 2 and 9I0 < 9Ij5 j = 1, 2 then there
is 21 e K such that 2ljf < 91, j = 1,2 and such that the diagram of the embeddings
commutes.
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760 XX. Abstract Embedding Relations

Axiom 7 (Joint Embedding). If 21, eK, j = 1, 2 then there is 21 eK such that
21, < A.

Axiom 8 (Unboundedness). K contains structures of arbitrarily unbounded
cardinality.

2.1.1 Definitions, (i) K is a weak Jonsson class (with Lowenheim number K) ifK is an
abstract class (with Lowenheim number K) satisfying additionally Axiom 6.

(ii) K is a Jonsson class (with Lowenheim number K) if K is an abstract class
(with Lowenheim number K) satisfying additionally Axioms 6 and 7.

(iii) K is an unbounded Jonsson class (with Lowenheim number K) if K is an ab-
stract class (with Lowenheim number K) satisfying additionally Axioms
6, 7, and 8.

2.1.2 Proposition*, (i) Every weak Jonsson class K is a disjoint union of (possibly a
proper class) of Jonsson classes.

(ii) IfK is a weak Jonsson class and l(K) = X then K is a disjoint union of at most
2k many Jonsson classes.

Proof. To see (i), we define an equivalence relation 21 = 95 for 21,95 e K by: 21 = 95
if there is (£ e K such that 21 < £ and 95 < £. By the amalgamation axiom this is
indeed an equivalence relation and every such equivalence class is a Jonsson class,

(ii) is obvious. D

2.1.3 Examples, (i) If £ is a complete set of first-order sentences with an infinite
model, then Mod(I) with the elementary embedding < is a unbounded
Jonsson class.

(ii) Jonsson classes are not necessarily unbounded: Let K(oc) be the class of
well-orderings embeddable into <a, <> with end-extensions. As noted
already in Example 1.2.1(ii) this gives rise to an abstract class and amalga-
mation and joint embedding hold trivially.

Unbounded Jonsson classes are the right framework for the construction of
universal, homogeneous, and saturated structures. A fair exposition of this ap-
proach may be found in Bell-Slomson [1969, Chapter 10].

However we note that Jonsson classes are rather rare. In fact we have:

2.1.4 Proposition. Let ^ be a logic with occurrence number below the first un-
countable measurable cardinal such that for every complete set of sentences Z c j£f (T)
with an infinite model, Mod(Z) together with 3?-extensions is a weak Jonsson class.
Then $£ = &mm.

Proof. From the abstract amalgamation theorem (Theorem XVIII.3.4.2) we get
that j*f is compact. Now we apply Theorem 3.1.9 also from Chapter XVIII. D

2.1.5 Definitions. Let K be a fixed abstract class with Lowenheim number l(K) = X
and K > X.
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2. Amalgamation 761

(i) A structure 90t e K is (K, K)-universal, if whenever 91 e K is of cardinality
strictly less than K then there is a X-embedding of 21 into 901.

(ii) A structure 9K e X is K-universal, if it is card(90t)+-universal.
(iii) A structure 9WeX is (X, K)-homogeneous, if whenever 91 <K35 <KWl,

card(S) < jcand/: 91 -• 901 is a X-embedding, then there is a X-embedding
/':33-+STC such tha t / ' {<& = f

(iv) A structure 901 e X is K-homogeneous, if its card(9W)-homogeneous.

The following theorem is at the origin of Jonsson classes. It was first proved in
Jonsson [1960] for countable vocabularies. The general treatment occurs first in
Morley-Vaught [1962]. A fair treatment is in Bell-Slomson [1969] and Comfort-
Negrepontis [1974].

2.1.6 Theorem (Jonsson). Let K be a unbounded Jonsson class with Lowenheim
number l(K) = A. Let further K > Xbe a regular beth number. Then there is We X
which is K-homogeneous and K-universal and W is unique up to isomorphism.

If the Jonsson class X is not unbounded, we can still get universal and homo-
geneous structures, even if we relax the amalgamation axiom a bit.

2.1.7 Definitions. Let K be an abstract class.

(i) Let 91 e X. We say that 91 is an (A, \x)-amalgamation base for K9 if for every
»! , 932 e K with carcKSBJ = A, card(952) = /i, 91 < x 95£ (i = 1, 2) there is
m e K and X-embeddings ft: 95f -+ STC such that fx [ 91 = f2 [ 91. We call
901 also an amalgamating structure for 91, 931? 232-

(ii) We say that K has the (K, A, jn)-amalgamation property, if every 91 e K with
card(9l) = K is a (A, /^-amalgamation base.

(iii) If K = A we just speak of the (A, /^-amalgamation property. If K = A = \i
we just say that Kx has the amalgamation property.

(iv) We write (< A, //(-amalgamation property, if K has the (A', ^-amalgama-
tion property for every X < A and similarily for the other parameters.

The precise theorem on the existence of homogeneous and universal models,
using basically the same proof, is the following:

2.1.8 Theorem (Shelah). Let K be an abstract class with Lowenheim number l(K\
K<XandX = A<K.

(i) If K has the (<K, ^-amalgamation property, then for every SHeK of
cardinality A there is K-homogeneous model 9K of cardinality A such that

(ii) / / in (i) K = A and additionally, K has the joint embedding property (i.e.,
satisfies Axiom 7), then there is a universal, homogeneous model 901 of
cardinality A.

(iii) If in (i) additionally l(K) < A and K = A then the universal and homogeneous
model of cardinality A is unique up to isomorphism.
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762 XX. Abstract Embedding Relations

2.1.9 Remarks, (i) If X is an unbounded Jonsson class then the universal and
homogeneous model of cardinality X has a proper X-extension. In fact, if X is
regular and X > /(X), then it is a (A, A)-limit, as defined in the next section.

(ii) If X is not unbounded, then the universal and homogeneous model can be
rigid and have no proper X-extensions. Take, for example, the class of well-order-
ings of order type less or equal to some fixed cardinal K together with end-extensions.
Then </c, e> has all the above properties.

(iii) If we drop Axiom 4(ii) in our definition of abstract classes we still can
prove an analogue to Theorem 2.1.8(ii), losing universality only. More precisely,
there is a homogeneous, (,< A)-universal model in X which is smooth, i.e., the union
of a continuous X-chain of models of cardinality strictly smaller than X. Axiom
4(ii) is used to get the universality from (< A)-universality and smoothness. An
example of a class X, where this situation applies, is given in Section XVIII.3.4.

(iv) In the literature before 1980 Axiom 4(ii) is usually not required for the
definition of a Jonsson class. Presentations of the original theory of Jonsson classes
may be found in Bell-Slomson [1969] and Comfort-Negrepontis [1974]. The
latter also contains detailed historical remarks.

Given an abstract class X we might also be interested in the number of homo-
geneous models X has in a given cardinality:

2.1.10 Definition. Let X be an abstract class. We denote by H(K, X) the number of
isomorphism classes of X-homogeneous models of cardinality X.

2.1.11 Theorem (Shelah). Let X be an abstract class (over a vocabulary T) with
Lowenheim number l(K) = X and K > X. Then H(K, K)<2* + card(t).

Outline of Proof. We observe that two X-homogeneous structures 91, 95 of cardi-
nality K > X are isomorphic iff they have the same substructures of cardinality X.

D

It remains an open problem to characterize H(K, K) further.
We conclude this subsection with a theorem on the existence of universal

models in big cardinals.

2.1.12 Theorem (Grossberg-Shelah [1983]). Let K be a compact cardinal and
X > K with X strong limit and of cofinality co. Let X be an abstract class with
Lowenheim number l(K) < K which satisfies the joint embedding property. Then
there is a universal model in Kk.

There are non-trivial applications of the above theorem in the case of locally
finite groups.

Proof. In Grossberg-Shelah [1983] this is proved for X the class of all models of
some ifKK-sentence cp which satisfies the joint embedding property for 2K many
models simultaneously. In the case of an abstract class the latter can be replaced by
the simple JEP, using Axiom 4 (unions of chains). It is easy to see how the proof in
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2. Amalgamation 763

Grossberg-Shelah [1983] can be adapted to abstract classes: We use the Lowen-
heim number and the presentability theorem to get that K is a projective class in
£?KK. Next we observe that the proof in Grossberg-Shelah [1983] also works for
projective classes. D

2.2. Limit Models

One of the more powerful tools in classical model theory is the use of saturated or
special models. Their construction can be carried out in the context of Jonsson
classes as described in the previous section. However, we have also seen there that
Jonsson classes are very rare outside of first-order model theory. So we need a
substitute for saturated models whose existence does not depend on the amalga-
mation axiom.

2.2.1 Definition ((A, fc)-Limit Models). Let K be an abstract class with <K.

(i) A model 91 e K is a weak X-limit if the following properties (a), (b), and
(c) are satisfied.

(a) card(9l) = A.
(b) 91 has a proper extension 3D? with 91 <K 3D?.
(c) For every 9)1 eK such that card(Stt) = A and 91 <K9Jl there is a

91' e K such that 91 s 91' and 93? <K 91'.

(ii) A structure 91 e K is a (A, k)-limit model in K, if it is a weak A-limit and
additionally the following property (d) holds.

(d) If {9tf: i < K < A} is a K-chain and for each i < K, 9lt £ 91, then

I U »< = *•
(iii) A model 91 e K is a X-superlimit if it is a (A, /c)-limit for every K < A.

Superlimits are closely related to saturated models:

2.2.2 Proposition, (i) If 9)1 is saturated or special and of cardinality A then 90? is a
(A, cf(X))-limit in K = {21 e Str(r): 50? s ^ ^ 91} witfi elementary embed-
dings.

(ii) / / K is an abstract class and 91 e K is K-universal and K-homogeneous of
cardinality A, then 91 is weak X-limit iff 91 is not K-maximal.

Proof (i) We have to verify (a), (b), (c), and (d). (a) is true by hypothesis, (b) follows
from the compactness of first-order logic and (c) follows from the fact that saturated
models are universal. For (d) we have to show that if for every i < cf(A) 93?t is
saturated then {Ji<cnx) 9D?t is saturated, too. For A regular this is easy (Chang-
Keisler [1973, Exercise 5.1.1]). For A singular, see Shelah [1978a]. From this,
together with the uniqueness of saturated models, we conclude that
Ui<cf(A> Wli = W. The proof for special models is similar and left to the reader,

(ii) is trivial. D
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The following two simple propositions will be used in the later sections.

2.2.3 Proposition. Let K be an abstract class with Lowenheim number l(K) < X+

which has a weak X-limit model 91 EK. Then there is a model 9ReK with
card(STC) = X + .

Proof. By (b) there is W e K such that 91 <K W. If card(2R') > X+ we get 9W from
the Lowenheim number. If card(9W') = X we apply (c) to get 91' ^ 91 with 91 <K9l'
and use this to construct a K-chain of length X+. Now we apply the chain axiom. D

2.2.4 Proposition. Let K be an abstract class with Lowenheim number l(K) < X
which has, up to isomorphism, exactly one model 91 e K of cardinality X. Then 91 is
X-superlimit ijfK has a model 9R of cardinality strictly bigger than X.

Proof. If 91 is weak A-limit we can apply Proposition 2.2.3. So assume that 9Ji e K
is of cardinality strictly bigger than X. Using the Lowenheim number we can get
9K0 <K9K1 <K9Jl with both 2R0, 9 ^ of cardinality X and isomorphic to 91. This
proves (b) of the definition of the superlimit (Definition 2.2.1). Properties (c) and
(d) are trivial under the hypothesis of categoricity in /I •

We conclude this section with a few observations on the uniqueness of super-
limits, whose proofs are trivial.

2.2.5 Proposition. Let K be an abstract class with a X-superlimit $R.

(i) If 91 is also a X-superlimit then 9l^9Jl iff either 91 < 9JI or 9JI < 91 (modulo
some K-embedding).

(ii) / / K has the joint embedding property, then the superlimit is unique, up to
isomorphism.

(iii) If 9)1 is universal, then it is unique.

2.2.6 Example. Here is an example of an abstract class KP which has exactly a + 1
A-superlimits of cardinality coa. Let K consist of structures with one unary predicate
R, whose interpretation is infinite. We put <X, RA} < (B, RB} iff A cz B and
RA = RB. Clearly {A, RA} is A-superlimit iff 4̂ — RA has cardinality X.

We shall often deal with a situation where an abstract class K with Lowenheim
number l(K) < X has a A-superlimit 9JI which is universal, homogeneous and is an
amalgamation basis for Kx. Clearly then, only by universality and homogeneity,
K has the (< X, ^-amalgamation property.

2.2.7 Problem. Does Kk in this case also have the (X, ^-amalgamation property?

In Section 2.3 we state a conjecture, whose proof would follow from a positive
answer to this problem.
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2. Amalgamation 765

2.3. Counting Models in the Absence of an Amalgamation Bases

In this section we assume K is an abstract class, which is not a Jonsson class and
therefore does not have the amalgamation property, but still does have a X-
superlimit 9Ji e Kk. Our main theorem of this section is:

2.3.1 Theorem (Shelah's Non-structure Theorem for Abstract Classes). Assume
2X < 2A+. Let K be an abstract class such that:

(i) there is a X-superlimit 90? e Kk\
(ii) 9W is not an amalgamation basis for Kx+.

Then I(K, X + ) = 2X + and there is no universal model in Kk+.

At this point it is appropriate to state some conjectures. The first one deals
with the existence of universal and homogeneous superlimits.

2.3.2 Conjecture (Shelah). Let K be an abstract class with Lowenheim number
l(K) < X s u c h t h a t I(K, X + ) < 2 X + .

(i) If K additionally satisfies the joint embedding property (Axiom 7), then
there is K-universal and K-homogeneous A-superlimit 901 e K.

(ii) If K has arbitrarily large models, then there is a X-universal and K-homo-
geneous A-superlimit 5R e K.

(It may be enough to assume that there is a model of cardinality bigger than 2A+.)

An instance of this conjecture is Theorem 3.1.8, with k = OJ1 and K co-present-
able. A proof of this conjecture would give us, with the help of the previous theorem,
also a proof of the following conjecture:

2.3.3 Conjecture. Assume GCH. Let K be an abstract class with Lowenheim
number l(K) = co which has arbitrary large models and such that for every X > co,
/(X, X) < 2A. Then K has the amalgamation property and therefore is a weak
Jonsson class.

2.3.4 Problem. Could we replace l(K) = co by arbitrary X in the above conjecture?

Finally we state a conjecture which presents an improvement on Theorem 2.3.1.

2.3.5 Conjecture. Assume 2X < 2A+. Let K be an abstract class with Lowenheim
number l(K) < X such that:

(i) there is a universal and homogeneous A-superlimit
(ii) I(K,X+)<2*\

Then Kx has the amalgamation property.
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Clearly, from Theorem 2.3.1, 9W is an amalgamation basis for Kx, and, by uni-
versality and homogeneity, K has the (< A, /^-amalgamation property.

We conclude this section with another conjecture, generalizing Morley's
categoricity theorem for first-order logic to A-presentable classes.

2.3.6 Conjecture (Shelah). Let K be an abstract A-presentable class and let hk be
the Hanf number for A-presentable classes. If I(K, K) = 1 for some K > hk then
/(X, K) = 1 for every K > hx.

Added in Proof. Recently R. Grossberg and S. Shelah announced the following
Theorem:

2.3.7 Theorem. Let K be an unbounded abstract X-presentable class. If there is a
\i > X such that for every new I(K, ju + ") = 1 then for every K > X I(K, K) = 1.

2.4. Martin's Axiom Disproves the Non-structure Theorem

Before we discuss the proof of Theorem 2.3.1 we want to comment on its set-
theoretic hypothesis 2A = X+. For this we have to recall Martin's Axiom MA from
set theory.

2.4.1 Definitions (Partial Orders), (i) A partial order is a pair <P, <> such that P
is not empty and < is a transitive and reflexive relation on P.

(ii) Given p, qe P we say that p and q are compatible if there is r e P such that
r < p and r < q and p and q are incompatible if they are not compatible. A
antichain in P is a set A a P such that for every p, qeP either p = q or p
and q are incompatible,

(iii) A partial order <P, <> satisfies the countable chain condition (c.c.c) if
every antichain in P is countable.

(iv) A set D a P is dense, if for every pe P there is a q e D such that q < p.
(v) A set G cz P is filter in P, if any two elements in G are compatible and

whenever psG and q > p then q e G.

2.4.2 Martin's Axiom, (i) MA(/c) is the statement: If <P, <> is a partial order
satisfying c.c.c and {Dt: i < K} is a family of dense subsets of P then there
is a filter G in P such that for every i < K, Dtn G # 0 .

(ii) MA is the statement: For every K < 2™ MA(JC).

For more references the reader may consult Kunen [1980] or Shelah [1982c].

2.4.3 Proposition (Shelah). Assume ZFC + MA + n C H {and therefore T° = 2C°1)-
Then there is an co-presentable abstract class Ko e ECOT such that:

(i) /(K, K) = 1 for every K<2<°\
(ii) I(K, K) = 0 for every K>2°3\ but

(iii) Km does not have the amalgamation property.
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Proof. We first define the class Ko. The vocabulary T0 consist of a binary predicate
C and a unary predicate P. A io-structure 91 = <̂ 4, E, P> is in Ko if:

(1) P is countable.

(2) If xEy then x e P but y <£ P.

For every ^ P w e define Sy = {x e 4 : x£y}. Clearly Sy c P.

(3) (Extensionality of £). If x # y9 x, y $ P then Sx # Sy .
(4) For every x £ P and for every finite set C a P there is a y $ P such that the

symmetric difference SXA Sy = C.
We define an equivalence relation on A - P by x = y iff Sx A Sy is finite. Clearly
every equivalence class is countable. Let the number of such equivalence classes
be the dimension dim(9I) of 91. Now we require that:

(5) If xl9 x 2 , . . . , xn are mutually inequivalent and not in P, then every finite
boolean combination of the sets SXI, SX2,..., SXn is infinite.

This concludes the definition of Ko.

Next we define the substructure relation < 0 for 91 = <4, EA, PA},
93 = <fl, EB9 PB>, both in Ko by 91 < 0 95 if 91 c © and PA = PB.

We have to verify that this defines an abstract class with (i)-(iii). We leave the
verification of the axioms to the reader. To verify (i) and (ii) we prove five claims:

Claim 1. There are no models of cardinality greater than T°.

By (1) P is countable and by (4) every element is either in P or in some Sx for x e P.
So the claim follows from (3). This proves Proposition 2.4.3(ii).

Claim 2. Ko is categorical in co.

This one can prove using (5) and a Cantor-style back-and-forth argument.

Claim 3. M A ( K ) implies that Ko is categorical in K < 2W.

Clearly 91, 93 e Ko have the same cardinality iff they have the same dimension. So
let 91, 93 G Ko be of the same dimension K < 2K. So let Ef, Ef, i < K be an enumera-
tion of the equivalence classes in 91, 33, respectively. Let F be the family of all finite
partial isomorphisms/: 91 -• 23 such that additionally to the isomorphism condi-
tions we have:

(a) for every x e dom(/), x e Ef iff/(x) e Ef; and
(b) if x, y e dom(/), x, y $ P, and x = y then the finite set Sx A Sy cz dom(/).

Clearly F is a partial order by the natural extension relation of partial isomor-
phisms: / < g iff/extends g. To show that F satisfies c.c.c, we show:

Claim 4. / / {/f: i < k} a F for some K such that co < K < 2W then there is / C K ,

card(7) = fc, such that {/•: i e 1} are all compatible.

This follows from the fact that all the sets PA, Ef are countable.
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Now we define Da = {feF:ae dom(/)} and Db= {feF:be rg(/)}. Clearly,
all the Da, Db are dense in F. So let G be a filter in F which intersects all the Dfl,
Db with aePA and bePB. Such a filter exists by MA(/c). Next, we define g =

Claim 5. g: 91 -» 93 is an isomorphism.

g is one-one and onto by our choice of the Da,Db, and # is an isomorphism, since
every finite restriction of g has an extension in F.

So Claims 3-5 prove Proposition 2.4.3(i).
We still have to prove Proposition 2.4.3(iii). For this let 91 = (A, EA, PA} e Ko

be countable. Let Sl §f S2 §j PA be two generic subsets different from all the
Sx, x e A - PA. We now form 91; (i = 1, 2) by adding the necessary new points to
A — PA to ensure that Sl is of the form Sx for some xeA{ — PA and to make
(2)-(4) true. No points are added in PA. Clearly 9l{ can be constructed to be
countable and in Ko, and 91 <0

<Hi. Now assume 93 is an amalgamating structure.
Then there are zteB - PA (i = 1, 2) such that Sz. = Sl and SZl n SZ2 = 0 , con-
tradicting (5). Therefore 93 <£ Ko. U

2.5. Preliminaries for the Weak Diamond

In this section we collect the set-theoretic preliminaries needed in Section 2.6.
They are concerned about the relation between various instances of the GCH and
combinatorial principles related to <>• First we present a variation of Ulam's
theorem (cf. Lemma XVIII.4.3.9). Recall that an ideal J on a set I is the dual of a
filter F on the set /, and that an ideal is normal, if the dual filter is normal. A subset
S a I is called J-positive, if S $ J. Since the filter DK of closed and unbounded sets
on K is normal, the stationary sets on K are D^-positive.

2.5.1 Ulam's Theorem. Let J be a normal ideal on K+.
(i) (Ulam). Let K be an infinite cardinal. IfS a K+,S$J,S may be decomposed

into K+ disjoint J-positive subsets.
(ii) There is a family S of 2K+ many J-positive subsets of'K+ such that for any

Sl9 S2£ S the symmetric difference S{ A S2 is J-positive as well.

Proof, (i) is standard, e.g., Theorem 3.2 in Chapter B.3 of the Handbook of Mathe-
matical Logic [Barwise 1977], where it is stated for stationary rather than J-
positive sets. But the same proof works for this generalized version.

To prove (ii) let {Sa: a < K+} be the disjoint family of J-positive sets from (i).
Let X czK

+,X ^ 0. Define Tx = [jaeX S2a u [j^x S2a+1. Clearly each Tx is
J-positive and X ^ Y implies that Tx A TY is J-positive. D

2.5.2 Jensen's <>• Jensen's O for &>i(OWl) can be formulated as: There exists
a family of functions {ga: a -• a: a < a^} such that for every/: co^ -• co^ we have
that {a < col :f [ a = #a} is stationary.
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2.5.3 The Principles cD and O of Devlin and Shelah. Let F be a function which
maps (0, l)-sequences of length a < X into {0, 1} = 2, and let S a X.

(i) The principle 0>f(S) says that for every such function F there is a function
g: X -• 2 such that for every other function/: X -> 2 the set

is stationary on X.
(ii) The principle O is just O^iC^i)-

(iii) The principle OJ(S) is obtained from O^ by replacing every occurrence of
2 by K, both in the range and domain of F as well as in the range of g and
the domain of/,

(iv) If S = X we omit it.
(v) The principle 0 says that if {/„: n eWl 2} is a family of functions with each

fn\ cox -* 2W, then there is 77 e Wl2 such that the set

{Seco,: (3p6"'2)[/n r<S = /„ T^ and p r<5 = * T^ and p(S)

is stationary.

2.5.4 Theorem, (i) (Jensen). OWl implies 2W = cov

(ii) (Devlin-Shelah). OWl impHes ^e principle O.
(iii) (Devlin-Shelah). 2W < 2Wl impfes 0 .

A proof of (i) may be found in textbooks like Kunen [1980]. (ii) and (iii) are
proved in Devlin-Shelah [1978]. The important fact about the principle <X> is the
following theorem:

2.5.5 Theorem (Devlin-Shelah [1978]). The principle <D is equivalent to 2W < 2Wl.

2.5.6 Definition (Small Sets), (i) A subset S a X is (X, k)-small, if O$(S) fails,
(ii) Let us denote by S(A, K) the set of all (A, K)-small subsets of X.

2.5.7 Remarks, (i) Clearly, (A, K:)-small sets are stationary in X.
(ii) The principle O is equivalent to co1 $ S(CD19 2).

2.5.8 Proposition (Shelah). (i) S(X, K) forms a normal ideal on X.
(ii) O^ holds iff S(A, K) forms a non-trivial normal ideal on X.

Proof, (i) is a special case of Lemma 14.1.9 in Shelah [1982, Book] and (ii) follows
trivially from the definitions and (i). D

2.5.9 Strong Negations of <D. First we write out the negation of <D :̂ there is a
function F which maps (0, l)-sequences of length a < X into {0, 1} = 2, such that
for every function g: X -• 2 there is a function/: X -> 2 such that the set
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is closed and unbounded in A. We want to generalize and parametrize this further.
Let A be a regular cardinal and jl = </x(0- i < A>,x = <K0- i < A> be sequences

of cardinals. We want to generalize the above negation of O for a function F with
domain

dom(F) = D(fi) = U II #0-
<x<X i<tx

Now we denote by Unif(A, Jl, £) the statement:

There is a function F such that:

(a) for every a < A, if r\ e Y[i<* jS(O,then ^0?) < *(<*); a n d

(b) for every h e f]«<A Ka) there exists */ e J~ja<A /I(a) such that

is closed and unbounded in A.

Such a function F is said to exemplify Unif (A, Jl, y).
If /I, x a r e singletons we use the obvious notation. If jl = /z(0), ju(l) we use the

obvious abuse of notation. In 14.1.5 of Shelah [1982c] it is proved that we can
always assume that p is a sequence of length two. Clearly Unif(A, 2, 2) is just
the negation of <&f, and Unif (A, /c, K) is just the negation of 0>K

x.
The version of the weak diamond needed in Section 2.7, and its connection to

the continuum hypothesis, is captured in the following proposition:

2.5.10 Proposition. Assume 2K < 2K + .

(i) 0>l+ holds,
(ii) Unif(/c+, \x, 2, 2) fails for every \i with //° < 2K + .

This proposition follows from the following two results from Shelah [1982c]:

2.5.11 Theorem (Shelah). Assume that A is regular and

(i) 2<A < 2A;
(ii) //° < 2\

Then Unif(A, //, 2<A, 2<k)fails.

Proof Shelah [1982c, Theorem 14.1.10]. D

2.5.12 Proposition (Shelah). Unif(A+, \i, 2, 2) implies Unif(A+, /i, 2A, 2A).

Proo/ Shelah [1982c, Lemma 14.1.7(1)] for the case A replaced by A+. D

Proof of Proposition 2.5.10. We prove (ii) since (i) follows from (ii) by putting
ft = 1. We apply Theorem 2.5.11 with A = K+ and therefore 2<A = 2 \ So we get
that Unif(7c+,/x,2K,2K) fails, for every pT < 2K + . So by Proposition 2.5.12
Unif (K+, /i, 2, 2) fails, for every //* < 2K +. D
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2.6. Proof of the Non-structure Theorem:
The Countable Case

The purpose of this section is to prove completely some special cases of the non-
structure theorem (2.3.1) and to understand some of the intricacies of its complete
proof. The complete proof appears in Section 2.7. For expository (and historical)
reasons we shall work our way from the moderately simple case to the more
difficult.

2.6.1 Theorem. Assume 203 < 2WV. Let K be an abstract class with Lowenheim
number l(K) = co such that:

(i) /(X,o>) = 3;
(ii) I{K9(ox) # 0;and

(iii) K^ does not have the amalgamation property.

Then there is no universal model in XCOl and therefore I(K, a^) > 1.

Outline of Proof. The proof consists of several stages: A construction of a system of
countable models, a construction of uncountable models, and a verification that
no model of cardinality cox is universal. The same pattern will be followed in sub-
sequent proofs, so we try to give this first proof a modular structure.

2.6.2 Construction of Countable Models. Clearly, by (i) and (ii) and Proposition
2.2.4 the unique countable model 91 e K is an co-superlimit. Let 9W* e K be of
cardinality (ol9 so without loss of generality we can assume that its domain
M* = co1. By (iii) there are countable 9JI <K9Jlt (i = 0, 1) which exemplify the
failure of the amalgamation property and 90? ̂  9Jl( = 91. Since the Lowenheim
number l(K) = co we can assume that 9JI <K 9W*. We shall show that SDt* is not
universal.

For this we define by induction on a < coj countable models 90?,, where rj e a2,
i.e., rj ranges over sequences of O's and l's of length l(rj) < a. If rj, v are two such
sequences, we write rj <= v if Y\ is an initial segment of v, and if j8 < a we denote by
rj [ P the restriction of r\ to jS.

Now we require that:

(1) 90?̂  is countable and the universe Mn = co(l + l(rj)).
(2) Ifrjcz v then 9ft, <X2RV.
(3) If 5E col is a limit ordinal and rj is a sequence of length d then

To construct all the TO^'s we put for a = 0,2)^ ^ 91, *id for the a = d limit we take
the limits, as K is an abstract class. For a = ft + 1 we have to work a bit. For each
rj of length </? we choose an isomorphism/,, from 9JI onto $)?„. Here we use (i).
Now we define functions f\ and models SR,,^ such that/;, extends/, and is an
isomorphism from 90?£ onto 9Rn-<0. In other words, at every stage we copy our
original counterexample to the amalgamation property.
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2.6.3 Construction of Models in co1. Now we construct models of cardinality co1.
For every rj of length cox we put SR,, = IJa<COl 9W, P a.

2.6.4 $R* is not Universal. Assume, for contradiction, that $R* were universal.
Then for each n of length cox there is an embedding #,, from SR,, into SR* such that

Now we use the principle © and get two sequences rj, v of length co, and a < co,
with a = coa such that:

(4) n [a = v fa, rj((x) = 0, v(a) = 1; and

But this shows that 9Jl0, SRi can be amalgamated over $R with amalgamating
structure 3[R* by setting

and

a contradiction to our choice of 2R, 2R0, SRi. D

This proof describes the basic structure of all the further proofs. We have, till
now, avoided two problems: How to get maximally many models in X+ = col9

rather than just no universal models, and how to replace co by general cardinals A.
Historically, Shelah solved these two problems one after the other, and the proof
of the general theorem evolved while various versions of Shelah [1983b, c, 198 ?c]
were written. For instance, the following theorem can be proven with just slightly
more combinatorial effort:

2.6.5 Theorem. Assume 2W < 2Wl and let K be an abstract class with Lowenheim
number l(K) = co such that:

(i) / ( « , © ) = 1;
(ii) I(K,o)1)*0'9and

(iii) K^ does not have the amalgamation property.

Then I(K, co,) > 2W

The best possible results for A = co was first proved using the additional
hypothesis that K be co-presentable. However, in the following section we present
the general case with a complete proof, taken from Shelah [1983b, c].
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2.7. Proof of the Non-structure Theorem:
The General Case

In the general case we have to analyze closer, how the A-superlimit fails to be an
amalgamation basis. We distinguish two cases:

2.7.1 Definitions (Failures of Amalgamation). Let K be an abstract class with
Lowenheim number l(K) < X and 91 e K be a /l-superlimit, which is not an
amalgamation basis for K.

(i) We say that 9M, 9W0, 9JJ1? all isomorphic to % form a maximal counter-
example, if 9W <K 9Wf cannot be amalgamated in K, but for every 2lf k e Kx

(i,k = 0, 1) such that 3Jlt <K
<Hik there is an amalgamating structure

&ieKforWl<K<aLk(k = 0, 1). '
(ii) We say that 9t, 9K, 9W0, SD ,̂ form an extendible counterexample, if they are

all isomorphic to 91, 91 <K 9W and for every 93 e Kk with 91 <K 33 there are
K-embeddings ff: 33 -• 9JI, such that 91 <#,/? 9Wf has no amalgamating
structure.

2.7.2 Lemma. Let K be an abstract class with Lowenheim number l(K) < X and
9leKbe a A-superlimit, which is not an amalgamation basis for K. Then either:
Case 1. There is a maximal counterexample; or
Case 2. There is an extendible counterexample.

Proof. Let 9JI, 9Jl£ (i = 0, 1) be a counterexample which is not maximal. So without
loss of generality for every ^-extension © e 5^ of 9W0 there are 5l-extensions 93£ e ftA

(i = 0, 1) of 8 such that SB, 95£ have no amalgamating structure. Put 91 = SR
and 501 = 50J0. Clearly, using property (c) of the definition of super limits (Definition
2.2.1), for every ft-extension 23 e 5^ of 9K0 there are 9W; (/ = 0, 1) isomorphic to 91
and embeddings ff such that 9 1 < X / B 9 J I / has no amalgamating structure.
So 91, 9M, 9W; is our extendible counterexample. D

This lemma is the key to the proof of the non-structure theorem for abstract
classes. For the sake of readability we state it once more, in a sharpened form:

2.7.3 Theorem (Shelah's Non-structure Theorem for Abstract Classes). Assume
2X < 2A+. Let K be an abstract class with Lowenheim number l(K) < X and 91 e K
be a X-superlimit, which is not an amalgamation basis for K. Then I(K, k+) = 2A+. (In
fact there are 2A+ many structures in Kk+ such that for no two of them is there a
K-embedding from one into the other.)

Proof The proof uses Lemma 2.7.2 and therefore treats the two cases separately.
In each case the proof proceeds along the pattern of the proof of Theorem 2.6.1:
Construction of a system of models is of cardinality X, each of them isomorphic
to the superlimit; construction of models is of cardinality X+ and the verification
that there are many non-isomorphic models.
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2.7.4 Case 1: Construction of Models of Cardinality A. We define by induction on
a < A+ models 9Ŵ  indexed by (0, l)-sequences r\ e a2 such that:

(1) 9ft,, is isomorphic to the A-super limit SR the universe of 9Ŵ  is the set
Mn = A(l + l(rj)).

(2) Iff; < vthenSR, <KWlv.
(3) If 3 e A+ is a limit ordinal and rj is a sequence of length <5 then

<x<<5

The construction is the same as in subsection 2.6.2, using the maximal counter-
example and the properties of the A-superlimit.

2.7.5 Case I: Construction of Models of Cardinality A+. For every (0, l)-sequence

2.7.6 Case I: Counting the Models of Cardinality A+. Let 3 < A+ be such that
13 = <5, rj9 ved2 90?,,, 2RV models of cardinality A as constructed above, and
h: yRn -» 9Jlv, a ft embedding. We now define a function F(r],v,h) such that
F(rj9 v, h) = 1 iff 901,, < K ^ < O > and 901,, <x,h^<o> h a v e a n amalgamating structure,
and FO7, v, h) = 0, otherwise. Note that, by our assumptions on 5 the universe of
yjlv is the set Mn = d. Use now 2A < 2A+ and Proposition 2.5.10 to conclude that
A+ is not (A+, 2)-small. Then apply Ulam's theorem (2.5.1) and Proposition
2.5.8(ii) to partition A+ into a family {Sa: a < A+} of disjoint non-(A+, 2)-small
subsets. Now apply <5>l+ to find a family {/>ae

A+ 2: a < A+} such that for each
a < A+, q, veA+ and h\X+ -> A+ the set {<5 < A+:F(^y r^,v [d,h [S) = pa(^)}
is stationary in A+.

For each / <= A+ we define a (0, l)-sequence rjjEx+ 2 such that f]j(i) = pa(i)
if i e ( J a e / Sa and ^(f) = 0, otherwise. This is well defined since the 5a's form a
partition of A+.

Our next goal is:

2.7.7 Lemma. Given /, J c : A + , / - J / 0 , then there is no K-embedding

Proof of Lemma. Assume, for contradiction, that h: 90̂ ^ -• 9CR̂  is a X-embedding,
but there is y e / - J. Clearly the set

C = {5 < A+ : h T 5 is a function into d and A<5 = 3}

is closed and unbounded. Look at Sy. We use C and F, p defined above, to define

s; = {̂  e &.: Ffa, r 5, ̂  r 5, fc r « = p7m n c.

By the choice of p above we conclude that S'y ^ 0. Now we choose 3 e S'y and put
rj = r\I T 3 and v = rjj [ 3. From the definition of r\ and the fact that {Sa: oc < A+}
forms a partition, it is clear that r\j{8) = 0.
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We now proceed to show that both possibilities, rjj(S) = 0 and rjT(8) = 1, lead to
a contradiction.

Case 1: rj^S) = 0.

Then py(S) = 0 and, since 8 e S'y9 we have F(rj, v, h [ 8) = 0. But by the choice of h
and 8 we know that $)?„ < 90V<o> and SR,, <fcM9Kv-<0> have an amalgamating
structure, contradicting the definition of the function F.

Case 2: rjj(S) = 1.

Then both py{8) = 1 and F(rj, v, h [8) = 1, and, by the definition of F,
SŴ  < 5R -̂<0> and $R̂  <h[d 9JJv-<0> have an amalgamating structure. On the
other hand we have

Fact 1: 9Jl̂  < 9M <̂i> and SR,, <^r<5 9Mv~<0> have an amalgamating structure
inside 9M .̂

But h r 5: 2R̂  -• 9WV is a K-embedding, by the choice of S.

We now construct two models 91 i9 9l2 of cardinality A such that:

(i) 9Kv-<0> < 51 I a n d 2Wi,-<o> ^s embeddable into 9l1 by some /z0 extending

(ii) 9l2 = 9K^jry for some y with 3 + 1 < y < X+ and SKr<1> is embeddable
into 9l2 by some mapping h1 extending h [8.

To get (i) is trivial. To get (ii) we use Fact 1.

Fact 2.9Pfiv-<0> < 9ii,and$Rv < SftiandS)^ < 9l2 have an amalgamating structure.

This follows from (i) and (ii) and the fact that our construction is based on a
maximal counterexample.

But we have

Fact 3 . m r < 0 > < h 0 K u a V < o < h l 9 l 1 ^ n d h 0 [ 8 = h 1 \ 8 = h [ 8 .

Furthermore, since our construction is based on counterexamples to amalga-
mation, we have

Fact 4. 2R,, < 9DV<o> and 9JĴ  < Wlr<1> have no amalgamating structure.

But Facts 2 and 3 contradict Fact 4, which concludes the proof of the lemma.

2.7.8 Case 2: Construction of Models of Cardinality L We define by induction on
a < A+ models 5R̂  indexed by (0, l)-sequences rj e a2 such that:

(1) 901̂  is isomorphic to the A-superlimit 9K and for the empty sequence < >
we put 9K< > = Wd.

(2) Ifif c vthenSR, <*9KV.
(3) If 8 e CD! is a limit ordinal and rj is a sequence of length 8 then

5
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776 XX. Abstract Embedding Relations

(4) For each rj the structures 91, 5R^<0>, $V<i> have no amalgamating struc-
ture.

The definition of Case 2 is ready tailored for the construction of the Sft̂ s. The
construction of models of cardinality A+ is the same as in Case 1.

2.7.9 Case 2: Counting the Models of Cardinality A+. If rj, v e A+2, r\ # v, there is no
K-embedding / : 501̂  -> SK such that / \ 91 = id. For, otherwise, let a be minimal
such that rj(oc) ^ v(a) and put S = n [ a. Then/would allow us to find an amalga-
mating structure for 9t, 9K^<0>, SDl̂ <i>.

So there are 2A+ many models of cardinality A + which are not isomorphic over
91. Since 91 has cardinality A there are at most (A+)A = 2A many ways of inter-
preting 91 in 9Ŵ . Since we assumed that 2X < 2A + , we conclude that I(K, A+) = 2A + .
This completes the proof of Theorem 2.7.3, and therefore the nonstructure theorem.
The statement in the parentheses now follows with a subtle counting argument
which we leave to the reader. D

2.7.10 Remark. If we just want to show that there are at least 2k many non-
isomorphic models in Kx+ we can use Proposition 2.5.10(ii) instead of 2.5.10(i)
and simplify the proof a bit. We change the definition of the function F to be a
function of four variables where the new variable ranges over the indexes of a list of
fi < )U+ = 2A many non-isomorphic models of K. Instead of using first Ulam's
theorem to partition X+ we can now apply Unif(A + , /i, 2, 2) directly.

3. co-Presentable Classes

3.1. Classification Theory for co-Presentable Classes

In this section we shall study some examples which illustrate that some of the
classification theory of first-order model theory can be carried over to abstract
classes, provided they are co-presentable. For JS£,1£0 this was initiated by
G. Cudnovskii, J. Keisler, and S. Shelah, cf. Keisler [1971] and was carried out to
considerable extent in Shelah [1984a, b, c]. It seems that, with enough effort and
ingenuity, many results should be provable, in some form or another, also for A-
presentable classes. This is still in the making, but we think that this direction of
future research is among the most challenging tasks of "higher model theory."

The first two theorems along these lines are direct descendants of two theorems
in Shelah [1975c]. The proofs, which we are going to sketch, appear, in this stream-
lined form, here for the first time in print.

3.1.1 Theorem (Shelah's Reduction Theorem). Let K with <Kbe an abstract co-
presentable class over a vocabulary x such that:

I(K, co,) < 2°\
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3. co-Presentable Classes 777

Then there is a co-presentable abstract class K with <K, over a vocabulary T', T C T'
such that

(i) if Me K' then M [TEK;
(ii) if%^GKf and^K^SBthenSH \x <K95 f i ;

(iii) 1/ 91, 93 e Kf and 91 < x 95 tfeew 91 < ^ 95; and still
(iv)

In particular, I(K\ co) = 1 by (iii).

Recall that 91 <00£0 2? here means that for every finite set of constant symbols
Ao the expansion <9I, Ao} = <95, Ao} in the logic J S ^ .

3.1.2 Remarks, (i) The reduction theorem allows us to construct Scott sentences of
uncountable structures. We shall return to this in Section 3.4.

(ii) In Shelah [1975c] the reduction theorem is proved by constructing what
is called there "nice" sentences,

(iii) In the reduction theorem above, we can replace the assumption

I(K9 co,) < 2"1

by the assumption that K has arbitrary large models and Lowenheim
number co, and get the same result.

3.1.3 Theorem (Shelah's Abstract corCategoricity Theorem, 1977). Let K with
<Kbe an abstract co-presentable class such that:

(i) I(K,co)= Uand
(ii) I(K, cox) = 1.

Then I(K, co2) # 0 .

3.1.4 Corollary (Shelah). Let cp be a sentence of the logic i^ l W(6i) which has
exactly one model of cardinality co,. Then cp has a model of cardinality co2-

3.1.5 Historical Remark. Corollary 3.1.4 shows that there are no theories in
JS? = i^w((2i) which have exactly one uncountable model. This had been asked by
J. T. Baldwin (Friedman [1975c]) and actually was the origin of Theorem 3.1.3.
In Shelah [1975c, Corollary 3.1.4] was proved with the additional set-theoretic
hypothesis O, and in Shelah [1983b, c] under the hypothesis 2W < 2W1. Without any
set-theoretic hypothesis Corollary 3.1.4 was proved by S. Shelah in 1976 (my
personal notes).

3.1.6 Theorem (Shelah 1977). Assume that 2m < 2"1 < 2032. Let K with <Kbean
abstract co-presentable class such that:

(i) I(K, co) = 1; and
(ii) 1

Then I(K9 co2) # 0 .
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778 XX. Abstract Embedding Relations

Assumption (i) in the two theorems above is not essential. Though it does not
follow from (ii), we can always replace K satisfying (ii) by K which also satisfies (i)
using the reduction theorem.

The main tool in the proof of Theorem 3.1.6 is the use of a avsuperlimit. The
concept of superlimit models was introduced with generalizations in mind. The
following theorem guarantees its existence. If our only purpose was to prove
Theorem 3.1.6 we could also avoid the construction of superlimits. S. Fuchino
[1983] has presented such a direct proof.

3.1.7 Theorem (Existence of Superlimits). Assume that 203 < 2m < I0*2. Let K with
<Kbe an abstract co-presentable class such that:

(i) I(K, co) = 1; and
(ii) I(K,co1)<2»>;

(iii) I(K, co2) < 2»\

Then there is a co ̂ -superlimit model SR in K(Oi which is homogeneous and universal.

Clearly, Theorem 3.1.6 follows from Theorem 3.1.7 together with Proposition
2.2.3. Actually we shall only need that there is a weak limit in co1. We shall give a
narrative account of the proof of Theorem 3.1.7 in Section 3.5. The existence of a
weak limit in cox will be proved as Claim 3.5.2.

3.1.8 Corollary. Assume K is as in the theorem above. Then the coysuperlimit
model 5R is an amalgamation basis for XWl.

Proof. Use the non-structure theorem (2.3.1) together with Theorem 3.1.7. D

This corollary is somehow not satisfactory. What we really would like to
obtain is the following conjecture:

3.1.9 Conjecture (coj-Amalgamation Conjecture). Assume that 2W < 2031 < 2(O2.
Let K with < K be an abstract co-presentable class such that:

(i) /(K,co) = l;and
(ii) I(K,col)<2^;
(iii) I(K, co2) < 2»\

Then KlOl has the amalgamation property.

Note that this conjecture follows from Conjecture 2.3.2.

In the remainder of this section we shall prove Theorems 3.1.1 and 3.1.3 com-
pletely, and sketch the proof of Theorem 3.1.7, from which Theorem 3.1.6 follows.

We conclude this section with the statement of the main theorem of the classi-
fication theory for J£?WlC0 (Shelah [1984a, b]) and a conjecture on how this should
generalize for co-presentable classes.
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3. w-Presentable Classes 779

3.1.10 Theorem (Shelah's Classification Theorem for J ^ J . Assume 2£On = con+1

for every n < co. Let K = Mod(i^) for some sentence i / ^e^ ,^ . If K has an un-
countable model then at least one of the following is true. Either:

(i) for some n > 0 I(K, cox) = 2ct)n; or
(ii) K has models in every infinity cardinality, and if it is categorical in some

X> co^ then it is categorical in every \i > cov

3.1.11 Remark. Theorem 3.1.10 is not true, when we replace K by some PC^ -
class. To see this consider the class K of structures (with equality only) of cardinality
at most OJ1. Clearly K is categorical in every infinite power and has no models
bigger than cov Using the fact that the natural numbers are characterizable in
JS?a,lfl), one easily sees that the class of catlike orderings in PC^ . Therefore also
K e PC^wico. For a discussion of categoricity in j£?WlC0 see Keisler [1971, p. 91fT.].

For generalizations of Theorem 3.1.10 we shall finally discuss several con-
jectures :

3.1.12 Conjecture (Shelah). If an abstract co-presentable class K has one uncount-
able model then it has at least 2Wl many non-isomorphic uncountable models.

3.1.13 Comments. Possibly one has to use some set-theoretic hypothesis such as in
the classification theorem for JS£,l0,, or 2(On < 2C0"+1 for every new to prove this
conjecture. Theorem 3.1.7 was proved in Shelah [198?c] as a basis for a proof of
Conjecture 3.1.12. A special case of this conjecture consists in showing, for example,
that if K has exactly one model in co2 then it has a model in co3. As we shall see in the
next section, however, there is one application of the non-characterizability of
well-orderings (Theorem 3.2.1), which cannot be adapted in an obvious way:
We cannot prove that the superlimit 2R, whose existence is stated in Theorem 3.1.7,
can be embedded into itself such that it forms a dense pair as defined in the next
section (Definition 3.2.4). Only a deeper analysis of the types realized in models in
K reveals that such dense pairs do not exist. What one really does is more in the spirit
of stability theory, than in the original spirit of abstract model theory. But it
seems that this is where the future lies: To use the concepts and methods of stability
theory in the framework of abstract classes. The following remarks show, however,
that this is more complicated than one might be ready to believe at first glance.

Next we look at the logic jSf^pos), which was introduced in Chapter II, and
its infinitary extensions ifWlW(pos). These logics were studied in Makowsky-
Shelah [1981] and Makowsky [1978a]. J^Jpos) is a countably compact extension
of J^a/Q i) which is properly contained in i f ^ a a ) . The reader may also want to
consult Chapter IV.

3.1.14 Conjecture (Classification Theorem for J ^ J p o s ) , Makowsky-Shelah)).
Assume 2WM = con + 1 for every n < co. Let K = Mod(i/>) for some sentence
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780 XX. Abstract Embedding Relations

If K has an uncountable model then at least one of the following is true. Either:

(i) for some n > 0, /(iC, con) = 2W"; or
(ii) K has models in every infinite cardinality, and if it is categorical in some

X > co1 then it is categorical in every \i > col.

3.1.15 Remarks, (i) The straightforward notions of stability theory (Shelah
[1978a]) do not adapt readily to our situation. In fact, it is consistent with
ZFC + 2W = a>2 that there is an co-presentable abstract class which is categorical
in co1 but is unstable. Also all its models are of cardinality at most 2°\ Take the
J^w(pos) sentence which says that < is a dense linear order with no first or last
element, that each interval is uncountable, but that there is a dense countable
subset. Categoricity in co1 follows from Baumgartner [1973], the bound on the
cardinality of the models and instability are obvious.

(ii) Conjecture 3.1.14 becomes false for J ^ J a a ) : There is a sentence

such that ij/ has, up to isomorphism, exactly one model and this model is of
cardinality cov To see this, let \j/ be the sentence which says that < is a dense
linear order with no first or last element, each initial segment is countable, but the
model is not, and aas 3x Vy(s(y) <-+ y < x). The only model of \j/ is, up to isomor-
phism, the structure (r\ x co1, < >. (See also Remark IV.4.1.2(v).)

(iii) The analogue of Theorem 3.1.6 for ^1(O(pos) has been proved in
Makowsky-Shelah [198 ?a]. At the time of completion of this chapter, this paper
was still in the process of being checked.

3.2. Extensions With and Without First Elements

Let K with <K be an abstract co-presentable class such that: (i) I(K, co) = 1, and
(ii) /(X, cox) = 1. We want to show that /(X, co2) ^ 0 . For this purpose we show
first:

3.2.1 Lemma. Under the above hypotheses the following are equivalent:

(i) I(K, co2) * 0.
(ii) There are 21, 93 e Km such that 21 < 93 and 21 ̂  93, i.e., 21 e Kai is not

maximal.

Proof, (i) -> (ii) We just apply Axiom 5.
(ii) -> (i) Since here 21 ̂  93 we can construct a K-chain of length co2 which

gives us the required model. D

3.2.2 Definition. A structure 21 in an abstract class K (Kx) is K-maximal (Kr

maximal), if there is no © e K (93 6 Kx) such that 21 < 93 and 21 ^ 93.
In this section we write 21 < 93 only for proper extensions, and we shall use

21 < 93 if we allow also the identity.
What we really prove to get Theorem 3.1.3 is the following:
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3.2.3 Theorem. Let K with <Kbe an abstract co-presentable class such that:

(i) I(K,a>)=U
(ii)

(iii) every 21 e K(Ol is K^^maximal

Then I(K, coj = T\
Clearly, in the above situation, the structures in KM are not maximal, since

there is an uncountable model.

3.2.4 Definitions. Let K with < be an abstract class, k a cardinal, and 21 < 95
with b e B - A and 21, 95 e Kx.

(i) We say that b is a first element for 91 < © if for every 9Xl9 93! such that
91 < 91! < 951?95 < 951 we have that be A x. (We assume here for simplicity
that the embeddings are the identity. The reader can easily formulate the
definition for the more general case.)

Note that, if there is no first element for 91 < 23, we can think of this as an amalga-
mation property: For every beB — A there is a structure 91 x eK and an amalga-
mating structure 23 x such that b $ Av If there is no first element for 91 < 93, this
can happen in a strong form:

(ii) We say that 91 < 95 is a dense pair if for every beB — A there is a structure
9li in Kk such that 91 < 9^ < 95 with b e B - Av

The above definitions are our key tools in the proof of Theorem 3.2.3 and
therefore of the abstract categoricity theorem.

3.2.5 Example. To illustrate the proof idea let us recall a simple theorem about
the number of non-isomorphic dense linear orderings of cardinality CD1. We take
here Xend to be the class of all dense linear orderings without extremal elements,
and define for 91, 23 e Kend the substructure relation 91 < end 23 as the end-
extensions. Clearly Kendj w has, up to isomorphism, only one element.

3.2.6 Proposition. There are 2Wl many non-isomorphic linear dense cox like orderings.

Proof. Let / cz co1. We define 9I7 = (Jaec0l 9la where each 9la is isomorphic to a
copy of the rationals Q = <g, < >. Let Qfirst = <[fc, 1), < > be a copy of the ra-
tionals with a first element b and put Qj = Q + Qfirst and Q2 = Q + Q. Clearly
Q <end &2 is a dense pair and b is a first element for Q <end Qx. Now we put
9l0 = Q and 91̂  = (Ja<<5 9la for 5 a limit ordinal. To get 9Ia+1 we make 9Ia <end

9la+ x isomorphic to Q <end Qx if a e / and isomorphic to Q <end Q2 if
 a $ I-

Let /, J c a)1 and F be the c.u.b. filter on cov We claim that 9I7 ~ 91, implies
that I = J (mod F). By Ulam's theorem (cf. Theorem 2.5.1 or Lemma XVIII.4.3.9)
there are 2Wl many non-equivalent stationary subsets of col9 hence the result. D

The next lemmas will allow us to copy this proof for our abstract classes.
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782 XX. Abstract Embedding Relations

3.2.7 Lemma. Let K with < be an abstract class with Lowenheim number X and

(i) I(K9X)= 1;
(ii) J(K,A+)#0;

(iii) every 91 e Kx + is K-maximal.

Then there are 21, 93 e Kkand beB - A such that b is a first element for 91 < 95.
In other words, if no pair 91 < 93 of structures from Kk has a first element, then

there is a non-maximal 9lx e Kx+.

Proof. Assume for contradiction that 9l0 < 9J0 are given in Kk with nobeB0 - Ao

a first element. Fix boeBo - Ao. So there are 9lt < 93t with 9l0 < 5Ii and
93O < 931 and boeBl - Av

From this situation we construct K-chains 9la, 93a (a < X+) with b0 e Ba - Aa9

using that I(K, X) = 1. Now we put 91 = (Ja 9Ia and 93 = (Ja 95a and find that
91, 93 e KA+, 91 < 93 and b0 e B - A. D

3.2.8 Lemma. Let K with <Kbe an abstract co-presentable class such that:

(i) /(X,o))= \\and
(ii) J(K, co,) * 0 .

Tfien t/ier^ is a dense pair 91 < © in ATW.

The proof of Lemma 3.2.8 consists in an application of the Morley-Lopez-
Escobar theorem on the non-expressibility of well-orderings in JS?^ which was
first used in Shelah [1975]. We shall return to this in Section 3.3.

Proof of Theorem 3.2.3. We are now in a position to copy the proof of Proposition
3.2.6. We put now Q to be the only countable model of X, Qx a countable extension
of Q with b G Ql a first element (Lemma 3.2.6), and Q2

 a countable extension of Q
such that Q <K Q2 is

 a dense pair (Lemma 3.2.8). The rest of the argument remains
unchanged. D

3.3. Some Model Theory for Lai(0

In Section 1.3 Shelah's presentability theorem tells us that every co presentable
class K is actually a PC-class in £fmito. Some of the model theory of l£mi(O has been
developed in Chapter VIII, but for the reader's sake we make this section as self-
contained as possible. Our aim here is to prove Lemma 3.2.8 and Shelah's reduction
theorem (3.1.1). Both theorems use heavily the non-characterizability of the class
of well-orderings as a PC-class in J££,1C), which we state here precisely (cf. Section
VIII.1.3, Section II.5.2 and Proposition IX.3.2.16)

3.3.1 Theorem (Non-characterizability of Well-Orderings). Let <p e £fmi(0[T] and
let 17, < ex be a unary and a binary relation symbol of x. Suppose that for each
ccecou(p has a model 91 = (A, [/, <, .. .> such that < linearly orders U and
<a, <> c <£/, <}.Then:
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(i) cp has a countable model 93 = (B, V, < , . . . > such that < linearly orders
V and <K, < > contains a copy of the rationals <g, < >;

(ii) cp has an uncountable model 23 = (B, V, <,...} such that < linearly orders
V and <K, < > contains a copy of the rationals (Q, < >.

(i) is due to Morley [1965] and Lopez-Escobar [1966]. A proof may be found
in Keisler [1971a]. (ii) can be proved by combining (i) with the construction and
characterization of the existence of suitable end-extensions, as described in Keisler
[1971a]. But it was Shelah who first observed that this theorem can be used in many
situations as a substitute for compactness. This is the main theme of this section.
We shall use Theorem 3.3.1(ii) to construct, in certain situations, Scott sentences
of uncountable models, and also, if such Scott sentences exist, to construct dense
pairs of countable models. Let us recall some definitions:

3.3.2 Definition (Scott Sentences), (i) Let cp e =^,I £ 0[T]. We say that cp is a Scott
sentence, if all models of cp are <£^-equivalent.

(ii) Let <p e Sfmi(O(T') and z C Z'. We say that cp is a weak Scott sentence {for z),
if all r-reducts of models of cp are JSf^-equivalent.

(iii) If 91 is a z-structure then we say that 91 has a Scott sentence, if there is a
Scott sentence cp e <i?Wlft)[z] with 911= cp. Similarly for weak Scott sen-
tences.

(iv) If 91 is a z-structure which has a (weak) Scott sentence cp, we denote by
<j(9l) a formula logically equivalent to cp.

In Theorem VIII.4.1.6 these definitions are justified.

3.3.3 Lemma. If a z-structure 91 has a weak Scott sentence aw over a vocabulary z'
then it has also a Scott sentence a.

Proof. Let 93' be a countable model of aw and 93 = 93' [ z. Put a = <r(93). By the
completeness theorem for Ĵ W1CO <7W \= cr, so 91 \= G. D

3.3.4 Definition, (i) (Fragments of JS^J. A countable fragment ££ of £emi<o is a
countable subset of JS£,1<0 closed under taking subformulas, name changing,
applying the finitary connectives and quantification.

(ii) (^f-embeddings). Let & be a fragment of «2J,ia> and 91, 93 two r-structures.
We say that 91 is an <£\x\-substructure of 93 if 91 is a substructure of 23 and
for every finite subset Ao <= A the expansions by constants for elements of
Ao, <9I, Ao) and <93, Ao), are J^-equivalent.

(iii) (Karp Substructures). Let 91, 93 two z-structures. We say that 91 is a
Karp-substructure of 93 if 91 is a substructure of 93 and for every finite
subset Ao <= A the expansions by constants for elements of Ao, <9I, Ao}
and <93, Ao}, are J^-equivalent.
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784 XX. Abstract Embedding Relations

(iv) (co-Presentable Substructure Relation). Let oc be a binary relation be-
tween r-structures such that 91 oc © implies that 91 is a substructure of 23.
We say that oc is an co-presentable substructure relation, if:

(a) for every 91 we have 91 oc 91;
(b) oc satisfies the transitivity axiom;
(c) oc satisfies the chain axiom; and
(d) the class of restructures [91; 95] such that 91 oc 93 is PCOT(co, co).

Obviously we define rsr such that the universe of 91 is the interpretation of a
distinguished unary predicate of isr. Note that (d) ensures that we have Lowenheim
number co.

3.3.5 Lemma, (i) Let X be a countable fragment of J&£,lfl). Then the notion of a
5£ -substructure gives rise to an co-presentable substructure relation.

(ii) The notion of a Karp-substructure is also an co-presentable substructure
relation.

Proof Both statements are easy coding exercises. For (i) we use the truth ade-
quacy of i£,ia) for countable fragments. Details are discussed in Section XVII. 1.
For (ii) we use the characterization of ^^-equivalence in terms of partial iso-
morphisms, as described in Section II.4 and Chapter VIII. The questions which
interest us now, are whether an uncountable structure 91 has a (weak) Scott
sentence, and under what conditions a Scott sentence has uncountable models?
The following is a variation on a special case of Theorem XVIII.7.3.1, which is due
to Gregory [1973].

3.3.6 Theorem. Let cp be a weak Scott sentence. Then the following are equivalent:

(i) cp has an uncountable model;
(ii) for every countable fragment $£ containing cp there are countable models

93, £ ofcp such that 93 $<? <£ and 93 ^ (£;
(iii) for every co-presentable substructure relation oc there are countable models

93, d ofcp such that 95 oc (£, 93 is a proper substructure ofd and 93 = (£.

Proof, (ii) implies (i) trivially (in contrast to the proof of Theorem XVIII.7.3.1),
since 91 ^ 93 allows us to construct a chain of length col whose limit is the desired
model.

(iii) implies (ii) by the lemma above.
So assume (i). To prove (iii) we just use the reflexivity of oc and the Lowenheim-

Skolem theorem for semxto together with the properties of the weak Scott sentence.
D

For weak Scott sentences with uncountable models we can already construct
dense pairs for any countable fragment S£ of JS£,ia,.

3.3.7 Theorem. Let cp be a weak Scott sentence with an uncountable model T) and
oc an co-presentable substructure relation. Then there are two countable x-structures
93, £ such that 93 oc d is a dense pair for oc.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.028
https://www.cambridge.org/core
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Proof. We can write T> as the union of a oc -chain of length co1 {T)a: a e a^} with
I)a oc T)p for every a < /} < coj. We can code this situation in a model 9JJ and
describe it by a formula S e ^ ^ [ T ' ] over some vocabulary %' extending T, which
satisfies the hypothesis of Theorem 3.3.1. Here we use the co-presentability of oc.
The universes of the models T)a are coded by a binary predicate symbol and
constants R( —, ca). The second argument of R ranges over some linearly ordered
set <£/, <>, the index set.

Now we apply Theorem 3.3.1(ii) and get a model 91 such that a copy of the
rationals <Q, < > can be embedded into the index set. Let {dn:ne co} be a decreasing
sequence in 91 and d be a lower bound for it. Put now (£ to be the model defined in
91 by R(-,d0) and \Ja<dnR(-,a) = f U c o K ( - , 4 ) = ®. This is not empty,
since the structure defined by R( —, d) is contained in it. Clearly, 9 can be chosen
such that 95 oc £ is a dense pair. •

3.3.8 Proof of lemma 3.2.8. Our first step in the proof is the construction of a
Scott sentence. So let K be an co-presentable class with K(Ol ^ 0 and I(K, cox)
< 2Wl. Then there is a 95 s KCOl which has a weak Scott sentence a. To see this, we
apply Shelah's reduction theorem (3.1.1) to K. So let K' be as in Theorem 3.1.1 and
let 95 e K'ai. Since K' is co-presentable, there is a countable 51 e K' with 21 < x , 95
and therefore 91 <^ooco 95. Let o = a(9I). Clearly, 95 1= o. Now the lemma follows
from Theorem 3.3.7 D

3.4. Constructing Scott Sentences for
Uncountable Models

Our second application of Theorem 3.3.1(ii) is the proof of the reduction theorem
(3.1.1). First we need a lemma on the minimal number of types realized in models
in Kmi. Let us recall the definition of types.

3.4.1 Definition, (i) (^ [T] -types). Let STC be a i-structure, i c M a subset of the
universe of 9K, a e Mm and let cp(x) range over J£[T]-formulas with all the
free variables among x = (x0, x l 5 . . . ) . For b e A let b be a constant
symbol whose interpretation in 9)1 is b. We define

tp(a, A, &, SW) = {(?(x, b): <p e JSP(T), 9K |= <?(*, M * H A 5 e ^"}

be the m-type of a in 9)1 over A.
(ii) If t = tp(a, A, <£, 9)1) is a countable type we define by 9t the conjunction

of all the formulas of t. Note that St is not necessarily a formula of <£.

3.4.2 Lemma. Let x c= T', I^ e ^ ^ [ T ' ] and ££? a countable fragment of ^(Ol(O. Put
K = Mod(i/0 [T. Then:

(i) (Keisler [1970, Theorem 5.10]). If in some uncountable model 9Rof\jj un-
countably many ^[x]-types are realized, then I(K, coj = 2Wl.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.028
https://www.cambridge.org/core


786 XX. Abstract Embedding Relations

(ii) (Shelah). Here we assume 2m > 2W. If in some uncountable model Wlofij/
there is a countable subset A a M such that in SR uncountably many 5£[T]-
types are realized over A, then I(K, cox) = 2Wl.

Proof To prove (ii) from (i) we observe that there are at most (co^ = T° many
ways of interpreting countably many constants in a model of cardinality co1. More
details may be found in Shelah [1978a, Chapter 8, Lemma 1.3]. D

The next theorem extends this to ifwico proper.

3.4.3 Theorem (Shelah). Let i c x ' t e two vocabularies, \jj e ifWl£a[Y] a formula, and
yjibe a t'-structure of cardinality wx such that 5R 1= \j/.

(i) If for every countable fragment if only countably many <£\i\-types are
realized in 901, then \j/ has a model 91 of cardinality (Dx in which only countably
many ^^[.T^-types are realized.

(ii) If for every countable fragment ££ and for every countable subset A a M
only countably many 5£\x\-types are realized in 9R over A, then \js has a
model 9i of cardinality co^ in which over every countable A c: N only
countably many if^^E?]-types are realized over A.

(iii) Ifxj/ has a model 91 of cardinality <x>x in which over every countable A cz N
only countably many ^^^[jl-types are realized over A, then 91 f T has a
Scott sentence a = a(9l [ T).

Proof (i) For every a < a>1 we define a countable fragment ^ of if^^. if0 = <£m(a

and 5£b= [jp<s^p for 5 a limit ordinal. ifa+1 is the minimal fragment of i£,ia,
containing ^ and for every a £ Mm the formula &m where t(a) = tp(a, 0 , J£a, 2R).
Clearly, for every a < coY the fragment 5£^ is indeed countable. Let T" be T' U
{Cw, ¥n: ne co}. We now expand 9K to a restructure W in the following way:

First we assume without loss of generality that M = CDV NOW

W = < m , < , E O 9 . . . 9 E n 9 . . . , F O 9 . . . 9 F a 9 . . . y n e m 9

where

(a) < is the natural ordering on a^.
(b) En is a (In + l)-ary relation and (a, a, b) EEH iff a, be Mn and

tp(a, 0 , ^ SR) = tp(5, 0 , ^ TO).

(c) Fn is an (n + l)-ary function with the finite ordinals as its range and
Fn(a, a) = Fn(a, 5) iff (a, a, b)eEn. Such an Fn can be chosen because
the number of if a-types realized in 5R is countable by our hypothesis.

We note the following facts:

Fact 1. Every En defines a family of equivalence relations Ea n on n-tuples of W
indexed by the first argument.

Fact 2. If a < /? then EPtK refines Ean.
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Fact 3. Each £a „ has at most countably many equivalence classes.

Fact 4. < is an ordering with a first element, which we call 0, and (0, a, b) e En iff
the jSfo-types of a and b are equal.

Fact 5. If (a + 1, a, b) e En then for every ceM there is a d e M such that

(0L9a9c9h,d)eEn+1.

Clearly, Facts 1-5 can be expressed by a sentence x e ^O I W [T"] . TO express Fact 3
we need the functions Fn.

Now we apply Theorem 3.3.1(ii) to the sentence ^ A / . We get a model
9T \= ^ A x of cardinality c^ where < contains a copy of the rationals. Put
91 = 9t' Is T. Let {dn:ne co} be an infinite decreasing sequence of elements in 9i'.
We use it to define equivalence relations E+ on n-tuples of 9T by putting

for some meco.lt is easy to check, that for this equivalence relation we have

Fact 6. If (a, b) e E+ then for every c e N there isa.de N such that (a, c, 5, d) e E++ x;
and

7. Each £a „ has at most countably many equivalence classes.

We just use the fact that 91" 1= i// A X and the definition of £n
+.

Using Fact 6 we can show by induction on q>:

Fact 8. For every <p e J ^ J T ] , if (a, B) e £n
+ then 911= q>(a) iff 9T N

This together with Fact 7 shows that in 9t only countably many &(Oi(O[r']-types are
satisfied. This ends the proof of (i).

To prove (ii) we repeat the same proof but change the definition of the frag-
ments such as to include the constants required.

To prove (iii) we remark that î  A x is a weak Scott sentence. To obtain a
Scott sentence we apply Lemma 3.3.3. D

3.4.4 Corollary (Shelah). Let Kbea T>C-class in ̂ fWiaj with at least one, but less than
T°\ many models of cardinality cov Then there is an uncountable model 91 e K which
has a Scott sentence.

This corollary was proved by different methods (admissible sets) in Makkai
[1977] under the stronger hypothesis that there are less than T° many models of
cardinality a>1.

We are now in a position to prove Theorem 3.1.1.

3.4.5 Proof of the Reduction Theorem. Assume that 2W < 2Wl. Let K with < K be an
abstract co-presentable class over a vocabulary T such that I(K, co^ < 2°\ Let
\\j e &(Ol<o\r'~\ be the sentence defining K. By our assumption on K we can apply
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788 XX. Abstract Embedding Relations

Lemma 3.4.1 and find an uncountable model TO |= \jj such that the hypothesis of
Theorem 3.4.2(ii) is satisfied. So we can use Theorem 3.4.2(iii) to find a model
911= î  of cardinality co^ such that 91 [ x has a Scott sentence o.

We have to show that there is a co-presentable abstract class K' with <K over a
vocabulary T', T C T ' such that:

(i) i f9leK'then9l [TEK;
(ii) if 91, 93eK'and9l <K, 93 then 91 [T < K 9 3 f t ;

(iii) if 91, 93 e K' and 91 <K 93 then 91 < „„ 93; and still
(iv) J(K, cox) # 0 iff I(K', (o,) * 0.

So we put K' to be Mod(i^ A CT). Clearly, (i) is satisfied. To define < K. we define it as
an co-presentable substructure relation such that 91 <K, 93 iff 91 <K 93 and 91 is a
Karp-substructure of 23, applying Theorem 3.3.5(iii). Clearly, this ensures that (ii),
(iii), and (iv) are now satisfied. D

3.5. How to Construct Super Limits

The purpose of this section is to give a brief survey on the difficulties in the proof of
Theorem 3.1.7. Let us state it once more:

3.5.1 Theorem (Existence of Superlimits). Assume that 2°° < 2Wl < 2CO2. Let K
with <K be an abstract co-presentable class such that:

(i) I(K,co)= I; and
(ii) l</(K,co1)<2W l;

(iii) I(K, co2) < 2»\

Then there is a co^superlimit model SCR in K0)l which is homogeneous and universal.

3.5.2 Amalgamation and Joint Embedding Property in co. First we observe that the
unique countable model 9WW of K is a co-superlimit, by Proposition 2.2.4, since K
has uncountable models and is co-categorical. Therefore, using Theorem 2.3.1,
9Jlw is an amalgamation basis for Kw. Again by co-categoricity, Xw has the joint
embedding property.

Now we are in a position to apply Theorem 2.1.8. We need the above hypothesis
to ensure that coj = X = X<x. So there is a universal and homogeneous model

We would like next to prove the following:

3.5.3 Claim. 301 is a weak-limit.

Note that Claim 3.5.3 is enough to prove Theorem 3.1.6 as pointed out im-
mediately after Theorem 3.1.7.

Proof. We have to verify the conditions (a-d) of Definition 2.2.1. Clearly, the cardi-
nality of Wl is cou so (a) is satisfied.
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To verify (b), i.e., to show that 3D? is not maximal, we use a modification of
Lemma 3.2.7, respectively, Theorem 3.2.3, stating that if 30? e K(Ol is universal and
maximal, then I(K, coj = 2m.

We recall property (c): Given 91 e Kmi with SR < K 91 there is 9JI ^ 9Rf such that
9JI <K SDt'. To construct SOi' we write 91 as a union of an increasing X-chain of
isomorphic copies of the co-superlimit and reconstruct a universal and homo-
geneous model in K(Ol along this chain. Then we use the uniqueness of the universal
and homogeneous model (Theorem 2.1.8(iii)). D

Next we want to establish the following claim:

3.5.4 Claim. 9JI is a (cou co^-limit.

We only have to show that unions of X-chains of co1 many isomorphic copies
of 30? are again isomorphic to 9)1. To see this, we show that such an union is again
homogeneous. For this, we use the homogeneity of 30? and the following lemma:

3.5.5 Lemma. / / S0?o,
 <SJl1 e K(Ol are both homogeneous and 9t e Kw with 91 < K 9R0,

then every K-embedding of 91 into 9)1 x can be extended to an isomorphism from 9K0

onto 9RV

Proof. Besides homogeneity, we use that K is co-categorical and that K also satisfies
closure under directed systems. D

To end the proof of Claim 3.5.4 we apply the lemma cofinally often along the
chain and use that every countable substructure already appears in an element of
this chain. D

3.5.6 Types and Forcing. The main difficulty in the proof of Theorem 3.5.1 is to
prove that it gives a (cou co)-limit. For this we need a better description of the
homogeneous model SO? in XWl. We would like to build 9JI as a union of countable
models 9la, a < cou such that in every 9la+1 all the types over 9Ia, satisfied in 301, are
already satisfied. This leads us to a natural, but rather complicated, definition of
forcing, a corresponding definition of" types " and a machinery to apply techniques
connected with non-forking, symmetry, and finite bases of types, stationarization,
etc., as in Shelah [1978a].

3.5.7 The Big Two-Dimensional Picture. All this machinery is needed to cope with
the following situation. Let 9Jlh i e co be a countable X-chain of isomorphic copies
of 3D? and let each 30?,- = (Ja 9laj,- be the union of countable models. To show that
[ji9Jii = 9R we have to verify that various finite configurations of countable
models in this system allow amalgamation within this system. This is needed to
replace this two-dimensional presentation of \Jt 9Kf by an OJX long X-chain of
countable models from the two-dimensional presentation, which will enable us
to show that SR ^ U*9^-
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3.5.8 The Underlying Philosophy. The underlying philosophy in all of this is, that
instead of types, as in first-order model theory, we have to deal with certain general-
izations of amalgamation properties of countable structures. Proving the existence
of uncountable structures with certain properties is then reduced to proving more
and more complicated countable amalgamation properties.

A proof of Theorem 3.1.6 which does not use Theorem 3.5.1 can be found in
Fuchino [1983]. There also the condition 2Wl < 2W2 is not needed.

3.5.9 A Gourmet End (Joint Work with Irit M. Manskleid). In the tradition of
some of the books of this Perspectives of Mathematical Logic, I would like to
conclude this last chapter with a gourmet treat. The following recipe is connected
with my work with Saharon Shelah in two ways: In 1974, when we started to work
together on abstract model theory, I also visited Florence, Italy. There I dined at
Sabatini's, a restaurant renowned for its combination of Italian and French
cooking. Italian cooking puts the emphasis on the main ingredients of a dish by
letting them have their optimal gustatory and olfactory effects; French cooking is
famous for refining the ingredients of a dish by the addition of ornamental, but
dominant, components, especially sauces. The most exciting dish I tasted at
Sabatini's was "vermicelli colla salsa di tartufi" (homemade, very thin spaghetti
with a truffle cream sauce). Truffles are ugly, potato-shaped mushrooms, but
inside they hide, like many of Shelah's proofs, a delicate core. In a multitude of
attempts I tried to find appropriate truffles and to reconstruct the dish. Here is the
result.

3.5.10 The Truffles (Fungus; Tuber, Hebrew: Kmehin). Truffles are famous, rare,
and expensive, especially the French and Italian kind. They grow on calcarious
ground in symbiosis with oaks, beeches, or some desert bushes. Less fancy truffles
grow in North Africa, the Carmel mountain, and the Negev desert. They also grow,
though rarely, in California and Oregon. These truffles are much cheaper but
they are good enough, if pickled for one month in dry white wine with bay leaves.
We need about 200 gr of them, after washing and peeling. If they come from sandy
areas, such as the Carmel or the Negev, this is equivalent to more than half a kilo
bought on the market.

3.5.11 The Vermicelli. Prepare a dough (standard pasta dough, possibly with
half the flour whole grain). Let it rest. Using a pasta machine, roll as thin as
possible and cut into the thinnest possible slices. Separate them by hand and let
them dry for an hour. This is like counting to cou naming every ordinal. You will
get acquainted with every slice personally. Boil in water with salt and olive oil
added. You need two tablespoons of olive oil per liter of water and half a liter of
water per 100 gr of pasta.

3.5.12 The Sauce (The quantities are for half a kilo pasta). A quarter liter of
sweet (fat) cream is heated with 100 gr of butter till the butter is melted. Add the
truffles, chopped very thin. Simmer for about ten minutes. Add 150 gr of ground

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781316717158.028
https://www.cambridge.org/core


3. ^-Presentable Classes 791

dry cheese (parmesan). Stir well till the cheese is melted like in cheese fondue. Add
salt and fresh ground pepper.

3.5.13 Serving. When the pasta is ready (al dente, not too soft), pour it into a sieve,
but do not rinse in cold water. Return the pasta into a heatable dish and add the
hot sauce. Stir well and reheat if necessary. Eat and enjoy. Serves four to six.

3.5.14 Postscript. This recipe may look complicated. But here is another analogy
to many of the proofs in this chapter: Once you are through, you understand
that it was worth it, and moreover, that it was the appropriate way to do it.
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