
The SELinux Notebook - Building The Sample Policy

The SELinux 
Notebook

Building The 
Sample Policy

Page 1



The SELinux Notebook - Building The Sample Policy

0. Notebook Information

0.1 Copyright Information
Copyright ©  2014  Richard Haines.

Permission is granted to copy, distribute and/or modify this document under the terms 
of the GNU Free Documentation License, Version 1.3 or any later version published 
by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, 
and no Back-Cover Texts.

The scripts and source code in this Notebook are covered by the GNU General Public 
License. The scripts and code are free source: you can redistribute it and/or modify it 
under the terms of the GNU General Public License as published by the Free Software 
Foundation, either version 3 of the License, or  any later version.

These are distributed in the hope that they will be useful in researching SELinux, but 
WITHOUT  ANY  WARRANTY;  without  even  the  implied  warranty  of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with 
scripts and source code.  If not, see <http://www.gnu.org/licenses/>.

0.2 Revision History
Version Date Changes

1.0 30th September '14 Added to tarball.

0.3 Acknowledgements
Logo designed by Máirín Duffy

0.4 Index
0. NOTEBOOK INFORMATION                                                                                  ..............................................................................  2  

0.1 COPYRIGHT INFORMATION                                                                                              ..........................................................................................  2  
0.2 REVISION HISTORY                                                                                                       ...................................................................................................  2  
0.3 ACKNOWLEDGEMENTS                                                                                                    ................................................................................................  2  
0.4 INDEX                                                                                                                         .....................................................................................................................  2  

1. BUILDING A BASIC POLICY                                                                                  ..............................................................................  4  
1.1 INTRODUCTION                                                                                                              ..........................................................................................................  4  

1.1.1 Overall Objectives                                                                                            ........................................................................................  4  
1.1.2 Build Requirements                                                                                           .......................................................................................  4  
1.1.3 The Test Policies                                                                                               ...........................................................................................  4  

1.2 BUILDING THE POLICY SOURCE FILES                                                                             .........................................................................  5  
1.2.1.1 Problem Resolution                                                                                    ................................................................................  6  
1.2.1.2 Monolithic and Base Policy Source File                                                    ................................................  6  
1.2.1.3 file_contexts File                                                                                        ....................................................................................  7  
1.2.1.4 default_contexts File                                                                                  ..............................................................................  7  

Page 2

mailto:richard_c_haines@btinternet.com
http://pookstar.deviantart.com/
http://www.gnu.org/licenses/


The SELinux Notebook - Building The Sample Policy

1.2.1.5 seusers File                                                                                                 ............................................................................................  7  
1.2.1.6 dbus_contexts File                                                                                      .................................................................................  7  
1.2.1.7 x_contexts File                                                                                           .......................................................................................  7  

1.3 BUILDING THE MONOLITHIC POLICY                                                                                ............................................................................  8  
1.3.1 Checking the Build                                                                                          ......................................................................................  10  

1.4 BUILDING THE BASE POLICY MODULE                                                                           .......................................................................  10  
1.4.1 Checking the Base Policy Build                                                                      ..................................................................  13  

2. BUILDING THE MESSAGE FILTER LOADABLE MODULES                       ...................  14  
2.1 OVERVIEW OF MODULES                                                                                               ...........................................................................................  14  
2.2 BUILDING THE SECMARK TEST LOADABLE MODULE                                                  ..............................................  15  

2.2.1 Testing the Module                                                                                          ......................................................................................  19  
2.2.1.1 Running the Tests                                                                                     .................................................................................  20  

2.2.2 Points to Note                                                                                                  ..............................................................................................  23  
2.2.2.1 Importance of Loading the iptables                                                          .....................................................  23  
2.2.2.2 Running tests out of sequence                                                                  ..............................................................  24  

2.3 BUILDING THE NETLABEL LOADABLE MODULE                                                              ..........................................................  24  
2.4 BUILDING THE REMAINING MESSAGE FILTER SERVICE                                                     .................................................  26  

2.4.1 Internal Gateway Loadable Policy Module                                                    ................................................  27  
2.4.2 File Move Application                                                                                     .................................................................................  28  
2.4.3 File Mover Loadable Policy Module                                                              ..........................................................  28  
2.4.4 Testing the Message Filter Build                                                                    ................................................................  30  

Page 3



The SELinux Notebook - Building The Sample Policy

1. Building a Basic Policy

1.1 Introduction
The objective of this section is to show how policy files are constructed, compiled and 
loaded  using  the  SELinux  command  line  tools  to  produce  a  usable  policy  for 
instructional use only. 

A monolithic and modular (with loadable modules) policy are built without the use of 
any support macros or make files from the Reference Policy source.

It is recommended that the notebook-source-4.0.tar.gz file is installed in 
$HOME as this contains all the configuration files and source code required to produce 
the required  modules.  It  also contains  README and a simple  Makefile  for  each 
section. 

Note: These examples have been tested on Fedora 20.

1.1.1 Overall Objectives
The main objectives of the sections that follow are to:

1. Show how to construct and build a simple monolithic and base policy.

2. Show how to construct and build a series of loadable modules for use with the 
base module. This builds into a very  simple message filter using a network 
client / server application and file moving (filter) application.

1.1.2 Build Requirements
To be  able  to  build  the  policy  files  only  standard  SELinux  utilities  are  required. 
However to build the test ‘C’ programs development tools will be required:

• gcc  tools  to  compile  and  link  the  test  applications  (gcc and  libgcc 
packages).

• The libselinux library and libselinux-devel packages. 

If the NetLabel module is being built,  the NetLabel tools will need to be installed 
(netlabel_tools).

If  the  Tresys  utilities  (setools)  are  used  (apol,  sechecker  etc.),  then  it  is 
recommended that the policies are built uncompressed by adding the following entry 
in the semanage.conf file:
      bzip-blocksize=0

1.1.3 The Test Policies
Normally SELinux policies are built to deny everything by default, and then enable 
access  as  required,  however  the  example  policies  in  this  section  grant  access  to 
everything and then run the test applications in their own domains to isolate them.

The policies built in this section have been tested using the follow sequence:

Page 4



The SELinux Notebook - Building The Sample Policy

1. Will the system load, allow users to logon and run applications in permissive 
mode – If yes then:

2. Set the system to enforcing mode by setenforce 1, if still okay then:

3. Log out users and log in again (as now in enforcing mode, the login may fail),  
if okay then:

4. Edit  the  config file  and  set  SELINUX=enforcing,  then  reboot  the 
system, if okay then:

5. Log in users and run applications, if okay then:

6. Test that the policy meets the security requirements.

If at any stage the load fails, then the repair kernel/CD/DVD may have to be used to 
investigate the cause. Setting the config file SELINUX entry to permissive and 
investigating the messages and audit logs can be helpful (but not always).

1.2 Building The Policy Source Files
The policies built in this section make use of a common policy.conf source file 
to  demonstrate  a  monolithic  build  and  a  base  loadable  policy  build  (traditionally 
called base.conf). Table 1-1 describes the core policy components.

Entry Comments
Security Classes (class) These are from the Reference Policy files:

./policy/flask/security_classes

./policy/flask/access_vectors

./policy/flask/initial_sids

Access Vectors 
(permissions)
Initial SIDs
MLS Sensitivity, category 
and level Statements

There are no MLS security level information in the 
sample policy.

MLS Constraints There are no MLS constraints in the sample policy.
Policy Capability 
Statements

There are no policycap statements in the sample 
policy, however one is added later for a NetLabel 
exercise using network_peer_controls.

Attributes There are no attributes in the sample policy.
Booleans There are no bool statements in the sample policy.
Type / Type Alias There is only one type: unconfined_t. There are 

no typealias statements.
Roles There is only one role: unconfined_r.
Policy Rules There is one allow rule for each object class (taken 

from the security_classes file) in the policy that 
allows unrestricted access to all its permissions as 
follows:

allow unconfined_t self : class_name *;
Users There is one user: unconfined_u, for logging on. 

The system_u user is there to allow objects to be 
labeled system_u:object_r as in the standard 

Page 5



The SELinux Notebook - Building The Sample Policy

Entry Comments
Reference Policy. The system_u user is also 
required by semanage(8) to add network objects.

Constraints These are no constraints in the sample policy, 
however one is added later to show role constraints.

Default SID labeling These have been taken from the standard Reference 
Policy build with the security contexts updated. Note 
that the kernel is labeled unconfined_r and not 
object_r.

fs_use_xattr Statement Only the ext3 and ext4 filesystems have been 
added. If the system being built supports other 
filesystems then these will need to be added.

fs_use_task and 
fs_use_trans 
Statements

These have been taken from the standard Reference 
Policy build. 

genfscon Statements Only a selection have been taken from the standard 
Reference Policy build.

portcon, netifcon and 
nodecon Statements

There are none of these statements in the policy.

Table 1-1: Policy Components - for the policy.conf and base.conf source 
file. 

1.2.1.1 Problem Resolution

The following may help with resolving issues when building the examples:

1. Once the policies etc. have been built and all goes well, the filesystem will 
relabeled and the new policy loaded during the reboot process, however any 
errors encountered will probably result in either:

a. GNU / Linux hanging, in which case the repair disk will be required. 
To allow GNU / Linux to load, the  /etc/selinux/config file 
should  be  edited  to  set  either  SELINUX=disabled or  the 
SELINUXTYPE= to a known working policy. The reason for the hang 
can  then  be  investigated  (such as  correcting  the  policy source  files 
and/or re-running the build commands).

b. The policy will be rejected by the kernel and not loaded, GNU / Linux 
will then load with no policy enabled, giving another chance at fixing 
the problem (the screen messages will generally give the reason for the 
rejection).

1.2.1.2 Monolithic and Base Policy Source File

The  policy  source  file  for  the  monolithic  and  base  loadable  module  are  in  the 
basic-selinux-policy directory with simple build scripts.

Page 6



The SELinux Notebook - Building The Sample Policy

1.2.1.3 file_contexts File

The file_contexts file for the build is as follows:

/ system_u:object_r:unconfined_t
/.* system_u:object_r:unconfined_t

1.2.1.4 default_contexts File

The  default_contexts file is to ensure that the initial logon process uses the 
unconfined_r:unconfined_t role / type pair and is as follows:

unconfined_r:unconfined_t unconfined_r:unconfined_t

Note that this file will only be required when the additional loadable modules are built 
as they contain multiple types associated to a single role (therefore the logon process 
needs to know which of the types to use for the users  user:role:type security 
context).

1.2.1.5 seusers File 

The seusers file is not mandatory, however one is added as all policies tend to have 
one, also when adding additional users via semanage, one will be required.

system_u:system_u
unconfined_u:unconfined_u
__default__:unconfined_u

1.2.1.6 dbus_contexts File 

The dbus_contexts file is required to allow X-Windows to run and is as follows:

<!DOCTYPE busconfig PUBLIC "-//freedesktop//DTD D-BUS Bus Configuration 1.0//EN"
 "http://www.freedesktop.org/standards/dbus/1.0/busconfig.dtd">
<busconfig>
  <selinux>
  </selinux>
</busconfig>

1.2.1.7 x_contexts File

The  x_contexts file  is  mandatory to  allow X-Windows to run if  XSELinux is 
enabled. If the X-server has the XSELinux object manager enabled in the build (as 
does  Fedora),  then  it  will  always  be  enabled  unless  there  is  an 
xserver_object_manager boolean that is set to false).

The x_contexts file contents is as follows (this is a modified version taken from 
the Reference Policy):

client * system_u:object_r:unconfined_t
### Rules for X Properties
property _SELINUX_* system_u:object_r:unconfined_t
property CUT_BUFFER? system_u:object_r:unconfined_t
property *    system_u:object_r:unconfined_t

Page 7



The SELinux Notebook - Building The Sample Policy

### Rules for X Extensions
extension SELinux system_u:object_r:unconfined_t
extension *   system_u:object_runconfined_t
### Rules for X Selections
selection PRIMARY system_u:object_r:unconfined_t
selection CLIPBOARD system_u:object_r:unconfined_t
selection * system_u:object_r:unconfined_t
### Rules for X Events
event X11:KeyPress system_u:object_r:unconfined_t
event X11:KeyRelease system_u:object_r:unconfined_t
event X11:ButtonPress system_u:object_r:unconfined_t
event X11:ButtonRelease system_u:object_r:unconfined_t
event X11:MotionNotify system_u:object_r:unconfined_t
event XInputExtension:DeviceKeyPress system_u:object_r:unconfined_t
event XInputExtension:DeviceKeyRelease system_u:object_r:unconfined_t
event XInputExtension:DeviceButtonPress system_u:object_r:unconfined_t
event XInputExtension:DeviceButtonRelease system_u:object_r:unconfined_t
event XInputExtension:DeviceMotionNotify system_u:object_r:unconfined_t
event XInputExtension:DeviceValuator system_u:object_r:unconfined_t
event XInputExtension:ProximityIn system_u:object_r:unconfined_t
event XInputExtension:ProximityOut system_u:object_r:unconfined_t
event X11:ClientMessage system_u:object_r:unconfined_t
event X11:SelectionNotify system_u:object_r:unconfined_t
event X11:UnmapNotify system_u:object_r:unconfined_t
event X11:ConfigureNotify system_u:object_r:unconfined_t
event * system_u:object_r:unconfined_t

1.3 Building the Monolithic Policy
There is a simple Makefile that will build the policy, however the basic steps to build 
manually are:

1) Ensure you are logged on as ‘root’ or have access to su and that SELinux is 
running in permissive mode (setenforce 0) to perform the build process. 
It is assumed that the files are built  in the  notebook-source/basic-
selinux-policy/kernel-language/monolithic-policy 
directory.

2) Produce a policy.conf file using the build tool:

../../../notebook-tools/build-sepolicy -o policy.conf \
-r ../../flask-files

3) Produce  a  file_contexts file  with  the  contents  shown  in  the 
file_contexts   file   section. This will be used to relabel the file system.

4) Produce  a  dbus_contexts file  with  the  contents  shown  in  the 
dbus_contexts   file   section. This is required for X-Windows to load as it 
uses  the  dbus  messaging  service  that  has  a  SELinux  user  space  object 
manager.

5) Produce a  x_contexts file with the contents shown in the  x_contexts 
File section. This is required for the X-Windows object manager.

6) Find  the  maximum  policy  version  the  SELinux  kernel  will  support  by 
executing the following command:

cat /selinux/policyvers
26

Page 8



The SELinux Notebook - Building The Sample Policy

The output  for  the F-20 kernel  should be ‘29’  depending on any package 
updates.

7) Compile the policy with checkpolicy to produce the binary policy file:

checkpolicy –c29 -o policy.29 policy.conf

The output from the compilation should be:

checkpolicy: loading policy configuration from policy.conf
checkpolicy: policy configuration loaded
checkpolicy: writing binary representation (version 29) to 
policy.29

8) Make the following directories to store the policy:

mkdir /etc/selinux/monolithic-test/policy
mkdir –p /etc/selinux/monolithic-test/contexts/files

9) Copy the following files to SELinux policy area:

cp policy.29 /etc/selinux/monolithic-test/policy
cp seusers /etc/selinux/monolithic-test/seusers
cp dbus_contexts /etc/selinux/monolithic-test/contexts
cp x_contexts /etc/selinux/monolithic-test/contexts
cp default_contexts /etc/selinux/monolithic-test/contexts
cp file_contexts /etc/selinux/monolithic-test/contexts/files

10) The  file  and  directory  list  in  the  /etc/selinux/monolithic-test 
directory area should now consist of the following:

monolithic-test:
drwxr-xr-x contexts
drwxr-xr-x policy
-rw-r--r-- seusers

monolithic-test/contexts:
-rw-r--r-- dbus_contexts
-rw-r--r-- default_contexts
drwxr-xr-x files
-rw-r--r-- x_contexts

monolithic-test/contexts/files:
-rw-r--r-- file_contexts

monolithic-test/policy:
-rw-r--r-- policy.29

11) Edit the  /etc/selinux/config file and change the entries shown. This 
will set permissive mode and the location of the policy that will be loaded on 
the next re-boot. Note - do not put any spaces after these entries.

SELINUX=permissive
SELINUXTYPE=monolithic-test

12) To allow file system relabeling to be actioned on reboot execute the following 
command:

Page 9



The SELinux Notebook - Building The Sample Policy

touch /.autorelabel

13) Optionally clear the log files so that they are clear for easier reading after the 
reboot:

> /var/log/messages
> /var/log/audit/audit.log

14) Reboot  the system.  During the boot  process,  the file  system should be re-
labeled.

reboot

1.3.1 Checking the Build
Once the system has reloaded, SELinux will be running in ‘permissive’ mode. Logon 
as root and use either seaudit, troubleshooter or simply tail in a couple 
of ‘terminal windows’ to view the logs:

# In one terminal window run:
tail -f /var/log/messages

# In another terminal window run:
tail -f /var/log/audit/audit.log

There  should  be entries  for  the  boot  process  in  the  /var/log/messages file, 
however the  /var/log/audit/audit.log file should only contain entries for 
the audit daemon, user logon and role change for the logon process.

If the system is ‘working’ (i.e. it should be stable, load the desktop and allow utilities 
to be loaded from the menus), then SELinux can be set to enforcing mode by:

setenforce 1

The new policy will  be enforced and the only entries in the logs should be about 
setting enforcing mode.

If the system is unstable when rebooted, then see the Problem Resolution section for a 
possible resolution.

1.4 Building the Base Policy Module
This exercise will build the mandatory base policy module that uses the same policy 
source file as the monolithic policy discussed above.

The basic steps to produce a simple base test policy are:

1. Ensure you are logged on as ‘root’  and SELinux is  running in  permissive 
mode (setenforce 0) to perform the build process.  It is assumed that the 
files  are  built  in  the  ./notebook-source/modular-base-policy 
directory.

2. Produce a base.conf file using the build tool:

Page 10



The SELinux Notebook - Building The Sample Policy

../../../notebook-tools/build-sepolicy -o base.conf \
-d ../../flask-files

3. Produce a  base.fc file with the contents shown in the  file_contexts 
file section. This will be used to relabel the file system.

4. Produce  a  default_contexts file  with  the  contents  shown  in  the 
default_contexts file  section.  This  will  be  used  to  ensure  that  the 
correct context  is  used for the logon process (only really needed when the 
additional loadable modules are built).

5. Produce  an  seusers file  with  the  contents  shown in  the  seusers file 
section.

6. Produce  a  dbus_contexts file  with  the  contents  shown  in  the 
dbus_contexts file section. This is required for X-Windows to load as it 
uses  the  dbus  messaging  service  that  has  a  SELinux  user  space  object 
manager.

15) Produce a  x_contexts file with the contents shown in the  x_contexts 
File section. This is required for the X-Windows object manager.

7. Compile the policy with  checkmodule to produce an intermediate binary 
policy file:

checkmodule -o base.mod base.conf

The output from the compilation should be:

checkmodule:  loading policy configuration from base.conf
checkmodule:  policy configuration loaded
checkmodule:  writing binary representation to base.mod

8. Package  the  policy  with  semodule_package,  this  will  produce  a  base 
policy module file (note – if successful there are no output messages):

semodule_package -o base.pp -m base.mod -f base.fc

9. Make the following directories to store the policy:

mkdir /etc/selinux/modular-test/policy
mkdir –p /etc/selinux/modular-test/contexts/files
mkdir –p /etc/selinux/modular-test/modules/active/modules

10. Copy the following files to SELinux policy area:

cp seusers /etc/selinux/modular-test
cp dbus_contexts /etc/selinux/modular-test/contexts
cp default_contexts /etc/selinux/modular-test/contexts
cp x_contexts /etc/selinux/modular-test/contexts

11. Install the base policy with semodule. This will produce a base policy and a 
number of files, some of which will be empty (note – if successful there are no 
output messages):

Page 11



The SELinux Notebook - Building The Sample Policy

semodule -s modular-test -b base.pp 

12. The  file  and  directory  list  in  the  /etc/selinux/modular-test 
directory area should now consist of the following:

/etc/selinux/modular-test:
drwxr-xr-x. contexts
drwxr-xr-x. modules
drwxr-xr-x. policy

-rw-r--r--. seusers

/etc/selinux/modular-test/contexts:
-rw-r--r--. dbus_contexts
-rw-r--r--. default_contexts
drwxr-xr-x. files
-rw-r--r--. netfilter_contexts
-rw-r--r--. x_contexts

/etc/selinux/modular-test/contexts/files:
-rw-r--r--. file_contexts
-rw-r--r--. file_contexts.homedirs

/etc/selinux/modular-test/modules:
drwx------. active
-rw-------. semanage.read.LOCK
-rw-------. semanage.trans.LOCK

/etc/selinux/modular-test/modules/active:
-rw-r--r--. base.pp
-rw-------. commit_num
-rw-------. file_contexts
-rw-r--r--. file_contexts.homedirs
-rw-------. file_contexts.template
-rw-------. homedir_template
drwx------. modules
-rw-------. netfilter_contexts
-rw-r--r--. policy.kern
-rw-------. seusers.final
-rw-------. users_extra

/etc/selinux/modular-test/modules/active/modules:
empty

/etc/selinux/modular-test/policy:
-rw-r--r--. policy.29

13. Edit the  /etc/selinux/config file and change the entries shown. This 
will set permissive mode and the policy location that will be loaded on the 
next re-boot. Note - do not put any spaces after these entries.

SELINUX=permissive
SELINUXTYPE=modular-test

This will set permissive mode so if the policy is too restrictive it will still 
allow  a  login  at  least.  The  SELinux  policy  name/location  is  also  added 
(modular-test). Note do not put any spaces after the entries.

14. To  allow  a  file  system  relabeling  to  be  actioned  on  reboot  execute  the 
following command:

touch /.autorelabel

15. Optionally clear the log files so that they are clear for easier reading:

Page 12



The SELinux Notebook - Building The Sample Policy

> /var/log/messages
> /var/log/audit/audit.log

16. Reboot  the system.  During the boot  process,  the file  system should be re-
labeled.

reboot

1.4.1 Checking the Base Policy Build
Once the system has reloaded, SELinux will be running in ‘permissive’ mode. Logon 
as root and follow the same routine as defined in the Checking The Build section.

Page 13



The SELinux Notebook - Building The Sample Policy

2. Building the Message Filter Loadable Modules

2.1 Overview of modules
In  the  sections  that  follow  there  are  a  number  of  loadable  modules  built  with 
supporting ‘C’ programs that form a very simple message filter service as shown in 
Figure 2.1. The external and internal gateways are client / server applications making 
use of SEMARK services that  are built  into  iptables as discussed in  SELinux 
Networking section of 'The Foundations' volume. The server component can also read 
and write files to / from a protected directory area (or message queues). The message 
filter  itself  is  a  simple file  mover  application that  moves files from one queue to 
another.

Figure 2.1: Message Filter Components
The components that form the message filter are:

External  Gateway – This  has  a  loadable  module  ext_gateway.conf that 
defines the policy for the external gateway, it also includes an optional section 
that is loaded when other message filter modules are loaded. The gateway requires 
client / server applications (client.c and server.c) to be compiled for testing and 
iptables (the mangle table) to be loaded for SECMARK testing.

NetLabel Service – This is a simple netlabel.conf module that just adds a 
label at peer level.

Internal Gateway – This is a version of the external gateway module that has 
been  modified  to  handle  internal  processing  permissions 
(int_gateway.conf). It requires additional entries in the iptables as it uses a 
different network port. The same client / server applications are used as for the 
external gateway.

File Mover - This has a loadable module  move_file.conf that defines the 
policy for moving files between the external and internal gateways. There is also 
an  application  (move_file.c)  that  copies  files  from one message  queue  to 
another (but controlled by the policy).

The security policy for the message filter is simply:

1. No other application must use the secured ports configured in the iptables 
and allocated to the gateways. The secure ports are:

port 1111 and labeled int_gateway_packet_t

Page 14

External  
Traffic Internal  

Gateway
int_gateway_t

Message 
Filter

move_file_t

Linux OS

Internal  
Traffic

SELinux 
Security Policy

External  
Gateway

ext_gateway_t



The SELinux Notebook - Building The Sample Policy

port 9999 and labeled ext_gateway_packet_t
All other ports are labeled: default_secmark_packet_t

2. The message queues and files must be protected from all possible access (read, 
write, delete etc.) by other domains. 

The assumptions are:

1. The SELinux policy will always be in enforcing mode while the message filter 
is active.

2. The SELinux message filter modules may be in permissive mode for the initial 
file and directory configuration / initialisation via  restorecon (this is so 
that  permissions  such as  relabelto /  relabelfrom are  limited  to the 
absolute minimum, in fact only the iptables need relabeling permissions as 
they are loaded under the unconfined_t domain).

The modules are built and tested in the following sequence:

1. The external gateway is built along with the client / server applications. This is 
used to demonstrate the basic secmark functionality using the iptables.

2. The NetLabel module is then built to demonstrate adding a netlabel to the peer 
network service.

3. The internal gateway and the file mover application and module are finally 
built to demonstrate the overall message filter as shown in Figure 2.1.

Any comments or views on the modules, applications and their testing are welcome.

2.2 Building the SECMARK Test Loadable Module
The  SECMARK  tests  make  use  of  the  external  gateway  loadable  module.  The 
objective of this module is to prove that SECMARK labels can be added to packets, 
and that depending on the label assigned, those packets can be granted access to the 
correct domain and denied access other domains using SELinux enforcement.

The tests will use various client / server configurations using the network loop back 
(lo) interface (see Figure 2.2) as follows:

1. Use a ‘secure’ client / server running in the  ext_gateway_t domain that 
will show that packets labeled:

system_u:object_r:ext_gateway_packet_t 

on  ports  9999 will get through, while other ports will NOT get through, as 
they would be labeled: 

system_u:object_r:default_secmark_packet_t
2. Use an ‘insecure’ client / server running in the unconfined_t domain that 

will show that packets labeled:
system_u:object_r: ext_gateway_packet_t 

will NOT get through, while other ports will get through, as they would be 
labeled:

system_u:object_r:default_secmark_packet_t

Page 15



The SELinux Notebook - Building The Sample Policy

3. A mixture of secure and insecure client / server configurations to show access 
is  denied  by  SELinux  unless  both  services  are  running  in  the 
ext_gateway_t domain using port 9999 on the lo network.

Figure 2.2: SECMARK Testing – The scenarios for testing the access allowed for  
SECMARK packets. Note that not all of these tests will be described.

The  SECMARK  test  loadable  module  (ext_gateway.conf)  has  a  boolean 
called  ext_gateway_audit that  by  default  enables  the  transition,  send  and 
receive audit events to be logged when successful, these events are shown in the test  
results below. The auditallow statements can be disabled by using the following 
command:

setsebool –P ext_gateway_audit=false

To test SECMARK functionality the following will need to be built and installed:

• The  base  loadable  module  built  in  the  Building  a  Base  Loadable  Module 
Policy section is installed and active. 

• A loadable policy module (ext_gateway) that will enforce the SECMARK 
policy configured via iptables. Note the following points:

a. The  ext_gateway module  requires  a  new  role  of 
message_filter_r to be added to SELinux. This has only been 
added to demonstrate a role_transition rule. 

b. The  ext_gateway module has an  optional section that is only 
enabled when other modules are loaded as a further exercise for the 
message filter service.

• An  iptables configuration file that will set-up the mangle table to mark 
packets with SECMARK and CONNSECMARK labels.

• Two executable clients (secure_client and client) and two executable 
servers  (secure_server and  server)  that  will  be  used  to  test  the 
SECMARK functionality.  Note  that  the  clients  and servers  are  built  using 

Page 16

secure_client secure_server

client server

iptables

security table

SECMARK

CONNSECMARK

ext_gateway_t

unconfined_t



The SELinux Notebook - Building The Sample Policy

common source code, and are only labeled differently to allow testing (the 
secure  executables  are  labeled  secure_services_exec_t while  the 
others are labeled by default with unconfined_t).

The following steps need to be followed to build the test services, although there is a 
simple  Makefile  that  can  be used.  It  is  assumed  that  the services  are  installed  in 
notebook-source/basic-selinux-policy/kernel-
language/message-filter/gateways:

1. Ensure you are logged on as ‘root’  and SELinux is  running in  permissive 
mode (setenforce 0) to perform the build process.

2. Use the ext_gateway.conf loadable module file supplied in the directory.

3. Produce  a  gateway.fc file  (a  segment  that  will  be  added  to  the 
file_contexts file during the build) with the contents shown below. This 
will be used to relabel application files and directories.

/usr/local/bin/secure_client system_u:object_r:secure_services_exec_t
/usr/local/bin/secure_server system_u:object_r:secure_services_exec_t
/usr/local/bin/client system_u:object_r:unconfined_t
/usr/local/bin/server system_u:object_r:unconfined_t

4. Compile the policy with  checkmodule to produce an intermediate binary 
policy file:

checkmodule -m ext_gateway.conf -o ext_gateway.mod

5. Package the policy with  semodule_package,  this will  produce a policy 
module file:

semodule_package -o ext_gateway.pp -m ext_gateway.mod -f gateway.fc 

6. Install the loadable module with semodule (note – if successful there are no 
output messages):

semodule -v -s modular-test -i ext_gateway.pp 

7. If there are no errors reported, then the loadable module has been added to the 
policy store and loaded as a part  of the policy.  The policy module can be 
checked by:

semodule -s modular-test -l 

8. Use the ‘C’ application called  client.c and compile two versions of the 
client by running:

gcc -o secure_client client.c -lselinux
gcc -o client client.c -lselinux

9. Use the ‘C’ application called  server.c and compile two versions of the 
server by running:

gcc -o secure_server server.c -lselinux

Page 17



The SELinux Notebook - Building The Sample Policy

gcc -o server server.c -lselinux

10. Move the binaries to /usr/local/bin:

cp client /usr/local/bin
cp secure_client /usr/local/bin
cp server /usr/local/bin
cp secure_server /usr/local/bin

11. Produce  a  script  called  iptables_secmark with  the  contents  shown 
below. This will be used to load the iptables 'security' table (Note: The 
entries  for  the  internal  gateway  are  commented  out.  This  is  because  the 
module has not been built yet  and leaving these in would produce an error 
when loading the table with SELinux in enforcing mode).

# Flush the security table first:
iptables -t security -F

#-------------- INPUT IP Stream --------------------#

# This INPUT rule sets all packets to default_secmark_packet_t: as it is
# executed first:
iptables -t security -A INPUT -i lo -p tcp -d 127.0.0.0/8 -j SECMARK 
--selctx system_u:object_r:default_secmark_packet_t

# These rules will replace the above context with the internal or
# external gateway if port 9999 or 1111 is found in either the source or
# destination port of the packet:
iptables -t security -A INPUT -i lo -p tcp --dport 9999 -j SECMARK 
--selctx system_u:object_r:ext_gateway_packet_t
iptables -t security -A INPUT -i lo -p tcp --sport 9999 -j SECMARK 
--selctx system_u:object_r:ext_gateway_packet_t
#
# These are not required until using the internal gateway:
#iptables -t security -A INPUT -i lo -p tcp --dport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t
#iptables -t security -A INPUT -i lo -p tcp --sport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t

iptables -t security -A INPUT -m state --state ESTABLISHED,RELATED -j 
CONNSECMARK --save

#-------------- OUTPUT IP Stream --------------------#

# This OUTPUT rule sets all packets to default_secmark_packet_t: as it is
# executed first:
iptables -t security -A OUTPUT -o lo -p tcp -d 127.0.0.0/8 -j SECMARK 
--selctx system_u:object_r:default_secmark_packet_t

# These rules will replace the above context with the internal or
# external gateway if port 9999 or 1111 is found in either the source or
# destination port of the packet:

iptables -t security -A OUTPUT -o lo -p tcp --dport 9999 -j SECMARK 
--selctx system_u:object_r:ext_gateway_packet_t
iptables -t security -A OUTPUT -o lo -p tcp --sport 9999 -j SECMARK 
--selctx system_u:object_r:ext_gateway_packet_t
#
# These are not required until using the internal gateway:
#iptables -t security -A OUTPUT -o lo -p tcp --dport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t
#iptables -t security -A OUTPUT -o lo -p tcp --sport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t

iptables -t security -A OUTPUT -m state --state ESTABLISHED,RELATED -j 
CONNSECMARK --save

Page 18



The SELinux Notebook - Building The Sample Policy

iptables -t security -L

12. Produce a  restorefiles_gateway file with the contents shown below. 
This will be used by the restorecon command to relabel the SECMARK 
test client / server executables after compilation and if any updates are done 
later.

/usr/local/bin/secure_client
/usr/local/bin/secure_server
/usr/local/bin/client
/usr/local/bin/server

13. Run the  restorecon(8) command to relabel  the secure versions of the 
client / server as follows:

restorecon –f restorefiles_gateway

14. Check that the secure versions of the client / server are labeled correctly using 
ls –Z /usr/local/bin.

unconfined_u:object_r:unconfined_t     client
unconfined_u:object_r:secure_services_exec_t secure_client
unconfined_u:object_r:secure_services_exec_t secure_server
unconfined_u:object_r:unconfined_t     server

15. Add the message_filter_r role by running semanage as follows:

semanage user -m -R "message_filter_r unconfined_r" user_u

Note: Also need to add the  unconfined_r role otherwise semanage will 
remove it from the policy.

The installation process is now complete, the testing is discussed in the next section.

2.2.1 Testing the Module
To test  the SECMARK functionality it is recommended that three virtual terminal 
sessions are opened (as shown in Figure 2.3) for:

1. Running clients as they will display status messages if successful.

2. Running the servers as they display messages when connections are made with 
the clients.

3. Viewing the audit log file. Note that the module has auditallow rules on 
packet { send recv } so that these events can be seen.

Page 19



The SELinux Notebook - Building The Sample Policy

Figure 2.3: Testing using three virtual terminal sessions

2.2.1.1 Running the Tests

It  is  assumed that  there are three terminal  sessions logged in as root as shown in 
Figure  2.3),  with  the  client  and  server  windows  both  at  the  directory  with  the 
executable  secmark  code  and  scripts,  and  the  third  window  for  tailing  the 
audit.log file. 

Before starting the tests:

1. In the window that will display the audit log, execute the following command:

tail –f /var/log/audit/audit.log.

2. In a window run the following command to load the iptables:

./iptables_secmark

Note that it is important to load the iptables as explained in the Importance of 
Loading the   iptables   section below.

3. In a window run the following command to start enforcing policy: 

setenforce 1

Page 20



The SELinux Notebook - Building The Sample Policy

Note  that  the  server  must  be  started  before  the  client.  To  exit  any  of  the  server 
sessions press ctrl/c.

Test 1 – Running secure server and secure client sessions on port  9999 using the 
loopback interface (127.0.0.1):

1. In a window run the following command to start the secure server: 

secure_server 9999

2. In a window run the following command to start the secure client: 

secure_client 127.0.0.1 9999

The audit.log should contain only granted events on  transition,  send and 
recv (note that the transition also transitioned the role to message_filter_r):

type=AVC msg=audit(1346246513.236:179): avc:  granted  { transition } for 
pid=3750 comm="bash" path="/usr/local/bin/secure_server" dev="dm-1" 
ino=149395 scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=unconfined_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1346246513.236:179): arch=c000003e syscall=59 
success=yes exit=0 a0=1afa250 a1=1b176c0 a2=1b17ac0 a3=18 items=0 ppid=1834 
pid=3750 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 
tty=pts1 ses=2 comm="secure_server" exe="/usr/local/bin/secure_server" 
subj=unconfined_u:message_filter_r:ext_gateway_t key=(null)

type=AVC msg=audit(1346246523.519:180): avc:  granted  { transition } for 
pid=3768 comm="bash" path="/usr/local/bin/secure_client" dev="dm-1" 
ino=149393 scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=unconfined_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1346246523.519:180): arch=c000003e syscall=59 
success=yes exit=0 a0=1b2b350 a1=1b36c60 a2=1b13ac0 a3=20 items=0 ppid=2795 
pid=3768 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 
tty=pts2 ses=2 comm="secure_client" exe="/usr/local/bin/secure_client" 
subj=unconfined_u:message_filter_r:ext_gateway_t key=(null)

type=AVC msg=audit(1346246523.520:181): avc:  granted  { send } for 
pid=3768 comm="secure_client" saddr=127.0.0.1 src=33839 daddr=127.0.0.1 
dest=9999 netif=lo scontext=unconfined_u:message_filter_r:ext_gateway_t 
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet

type=AVC msg=audit(1346246523.520:181): avc:  granted  { recv } for 
pid=3768 comm="secure_client" saddr=127.0.0.1 src=33839 daddr=127.0.0.1 
dest=9999 netif=lo scontext=unconfined_u:message_filter_r:ext_gateway_t 
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet
.....
type=AVC msg=audit(1346246523.520:182): avc:  granted  { send } for 
pid=3750 comm="secure_server" saddr=127.0.0.1 src=9999 daddr=127.0.0.1 
dest=33839 netif=lo scontext=unconfined_u:message_filter_r:ext_gateway_t 
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet

type=AVC msg=audit(1346246523.520:182): avc:  granted  { recv } for 
pid=3750 comm="secure_server" saddr=127.0.0.1 src=9999 daddr=127.0.0.1 
dest=33839 netif=lo scontext=unconfined_u:message_filter_r:ext_gateway_t 
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet
.....

Test 2 – Running the server on port 9999 and the secure client on port 1234 using the 
loopback interface:

1. In a window run the following command to start the server: 

server 9999

Page 21



The SELinux Notebook - Building The Sample Policy

2. In a window run the following command to start the secure client: 

secure_client 127.0.0.1 1234
Note: ctrl/c will exit the session

There should be  a 'Connection refused' message and AVC audit messages where the 
secure client is granted the transition but denied the send:

# Note that the client is allowed to transition:
type=AVC msg=audit(1346246671.409:185): avc:  granted  { transition } for 
pid=4093 comm="bash" path="/usr/local/bin/secure_client" dev="dm-1" 
ino=149393 scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=unconfined_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1346246671.409:185): arch=c000003e syscall=59 
success=yes exit=0 a0=1b36c90 a1=1b15000 a2=1b13ac0 a3=20 items=0 ppid=2795 
pid=4093 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 
tty=pts2 ses=2 comm="secure_client" exe="/usr/local/bin/secure_client" 
subj=unconfined_u:message_filter_r:ext_gateway_t key=(null)

# But is not allowed to send message to the server as the
# packet is marked default_secmark_packet_t:
type=AVC msg=audit(1346246671.410:186): avc:  denied  { send } for 
pid=4093 comm="secure_client" saddr=127.0.0.1 src=56783 daddr=127.0.0.1 
dest=1234 netif=lo scontext=unconfined_u:message_filter_r:ext_gateway_t 
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet
type=SYSCALL msg=audit(1346246671.410:186): arch=c000003e syscall=42 
success=no exit=-111 a0=3 a1=7fffa5e06ad0 a2=10 a3=7fffa5e06840 items=0 
ppid=2795 pid=4093 auid=0 uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 
fsgid=0 tty=pts2 ses=2 comm="secure_client" 
exe="/usr/local/bin/secure_client" 
subj=unconfined_u:message_filter_r:ext_gateway_t key=(null)

Test 3 – Running both client and server sessions using port 1234 on the loopback 
interface (127.0.0.1):

1. In a window run the following command to start the server: 

server 1234

2. In a window run the following command to start the client: 

client 127.0.0.1 1234

The audit.log should contain only granted events on send and recv (note that 
there is NO transition and the role remains as unconfined_r):

type=AVC msg=audit(1249742778.361:34): avc:  granted  { send } for  pid=2964 
comm="client" saddr=127.0.0.1 src=42943 daddr=127.0.0.1 dest=1234 netif=lo 
scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet
type=AVC msg=audit(1249742778.361:34): avc:  granted  { recv } for  pid=2964 
comm="client" saddr=127.0.0.1 src=42943 daddr=127.0.0.1 dest=1234 netif=lo 
scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet
....
....
type=AVC msg=audit(1249742778.362:35): avc:  granted  { send } for  pid=2961 
comm="server" saddr=127.0.0.1 src=1234 daddr=127.0.0.1 dest=42943 netif=lo 
scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet

Page 22



The SELinux Notebook - Building The Sample Policy

type=AVC msg=audit(1249742778.362:35): avc:  granted  { recv } for  pid=2961 
comm="server" saddr=127.0.0.1 src=1234 daddr=127.0.0.1 dest=42943 netif=lo 
scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=system_u:object_r:default_secmark_packet_t tclass=packet

Test 4 – Running the server on port 9999 and the secure client on port 9999 using the 
loopback interface:

3. In a window run the following command to start the server: 

server 9999

4. In a window run the following command to start the secure client: 

secure_client 127.0.0.1 9999
Note: ctrl/c will exit the session

The client will hang, waiting for a message that will not succeed. The AVC audit 
messages show that the secure client has been granted the transition and send 
but denied the recv from the standard server (but note that the server was allowed to 
accept the connection):

type=AVC msg=audit(1249742873.035:38): avc:  granted  { transition } for 
pid=2987 comm="bash" path="/usr/local/bin/secure_client" dev=dm-0 ino=354307 
scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=unconfined_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1249742873.035:38): arch=40000003 syscall=11 success=yes 
exit=0 a0=8801cf0 a1=87e9ca8 a2=87ee8e8 a3=0 items=0 ppid=2496 pid=2987 auid=0 
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1 
comm="secure_client" exe="/usr/local/bin/secure_client" 
subj=unconfined_u:message_filter_r:ext_gateway_t key=(null)

type=AVC msg=audit(1249742873.041:39): avc:  granted  { send } for  pid=2987 
comm="secure_client" saddr=127.0.0.1 src=35900 daddr=127.0.0.1 dest=9999 
netif=lo scontext=unconfined_u:message_filter_r:ext_gateway_t 
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet
type=AVC msg=audit(1249742873.041:39): avc:  denied  { recv } for  pid=2987 
comm="secure_client" saddr=127.0.0.1 src=35900 daddr=127.0.0.1 dest=9999 
netif=lo scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=system_u:object_r:ext_gateway_packet_t tclass=packet

The reader can experiment with the remaining scenarios to find if there are any holes 
in the configuration.

2.2.2 Points to Note

2.2.2.1 Importance of Loading the iptables 

The external gateway policy module relies on the fact that the iptables are loaded 
correctly to label the network packets. If they are not loaded, or (for example) the 
command:

iptables -t security –F

was allowed to be run that removes the  security table entries, then the network 
packets would be labeled with the initial SID default of unconfined_t. The result 
is  of  course  that  all  packets  would  be  allowed.  For  example,  running  the 

Page 23



The SELinux Notebook - Building The Sample Policy

secure_client and  standard server on port 9999 with no iptables loaded 
would have the following audit.log entries (as all traffic on all ports would flow, 
as no policy is being enforced):

type=AVC msg=audit(1247241956.542:32): avc:  granted  { transition } for 
pid=2876 comm="bash" path="/usr/local/bin/secure_client" dev=dm-0 ino=354307 
scontext=unconfined_u:unconfined_r:unconfined_t 
tcontext=unconfined_u:message_filter_r:ext_gateway_t tclass=process
type=SYSCALL msg=audit(1247241956.542:32): arch=40000003 syscall=11 success=yes 
exit=0 a0=9474a68 a1=947f460 a2=946d8e8 a3=0 items=0 ppid=2634 pid=2876 auid=0 
uid=0 gid=0 euid=0 suid=0 fsuid=0 egid=0 sgid=0 fsgid=0 tty=pts0 ses=1 
comm="secure_client" exe="/usr/local/bin/secure_client" 
subj=unconfined_u:message_filter_r:ext_gateway_t key=(null)

Compare this  audit.log trail with those shown in  Test 4 that was run using the 
same scenario except that the iptables were loaded, thus denying the recv.

2.2.2.2 Running tests out of sequence

The server component allows files to be created in an ‘in queue’, and read / unlinked 
for the ‘out queue’ when running the message filter test. However should the message 
filter tests be run (see the Testing the Message Filter Build section) before the internal 
gateway and file mover loadable modules are loaded, the following will be noted:

1. When running the unconfined client / server, files can be written (server 
1234 in with  client 127.0.0.1 1234), moved (move_file) and 
then  read  /  unlinked  (server 1234 out with  client 127.0.0.1 
1234).  This  is  because  the  base  policy  allows  unconfined_t to  do 
anything it likes.

2. When running the secure  client  /  server,  files  cannot  be written  to  the ‘in 
queue’  or  read  /  unlinked  from  the  ‘out  queue’.  This  is  because  the 
ext_gateway_t process does not have the required allow permissions to 
do this.

2.3 Building the NetLabel Loadable Module
This simple module enables a NetLabel  netlabel_peer_t label to be added to 
the  network  connection  to  show that  additional  information  at  the  peer  level  (as 
secmark handles packet level labeling) can be added.

Because this basic policy has the Policy Capabilities1 network_peer_controls 
set to ‘0’, the full peer controls are not enabled, however the legacy implementation 
will use the  tcp_socket object class with the  recvfrom permission to manage 
peer labeling for this example.

For an example where the  network_peer_controls is set to ‘1’, allowing the 
use of the new controls.

The following steps need to be followed to build the test services (it is assumed that 
the  files  are  built  in  the  notebook-source/basic-selinux-
policy/message-filter/netlabel directory):

1 See the SELinux Filesystem section in 'The Foundations' volume.

Page 24



The SELinux Notebook - Building The Sample Policy

1. Ensure you are logged on as ‘root’  and SELinux is  running in  permissive 
mode (setenforce 0) to perform the build process.

2. Download and install the NetLabel rpm:

yum install netlabel_tools
# yum will then install netlabel_tools

3. Produce a netlabel.conf loadable module file with a text editor (such as 
vi or gedit) containing the contents shown below:

module netlabel 1.1.0;
#
##########################################################################
#                                                                        #
# This Loadable Module will allow the netlabels to be added and checked  #
# within the client / server applications that form part of the SECMARK  #
# test examples.                                                         #
# Note: This module assumes that:                                        #
#        /selinux/policy_capabilities/network_peer_controls = 0          #
#                                                                        #
# (1) Install netlabel_tools (yum install netlabel_tools)                #
#                                                                        #
# (2) Install this loadable module.                                      #
#                                                                        #
# (3) Run the following netlabelctl command:                             #
#        netlabelctl unlbl add interface:lo address:127.0.0.1 \          #
#                   label:system_u:object_r:netlabel_peer_test_t         #
#                                                                        #
# (4) Run netlabelctl -p unlbl list command to check all is okay.        #
#                                                                        #
# (5) Run the secure and standard client/server that should now display  #
#     the netlabel_peer_test_t as the peer context.                      #
#                                                                        #
##########################################################################
#

require {
type ext_gateway_t, unconfined_t;
class tcp_socket { recvfrom };

}
type netlabel_peer_test_t;
type socket_t;

# These are used when /selinux/policy_capabilities/network_peer_controls = 0
allow ext_gateway_t netlabel_peer_test_t : tcp_socket recvfrom;
allow unconfined_t netlabel_peer_test_t : tcp_socket recvfrom;

#
####################### START OPTIONAL SECTION ###########################
#
optional {

require {
# This is defined in the int_gateway.conf module:
type int_gateway_t;

}
allow int_gateway_t netlabel_peer_test_t : tcp_socket recvfrom;

}
#
########################## END OPTIONAL SECTION ###########################
#

4. Compile and install the module as follows:

checkmodule -m netlabel.conf -o netlabel.mod
semodule_package -o netlabel.pp -m netlabel.mod 
semodule -v -s modular-test -i netlabel.pp

Page 25



The SELinux Notebook - Building The Sample Policy

5. Run the following command to add the netlabel_peer_test_t label as 
follows:

netlabelctl unlbl add interface:lo address:127.0.0.1 \ 
    label:system_u:object_r:netlabel_peer_test_t

6. Run enforcing mode:

setenforce 1

7. Run either the client / server or secure_client / secure_server applications as 
shown in the SECMARK tests. There should now be a peer context displayed 
as shown in Figure 2.4.

Figure 2.4: Running the secure client / server with NetLabel enabled

To remove the NetLabel label, the following command can be run:

netlabelctl unlbl del interface:lo address:127.0.0.1 \
label:system_u:object_r:netlabel_peer_test_t

2.4 Building the Remaining Message Filter Service
To complete the overall message filter shown in Figure 2.1, the internal gateway and 
file mover applications and policy modules need to be built. These are explained in 
this section plus how to test the modules via simple helper scripts. The source and 
scripts are included in the source code rpm package. 

Page 26



The SELinux Notebook - Building The Sample Policy

The following will be built in this section:

1. The internal gateway policy module.

2. The file mover application.

3. The file mover policy module.

2.4.1 Internal Gateway Loadable Policy Module
This loadable module will apply policy rules for the internal  gateway.  The policy 
applies dontaudit rules for those permissions known not to cause problems.

The following steps need to be followed to build the internal gateway module. It is 
assumed that the services are installed in notebook-source/basic-selinux-
policy/kernel-language/message-filter/gateways:

1. Ensure you are logged on as ‘root’  and SELinux is  running in  permissive 
mode (setenforce 0) to perform the build process.

2. Use  the  int_gateway.conf loadable  module  file  supplied  in  the 
gateways directory.

3. Compile the policy with  checkmodule to produce an intermediate binary 
policy file:

checkmodule -m int_gateway.conf -o int_gateway.mod

The output from the compilation should be:

checkmodule:  loading policy configuration from base.conf
checkmodule:  policy configuration loaded
checkmodule:  writing binary representation to base.mod

4. Package the policy with  semodule_package,  this will  produce a policy 
module file (note – if successful there are no output messages):

semodule_package -o int_gateway.pp -m int_gateway.mod 

5. Install the loadable module with semodule (note – if successful there are no 
output messages):

semodule -v -s modular-test -i int_gateway.pp 

6. If there are no errors reported, then the loadable module has been added to the 
policy store and loaded as a part  of the policy.  The policy module can be 
checked by:

semodule -s modular-test -l 

The results should be:

ext_gateway 1.1.0
int_gateway 1.1.0

Page 27



The SELinux Notebook - Building The Sample Policy

netlabel    1.1.0

The file mover application can now be built.

2.4.2 File Move Application
This  'C'  program  will  move  files  from  one  directory  to  another  and  works  in 
conjunction with the move_file.conf loadable module that will apply the policy 
rules.

The following steps need to be followed to build the file move application and it is 
assumed that the services are installed in notebook-source/basic-selinux-
policy/message-filter/move_file:

1. Use the move_file.c program supplied in the move_file directory.

2. Compile the move_file.c program:

gcc -o move_file move_file.c

3. Move the binary to /usr/local/bin:

mv move_file /usr/local/bin

To complete the message filter, the file mover loadable module will now be built.

2.4.3 File Mover Loadable Policy Module
This loadable module will allow a file to be moved from one directory to another 
using the file  mover  application built  above with minimum privileges.  The policy 
applies dontaudit rules for those permissions known not to cause problems.

Note that in the policy there is a statement that allows a counter to be displayed on the 
console for testing purposes.

The following steps need to be followed to build the file  mover  module and it  is 
assumed that the services are installed in notebook-source/basic-selinux-
policy/message-filter/move_file:

1. Ensure you are logged on as ‘root’  and SELinux is  running in  permissive 
mode (setenforce 0) to perform the build process.

2. Use the move_file.conf module supplied in the move_file directory.

3. Produce  a  move_file.fc file  (a  segment  that  will  be  added  to 
file_contexts file during the build) with the contents shown below. This 
will be used to relabel application files and directories.

# The Move File process makes use of two directory structures
# (in & out) that are labeled as follows:

/usr/message_queue/in_queue -d system_u:object_r:in_queue_t
/usr/message_queue/out_queue -d system_u:object_r:out_queue_t

# Ensure that any files are also relabeled:

Page 28



The SELinux Notebook - Building The Sample Policy

/usr/message_queue/in_queue(/.*)? -- system_u:object_r:in_file_t
/usr/message_queue/out_queue(/.*)? -- system_u:object_r:out_file_t

# The Move File 'C' application is labeled:
/usr/local/bin/move_file -- system_u:object_r:move_file_exec_t

4. Produce a  restorecon_files file with the contents shown below. This 
will be used by the  restorecon command to relabel application files and 
directories after any updates.

/usr/message_queue/in_queue
/usr/message_queue/out_queue
/usr/local/bin/move_file

5. Compile the policy with  checkmodule to produce an intermediate binary 
policy file:

checkmodule -m move_file.conf -o move_file.mod

The output from the compilation should be:

checkmodule:  loading policy configuration from base.conf
checkmodule:  policy configuration loaded
checkmodule:  writing binary representation to base.mod

6. Package the policy with  semodule_package,  this will  produce a policy 
module file (note – if successful there are no output messages):

semodule_package -o move_file.pp -m move_file.mod -f move_file.fc 

7. Make the directories required by the application.  These need to be created 
because when semodule loads the policy, it will run setfiles to set the 
file  contexts  correctly  (using  the  contents  of  the  move_file.fc file 
produced in step 3).

mkdir -p /usr/message_queue/in_queue
mkdir -p /usr/message_queue/out_queue

8. Install the loadable module with semodule (note – if successful there are no 
output messages):

semodule -v -s modular-test -i move_file.pp 

9. If there are no errors reported, then the loadable module has been added to the 
policy store and loaded as a part  of the policy.  The policy module can be 
checked by:

semodule -s modular-test -l 

The results should be:

ext_gateway 1.1.0
int_gateway 1.1.0

Page 29



The SELinux Notebook - Building The Sample Policy

move_file   1.1.0
netlabel    1.1.0

10. Uncomment  the  internal  gateway  entries  in  the  iptables file  (notebook-
source/basic-selinux-policy/kernel-language/message-
filter/gateways/iptables_secmark) that was produced in step 13 of the Building 
the SECMARK Test Loadable Module section:

....
# These are not required until using the internal gateway:
iptables -t security -A INPUT -i lo -p tcp --dport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t
iptables -t security -A INPUT -i lo -p tcp --sport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t
.....
....
#-------------- OUTPUT IP Stream --------------------#
....
#
# These are not required until using the internal gateway:
iptables -t security -A OUTPUT -o lo -p tcp --dport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t
iptables -t security -A OUTPUT -o lo -p tcp --sport 1111 -j SECMARK 
--selctx system_u:object_r:int_gateway_packet_t
....

11. Ensure  all  the  files  are  correctly  labeled  by  running  the  restorecon 
command using the input file produced in step 4 above:

restorecon -r -f restorecon_file

12. Run enforcing mode:

setenforce 1

The message filter should now be ready to test.

2.4.4 Testing the Message Filter Build
To test the message filter it is recommended that four virtual terminal sessions are 
opened (as shown in Figure 2.5) for:

1. Running  the  external  gateway  client  as  it  will  display  status  messages  if 
successful. This is shown on bottom left hand side using port 9999. Note that  
this  process  is  run  directly  from the  command  line  by  secure_server 
9999 as it will automatically transition to the ext_gateway_t domain by 
the policy rules.

1. Running  the  internal  gateway  client  as  it  will  display  status  messages  if 
successful.. This is shown on bottom right hand side using port 1111. Note 
that this process (and the secure server for the internal gateway) has to be run 
via the runcon command because of the type enforcement rules discussed in 
the Type Enforcement Rules section of 'The Foundations' volume.

2. Running the servers as they display messages when connections are made with 
the clients.

Page 30



The SELinux Notebook - Building The Sample Policy

3. Viewing the audit log file. Note that the module has auditallow rules on 
packet { send recv } so that these events can be seen. This is top left.

4. Starting and viewing the file mover application as this will be run to display a 
count of the files being moved. This is top right.

Figure 2.5: Testing the message filter service

If there are four terminal sessions logged in as root as shown in Figure 2.5, then the 
follow commands will need to be executed to show the message filter is working: 

1. In the session that will display the audit log, execute the following command:

tail –f /var/log/audit/audit.log.

2. In a session run the following command to load the iptables (it is assumed 
that the current directory is where the file is located):

./iptables_secmark

3. Each of the server processes for the gateways will be run in background using 
one of the sessions with the following commands:

# Start the external gateway in background with the ‘in’ argument
# so that files are created in the in_queue with the communications
# traffic:

secure_server 9999 in &

# Start the internal gateway in background using the runcon
# command with the ‘out’ argument so that files are read from the
# out_queue:

Page 31



The SELinux Notebook - Building The Sample Policy

runcon -t int_gateway_t -r message_filter_r secure_server 1111 out &

4. In a session start the file mover application with a time in seconds argument so 
that it will loop and display the number of files moved:

move_file 5

5. In a session start the secure external gateway client:

secure_client 127.0.0.1 9999

6. In  a  session  start  the  secure  internal  gateway  client  using  the  runcon 
command:

runcon  -t int_gateway_t -r message_filter_r secure_client 127.0.0.1 1111

7. Keep repeating the client commands shown in steps 5 and 6 and the messages 
should be displayed in each window as the clients are run. 

If the external gateway client is run a number of times, the messages will be 
read from the in_queue by the file mover and queued to the out_queue, 
the  internal  gateway  client  can  then  be  run  to  read  each  message  off  the 
out_queue. The queues can be investigated for their context by using  ls 
-Z,  however  to  do  this,  enforcing  mode  must  be  off  otherwise 
unconfined_t (that is the logon sessions domain) cannot read these areas.

Page 32


