FreeComputerBooks.com
Free Computer, Mathematics, Technical Books and Lecture Notes, etc.


Introduction to Probability, Statistics, and Random Processes
This book introduces students to probability, statistics, and stochastic processes. It provides a clear and intuitive approach to these topics while maintaining mathematical accuracy.

Stochastic Differential Equations: Models and Numerics
The goal of this book is to give useful understanding for solving problems formulated by stochastic differential equations models in science, engineering and mathematical finance. Typically, these problems require numerical methods to obtain a solution.

Probability Theory: The Logic of Science (E. T. Jaynes)
Going beyond the conventional mathematics of probability theory, this study views the subject in a wider context. It discusses new results, along with applications of probability theory to a variety of problems.

Basic Probability Theory (Robert B. Ash)
This introduction book emphasizes the probabilistic way of thinking, surveys random variables, conditional probability and expectation, characteristic functions, infinite sequences of random variables, Markov chains, and an introduction to statistics.

Applied Probability (Paul E. Pfeiffer)
In addition to an introduction to the essential features of basic probability in terms of a precise mathematical model, the work describes and employs user defined MATLAB procedures and functions to solve many important problems in basic probability.

Applied Stochastic Processes in Science and Engineering
Post under Probability, Stochastic Process, Queueing Theory, etc. on Sat Sep 07, 2013
This book introduces modern concepts of applied stochastic processes is written for a broad range of applications in diverse areas of engineering and the sciences.

Probability: Theory and Examples (Rick Durrett)
This book is a classic introduction to probability theory covering laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion.

Probability Theory and Mathematical Statistics (Prasanna Sahoo)
This book is both a tutorial and a textbook. Itk presents an introduction to probability and mathematical statistics and it is intended for students already having some elementary mathematical background.

Lectures on Probability Theory and Mathematical Statistics
This book is a collection of lectures on probability theory and mathematical statistics. It provides an accessible introduction to topics that are not usually found in elementary textbooks.

Introduction to Probability (Charles M. Grinstead and J. Laurie Snell)
The book is a beautiful introduction to probability theory at the beginning level. The book contains a lot of examples and an easy development of theory without any sacrifice of rigor, keeping the abstraction to a minimal level.

Probabilistic Programming and Bayesian Methods for Hackers
This book is designed as an introduction to Bayesian inference from a computational understandingfirst, and mathematicssecond, point of view. The book assumes no prior knowledge of Bayesian inference nor probabilistic programming.

Think Stats, 2nd Edition: Exploratory Data Analysis in Python
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.

Gaussian Processes for Machine Learning (Carl E. Rasmussen)
This book provides a longneeded systematic and unified treatment of theoretical and practical aspects of Gaussian Processes (GPs) in machine learning. It deals with the supervisedlearning problem for both regression and classification.

From Algorithms to ZScores: Probabilistic and Statistical Modeling
This is a textbook for a course in mathematical probability and statistics for computer science students.

O'Reilly® Think Stats: Probability and Statistics for Programmers
This book shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.

Stochastic Modeling and Control (Ivan Ganchev Ivanov)
The book provides a selfcontained treatment on practical aspects of stochastic modeling and calculus including applications drawn from engineering, statistics, and computer science.

DiscreteEvent Control of Stochastic Networks (Eitan Altman, et al)
Opening new directions in research in both discrete event dynamic systems as well as in stochastic control, this volume focuses on a wide class of control and of optimization problems over sequences of integer numbers.

Stochastic Calculus and Finance (Steven E. Shreve)
The book gives both precise statements of results, plausibility arguments, and even some proofs, but more importantly intuitive explanations developed and refine through classroom experience with this material are provided.

Probability, Geometry and Integrable Systems (Mark Pinsky, et al)
The three main themes of this book, probability theory, differential geometry, and the theory of integrable systems, reflect the broad range of mathematical interests of Henry McKean, to whom it is dedicated.

Introduction to Probability and Statistics Using R (G. Jay Kerns)
This is a textbook for an undergraduate course in probability and statistics. Calculus and some linear algebra knowledge is required.

Probability for Finance (Patrick Roger)
This book is intended to be a technical pussort for students in finance. It provides a foundation for probability based on game theory rather than measure theory.

Stochastic Processes for Finance (Patrick Roger)
This book is a wellwritten text that treats the key classical models of finance through an applied probability approach.

Theory and Applications of Monte Carlo Simulations (Wai Kin Chan)
The purpose of this book is to introduce researchers and practitioners to recent advances and applications of Monte Carlo Simulation (MCS). Random sampling is the key of the MCS technique.

Lists, Decisions and Graphs  With an Introduction to Probability
In this book, four basic areas of discrete mathematics are presented: Counting and Listing (Unit CL), Functions (Unit Fn), Decision Trees and Recursion (Unit DT), and Basic Concepts in Graph Theory (Unit GT).

Probability and Stochastic Processes
This is the previous page of Probability and Stochastic Process, we are in the processing to convert all the books there to the new page. Please check this page daily!!!




















