Processing ......
FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World
 
Recurrent Neural Networks and Soft Computing
Top Free Programming Books 🌠 - 100% Free or Open Source!
  • Title Recurrent Neural Networks and Soft Computing
  • Author(s) Mahmoud ElHefnawi and Mohamed Mysara
  • Publisher: IN-TECH (March 30, 2012); eBook (Creative Commons Licensed)
  • License(s): Attribution 3.0 Unported (CC BY 3.0)
  • Hardcover 304 pages
  • Language: English
  • ISBN-10: N/A
  • ISBN-13: 978-953-51-0409-4
  • Share This:  

Book Description

New applications in recurrent neural networks are covered by this book, which will be required reading in the field. Methodological tools covered include ranking indices for fuzzy numbers, a neuro-fuzzy digital filter and mapping graphs of parallel programmes. The scope of the techniques profiled in real-world applications is evident from chapters on the recognition of severe weather patterns, adult and foetal ECGs in healthcare and the prediction of temperature time-series signals.

Additional topics in this vein are the application of AI techniques to electromagnetic interference problems, bioprocess identification and I-term control and the use of BRNN-SVM to improve protein-domain prediction accuracy. Recurrent neural networks can also be used in virtual reality and nonlinear dynamical systems, as shown by two chapters.

About the Authors
  • Dr Mahmoud ElHefnawi is the the Biomedical informatics and Chemoinformatics group leader at the Centre of Excellence for Advanced Sciences(CEAS) and Informatics and Systems Department, National Research Centre NRC).
Reviews, Ratings, and Recommendations: Related Book Categories: Read and Download Links: Similar Books:
  • Recurrent Neural Networks for Temporal Data Processing

    By presenting the latest research work the book demonstrates how real-time recurrent neural networks (RNNs) can be implemented to expand the range of traditional signal processing techniques and to help combat the problem of prediction.

  • Recurrent Neural Networks (Xiaolin Hu, et al)

    This book investigates the following Recurrent Neural Networks (RNNs) models which solve some practical problems, together with their corresponding analysis on stability and convergence.

  • A Brief Introduction to Neural Networks (David Kriesel)

    Introduces the Java programmer to the world of Neural Networks and Artificial Intelligence using SNIPE. Examples include the traveling salesman problem, handwriting recognition, financial prediction, game strategy, mathematical functions, and Internet bots.

  • Artificial Neural Networks - Models and Applications

    This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique. It contains chapters on basic concepts of artificial neural networks.

  • Artificial Neural Networks - Architectures and Applications

    This book covers architectures, design, optimization, and analysis of artificial neural networks as well as applications of artificial neural networks in a wide range of areas including biomedical, industrial, physics, and financial applications.

  • Artificial Neural Networks - Methodological Advances and Apps

    The book begins with fundamentals of artificial neural networks, which cover an introduction, design, and optimization. Advanced architectures for biomedical applications, which offer improved performance and desirable properties, follow.

  • Neural Network Toolbox for MATLAB (Howard Demuth, et al)

    It provides algorithms, functions, and apps to create, train, visualize, and simulate neural networks. You can perform classification, regression, clustering, dimensionality reduction, time-series forecasting, and dynamic system modeling and control.

  • Neural Networks Using C# Succinctly (James McCaffrey)

    This book teaches you how to create your own neural network to solve classification problems, or problems where the outcomes can only be one of several values. Learn about encoding and normalizing data, activation functions and how to choose the right one.

Book Categories
:
Other Categories
Resources and Links