
FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World
|
|
- Title Deep Learning in Neural Networks: An Overview
- Author(s) Juergen Schmidhuber
- Publisher: arxiv.org and University of Lugano; eBook (Creative Commons Licensed)
- License(s): Creative Commons License (CC)
- Hardcover N/A
- eBook PDF (206 pages)
- Language: English
- ISBN-10: N/A
- ISBN-13: N/A
- Share This:
![]() |
In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium. Shallow and deep learners are distinguished by the depth of their credit assignment paths, which are chains of possibly learnable, causal links between actions and effects. It reviews deep supervised learning (also recapitulating the history of backpropagation), unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
About the Authors- Juergen Schmidhuber is a computer scientist most noted for his work in the field of artificial intelligence, deep learning and artificial neural networks.

-
Understanding Deep Learning (Simon J.D. Prince)
An authoritative, accessible, and up-to-date treatment of deep learning that strikes a pragmatic middle ground between theory and practice. Only the most important ideas to provide a high density of critical information in an intuitive and digestible form.
-
Manifold Learning: Model Reduction in Engineering
The aim is to provide tools for a better understanding and implement reduced order models by using: physics-based models, synthetic data forecast by these models, experimental data and deep learning algorithms.
-
The Principles of Deep Learning Theory: An Effective Approach
This textbook establishes a theoretical framework for understanding deep learning models of practical relevance, provide clear and pedagogical explanations of how realistic deep neural networks actually work.
-
The Little Book of Deep Learning (François Fleuret)
This book is a short introduction to deep learning for readers with a STEM background, originally designed to be read on a phone screen, is limited to the background necessary to understand a few important models.
-
The Shallow and the Deep: Introduction to Neural Networks
This book is a collection of lecture notes that offers an accessible introduction to Neural Networks and machine learning in general. The focus lies on classical machine learning techniques, with a bias towards classification and regression.
-
Gradient Expectations: Structure of Predictive Neural Networks
An insightful investigation into the mechanisms underlying the predictive functions of neural networks - and their ability to chart a new path for AI. Delve into the known neural architecture of the mammalian brain to illuminate the structure of predictive networks.
-
Mathematical Introduction to Deep Learning (Arnulf Jentzen, et al)
This book aims to provide an introduction to the topic of deep learning algorithms, coverss essential components of deep learning algorithms in full mathematical detail including different Artificial Neural Network (ANN) architectures and algorithms.
-
Deep Learning (Ian Goodfellow, et al)
Written by three experts, this is the only comprehensive book on the subject. It offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning.
:
|
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |
|
![]() |