Top Free Data Science Books
  • Home
  • Top Books
    • Programming
    • Python
    • C++
    • Java
    • Algorithms
    • JavaScript
    • Networking
    • C
    • Machine Learning
    • Data Science
    • Web Programming
    • Unix/Linux
    • Mathematics
  • Categories
    • Computer Languages
    • Computer Science
    • Data Science/Databases
    • Electrical Engineering
    • Java and JEE
    • Linux, Unix, BSD, MacOS
    • Mathematics
    • Microsoft and .NET
    • Mobile Computing
    • Networking/Communications
    • Sostware Engineering
    • Special Topics
    • Web Design/Programming
  • About
  • An Introduction to R and Python for Data Analysis: A Side-By-Side Approach (2023)
  • Introduction to Python for Econometrics, Statistics, and Data Analysis (2021)
  • Veridical Data Science: Data Analysis and Decision Making (2024)
  • Julia Data Science (Jose Storopoli, et al.)
  • The Data Science Workshop, 2nd Edition (Anthony So, et al.)
  • Data Science Live Book: An Intuitive and Practical Approach
  • Introduction to Data Science (Rafael A. Irizarry)
  • Python Data Science Handbook: Essential Tools (Jake VanderPlas)
  • Python for Data Analysis: Data Wrangling with pandas, NumPy, and Jupyter (2023)
  • Tidyverse Skills for Data Science (Carrie Wright, et al)
  • Doing Data Science in R: An Introduction for Social Scientists
  • Data Mining and Machine Learning: Fundamental Concepts and Algorithms
  • Mining of Massive Datasets (Jure Leskovec, et al)
  • Data Mining for the Masses (Matthew North)
  • Fundamentals of Data Visualization: Informative Figures
  • Data Visualization: A Practical Introduction (Kieran Healy)
  • Hands-On Data Visualization: From Spreadsheets to Code
  • R Graphics Cookbook: Practical Recipes for Visualizing Data
  • Engineering of Big Data Processing (Piotr FulmaƄski)
  • Algorithms for Big Data (Hannah Bast, et al)
  • Engineering Agile Big-Data Systems (Kevin Feeney, et al)
  • SQL Performance Explained: Everything Developers Need to Know
  • Database Lifecycle Management: Achieving Continuous Delivery
  • The Internals of PostgreSQL (Hironobu Suzuki)
  • Introduction to Data Science (Rafael A. Irizarry)
  • Introduction to Probability for Data Science (Stanley Chan)
  • Data Science at the Command Line, 2nd Ed. (Jeroen Janssens)
  • Computational and Inferential: The Foundations of Data Science
  • Data Science: Theories, Models, Algorithms, and Analytics
  • Geographic Data Science with Python (Sergio Rey, et al.)
  • Geographic Data Science with R: Visualizing and Analyzing
  • R for Geographic Data Science (Stefano De Sabbata)
  • Spatial Data Science: With Applications in R (Edzer Pebesma, et al)
  • R for Data Science: Visualize, Model, Transform, Tidy, Import
  • R Programming for Data Science (Roger D. Peng)
  • Spectral Feature Selection for Data Mining (Zheng A. Zhao, et al.)
  • Understanding Big Data: Analytics for Hadoop and Streaming Data
  • Kafka: The Definitive Guide: Real-Time Data and Stream Processing
  • Making Sense of Stream Processing: Behind Apache Kafka
  • Scientific Visualisation: Python and Matplotlib (Nicolas P. Rougier)
  • Bayesian Data Analysis (Andrew Gelman, et al.)
  • Mining Social Media: Finding Stories in Internet Data
  • Text Processing in Python (David Mertz)
  • Statistical Inference via Data Science: A ModernDive into R and the Tidyverse