FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World
|
|
- Title Mining of Massive Datasets
- Author(s) Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman
- Publisher: Cambridge University Press; 3rd edition (February 13, 2020); eBook (Online Edition)
- Permission: By agreement with the publisher, you can download the book for free from the book's homepage.
- Hardcover 565 pages
- eBook PDF files
- Language: English
- ISBN-10: 1108476341
- ISBN-13: 978-1108476348
- Share This:
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining.
This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically.
The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets and clustering.
This second edition includes new and extended coverage on social networks, machine learning and dimensionality reduction.
About the Authors- Jure Leskovec is Assistant Professor of Computer Science at Stanford University. His research focuses on mining large social and information networks.
- Anand Rajaraman is a serial entrepreneur, venture capitalist, and academic based in Silicon Valley. He is a Founding Partner of two early-stage venture capital firms, Milliways Labs and Cambrian Ventures.
- Jeffrey David Ullman is the Stanford W. Ascherman Professor of Computer Science (Emeritus) and he is currently the CEO of Gradiance. His research interests include database theory, data mining, and education using the information infrastructure. He is one of the founders of the field of database theory, and was the doctoral advisor of an entire generation of students who later became leading database theorists in their own right.
-
Data Mining for the Masses (Matthew North)
This book uses simple examples, clear explanations and free, powerful, easy-to-use software to teach you the basics of data mining; techniques that can help you answer some of your toughest business questions.
-
Data Mining and Analysis: Fundamental Concepts and Algorithms
This textbook provides a broad yet in-depth overview of data mining, integrating related concepts from machine learning and statistics. The main parts of the book include exploratory data analysis, pattern mining, clustering, and classification.
-
Spectral Feature Selection for Data Mining (Zheng A. Zhao, et al.)
This book introduces a novel feature selection technique that establishes a general platform for studying existing feature selection algorithms and developing new algorithms for emerging problems in real-world applications.
-
A Programmer's Guide to Data Mining (Ron Zacharski)
This book is a tool for learning basic data mining techniques. If you are a programmer interested in learning a bit about data mining you might be interested in a beginner's hands-on guide as a first step. That's what this book provides.
-
An Introduction to Data Mining (Dr. Saed Sayad)
This book presents fundamental concepts and algorithms for those learning data mining for the first time, provides both theoretical and practical coverage of all data mining topics. Includes extensive number of integrated examples and figures.
-
Data Mining Desktop Survival Guide (Graham William)
This book thoroughly acquaints you with the new generation of data mining tools and techniques and shows you how to use them to make better business decisions. Assuming no prior knowledge of R or data mining/statistical techniques.
-
Mining Social Media: Finding Stories in Internet Data
This book shows you how to use Python and key data analysis tools to find the stories buried in social media. Perform advanced data analysis using Python, Jupyter Notebooks, and the Pandas library.
-
Social Media Mining: An Introduction (Reza Zafarani, et al)
This textbook introduces the unique problems arising from social media data and presents fundamental concepts, emerging issues, and effective algorithms for network analysis and data mining.
-
Mining the Web: Discovering Knowledge from Hypertext Data
This is is the first book devoted entirely to techniques for producing knowledge from the vast body of unstructured Web data. Building on an initial survey of infrastructural issues-including Web crawling and indexing.
-
Twitter Data Analytics (Shamanth Kumar, et al)
This book provides methods for harnessing Twitter data to discover solutions to complex inquiries. The brief introduces the process of collecting data through Twitter's APIs and offers strategies for curating large datasets.
-
O'Reilly® Mining the Social Web, 2nd Edition (Matthew A. Russell)
This book shows you how to answer these questions like how can you tap into social data and discover who's connecting with whom, which insights are lurking just beneath the surface, and what people are talking about?
:
|
|