FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World
|
|
- Title: Big Data on Real-World Applications
- Author(s) Sebastian Ventura Soto
- Publisher: InTech; eBook (Creative Commons Licensed)
- License(s): CC BY 3.0
- Hardcover/Paperback: 122 Pages
- eBook: PDF Files
- Language: English
- ASIN: N/A
- ISBN-10: N/A
- ISBN-13: 978-953-51-2490-0 / 978-953-51-2489-4
- Share This:
As technology advances, high volumes of valuable data are generated day by day in modern organizations. The management of such huge volumes of data has become a priority in these organizations, requiring new techniques for data management and data analysis in Big Data environments. These environments encompass many different fields including medicine, education data, and recommender systems.
The aim of this book is to provide the reader with a variety of fields and systems where the analysis and management of Big Data are essential. This book describes the importance of the Big Data era and how existing information systems are required to be adapted to face up the problems derived from the management of massive datasets.
About the Authors- Sebastian Ventura received the B.Sc. and Ph.D. degrees in sciences from the University of Cordoba in 1989 and 1996, respectively. He is currently an Associate Professor in the Department of Computer Science and Numerical Analysis, University of Cordoba, where he is the Head of the Knowledge Discovery and Intelligent Systems Research Laboratory.
- Big Data on Real-World Applications (Sebastian Ventura Soto)
- PDF Format
- Big Data Analytics (Radha Shankarmani)
-
Engineering of Big Data Processing (Piotr FulmaĆski)
This book is addressed to all the people who want to understand how Big Data differs from Data and why they should be treated different way. It may be good both for someone with no computer scientist background and for those who have some IT experience.
-
Algorithms for Big Data (Hannah Bast, et al)
This open access book surveys the progress in addressing selected challenges related to the growth of big data in combination with increasingly complicated hardware. Tackles problems such as transportation systems, energy supply, medicine.
-
Engineering Agile Big-Data Systems (Kevin Feeney, et al)
This book outlines an approach to dealing with problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals.
-
Knowledge Graphs and Big Data Processing (Valentina Janev, et al)
Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions.
-
Big Data in Context: Legal, Social and Technological Insights
This book sheds new light on a selection of big data scenarios from an interdisciplinary perspective. it provides a comprehensive overview of and introduction to the emerging challenges regarding big data.
-
Modelling and Simulation for Big Data Applications
Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations.
-
Kafka: The Definitive Guide: Real-Time Data and Stream Processing
Through detailed examples, you'll learn Kafka's design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer.
-
Designing Event-Driven Systems (Ben Stopford)
Concepts and Patterns for Streaming Services with Apache Kafka: this book explains how service-based architectures and stream processing tools such as Apache Kafka can help you build business-critical systems.
-
Making Sense of Stream Processing: Behind Apache Kafka
This book shows you how stream processing can make your data storage and processing systems more flexible and less complex. It explains how these projects can help you reorient your database architecture around streams and materialized views.
-
Big Data Processing with Apache Spark (Srini Penchikala)
Learn about the Apache Spark framework and develop Spark programs for use cases in big-data analysis. It covers all the libraries that are part of Spark ecosystem, which includes Spark Core, Spark SQL, Spark Streaming, Spark MLlib, and Spark GraphX.
-
The Internals of Apache Spark (Jacek Laskowski)
This book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala.
-
The Data Engineer's Guide to Apache Spark (Databricks)
This book is for data engineers looking to leverage the immense growth of Apache Spark to build faster and more reliable data pipelines. It leverages Spark's amazing speed, scalability, simplicity, and versatility to build practical Big Data solutions.
:
|
|