Processing ......
FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World
 
Exploring Data Science
How many flights will depart from a particular airport? Click here to find out.
  • Title Exploring Data Science
  • Author(s) Nina Zumel and John Mount
  • Publisher: Manning Publishing
  • Hardcover/Paperback N/A
  • eBook PDF files
  • Language: English
  • ISBN-10/ASIN: N/A
  • ISBN-13: N/A
  • Share This:  

Book Description

This book introduces readers to various areas in data science and explains which methodologies work best for each, with practical examples in R, Python, and other languages.

There's never been a better time to get into data science. But where do you start? Data Science is a broad field, incorporating aspects of statistics, machine learning, and data engineering. It's easy to become overwhelmed, or end up learning about a small section of data science or a single methodology.

Exploring Data Science is a collection of five hand-picked chapters introducing you to various areas in data science and explaining which methodologies work best for each. John Mount and Nina Zumel, authors of Practical Data Science with R, selected these chapters to give you the big picture of the many data domains. You’ll learn about time series, neural networks, text analytics, and more. As you explore different modeling practices, you’ll see practical examples of how R, Python, and other languages are used in data science. Along the way, you'll experience a sample of Manning books you may want to add to your library.

About the Authors
  • Nina Zumel and John Mount are cofounders of a San Francisco-based data science consulting firm. Both hold PhDs from Carnegie Mellon and blog on statistics, probability, and computer science at win-vector.com.
Reviews, Rating, and Recommendations: Related Book Categories: Read and Download Links: Similar Books:
  • Introduction to Data Science (Jeffrey Stanton)

    This book provides non-technical readers with a gentle introduction to essential concepts and activities of data science. For more technical readers, the book provides explanations and code for a range of interesting applications using the open source R language for statistical computing and graphics.

  • Introduction to Probability for Data Science (Stanley Chan)

    This book is an introductory textbook in undergraduate probability in the context of data science to emphasize the inseparability between data (computing) and probability (theory) in our time, with examples in both MATLAB and Python.

  • Data Science at the Command Line, 2nd Ed. (Jeroen Janssens)

    This hands-on guide demonstrates how the flexibility of the command line can help you become a more efficient and productive data scientist. Learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.

  • Computational and Inferential: The Foundations of Data Science

    Step by step, you'll learn how to leverage algorithmic thinking and the power of code, gain intuition about the power and limitations of current machine learning methods, and effectively apply them to real business problems.

  • Data Science: Theories, Models, Algorithms, and Analytics

    It provides a bucket full of information regarding Data Science, covers a wide variety of sections by giving access to theories, data science algorithms, tools and analytics. You'll explore the right approach to best practices to guide you along the way.

  • Python Data Science Handbook: Essential Tools (Jake VanderPlas)

    Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all - IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools.

  • Regression Models for Data Science in R (Brian Caffo)

    The book gives a rigorous treatment of the elementary concepts of regression models from a practical perspective. The ideal reader for this book will be quantitatively literate and has a basic understanding of statistical concepts and R programming.

  • R for Data Science: Visualize, Model, Transform, Tidy, Import

    This book teaches you how to do data science with R: You'll learn how to get your data into R, get it into the most useful structure, transform it, visualize it and model it, how data science can help you work with the uncertainty and capture the opportunities.

  • The Ultimate Guide to Effective Data Cleaning

    With this in-depth book, current and aspiring engineers will learn powerful real-world best practices for managing data big and small. Experts share their experiences and lessons learned for overcoming a variety of specific and often nagging challenges.

  • Elements of Data Science (Allen B. Downey)

    This book is an introduction to data science for people with no programming experience. The goal is to present a small, powerful subset of Python that allows you to do real work in data science as quickly as possible.

  • Statistical Inference: Algorithms, Evidence, and Data Science

    A masterful guide to how the inferential bases of classical statistics can provide a principled disciplinary frame for the data science of the twenty-first century. Every aspiring data scientist should carefully study this book, use it as a reference.

Book Categories
:
Other Categories
Resources and Links