Processing ......
FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World
 
Forecasting: Principles and Practice
网址居 (LinkBasket) - 全球各国中英文新闻网站集大成!.
  • Title: Forecasting: Principles and Practice
  • Author(s): Rob J. Hyndman and George Athanasopoulos
  • Publisher: Otexts; 3rd ed. edition (May 31, 2021)
  • Paperback: 442 pages
  • eBook: HTML
  • Language: English
  • ISBN-10: 0987507133
  • ISBN-13: 978-0987507136
  • Share This:  

Book Description

TForecasting is required in many situations. Deciding whether to build another power generation plant in the next five years requires forecasts of future demand. Scheduling staff in a call centre next week requires forecasts of call volumes. Stocking an inventory requires forecasts of stock requirements. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning.

This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

In this third edition, all chapters have been updated to cover the latest research and forecasting methods. One new chapter has been added on time series features.

About the Authors
  • Professor Rob J. Hyndman is an Australian statistician based at Monash University, Melbourne, Australia.
Reviews and Rating: Related Book Categories: Read and Download Links: Similar Books:
  • A First Course on Time Series Analysis with SAS (Michael Falk, et al)

    A unique feature of this book is its integration with the statistical software package SAS® (Statistical Analysis System) computing environment. Basic applied statistics is assumed through multiple regression.

  • Statistical Inference: Algorithms, Evidence, and Data Science

    A masterful guide to how the inferential bases of classical statistics can provide a principled disciplinary frame for the data science of the twenty-first century. Every aspiring data scientist should carefully study this book, use it as a reference.

  • Mostly Harmless Statistics (Rachel L. Webb)

    This text is for an introductory level probability and statistics course with an intermediate algebra prerequisite. The focus of the text follows the American Statistical Association's Guidelines for Assessment and Instruction in Statistics Education (GAISE).

  • Introduction to Modern Statistics (Mine Çetinkaya-Rundel, et al.)

    This book puts a heavy emphasis on exploratory data analysis and provides a thorough discussion of simulation-based inference using randomization and bootstrapping, followed by a presentation of the related Central Limit Theorem based approaches.

  • Foundations in Statistical Reasoning (Pete Kaslik)

    This book is designed for students taking an introductory statistics class. The emphasis throughout the entire book is on how to make decisions with only partial evidence. It focuses on the thought process.

  • R for Data Science: Visualize, Model, Transform, Tidy, Import

    This book teaches you how to do data science with R: You'll learn how to get your data into R, get it into the most useful structure, transform it, visualize it and model it, how data science can help you work with the uncertainty and capture the opportunities.

  • R Programming for Data Science (Roger D. Peng)

    This book is about the fundamentals of R programming. Get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. You will have a solid foundation on data science toolbox.

  • Efficient R Programming: Practical Guide to Smarter Programming

    This book is about increasing the amount of work you can do with R in a given amount of time. It's about both computational and programmer efficiency. This book is for anyone who wants to make their use of R more reproducible, scalable, and faster.

  • Cookbook for R: Best R Programming TIPs (Winston Chang)

    The goal of this cookbook is to provide solutions to common tasks and problems in analyzing data. Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.

  • R Packages: Organize, Test, Document, and Share Your Code

    Turn your R code into packages that others can easily download and use. This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author's package development philosophy.

  • R Graphics Cookbook: Practical Recipes for Visualizing Data

    This cookbook provides more than 150 recipes to help scientists, engineers, programmers, and data analysts generate high-quality graphs quickly - without having to comb through all the details of R's graphing systems.

Book Categories
:
Other Categories
Resources and Links