FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


 Title: R for Time Series
 Author(s) Avril Coghlan
 Publisher: Self Publishing
 Paperback: N/A
 eBook: PDF
 Language: English
 ISBN10: N/A
 ISBN13: N/A
 Share This:
Book Description
Build efficient forecasting models using traditional time series models and machine learning algorithms. This book explores the basics of time series analysis with R and lays the foundations you need to build forecasting models.
About the AuthorsN/A

Forecasting, Principles and Practice, Using R (R. J. Hyndman)
This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

Introduction to Time Series with Python (Sadrach Pierre)
Build realworld time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts. Perform time series analysis and forecasting confidently with Python.

A First Course on Time Series Analysis with SAS (Michael Falk, et al)
A unique feature of this book is its integration with the statistical software package SAS® (Statistical Analysis System) computing environment. Basic applied statistics is assumed through multiple regression.

R for Multivariate Analysis (Avril Coghlan)
This book explores the correct application of these methods so as to extract as much information as possible from the data at hand, particularly as some type of graphical representation, via the R software.

Using R for Data Analysis and Graphics (J H Maindonald)
This book guides users through the practical, powerful tools that the R system provides. The emphasis is on handson analysis, graphical display, and interpretation of data. There are many worked examples from realworld.

R Graphics Cookbook: Practical Recipes for Visualizing Data
This cookbook provides more than 150 recipes to help scientists, engineers, programmers, and data analysts generate highquality graphs quickly  without having to comb through all the details of R's graphing systems.

R Programming for Data Science (Roger D. Peng)
This book is about the fundamentals of R programming. Get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. You will have a solid foundation on data science toolbox.

R for Data Science: Visualize, Model, Transform, Tidy, Import
This book teaches you how to do data science with R: You'll learn how to get your data into R, get it into the most useful structure, transform it, visualize it and model it, how data science can help you work with the uncertainty and capture the opportunities.

An Introduction to R (Alex Douglas, et al.)
The main aim of this book is to help you climb the initial learning curve and provide you with the basic skills and experience (and confidence!) to enable you to further your experience in using R.

Advanced R, Second Edition (Hadley Wickham)
This book helps you understand how R works at a fundamental level. Designed for R programmers who want to deepen their understanding of the language, and programmers experienced in other languages to understand what makes R different and special.

Advanced R Solutions (Malte Grosser, et al)
This book offers solutions to the exercises from Advanced R, 2nd Edition by Hadley Wickham. It is work in progress and under active development. The 2nd edition of Advanced R is in print now and we hope to provide most of the answers.

R Packages: Organize, Test, Document, and Share Your Code
Turn your R code into packages that others can easily download and use. This practical book shows you how to bundle reusable R functions, sample data, and documentation together by applying author's package development philosophy.

HandsOn Programming with R: Functions and Simulations
This book not only teaches you how to program, but also shows you how to get more from R than just visualizing and modeling data. Youâ€™ll gain valuable programming skills and support your work as a data scientist at the same time.

Efficient R Programming: Practical Guide to Smarter Programming
This book is about increasing the amount of work you can do with R in a given amount of time. It's about both computational and programmer efficiency. This book is for anyone who wants to make their use of R more reproducible, scalable, and faster.

Cookbook for R: Best R Programming TIPs (Winston Chang)
The goal of this cookbook is to provide solutions to common tasks and problems in analyzing data. Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works.

Advanced R (Florian Prive)
This book aims at giving a wide understanding of many aspects of R. Combining detailed explanations with realworld examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R's functionality.
:






















