Processing ......
FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World
 
Neural Network Learning: Theoretical Foundations
🌠 Top Free Unix/Linux Books - 100% Free or Open Source!
  • Title: Neural Network Learning: Theoretical Foundations
  • Author(s): Martin Anthony and Peter L. Bartlett
  • Publisher: Cambridge University
  • Paperback: N/A
  • eBook: PDF
  • Language: English
  • ISBN-10: N/A
  • ISBN-13: N/A
  • Share This:  

Book Description

This book describes recent theoretical advances in the study of artificial neural networks. It explores probabilistic models of supervised learning problems, and addresses the key statistical and computational questions.

About the Authors
  • N/A
Reviews and Rating: Related Book Categories: Read and Download Links: Similar Books:
  • Neural Network Design (Martin T. Hagan)

    This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. It emphasizes a coherent presentation of the principal neural networks, methods for training them and their applications to practical problems.

  • Neural Networks - A Systematic Introduction (Raul Rojas)

    In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. It is aimed at readers who seek an overview of the field or who wish to deepen their knowledge.

  • Introduction to Artificial Neural Networks (Jan Larsen, et al.)

    This fundamental book on Artificial Neural Networks (ANN) has its emphasis on clear concepts, ease of understanding and simple examples. It presents a large variety of standard neural networks with architecture, algorithms and applications.

  • Neural Networks and Deep Learning (Michael Nielsen)

    Neural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

  • Applied Artificial Neural Networks (Christian Dawson)

    This book focuses on the application of neural networks to a diverse range of fields and problems. It collates contributions concerning neural network applications in areas such as engineering, hydrology and medicine.

  • An Introduction to Neural Networks (Kevin Gurney)

    With an easy to understand format using graphical illustrations and multidisciplinary scientific context, this book fills the gap in the market for neural networks for multi-dimensional scientific data, and relates neural networks to statistics.

  • Neural Networks (Rolf Pfeifer, et al)

    Beginning with an introductory discussion on the role of neural networks in scientific data analysis, this book provides a solid foundation of basic neural network concepts. It is a systematic introduction to neural networks, biological foundation.

Book Categories
:
Other Categories
Resources and Links