FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


 Title The Key to Newton's Dynamics
 Author(s) J. Bruce Brackenridge
 Publisher: University of California Press; First edition (February 29, 1996)
 Paperback 330 pages
 eBook HTML
 Language: English
 ISBN10: 0520202171
 ISBN13: 9780520202177
 Share This:
Book Description
While much has been written on the ramifications of Newton's dynamics, until now the details of Newton's solution were available only to the physics expert. The Key to Newton's Dynamics clearly explains the surprisingly simple analytical structure that underlies the determination of the force necessary to maintain ideal planetary motion. J. Bruce Brackenridge sets the problem in historical and conceptual perspective, showing the physicist's debt to the works of both Descartes and Galileo.
He tracks Newton's work on the Kepler problem from its early stages at Cambridge before 1669, through the revival of his interest ten years later, to its fruition in the first three sections of the first edition of the Principia.
This book is lucid, important, and fills a large gap in the existing literature. Brackenridge is undoubtedly that gifted, patient teacher that one expects from a quality liberal arts college.
About the Authors J. Bruce Brackenridge is Alice G. Chapman Professor of Physics at Lawrence University.
 Physics
 Calculus and Mathematical Analysis (Real Analysis, Functional Analysis, etc.)
 Computational and Algorithmic Mathematics

Structure and Interpretation of Classical Mechanics
This innovative textbook concentrates on developing general methods for studying the behavior of classical systems. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic.

Principles of Mechanics: Fundamental University Physics
This textbook takes the reader stepbystep through the concepts of mechanics in a clear and detailed manner. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics.

Variational Principles in Classical Mechanics (Douglas Cline)
This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared.

Statistical Mechanics of Lattice Systems: Mathematical Introduction
This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curieâ€“Weiss and Ising models, the Gaussian free field, etc.

Relativity: The Special and General Theory (Albert Einstein)
The great physicist himself disclaimed this exclusionary view, and in this book, he explains both theories in their simplest and most intelligible form for the layman not versed in the mathematical foundations of theoretical physics.

An Advanced Course in General Relativity (Eric Poisson)
Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of "the most beautiful of all scientific theories".

Quantum Computing Since Democritus (Scott Aaronson)
This book takes readers on a tour through some of the deepest ideas of maths, computer science and physics. Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics.
:






















