FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


Relativity: The Special and General Theory (Albert Einstein)
The great physicist himself disclaimed this exclusionary view, and in this book, he explains both theories in their simplest and most intelligible form for the layman not versed in the mathematical foundations of theoretical physics.

Structure and Interpretation of Classical Mechanics
This innovative textbook concentrates on developing general methods for studying the behavior of classical systems. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic.

Principles of Mechanics: Fundamental University Physics
This textbook takes the reader stepbystep through the concepts of mechanics in a clear and detailed manner. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics.

Variational Principles in Classical Mechanics (Douglas Cline)
This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared.

The Key to Newton's Dynamics (J. Bruce Brackenridge)
This book clearly explains the surprisingly simple analytical structure that underlies the determination of the force necessary to maintain ideal planetary motion, sets the problem in historical and conceptual perspective, showing the works of both Descartes and Galileo.

Flight Physics  Models, Techniques and Technologies (K. Volkov)
Focuses on the synthesis of the fundamental disciplines and practical applications involved in the investigation, description, and analysis of aircraft flight including applied aerodynamics, aircraft propulsion, flight performance, stability, and control.

Quantum Computing: Progress and Prospects
Provides an introduction to the Quantum Computing, including the unique characteristics and constraints of the technology, and assesses the feasibility and implications of creating a functional quantum computer capable of addressing realworld problems.

Quantum Computing Since Democritus (Scott Aaronson)
This book takes readers on a tour through some of the deepest ideas of maths, computer science and physics. Full of insights, arguments and philosophical perspectives, the book covers an amazing array of topics.

Bayesian Field Theory (Jorg C. Lemm)
Long the province of mathematicians and statisticians, Bayesian methods are applied in this groundbreaking book to problems in cuttingedge physics, with practical examples of Bayesian analysis for the physicist working in such areas as neural networks, artificial intelligence, and inverse problems in quantum theory.

Computational Physics and Scientific Computing: C++ or Fortran
This book is an introduction to the computational methods used in physics, but also in other scientific fields. Both C++ or Fortran are used for programming the core programs and data analysis is performed using the powerful tools of the Gnu/Linux environment.

Computational Physics with Python (Eric Ayars)
This book provides an unusually broad survey of the topics of modern computational physics. Its philosophy is rooted in learning by doing, with new scientific materials as well as with the Python programming language.

Computational Physics with Python (Mark Newman)
A complete introduction to the field of computational physics, with examples and exercises in the Python programming language. It explains the fundamentals of computational physics and describes in simple terms the techniques that every physicist should know,.

Physical Modeling in MATLAB (Allen B. Downey)
Written for beginners, this book provides an introduction to programming in MATLAB and simulation of physical systems. Most books that use MATLAB are aimed at readers who know how to program. This book is for people who have never programmed before.

Graph and Network Theory in Physics: A Short Introduction
It consists of some of the main areas of research in graph and network theory applied to physics, includes graphs in condensed matter theory, such as the tightbinding and the Hubbard model and statistical physics by means of the analysis of the Potts model ...

Physical Audio Signal Processing (Julius O. Smith III)
This book describes signalprocessing models and methods that are used in constructing virtual musical instruments and audio effects. The goal of this book is to enable the reader in developing virtual musical instruments and audio effects that can be boiled down to algorithms and executed by a computer.

Numerical Simulations of Physical and Engineering Processes
The book handles the numerical simulations of physical and engineering systems. It can be treated as a bridge linking various numerical approaches of two closely interrelated branches of science, i.e. physics and engineering.

Introduction to Embedded Systems  A CyberPhysical Systems
This book strives to identify and introduce the durable intellectual ideas of embedded systems as a technology and as a subject of study. It emphasizes on modeling, design, and analysis of cyberphysical systems, which integrate computing, networking, etc.

Mathematical Tools for Physics (James Nearing)
This book helps physics students learn to take an informed and intuitive approach to solving problems. It assists undergraduates in developing their skills and provides them with grounding in important mathematical methods.

Mathematics for the Physical Sciences (Leslie Copley)
This book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into clearly written reference and illustrates the mathematics with numerous physical examples drawn from contemporary research.

Mathematics for the Physical Sciences (Herbert S. Wilf)
This book provides a text for a firstyear graduate level course in mathematical methods. Advanced undergraduates and graduate students in the natural sciences will receive a solid foundation in several fields of mathematics with this text.

Linear Algebra: A Course for Physicists and Engineers (Arak Mathai)
This textbook on linear algebra is written to be easy to digest by nonmathematicians. It introduces the concepts of vector spaces and mappings between them without too much theorems and proofs. Various applications of the formal theory are discussed as well.

Probability and Statistics: A Course for Physicists and Engineers
It offers an introduction to concepts of probability theory, probability distributions relevant in the applied sciences, and focuses on real engineering applications, as well as basics of sampling distributions, estimation and hypothesis testing.

Finiteelement Methods for Electromagnetics (Stanley Humphries)
This book covers a broad range of practical applications involving electric and magnetic fields. The text emphasizes finiteelement techniques to solve realworld problems in research and industry.

Combinatorial Geometry with Application to Field Theory
Topics covered in this book include fundamental of combinatorics, algebraic combinatorics, topology with Smarandache geometry, combinatorial differential geometry, combinatorial Riemannian submanifolds, Lie multigroups, etc.

Python Scripting for Computational Science (Hans Langtangen)
With a primary focus on examples and applications of relevance to computational scientists, this brilliantly useful book shows computational scientists how to develop tailored, flexible, and humanefficient working environments built from small scripts written in the easytolearn, highlevel Python language.

Python Scientific Lecture Notes (Scipy Lectures )
This book is the teaching material on the scientific Python ecosystem, a quick introduction to central tools and techniques. It is for programmers from beginner to expert. Work on realworld problems with SciPy, NumPy, Pandas, scikitimage, and other Python libraries.

Programming for Computations  MATLAB/Octave (Svein Linge)
This book presents computer programming as a key method for solving mathematical problems using MATLAB and Octave. It is intended for novice programmers. Each treated concept is illustrated and explained in detail by means of working examples.

Programming for Computations  Python (Svein Linge, et al)
This book presents computer programming as a key method for solving mathematical problems using Python. Each treated concept is illustrated and explained in detail by means of working examples. It is intended for novice programmers and engineers.

One Two Three ... Infinity: Facts and Speculations of Science
Whatever your level of scientific expertise, chances are you'll derive a great deal of pleasure, stimulation, and information from this unusual and imaginative book. It belongs in the library of anyone curious about the wonders of the scientific universe.

Linear Mathematics In Infinite Dimensions (Ulrich H. Gerlach)
Focus on the mathematical framework that underlies linear systems arising in physics, engineering and applied mathematics  from the theory of linear transformation on finite dimensional vector space to the infinite dimensional vector spaces.

Hubble's Legacy (Roger D. Launius, et al)
This book, which includes contributions from historians of science, key scientists and administrators, and one of the principal astronauts who led many of the servicing missions, is meant to capture the history of this iconic instrument.

Hubble 25: A QuarterCentury of Discovery with the Telescope
In celebration of the Hubble Space Telescope's 25th anniversary, explore 25 of Hubble's breathtaking and significant images. Along with companion descriptions and videos, the 25 images highlight the telescope's amazing capabilities.

Python in Hydrology (Sat Kumar Tomer)
This book is written for learning Python using its applications in hydrology. The book covers the basic applications of hydrology, and also the advanced topic like use of copula.