FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


 Title: Algorithmic Aspects of Machine Learning
 Author(s) Ankur Moitra
 Publisher: Cambridge University Press, 1st Edition; eBook (Draft for Version 2)
 Paperback: 158 pages
 eBook: PDF (249 pages)
 Language: English
 ISBN10/ASIN: 1316636003
 ISBN13: 9781316636008
 Share This:
Book Description
This book bridges theoretical computer science and machine learning by exploring what the two sides can teach each other. It emphasizes the need for flexible, tractable models that better capture not what makes machine learning hard, but what makes it easy.
The treatment beyond worstcase analysis is to build a rigorous understanding about the approaches used in practice and to facilitate the discovery of exciting, new ways to solve important longstanding problems.
About the Authors Ankur Moitra is the Rockwell International Associate Professor of Mathematics at Massachusetts Institute of Technology.
 Machine Learning
 Deep Learning and Neural Networks
 Algorithms and Data Structures
 Artificial Intelligence

Deep Learning and Neural Networks
A collection of books related to Deep Learning and Neural Networks, including (but not limited to): Artificial Neural Networks (ANN), Recurrent Neural Networks (RNN), Convolutional Neural Network (CNN, or ConvNet), GANs, etc.

Introduction to Statistical Learning: with Applications in Python
This book covers the same materials as Introduction to Statistical Learning: with Applications in R (ISLR) but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Distributional Reinforcement Learning (Marc G. Bellemare, et al)
Distributional reinforcement learning is a new mathematical formalism for thinking about decisions. This first comprehensive guide provides a new mathematical formalism for thinking about decisions from a probabilistic perspective.

Computational Formalism: Art History and Machine Learning
How the use of machine learning to analyze art images has revived formalism in art history, presenting a golden opportunity for art historians and computer scientists to learn from one another.

Machine Learning under Resource Constraints (Katharina Morik)
It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering.

An Introduction to Machine Learning Interpretability
Understanding and trusting models and their results is a hallmark of good science. Get an applied perspective on how this applies to machine learning, including fairness, accountability, transparency, and explainable AI.

Hyperparameter Tuning for Machine Learning: A Practical Guide
This open access book provides a wealth of handson examples that illustrate how hyperparameter tuning can be applied in practice and gives deep insights into the working mechanisms of machine learning (ML) and deep learning (DL) methods.

Approaching (Almost) Any Machine Learning Problem
This book is for people who have some theoretical knowledge of machine learning and deep learning and want to dive into applied machine learning. The book is best enjoyed with a cup of coffee and a laptop/workstation where you can code along.

An Introduction to Quantum Machine Learning for Engineers
This book provides a selfcontained introduction to Quantum Machine Learning for an audience of engineers with a background in probability and linear algebra, describes the necessary background, concepts, and tools, covers parametrized quantum circuits, etc.

Mathematics for Machine Learning (Marc P. Deisenroth, et al.)
This self contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It provides a beautiful exposition of the mathematics underpinning modern machine learning.

Metalearning: Applications to Automated Machine Learning
This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and Automated Machine Learning (AutoML). It can help developers to develop systems that can improve themselves through experience.

An Introduction to Deep Reinforcement Learning
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has recently been able to solve a wide range of complex decisionmaking tasks that were previously out of reach for a machine.

Probabilistic Machine Learning: An Introduction (Kevin Murphy)
This book is a comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. It is written in an informal, accessible style, complete with pseudocode for the most important algorithms.

Probabilistic Machine Learning: Advanced Topics (Kevin Murphy)
This book expands the scope of Machine Learning to encompass more challenging problems, discusses methods for discovering 'insights' about data, and how to use probabilistic models for causal inference and decision making under uncertainty.

The Big Book of Machine Learning Use Cases
This howto reference guide provides everything you need  including code samples and notebooks  to start putting Machine Learning to work. It's a collection of technical blogs from industry thought leaders with practical use cases you can leverage today.

Pen and Paper Exercises in Machine Learning (Michael Gutmann)
This is a collection of (mostly) penandpaper exercises in machine learning. The author assumes basic calculus, linear algebra, probability and statistics but no prior exposure to machine learning.
:






















