FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


 Title: Just Enough R: Learn Data Analysis with R in a Day
 Author(s): Sivakumaran Raman
 Publisher: Gutenberg Project (3/19/2017)
 License(s): CC BYSA 4.0
 Paperback: N/A
 eBook: PDF (172 pages, 5.4 MB), ePub, Mobi (Kindle)
 Language: English
 ISBN10: N/A
 ISBN13: 9781370086894
 Share This:
Book Description
Learn R programming for data analysis in a single day. The book aims to teach data analysis using R within a single day to anyone who already knows some programming in any other language. The book has sample code which can be downloaded as a zip file.
With more than two million global users, the R language is rapidly turning into a top programming language specifically in the space of data science as well as statistics. What you are going to learn in this stepbystep beginnerâ€™s guide is how to master the fundamentals of such a gorgeous opensource programming language which includes vectors, data frames and lists.
This book has been crafted in a stepbystep manner which we feel is the best way for you to learn a new subject, one step at a time. It also includes various images to give you assurance you are going in the right direction, as well as having exercises where you can proudly practice your newly attained skills.
About the Authors N/A
 The R Programming Language
 Data Analysis and Data Mining
 Data Science
 Statistics, and SAS Programming
 Geographic Information System (GIS) and Web Mapping
 Just Enough R: Learn Data Analysis with R in a Day (Sivakumaran Raman)
 The Mirror Site (1)  PDF
 The Mirror Site (2)  PDF
 The Mirror Site (3)  PDF, ePub, Mobi

An Introduction to R (Alex Douglas, et al.)
The main aim of this book is to help you climb the initial learning curve and provide you with the basic skills and experience (and confidence!) to enable you to further your experience in using R.

R for Data Science: Visualize, Model, Transform, Tidy, Import
This book teaches you how to do data science with R: You'll learn how to get your data into R, get it into the most useful structure, transform it, visualize it and model it, how data science can help you work with the uncertainty and capture the opportunities.

Regression Models for Data Science in R (Brian Caffo)
The book gives a rigorous treatment of the elementary concepts of regression models from a practical perspective. The ideal reader for this book will be quantitatively literate and has a basic understanding of statistical concepts and R programming.

Advanced R (Florian Prive)
This book aims at giving a wide understanding of many aspects of R. Combining detailed explanations with realworld examples and exercises, this book will provide you with a solid understanding of both statistics and the depth of R's functionality.

Applied Statistics with R (David Dalpiaz)
This book provides an integrated treatment of statistical inference techniques in data science using the R Statistical Software. It provides a muchneeded, easytofollow introduction to statistics and the R programming language.

Advanced R, Second Edition (Hadley Wickham)
This book helps you understand how R works at a fundamental level. Designed for R programmers who want to deepen their understanding of the language, and programmers experienced in other languages to understand what makes R different and special.

Advanced R Solutions (Malte Grosser, et al)
This book offers solutions to the exercises from Advanced R, 2nd Edition by Hadley Wickham. It is work in progress and under active development. The 2nd edition of Advanced R is in print now and we hope to provide most of the answers.

An Introduction to Statistical Learning: with Applications in R
It provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years.

An Introduction to Bayesian Thinking (Merlise Clyde, et al.)
It provides an introduction to Bayesian Inference in decision making without requiring calculus. It may be used on its own as an openaccess introduction to Bayesian inference using R Programming for anyone interested in learning about Bayesian statistics.

Advanced Data Analysis using R (Cosma R. Shalizi)
This is a textbook on data analysis methods, intended for advance undergraduate students who have already taken classes in probability, mathematical statistics, and linear regression. All examples implemented using R.
:






















