FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


 Title Statistical Inference for Everyone
 Author(s) Brian S Blais
 Publisher: CreateSpace (2014); eBook (Creative Commons Licensed)
 License(s): Creative Commons License (CC)
 Hardcover/Paperback 200 pages
 eBook PDF
 Language: English
 ISBN10: 1499715072
 ISBN13: 9781499715071
 Share This:
Book Description
Approaching an introductory statistical inference textbook in a novel way, this book is motivated by the perspective of "probability theory as logic". Targeted to the typical "Statistics 101" college student this book covers the topics typically treated in such a course  but from a fresh angle. This book walks through a simple introduction to probability, and then applies those principles to all problems of inference. Topics include hypothesis testing, data visualization, parameter inference, and model comparison, etc.
About the Authors Brian Blais is a Professor of Science and Technology at Bryant University and a research professor at the Institute for Brain and Neural Systems, Brown University. With a Ph.D. in Physics from Brown University, he has taught and published in such diverse areas as computational neuroscience, robotics, epidemic modeling, and environmental resource dynamics. He maintains his blog, bblais on the web where he explores the intersection of science and society.
 Statistics, Mathematical Statistics, and SAS Programming
 Probability and Stochastic Process
 Operations Research and Optimization Books
 Data Analysis and Data Mining Books
 Applied Mathematics
 Statistical Inference for Everyone (Brian S Blais)
 The Mirror Site (1)  PDF
 The Mirror Site (2)  HTML and PDF

Statistical Inference: Algorithms, Evidence, and Data Science
A masterful guide to how the inferential bases of classical statistics can provide a principled disciplinary frame for the data science of the twentyfirst century. Every aspiring data scientist should carefully study this book, use it as a reference.

Statistics Done Wrong: The Woefully Complete Guide (Reinhart)
Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong.

Think Stats, 2nd Edition: Exploratory Data Analysis in Python
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python. You'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.

Introductory Statistics (OpenStax)
This book is geared toward students majoring in fields other than math or engineering. This text assumes students have been exposed to intermediate algebra, and it focuses on the applications of statistical knowledge rather than the theory behind it.

Mostly Harmless Statistics (Rachel L. Webb)
This text is for an introductory level probability and statistics course with an intermediate algebra prerequisite. The focus of the text follows the American Statistical Association's Guidelines for Assessment and Instruction in Statistics Education (GAISE).

Introduction to Modern Statistics (Mine Ã‡etinkayaRundel, et al.)
This book puts a heavy emphasis on exploratory data analysis and provides a thorough discussion of simulationbased inference using randomization and bootstrapping, followed by a presentation of the related Central Limit Theorem based approaches.

Foundations in Statistical Reasoning (Pete Kaslik)
This book is designed for students taking an introductory statistics class. The emphasis throughout the entire book is on how to make decisions with only partial evidence. It focuses on the thought process.

Theory of Statistics (James E. Gentle)
This book is directed toward students for whom mathematical statistics is or will become an important part of their lives. It covers classical likelihood, Bayesian, and permutation inference; an introduction to basic asymptotic distribution theory; and modern topics.

Introduction to Statistical Learning: with Applications in Python
This book covers the same materials as Introduction to Statistical Learning: with Applications in R (ISLR) but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

O'Reilly® Think Bayes: Bayesian Statistics in Python
If you know how to program, you're ready to tackle Bayesian statistics. With this book, you'll learn how to solve statistical problems with Python code instead of mathematical formulas, using discrete probability distributions rather than continuous mathematics.

Forecasting: Principles and Practice (Rob J. Hyndman, et al.)
This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly. Examples use R with many data sets taken from the authors' own consulting experience.

Foundations of Descriptive and Inferential Statistics (H. van Elst)
This book aim to provide an accessible though technically solid introduction to the logic of systematical analyses of statistical data to both undergraduate and postgraduate students, in particular in the Social Sciences, Economics, and the Financial Services.

Lies, Damned Lies: How to Tell the Truth with Statistics
The goal is to help you learn How to Tell the Truth with Statistics and, therefore, how to tell when others are telling the truth ... or are faking their "news". Covers Data Analysis, Binomial and normal models, Sample statistics, confidence intervals, hypothesis tests, etc.

Answering Questions with Data : Introductory Statistics
This is a free textbook teaching introductory statistics for undergraduates. Students will learn to select an appropriate data analysis technique, carry out the analysis, and draw appropriate conclusions.

Regression Models for Data Science in R (Brian Caffo)
The book gives a rigorous treatment of the elementary concepts of regression models from a practical perspective. The ideal reader for this book will be quantitatively literate and has a basic understanding of statistical concepts and R programming.

Applied Statistics with R (David Dalpiaz)
This book provides an integrated treatment of statistical inference techniques in data science using the R Statistical Software. It provides a muchneeded, easytofollow introduction to statistics and the R programming language.

Statistics Using Excel Succinctly (Charles Zaiontz)
This book illustrates the capabilities of Microsoft Excel to teach applied statistics effectively. It is a stepbystep exercisedriven guide for students and practitioners who need to master Excel to solve practical statistical problems
:






















