FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


 Title: The Einstein Theory of Relativity
 Author(s) Hendrik Antoon Lorentz
 Publisher: Independently published (May 29, 2022); eBook (Public Domain)
 License(s): The Project Gutenberg License
 Paperback: 31 pages
 eBook: HTML, PDF, ePub, and Kindle
 Language: English
 ISBN10/ASIN: B0B2J845HP
 ISBN13: 9798832655970
 Share This:
Book Description
Whether it is true or not that not more than twelve persons in all the world are able to understand Einstein's Theory, it is nevertheless a fact that there is a constant demand for information about this muchdebated topic of relativity. The books published on the subject are so technical that only a person trained in pure physics and higher mathematics is able to fully understand them. In order to make a popular explanation of this farreaching theory available, the present book is published.
About the Authors Hendrik Antoon Lorentz was a Dutch physicist who shared the 1902 Nobel Prize in Physics with Pieter Zeeman for the discovery and theoretical explanation of the Zeeman effect.
 Physics
 Applied Mathematics
 Calculus and Mathematical Analysis (Real Analysis, Functional Analysis, etc.)
 The Einstein Theory of Relativity (Hendrik A. Lorentz)
 The Mirror Site (1)  HTML, ePub, and Kindle
 The Mirror Site (2)  PDF

Relativity: The Special and General Theory (Albert Einstein)
The great physicist himself disclaimed this exclusionary view, and in this book, he explains both theories in their simplest and most intelligible form for the layman not versed in the mathematical foundations of theoretical physics.

An Advanced Course in General Relativity (Eric Poisson)
Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of "the most beautiful of all scientific theories".

Introduction to Classical and Quantum Computing (Tom Wong)
This book is for students who want to learn quantum computing beyond a conceptual level, but who lack advanced training in mathematics. The only prerequisite is trigonometry, and mathematics beyond that will be covered.

Quantum Computing for the Quantum Curious
This open access book makes quantum computing more accessible than ever before. It bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite.

Geometry with an Introduction to Cosmic Topology
The text uses Mobius transformations in the extended complex plane to define and investigate these three candidate geometries, thereby providing a natural setting in which to express results common to them all, as well as results that encapsulate key differences.

Statistical Mechanics of Lattice Systems: Mathematical Introduction
This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curieâ€“Weiss and Ising models, the Gaussian free field, etc.

Principles of Mechanics: Fundamental University Physics
This textbook takes the reader stepbystep through the concepts of mechanics in a clear and detailed manner. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics.

Structure and Interpretation of Classical Mechanics
This innovative textbook concentrates on developing general methods for studying the behavior of classical systems. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic.

Variational Principles in Classical Mechanics (Douglas Cline)
This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared.

Marie Curie and the Science of Radioactivity (Naomi Pasachoff)
Marie Curie discovered radium and went on to lead the scientific community in studying the theory behind and the uses of radioactivity. She left a vast legacy to future scientists through her research, her teaching, and her contributions to the welfare of humankind.
:






















