FreeComputerBooks.com
Links to Free Computer, Mathematics, Technical Books all over the World


 Title: Marie Curie and the Science of Radioactivity
 Author(s) Naomi Pasachoff
 Publisher: Oxford University Press (November 27, 1997); eBook (American Institute of Physics 2005)
 Paperback: 109 pages
 eBook: PDF
 Language: English
 ISBN10: 0195120116
 ISBN13: 9780195120110
 Share This:
Book Description
Marie Curie discovered radium and went on to lead the scientific community in studying the theory behind and the uses of radioactivity. She left a vast legacy to future scientists through her research, her teaching, and her contributions to the welfare of humankind.
She was the first person to win two Nobel Prizes, yet upon her death in 1934, Albert Einstein was moved to say, "Marie Curie is, of all celebrated beings, the only one whom fame has not corrupted." She was a physicist, a wife and mother, and a groundbreaking professional woman.
This biography is an inspirational and exciting story of scientific discovery and personal commitment.
About the Authors Naomi Pasachoff is a Research Associate at Williams College.
 Physics
 General Science
 Radio and RFID (Radio Frequency Identification)
 Miscellaneous and Uncategorized Books

The Renaissance of Science: Story of the Atom and Chemistry
This history of the atom and chemistry discusses the lives of about 180 chemists and physicists, through the evolution of several stages of development, representing the most important scientific accomplishments.

The Feynman Lectures on Physics (Richard P. Feynman, et al.)
Ranging from the most basic principles of Newtonian physics through such formidable theories as general relativity and quantum mechanics, Feynman's lectures stand as a monument of clear exposition and deep insight.

Relativity: The Special and General Theory (Albert Einstein)
The great physicist himself disclaimed this exclusionary view, and in this book, he explains both theories in their simplest and most intelligible form for the layman not versed in the mathematical foundations of theoretical physics.

The Einstein Theory of Relativity (Hendrik A. Lorentz)
The books published on the subject are so technical that only a person trained in pure physics and higher mathematics is able to fully understand them. In order to make a popular explanation of this farreaching theory available, the present book is published.

An Advanced Course in General Relativity (Eric Poisson)
Focusing on conceptual clarity, he derives all the basic results in the simplest way, taking care to explain the physical, philosophical and mathematical ideas at the heart of "the most beautiful of all scientific theories".

People's Physics Book (James H. Dann, et al.)
This book provides a reference guide to the topics covered in most introductory physics courses. This book is geared towards students in a collegelevel introductory physics class, but can be used at the high school level.

The Physics of Quantum Mechanics (James Binney, et al.)
This book aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities.

Principles of Mechanics: Fundamental University Physics
This textbook takes the reader stepbystep through the concepts of mechanics in a clear and detailed manner. Many proofs and examples are included to help the reader grasp the fundamentals fully, paving the way to deal with more advanced topics.

Structure and Interpretation of Classical Mechanics
This innovative textbook concentrates on developing general methods for studying the behavior of classical systems. It focuses on the phenomenon of motion and makes extensive use of computer simulation in its explorations of the topic.

Variational Principles in Classical Mechanics (Douglas Cline)
This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared.

Lecture Notes on Classical Mechanics (Sunil Golwala)
You will learn a variety of new techniques and formalism that will allow you to attack a wider set of problems than you saw in the introductory sequences, more unified understanding of the structure and fundamental principles of classical physics.

Introduction to Classical and Quantum Computing (Tom Wong)
This book is for students who want to learn quantum computing beyond a conceptual level, but who lack advanced training in mathematics. The only prerequisite is trigonometry, and mathematics beyond that will be covered.

Quantum Computing for the Quantum Curious
This open access book makes quantum computing more accessible than ever before. It bridges the gap between popular science articles and advanced textbooks by making key ideas accessible with just high school physics as a prerequisite.

Geometry with an Introduction to Cosmic Topology
The text uses Mobius transformations in the extended complex plane to define and investigate these three candidate geometries, thereby providing a natural setting in which to express results common to them all, as well as results that encapsulate key differences.

Marie Curie and the Science of Radioactivity (Naomi Pasachoff)
Marie Curie discovered radium and went on to lead the scientific community in studying the theory behind and the uses of radioactivity. She left a vast legacy to future scientists through her research, her teaching, and her contributions to the welfare of humankind.

Statistical Mechanics of Lattice Systems: Mathematical Introduction
This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curieâ€“Weiss and Ising models, the Gaussian free field, etc.

An Introduction to Particle Physics and the Standard Model
This book familiarizes readers with what is considered tested and accepted and in so doing, gives them a grounding in particle physics in general, takes an historical approach showing how the model is linked to the physics in less challenging areas.
:






















