Processing ......
Links to Free Computer, Mathematics, Technical Books all over the World
Computability, Unsolvability, Randomness
Install LinkBasket to replace ALL of your new apps!
  • Title Computability, Unsolvability, Randomness
  • Author(s) Stephen G. Simpson
  • Publisher: The Pennsylvania State University (2009)
  • Paperback N/A
  • eBook PDF (151 pages)
  • Language: English
  • ISBN-10: N/A
  • ISBN-13: N/A
  • Share This:  

Book Description

This book gives a thorough development of the foundations of computability, from the definition of Turing machines up to finite injury priority arguments. Key topics include relative computability, and computably enumerable sets, those which can be effectively listed but not necessarily effectively decided, such as the theorems of Peano arithmetic.

The author exposits Turing's 1936 theory of computability and unsolvability, as subsequently developed by Kleene and Post. This theory is of the essence in theoretical computer science and in the study of unsolvable mathematical problems. Second, it provides an introductory account of a research area which is currently very active: algorithmic randomness and Kolmogorov complexity.

About the Authors
  • N/A

Reviews, Ratings, and Recommendations: Related Book Categories: Read and Download Links: Similar Books:
  • Incompleteness and Computability: Gödel's Theorems

    This book is an introduction to metamathematics and Gödel's Theorems. It covers recursive function theory, arithmetization of syntax, the first and second incompleteness theorem, models of arithmetic, second-order logic, and the lambda calculus.

  • Computability and Randomness (Andre Nies)

    The complexity and the randomness aspect of a set of natural numbers are closely related. This book includes a detailed treatment of Turing's theory of computability and unsolvability as subsequently developed by Kleene, Post, Friedberg, etc.

  • Exploring Randomness (Gregory J. Chaitin)

    This book presents the technical core of the theory of program-size complexity. LISP is used to present the key algorithms and to enable computer users to interact with the authors proofs and discover for themselves how they work.

  • Computability Theory: Introduction to Recursion Theory

    Computability Theory originated with the seminal work of Gödel, Church, Turing, Kleene and Post in the 1930s. These texts provide concise, comprehensive, and authoritative introduction to contemporary computability theory, techniques, and results.

  • Computability and Complexity: From a Programming Perspective

    This book is an introduction to the basic concepts of computability, complex, and the theory of programming languages. Its goal is to build a bridge between computability and complexity theory and other areas of computer science, especially programming.

  • Introduction to Mathematical Philosophy (Bertrand Russell)

    Requiring neither prior knowledge of mathematics nor aptitude for mathematical symbolism, the book serves as essential reading for anyone interested in the intersection of mathematics and logic and in the development of analytic philosophy.

  • What is Mathematics: Godel's Theorem and Around (K. Podnieks)

    This accessible book gives a new, detailed and elementary explanation of the Godel incompleteness theorems and presents the Chaitin results and their relation to the da Costa-Doria results, which are given in full, but with no technicalities.

  • Introduction to Probability, Statistics, and Random Processes

    This book introduces students to probability, statistics, and stochastic processes. It provides a clear and intuitive approach to these topics while maintaining mathematical accuracy. The book contains a large number of solved exercises.

  • Introduction to Random Matrices: Theory and Practice

    This is a book for absolute beginners. The aim is to provide a truly accessible introductory account of Random Matrix theory. Most chapters are accompanied by MATLAB codes to guide readers through the numerical check of most analytical results.

Book Categories
Other Categories
Resources and Links